JP6530402B2 - Method of processing a dispersion strengthened platinum composition - Google Patents

Method of processing a dispersion strengthened platinum composition Download PDF

Info

Publication number
JP6530402B2
JP6530402B2 JP2016536823A JP2016536823A JP6530402B2 JP 6530402 B2 JP6530402 B2 JP 6530402B2 JP 2016536823 A JP2016536823 A JP 2016536823A JP 2016536823 A JP2016536823 A JP 2016536823A JP 6530402 B2 JP6530402 B2 JP 6530402B2
Authority
JP
Japan
Prior art keywords
dispersion
cold
strengthened platinum
volume
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016536823A
Other languages
Japanese (ja)
Other versions
JP2017502170A (en
Inventor
マイアー ディアク
マイアー ディアク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heraeus Deutschland GmbH and Co KG
Original Assignee
Heraeus Deutschland GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=52101298&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6530402(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Heraeus Deutschland GmbH and Co KG filed Critical Heraeus Deutschland GmbH and Co KG
Publication of JP2017502170A publication Critical patent/JP2017502170A/en
Application granted granted Critical
Publication of JP6530402B2 publication Critical patent/JP6530402B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/04Alloys based on a platinum group metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1078Alloys containing non-metals by internal oxidation of material in solid state
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0021Matrix based on noble metals, Cu or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/14Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of noble metals or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Powder Metallurgy (AREA)
  • Heat Treatment Of Steel (AREA)
  • Adornments (AREA)

Description

本発明は、分散強化白金組成物を加工する方法に関する。更に、本発明は、分散強化白金組成物から製品を製造する方法に関する。更に、本発明は、上述の方法により得られた製品及びこのような白金組成物の使用に関する。   The present invention relates to a method of processing a dispersion strengthened platinum composition. Furthermore, the present invention relates to a method of producing an article from a dispersion strengthened platinum composition. Furthermore, the invention relates to the products obtained by the above-mentioned method and the use of such platinum compositions.

白金からなる成形体は、高温プロセスにおいて多方面で使用され、この場合、この材料は高い耐食性を示さなければならない。例えば、機械的に負荷がかけられる、例えば攪拌機又はガラス繊維用ブッシング(Glasfaserduesenwanne)のような白金製の部材がガラス工業において使用される。しかしながら素材としての白金の欠点は、高温での機械強度が低いことである。従って、一般に、上述の高温プロセスのために、分散強化白金組成物が使用される。   Compacts made of platinum are used in many ways in high temperature processes, in which case the material must exhibit high corrosion resistance. For example, members made of platinum that are mechanically loaded, such as eg stirrers or glass fiber bushings, are used in the glass industry. However, the disadvantage of platinum as a raw material is the low mechanical strength at high temperatures. Thus, in general, dispersion-strengthened platinum compositions are used for the high temperature processes described above.

この材料の製造及び加工は、例えば文献GB 1 340 076 A、GB 2 082 205 A、EP 0 683 240 A2、EP 1 188 844 A1及びEP 1 964 938 A1から公知である。   The preparation and processing of this material are known, for example, from the documents GB 1 340 076 A, GB 2 082 205 A, EP 0 683 240 A2, EP 1 188 844 A1 and EP 1 964 938 A1.

分散強化白金組成物からなる部材を製造するために、一般に、まず熱間圧延されたインゴットを作製する。この得られた半製品を、引き続き冷間成形することができる。   Generally, first, a hot-rolled ingot is manufactured to manufacture a member made of a dispersion strengthened platinum composition. The resulting semi-finished product can subsequently be cold-formed.

低温での成形により、低コストで個々の設定値に適合させることができる。ただし、分散強化白金材料の機械特性は、特にこのような成形技術においてもなお十分に良好ではないか又は少なくとも改善の余地があることが確認された。これらの部材は、いくつかの適用にとっては、使用時間が短すぎるか又は望まれるよりも頻繁に交換しなければならない。この交換は高いコストと結びついている。しかしながら、高温での成形(いわゆる熱間成形)は、極めて高価でかつ困難である、というのもこのために必要な機械は極めて高価であるためである。   By means of low-temperature molding, individual settings can be adapted at low cost. However, it has been found that the mechanical properties of the dispersion strengthened platinum material are still not sufficiently good, or at least still have room for improvement, even in such forming techniques. These components may have to be replaced too frequently or more often than desired for some applications. This exchange is tied to high costs. However, forming at high temperatures (so-called hot forming) is very expensive and difficult, because the machines required for this are very expensive.

従って、本発明の課題は、先行技術の欠点を克服することにある。特に、この方法は、機械特性を改善しながら、個々の要求に関して白金組成物からなる部材の低コストの適用を可能にすべきである。同時に、得られた部材は、長い使用時間を示しかつできる限り低い摩耗を示すべきである。更に、この方法は、簡単でかつ低コストで実施可能であるのが好ましい。更に、成形された部材は、良好な加工性、特に溶接性を示すのが好ましい。   The object of the present invention is therefore to overcome the drawbacks of the prior art. In particular, this method should allow for the low cost application of parts consisting of platinum compositions on an individual basis, while improving the mechanical properties. At the same time, the members obtained should exhibit long use times and show as low wear as possible. Furthermore, the method is preferably simple and inexpensive to implement. Furthermore, it is preferred that the shaped parts exhibit good processability, in particular weldability.

本発明の課題は、工程:
・ 白金を少なくとも70質量%及び他の貴金属を最大29.95質量%、並びにジルコニウム、セリウム、スカンジウム及びイットリウムから選択された、少なくとも部分的に酸化された少なくとも1種の卑金属を0.05質量%〜0.5質量%有する分散強化白金組成物の体積体(Volumenkoerper)を準備する工程;
・ 分散強化白金組成物を冷間成形し、この冷間成形の際に、分散強化白金組成物の体積体の横断面積を最大20%低減させる工程;及び
・ 引き続き、冷間成形された体積体の熱処理を実施し、この熱処理の際に、冷間成形された製品を少なくとも1100℃で少なくとも1時間焼き戻す工程
を特徴とする、分散強化白金組成物の加工法により解決される。
The subject of the present invention is the process:
• at least 70% by weight platinum and up to 29.95% by weight other noble metals and 0.05% by weight at least one at least partially oxidized base metal selected from zirconium, cerium, scandium and yttrium Preparing a Volumenkoerper of a dispersion-strengthened platinum composition having ~ 0.5 wt%;
Cold-forming the dispersion-strengthened platinum composition, and reducing the cross-sectional area of the bulk of the dispersion-strengthened platinum composition by up to 20% during this cold-forming; and Heat treatment, during which the cold-formed product is tempered at least 1100 ° C. for at least one hour, and is solved by a method of processing a dispersion strengthened platinum composition.

本発明の意味における横断面積とは、体積体の(仮想の)切断時に形成される面の面積であると解釈される。この横断面から広がる平面は、体積体の最長の広がり方向に対して垂直、又はほぼ垂直であってもよいが、垂直である必要はない。   The cross-sectional area in the sense of the present invention is taken to be the area of the surface formed upon (virtual) cutting of the volume. The plane emanating from this cross-section may or may not be perpendicular to the direction of greatest extension of the volume.

上述の質量パーセントは合計して100%であり、この場合、卑金属の質量は金属の質量を基準とする。   The weight percentages mentioned above add up to 100%, in which case the weight of the base metal is based on the weight of the metal.

好ましくは、この1種以上の卑金属は、少なくとも70%、好ましくは少なくとも90%が酸素により酸化されている。この場合、卑金属の全ての酸化状態が考慮されるので、好ましくは卑金属の最大30原子%、特に好ましくは最大10原子%が金属として、つまり形式上の酸化状態0で存在する。   Preferably, the one or more base metals are at least 70%, preferably at least 90%, oxidized by oxygen. In this case, preferably at most 30 at%, particularly preferably at most 10 at% of the base metal is present as metal, ie in the formal oxidation state 0, since all oxidation states of the base metal are taken into account.

好ましくは、分散強化白金組成物中に、少なくとも部分的に酸化された卑金属は、0.05質量%〜0.5質量%、特に好ましくは0.1質量%〜0.4質量%、殊に好ましくは0.15質量%〜0.3質量%含まれる。   Preferably, in the dispersion-strengthened platinum composition, the at least partially oxidized base metal is 0.05% by weight to 0.5% by weight, particularly preferably 0.1% by weight to 0.4% by weight, in particular Preferably, 0.15% by mass to 0.3% by mass is included.

卑金属酸化物の割合が高いことにより、機械的負荷におけるこの体積体の耐用時間が改善される。卑金属酸化物の割合が低い体積体は、体積体の加工性、例えば溶接性に関して利点を示す。   The high proportion of base metal oxide improves the service life of this volume at mechanical loading. Volumes with a low proportion of base metal oxide show advantages with regard to the processability of the volume, for example weldability.

本発明の方法において、体積体が準備される。この体積体の概念は、この場合に包括的に解釈される。好ましくは、体積体は、例えば板材、管材又は線材の形に構成されていてもよい。   In the method of the invention, a volume is provided. The concept of this volume is comprehensively interpreted in this case. Preferably, the volume may be configured, for example, in the form of a plate, a tube or a wire.

体積体の三次元での広がりは、この場合に特別な限定を受けず、要件に応じて選択することができる。よって、例えば準備された板材、管材又は線材は、0.1mm〜10mm、好ましくは0.3〜5mmの範囲内の厚さを有することができる。この厚さは、ここでは体積体の最も小さな広がりを表す。線材の場合、これは直径であり、管材の場合、外側半径と内側半径の差であり、これは管材の壁厚ともいわれる。   The three-dimensional extent of the volume is not subject to any particular limitation in this case and can be selected according to requirements. Thus, for example, the prepared plate, tube or wire can have a thickness in the range of 0.1 mm to 10 mm, preferably 0.3 to 5 mm. This thickness here represents the smallest spread of the volume. In the case of a wire, this is the diameter, and in the case of a tube, the difference between the outer radius and the inner radius, which is also referred to as the wall thickness of the tube.

本発明において使用可能な白金組成物は、白金を少なくとも70質量%及び他の貴金属を最大29.95質量%含む。従って、この組成物は、主に白金と、上記された少なくとも部分的に酸化された卑金属とからなる。白金材料は、通常の不純物を除いて、純白金であってもよく、この中に少なくとも部分的に酸化された卑金属が混入されている。更に、この白金組成物は、他の貴金属を含んでいてもよく、ここで白金組成物は、この場合に白金合金である。   Platinum compositions that can be used in the present invention comprise at least 70% by weight platinum and up to 29.95% by weight other noble metals. Thus, this composition consists mainly of platinum and the at least partially oxidized base metal mentioned above. The platinum material, except for the usual impurities, may be pure platinum, in which an at least partially oxidized base metal is incorporated. Furthermore, the platinum composition may comprise other noble metals, wherein the platinum composition is in this case a platinum alloy.

本発明の場合に、他の貴金属は、ルテニウム、ロジウム、金、パラジウム及びイリジウムから選択されていることが予定されていてもよい。   In the case of the present invention, the other noble metals may be scheduled to be selected from ruthenium, rhodium, gold, palladium and iridium.

準備された体積体は、本発明による方法により冷間成形される。「冷間成形」の概念は、この専門分野において公知であり、ここで、この成形は白金組成物の再結晶化温度より低い比較的低温で行い、かつ特に引き抜き、圧縮、深絞り、冷間圧延、冷間鍛造及び加圧を含む。この成形は、体積体の大きな領域にわたる変形を含む。好ましくは、この体積体は、その体積の少なくとも50%にわたり、特に好ましくは少なくとも75%にわたり、殊に好ましくは少なくとも95%にわたり変形されることが予定されていてもよい。この体積体が例えば板材である場合、従って、この板材の表面の、好ましくは少なくとも50%、特に好ましくは少なくとも75%、殊に好ましくは少なくとも95%が力又は圧力に曝され、例えば圧延される。この表面は、線材の場合には、簡素化されて、この体積体の最も小さな広がり(厚さ)に対して垂直方向の面を基準とすることができる。この体積体が例えば線材又は管材である場合、好ましくは、線材又は管材の長さの少なくとも50%、特に好ましくは少なくとも75%、殊に好ましくは少なくとも95%が力に曝され、例えば引き抜き加工される。   The prepared volume is cold-formed by the method according to the invention. The concept of "cold forming" is known in the art, wherein the forming takes place at a relatively low temperature below the recrystallization temperature of the platinum composition and in particular drawing, compression, deep drawing, cold Includes rolling, cold forging and pressing. This shaping involves deformation over a large area of the volume. Preferably, this volume may be intended to be deformed over at least 50%, particularly preferably at least 75%, particularly preferably at least 95% of the volume. If this volume is, for example, a plate, preferably at least 50%, particularly preferably at least 75%, particularly preferably at least 95% of the surface of the plate is exposed to force or pressure, for example rolled . This surface can be simplified in the case of a wire and referenced to the plane perpendicular to the smallest extent (thickness) of the volume. If this volume is, for example, a wire or tube, preferably at least 50%, particularly preferably at least 75%, particularly preferably at least 95% of the length of the wire or tube is subjected to force, for example drawn Ru.

本発明において、冷間成形の際に比較的僅かな成形が行われるだけであることが重要である。好ましくは、この分散強化白金組成物からなる体積体の横断面積は、最大20%、特に好ましくは最大18%、殊に好ましくは最大15%低減する。この値は、最大に低減される体積体の横断面積に関する。一方向に圧延されるだけの板材の場合には、低減する横断面積は、例えば体積体の厚さ並びに引き延ばされなかった広がりから生じる。線材又は管材の場合に、横断面積の低減は、直径又は壁厚の変化から生じる。この体積体の体積は成形によって変化しないので、この成形の際に少なくとも1つの横断面積は拡大しなければならない。板材、管材又は線材の場合に、この成形の際に、例えば長さが増大するので、長さの増大する方向での面積は大きくなる。変形力が作用する方向は、横断面から広がる平面に対して、特に平行又は垂直の方向に向かう。   In the present invention, it is important that relatively little shaping is performed during cold forming. Preferably, the cross-sectional area of the volume of the dispersion-strengthened platinum composition is reduced by at most 20%, particularly preferably at most 18%, particularly preferably at most 15%. This value relates to the cross-sectional area of the volume which is maximally reduced. In the case of plates which are only rolled in one direction, the reduced cross-sectional area results, for example, from the thickness of the volume as well as the unstretched spread. In the case of wire or tubing, the reduction in cross-sectional area results from changes in diameter or wall thickness. Since the volume of this volume does not change with shaping, at least one cross-sectional area has to be enlarged during this shaping. In the case of a plate, a tube or a wire, for example, since the length is increased during the forming, the area in the direction in which the length is increased is increased. The direction in which the deforming force acts is directed in particular in a direction parallel or perpendicular to the plane extending from the cross section.

好ましい実施態様の場合に、この冷間成形で、分散強化白金組成物からなる体積体の横断面積は、少なくとも5%低減する、好ましくは少なくとも8%低減する、特に好ましくは少なくとも10%低減することが予定される。   In the case of a preferred embodiment, in this cold-forming, the cross-sectional area of the volume of dispersion-strengthened platinum composition is reduced by at least 5%, preferably by at least 8%, particularly preferably by at least 10%. Is scheduled.

分散強化された体積体の内部損傷は、それぞれ5%未満の横断面積の低減を伴う成形及び引き続く焼鈍の際に、耐クリープ性の改善に本質的には寄与しないことが確認された。1回の成形工程あたりの横断面積の変化が上記範囲内で小さくなればそれだけ、5%〜20%、好ましくは8%〜18%、特に好ましくは10%〜15%の横断面積の低減を伴う成形と比較して、耐クリープ性の改善に関する作用もより僅かになる。   It has been determined that internal damage of the dispersion-strengthened volume essentially does not contribute to the improvement of the creep resistance during forming and subsequent annealing with a reduction of the cross-sectional area of less than 5% each. The smaller the change of the cross-sectional area per one molding step within the above range, the reduction of the cross-sectional area is 5% to 20%, preferably 8% to 18%, particularly preferably 10% to 15%. Compared to molding, the effect on improving creep resistance is also less.

更に、冷間成形で線材を引き抜き又は圧縮し、ここで、この冷間成形で分散強化白金組成物からなる線材の横断面積を、最大20%、好ましくは最大18%、特に好ましくは最大15%低減するか、又は冷間成形で板材を圧延、引き抜き、圧縮又は加圧し、ここで、この冷間成形で分散強化白金組成物からなる板材の横断面積又は板材の厚さを、最大20%、好ましくは最大18%、特に好ましくは最大15%低減するか、又は冷間成形で管材を圧延、引き抜き又は圧縮し、ここでこの冷間成形で分散強化白金組成物からなる管材の横断面積を、最大20%、好ましくは最大18%、特に好ましくは最大15%低減することが予定されていてもよい。   Furthermore, the wire is drawn or compressed by cold forming, where the cross-sectional area of the wire made of the dispersion strengthened platinum composition by cold forming is at most 20%, preferably at most 18%, particularly preferably at most 15% Reduce or cold-roll the plate material by rolling, drawing, compression or pressing, where the cross-sectional area or the plate thickness of the plate material comprising the dispersion-strengthened platinum composition in the cold-forming is up to 20%, The tube is rolled, drawn or compressed preferably by up to 18%, particularly preferably up to 15%, or by cold forming, where the cross section of the tube consisting of the dispersion strengthened platinum composition in this cold forming is A reduction of at most 20%, preferably at most 18%, particularly preferably at most 15% may be planned.

本発明の場合に、冷間成形で、分散強化白金組成物の内部に微小亀裂又は細孔が生じないか、又は1立方ミリメートルあたり、100未満の微小亀裂及び/又は1000未満の細孔が生じることが予定されていてもよい。   In the case of the present invention, cold forming does not produce microcracks or pores inside the dispersion strengthened platinum composition, or produces less than 100 microcracks and / or less than 1000 pores per cubic millimeter. It may be planned.

体積体の冷間成形後に、この冷間成形された体積体の熱処理を実施し、この際に、冷間成形された製品は少なくとも1100℃で少なくとも1時間焼き戻される。この焼き戻しは、好ましくは少なくとも90分間、特に少なくとも120分間、特に好ましくは少なくとも150分間、殊に好ましくは少なくとも180分間の期間にわたり行うことができる。この焼き戻しを実施する温度は、好ましくは少なくとも1200℃、特に好ましくは少なくとも1250℃、殊に好ましくは少なくとも1300℃、更に殊に好ましくは少なくとも1400℃であることができる。   After cold forming of the volume, heat treatment of the cold formed volume is carried out, wherein the cold formed product is tempered at at least 1100 ° C. for at least one hour. This tempering can take place over a period of preferably at least 90 minutes, in particular at least 120 minutes, particularly preferably at least 150 minutes, particularly preferably at least 180 minutes. The temperature at which this tempering is carried out can preferably be at least 1200 ° C., particularly preferably at least 1250 ° C., particularly preferably at least 1300 ° C., and very particularly preferably at least 1400 ° C.

更に、冷間成形された体積体の熱処理の際に、少なくとも1250℃の温度で少なくとも1時間焼き戻しする、好ましくは1400℃の温度で1〜3時間焼き戻しすることが予定されていてもよい。   Further, during heat treatment of the cold-formed volume, it may be scheduled to temper at least 1 hour at a temperature of at least 1250 ° C., preferably 1 to 3 hours at a temperature of 1400 ° C. .

焼き戻し工程が長くなればそれだけ及び熱処理を実施する温度が高くなればそれだけ、冷間成形された体積体の機械特性はより良好になる。しかしながら、ある時点で機械特性の改善は飽和になり、かつ著しい結晶粒成長の危険が生じ、これは機械特性を再び悪化させる。更に、この方法のコストは時間及び温度と共に増大する。焼き戻し作業のための最低温度は1100℃である。焼き戻し作業のための最高温度は、それぞれの分散強化白金組成物の溶融温度より20℃下である。   The longer the tempering process and the higher the temperature at which the heat treatment is carried out, the better the mechanical properties of the cold-formed volume. However, at some point the improvement in mechanical properties is saturated and there is a risk of significant grain growth which again degrades the mechanical properties. Furthermore, the cost of this method increases with time and temperature. The minimum temperature for the tempering operation is 1100.degree. The maximum temperature for the tempering operation is 20 ° C. below the melting temperature of the respective dispersion strengthened platinum composition.

好ましくは、冷間成形された体積体の1回以上の熱処理は、この体積体の欠陥を回復するために適用されることが予定されていてもよい。   Preferably, one or more heat treatments of the cold-formed volume may be intended to be applied to recover the defects of this volume.

本発明による方法の場合に、複数回の冷間成形を互いに連続して実施し、かつこれらの冷間成形により体積体の横断面積を20%より大きく低減し、この場合、個々の冷間成形では、分散強化白金組成物からなる体積体の横断面積を、最大20%、好ましくは最大18%、特に好ましくは最大15%低減し、かつ各冷間成形の間に冷間成形された体積体の熱処理を実施し、この熱処理の際に冷間成形された製品を少なくとも1100℃で少なくとも1時間焼き戻しすることが予定されていてもよい。   In the case of the process according to the invention, a plurality of cold forming operations are carried out successively from one another, and their cold forming reduces the cross-sectional area of the volume by more than 20%, in this case individual cold forming Reduce the cross-sectional area of the volume consisting of the dispersion-strengthened platinum composition by at most 20%, preferably at most 18%, particularly preferably at most 15%, and a cold-formed volume during each cold forming Heat treatment, and during this heat treatment it may be scheduled to temper the cold-formed product at at least 1100 ° C. for at least one hour.

ここで、「各冷間成形の間」とは、好ましくは各冷間成形の後に熱処理を少なくとも1100℃で少なくとも1時間実施するので、冷間成形工程の数と、焼き戻し工程の数は同じであることを意味する。   Here, “during each cold forming” preferably performs the heat treatment at least 1100 ° C. for at least one hour after each cold forming, so the number of cold forming steps and the number of tempering steps are the same Means to be.

複数回の冷間成形及び熱処理の実施は、分散強化白金組成物を弱めることなく、つまりこの合金は例えばその耐クリープ性を低減することなく、比較的容易でかつ低コストで実施されるべき冷間成形及び熱処理によっても比較的大きな変形を実現できるという利点を有する。それどころか、意外にも、耐クリープ性は成形工程及び焼き戻し工程の数が増加すると共に増大する方向で改善されることが見出された。   The practice of multiple cold forming and heat treatments does not weaken the dispersion-strengthened platinum composition, that is to say the alloy should for example be cold relatively easily and at low cost without reducing its creep resistance. It has an advantage that relatively large deformation can be realized also by inter-forming and heat treatment. On the contrary, it has surprisingly been found that the creep resistance is improved in the direction of increasing with increasing number of forming and tempering steps.

本発明の好ましい実施態様の場合に、複数回の冷間成形で、連続して、個々の冷間成形ごとに、分散強化白金組成物からなる体積体の横断面積を少なくとも5%低減し、好ましくは少なくとも8%低減し、特に好ましくは少なくとも10%低減することが予定される。   In the case of a preferred embodiment of the present invention, the cross-sectional area of the volume consisting of the dispersion-strengthened platinum composition is reduced by at least 5%, preferably for each individual cold-forming, in successive cold-forming, preferably Is intended to be reduced by at least 8%, particularly preferably by at least 10%.

1回の成形工程あたり、分散強化された体積体の横断面積の5%未満の僅かな低減及び引き続く焼き戻しを含む成形工程は、耐クリープ性の改善に本質的には寄与しない。1回の成形工程あたりの横断面積の変化が上述の範囲内で僅かになればそれだけ、5%〜20%の横断面積の低減を伴う成形と比較して、耐クリープ性の改善に関する作用もより僅かになる。複数回の交互に続く成形工程及び焼き戻し工程で、この方法は更に高価となりかつそれにより不経済となる。これは、分散強化された体積体の所望な最終寸法を達成するために必要な成形工程の数が増加すればそれだけなおいっそう当てはまる。所望の最終寸法を得るために、8回の成形工程の数が好ましい。この変形工程の数は、経済性と機械特性の改善との間での好ましい妥協点である。   A forming step comprising a slight reduction of less than 5% of the cross-sectional area of the dispersion-strengthened volume and the subsequent tempering per forming step does not essentially contribute to the improvement of the creep resistance. The smaller the change in cross-sectional area per molding step within the above range, the more the effect on improving the creep resistance compared to molding with a reduction of the cross-sectional area of 5% to 20%. It becomes slight. With multiple alternating molding and tempering steps, the method is more expensive and thus uneconomical. This is all the more true as the number of forming steps required to achieve the desired final dimensions of the dispersion strengthened volume is increased. In order to obtain the desired final dimensions, a number of eight molding steps is preferred. The number of deformation steps is a favorable compromise between economics and improved mechanical properties.

好ましくは、体積体の最後の冷間成形の後の最後の熱処理の際に、この冷間成形された製品を少なくとも1550℃で少なくとも24時間、少なくとも1600℃で少なくとも12時間、1650℃で少なくとも1時間焼き戻しするか又は1690℃〜1749℃の温度で少なくとも30分間焼き戻しすることを予定することができる。   Preferably, during the final heat treatment after final cold forming of the volume, the cold formed product is at least 15 hours at least 1550 ° C., at least 12 hours at 1600 ° C., at least 1 hour at 1650 ° C. Tempering can be scheduled for a time or for at least 30 minutes at a temperature of 1690 ° C. to 1749 ° C.

この最後の工程によって、分散強化白金組成物の回復されるべき単純な欠陥はその最終的な形態でほぼ除去され、こうして作製された製品は、それにより極めて高い耐クリープ性を示す。   By this last step, the simple defects to be recovered of the dispersion-strengthened platinum composition are substantially eliminated in its final form, and the product thus produced exhibits thereby very high creep resistance.

この加工方法のための出発生成物として、全ての分散強化白金組成物が適している。しかしながら、意外な利点は、一般に熱間成形に曝された半製品の使用により生じる。分散強化白金組成物は、冷間成形の前に、熱間成形によって、少なくとも800℃の温度で成形する、好ましくは少なくとも1000℃の温度で成形する、特に好ましくは少なくとも1250℃の温度で成形することができる。   All dispersion-strengthened platinum compositions are suitable as starting products for this processing method. However, surprising advantages generally result from the use of semifinished products exposed to hot forming. The dispersion strengthened platinum composition is formed by hot forming at a temperature of at least 800 ° C., preferably at a temperature of at least 1000 ° C., particularly preferably at a temperature of at least 1250 ° C., before cold forming be able to.

本発明の他の主題は、分散強化白金組成物の準備の前に、白金を少なくとも70質量%及び他の貴金属を最大29.95質量%、並びにルテニウム、ジルコニウム、セリウム、スカンジウム及びイットリウムから選択される少なくとも1種の卑金属0.05質量%〜0.5質量%からなる組成物から、この1種以上の卑金属の少なくとも部分的な酸化により、この分散強化白金組成物を製造することを特徴とする、分散強化白金組成物からなる製品の製造方法である。   Another subject of the invention is selected from ruthenium, zirconium, cerium, scandium and yttrium and at least 70% by weight of platinum and up to 29.95% by weight of other noble metals prior to the preparation of the dispersion-strengthened platinum composition. The dispersion-strengthened platinum composition is produced by at least partial oxidation of the one or more base metals from a composition consisting of 0.05% by weight to 0.5% by weight of at least one base metal. A method of producing a product comprising a dispersion strengthened platinum composition.

好ましくは、1種以上の卑金属は、少なくとも70%、好ましくは少なくとも90%が金属酸化物へと反応される。   Preferably, at least 70%, preferably at least 90% of the one or more base metals are reacted to the metal oxide.

この1種以上の卑金属の処理は、好ましくは酸化雰囲気下で600℃〜1600℃の温度で、好ましくは酸化雰囲気下で800℃〜1000℃の温度で行うことができる。   The treatment of the one or more base metals can be carried out preferably at a temperature of 600 ° C. to 1600 ° C. in an oxidizing atmosphere, preferably at a temperature of 800 ° C. to 1000 ° C. in an oxidizing atmosphere.

分散強化白金組成物からなる製品を製造する方法は、好ましくは、上述の処理方法及びその中で好ましいとして記載されたその実施形態と組み合わせてもよい。   The method of producing the product consisting of the dispersion strengthened platinum composition may preferably be combined with the above-mentioned processing method and its embodiments described as preferred therein.

本発明の別の主題は、処理方法及び/又は分散強化白金組成物からなる製品の製造方法により得られる分散強化白金材料である。この主題は、優れた加工性又は低コストでかつ手間のかからない製造性と組み合わせた優れた機械特性を提供する。   Another subject of the present invention is a dispersion-strengthened platinum material obtainable by a method of treatment and / or a method of manufacturing a product consisting of a dispersion-strengthened platinum composition. The subject matter provides excellent mechanical properties combined with excellent processability or low cost and effortless manufacturability.

好ましくは、分散強化白金材料からなる円柱状の体積体は、体積体の長さ方向での9MPaの引張荷重で1600℃の温度で、少なくとも40時間引きちぎれることなく耐え、好ましくは少なくとも50時間引きちぎれることなく耐え、特に好ましくは少なくとも100時間引きちぎれることなく耐え、及び/又は分散強化白金材料からなる0.85mm×3.9mmの長方形の横断面及び140mmの長さの板材は、炉室内で1650℃において、2mmの直径の円形横断面を有する、100mmの間隔で平行に配置された2本の円柱状の棒の上に載せ、かつその板材の中心に30gの重りで荷重をかけた場合に、40時間後の撓みが40mm未満、好ましくは撓みが30mm未満、特に好ましくは撓みが20mm未満、更に特に好ましくは撓みが14mm未満であることが予定されていてもよい。   Preferably, the cylindrical volume of dispersion-strengthened platinum material withstands a tensile load of 9 MPa in the longitudinal direction of the volume at a temperature of 1600 ° C. for at least 40 hours without tearing, preferably tearing at least 50 hours. Plates with a rectangular cross section of 0.85 mm × 3.9 mm and a length of 140 mm consisting of a dispersion-strengthened platinum material, preferably withstanding for at least 100 hours and / or at least 100 hours without When mounted on two cylindrical bars arranged in parallel at 100 mm intervals and having a circular cross section with a diameter of 2 mm at 1650 ° C., and with a 30 g weight applied to the center of the plate The deflection after 40 hours is less than 40 mm, preferably less than 30 mm, particularly preferably less than 20 mm, still more preferably Deflection may be expected to be less than 14mm.

円柱状の体積体とは、本発明の場合に、まっすぐな円柱形に似た成形体、特に円柱、又は円形でない又は丸くない底面を備えた円柱形に似た成形体であると解釈される。円柱状の体積体は、特に、辺の長さが0.5mm〜5mmの範囲内の長方体(つまり、長方形の底面を備えた円柱形に似た成形体)でもある。   In the context of the present invention, a cylindrical volume is understood to mean a shaped body resembling a straight cylindrical shape, in particular a shaped body resembling a cylindrical shape or a cylindrical shape with a non-round or non-round bottom. . Cylindrical volumes are also in particular also rectangular bodies with side lengths in the range 0.5 mm to 5 mm (ie shaped bodies resembling cylinders with a rectangular base).

円柱状の体積体の長さとは、最も長い広がりであると解釈される。この長さの方向は、線材又は管材の場合に、円柱状の体積体の軸であり、板材の場合にはこの板材の平面の広がりである。   The length of a cylindrical volume is taken to be the longest extension. The direction of this length is, in the case of a wire or a tube, the axis of a cylindrical volume, and in the case of a plate, the spread of the plane of the plate.

更に、円柱状の体積体について上述された機械特性を有する分散強化白金材料が、本発明の主題である。   Furthermore, dispersion strengthened platinum materials having the mechanical properties described above for cylindrical volumes are the subject of the present invention.

好ましくは、分散強化白金材料は、ジルコニウム、セリウム、スカンジウム及びイットリウムから選択される少なくとも部分的に酸化された少なくとも1種の卑金属を0.05質量%〜0.4質量%、特に好ましくは0.05質量%〜0.3質量%含むことが予定されていてもよい。この態様により、特に優れた機械特性及び極めて良好な加工性を有する素材を提供することができる。   Preferably, the dispersion strengthened platinum material comprises 0.05% by weight to 0.4% by weight, particularly preferably at least one at least partially oxidized at least one base metal selected from zirconium, cerium, scandium and yttrium. 05 mass%-0.3 mass% may be scheduled to be included. According to this aspect, it is possible to provide a material having particularly excellent mechanical properties and extremely good processability.

特別な態様の場合、分散強化白金材料は、板材、管材もしくは線材、又は線材、管材及び/又は板材から形成された製品であることができる。   In particular embodiments, the dispersion-strengthened platinum material can be a sheet, tube or wire, or a product formed from a wire, tube and / or sheet.

本発明の他の主題は、ガラス工業において又は実験室において使用されるべき機器のための、本発明による加工方法により及び/又は分散強化白金組成物からの製品の本発明による製造方法によって得られるか又は得られた分散強化白金材料又は白金組成物から成形された体積体の使用である。   Another subject of the invention is obtained by the processing method according to the invention and / or by the manufacturing method according to the invention products from dispersion-strengthened platinum compositions, for equipment to be used in the glass industry or in the laboratory Or the use of a volume formed from the dispersion-strengthened platinum material or platinum composition obtained.

本発明は、僅かな冷間成形(最大20%の横断面積の変化を伴う)によって、後続する熱処理で、成形された白金組成物の安定性を再び、分散強化白金組成物の公知の冷間成形方法の場合と比べて明らかに高く回復することを達成できる程度に弱い構造的損傷、例えば結晶格子欠陥を分散強化白金組成物内に導入することを達成できるという意外な知見に基づく。より強い成形が望ましい場合には、この成形を先行する熱間成形により達成できるか又は複数回の僅かな冷間成形を連続して実施して、ここでそれぞれの冷間成形の間に構造的損傷の回復を熱処理によって実施する。本発明の範囲内の知見として、冷間成形された分散強化白金組成物の機械的脆弱化は、強い欠陥、例えば微小亀裂、粒子/マトリックス界面の剥離及び粒界での細孔が多すぎることによって生じ、かつこれらの欠陥の要因が、高すぎる変形度又は横断面積の大きすぎる低減であることが判明した。   The present invention again demonstrates the stability of the shaped platinum composition by a slight cold forming (with a change in cross-sectional area of up to 20%), with the subsequent heat treatment, the known cold of the dispersion-strengthened platinum composition. Based on the surprising finding that weak structural damage, such as introducing crystal lattice defects into the dispersion-strengthened platinum composition, can be achieved to such an extent that recovery can be achieved significantly higher than in the molding method. If stronger forming is desired, this forming can be achieved by preceding hot forming, or several slight cold formings may be carried out successively, where structurally during each cold forming. Damage recovery is performed by heat treatment. It has been found within the scope of the present invention that mechanical weakening of a cold-formed dispersion-strengthened platinum composition results in strong defects such as microcracks, exfoliation of particle / matrix interfaces and too many pores at grain boundaries. And caused by these defects was a too high degree of deformation or a too large reduction of the cross-sectional area.

特に、温和で、僅かな冷間成形により、多大な手間をかけても回復することができないか又はあまり回復することができない微小亀裂、粒子/マトリックス界面の剥離及び粒界面での細孔のような内部損傷は低減される。特に、成形により粒界で生じる微小亀裂及び細孔は有害である、というのもこれらは、分散強化白金組成物の機械的安定性を特に著しく損なうためである。本発明による方法によって、この損傷の抑制が達成される。それにより、極めて高い機械的安定性及び優れた加工性、特に溶接性を有する分散強化白金組成物を製造することに初めて成功し、この分散強化白金組成物も同様に本発明により請求される。   In particular, due to mild, slight cold forming, microcracks that can not or can not recover much even with great effort, such as exfoliation of the particle / matrix interface and pores at the grain interface. Internal damage is reduced. In particular, the microcracks and pores that form at the grain boundaries due to shaping are detrimental, as these in particular significantly impair the mechanical stability of the dispersion strengthened platinum composition. The control of this damage is achieved by the method according to the invention. Thus, for the first time it is successful to produce dispersion-strengthened platinum compositions having very high mechanical stability and excellent processability, in particular weldability, which dispersion-strengthened platinum compositions are likewise claimed by the present invention.

次に、例を用いて本発明の更なる実施例を説明するが、これは本発明を限定するものではない。   Next, further examples of the present invention will be described using examples, but this is not a limitation of the present invention.

半製品前駆体1
Zr及びYを有する内部酸化による板厚2mmの半製品前駆体の製造
EP 1 964 938 A1の実施例1に記載された方法に準拠して、PtRh10(Pt90質量%及びRh10質量%からなる合金)及び卑金属2200ppm(Zr1800ppm及びY400ppm)を有するインゴットを鋳造した。引き続き、このインゴットを機械的及び熱的に処理した。こうして、このインゴットを2.2mmの板厚に圧延し、次いで再結晶化のために焼き鈍し、引き続き2mmの板圧に圧延した。この板材を、次いで900℃で18日間酸化し、引き続き1400℃で6時間延性化焼鈍した。
Semi-finished product precursor 1
Production of semi-finished product of 2 mm thickness by internal oxidation with Zr and Y
In accordance with the method described in Example 1 of EP 1 964 938 A1, an ingot having PtRh10 (an alloy consisting of 90% by weight of Pt and 10% by weight of Rh) and 2200 ppm of base metal (1800 ppm of Zr and 400 ppm of Y) was cast. Subsequently, the ingot was treated mechanically and thermally. Thus, the ingot was rolled to a thickness of 2.2 mm, then annealed for recrystallization and subsequently rolled to a pressure of 2 mm. The plate was then oxidized at 900 ° C. for 18 days and subsequently ductile annealed at 1400 ° C. for 6 hours.

半製品前駆体2
Zr及びYを有する内部酸化による板厚3mmの半製品前駆体の製造
EP 1 964 938 A1の実施例1に記載された方法に準拠して、PtRh10(Pt90質量%及びRh10質量%からなる合金)及び卑金属2200ppm(Zr1800ppm及びY400ppm)を有するインゴットを鋳造した。引き続き、このインゴットを機械的及び熱的に処理した。こうして、このインゴットを3.3mmの板厚に圧延し、次いで再結晶化のために焼き鈍し、引き続き3mmの板圧に圧延した。この板材を、次いで900℃で27日間酸化し、引き続き1400℃で6時間延性化焼鈍した。
Semi-finished product precursor 2
Production of semi-finished product with 3 mm thickness by internal oxidation with Zr and Y
In accordance with the method described in Example 1 of EP 1 964 938 A1, an ingot having PtRh10 (an alloy consisting of 90% by weight of Pt and 10% by weight of Rh) and 2200 ppm of base metal (1800 ppm of Zr and 400 ppm of Y) was cast. Subsequently, the ingot was treated mechanically and thermally. Thus, the ingot was rolled to a plate thickness of 3.3 mm, then annealed for recrystallization and subsequently rolled to a plate pressure of 3 mm. The plate was then oxidized at 900 ° C. for 27 days and subsequently ductile annealed at 1400 ° C. for 6 hours.

半製品前駆体3
Zr、Y及びScを有する内部酸化による板厚3mmの半製品前駆体の製造
EP 1 964 938 A1の実施例1に記載された方法に準拠して、PtRh10(Pt90質量%及びRh10質量%からなる合金)及び卑金属2120ppm(Zr1800ppm、Y270ppm及びSc50ppm)を有するインゴットを鋳造した。引き続き、このインゴットを機械的及び熱的に処理した。こうして、このインゴットを3.3mmの板厚に圧延し、次いで再結晶化のために焼き鈍し、引き続き3mmの板圧に圧延した。この板材を、次いで900℃で24日間酸化し、引き続き1400℃で6時間延性化焼鈍した。
Semi-finished product precursor 3
Production of semi-finished product with 3 mm thickness by internal oxidation with Zr, Y and Sc
According to the method described in Example 1 of EP 1 964 938 A1, an ingot having PtRh10 (an alloy consisting of 90% by weight of Pt and 10% by weight of Rh) and 2120 ppm of base metal (1800 ppm of Zr, 270 ppm of Y and 50 ppm of Sc) was cast. Subsequently, the ingot was treated mechanically and thermally. Thus, the ingot was rolled to a plate thickness of 3.3 mm, then annealed for recrystallization and subsequently rolled to a plate pressure of 3 mm. The plate was then oxidized at 900 ° C. for 24 days and subsequently ductile annealed at 1400 ° C. for 6 hours.

実施例1
上述の方法により得られた、約2mmの厚さの半製品前駆体1を、本発明に従って次の圧延工程及び焼鈍工程により後続加工する。
Example 1
The semifinished product precursor 1 with a thickness of about 2 mm obtained by the above-mentioned method is further processed according to the present invention by the following rolling and annealing steps.

この板材を1.7mmに圧延し、引き続き1400℃で4時間焼鈍した。その後、この板材を1.4mmに圧延し、1400℃で2時間焼鈍する。次いで、更に1.2mmに圧延し、新たに1400℃で2時間焼鈍する。次いで、1mmに圧延し、再び1400℃で焼鈍する。その後、0.85mmの最終厚さに圧延し、最終焼鈍を1100℃で1時間実施する。圧延工程ごとの横断面積の低減率は20%である。   The plate was rolled to 1.7 mm and subsequently annealed at 1400 ° C. for 4 hours. Thereafter, the plate is rolled to 1.4 mm and annealed at 1400 ° C. for 2 hours. Then, it is further rolled to 1.2 mm and annealed again at 1400 ° C. for 2 hours. It is then rolled to 1 mm and annealed again at 1400 ° C. Thereafter, it is rolled to a final thickness of 0.85 mm and a final annealing is carried out at 1100 ° C. for 1 hour. The reduction rate of the cross sectional area for each rolling process is 20%.

実施例2
実施例1をほぼ繰り返すが、0.85mmの最終厚さへの圧延の後に、最終焼鈍を1700℃で1時間実施する。
Example 2
Example 1 is repeated approximately, but after rolling to a final thickness of 0.85 mm, a final annealing is performed at 1700 ° C. for 1 hour.

実施例3
上述の方法により得られた、約3mmの厚さの半製品前駆体2を、本発明に従って次の圧延工程及び焼鈍工程により後続加工する。
Example 3
The semifinished product precursor 2 with a thickness of about 3 mm obtained by the above-mentioned method is further processed by the following rolling and annealing steps according to the present invention.

この板材を2.4mmに圧延し、引き続き1150℃で4時間焼鈍した。その後、この板材を1.92mmに圧延し、1150℃で4時間焼鈍する。次いで、1.53mmに圧延し、再び1150℃で4時間焼鈍する。圧延工程及び焼鈍工程を更に3回繰り返し、この際、初めは1.22mm、次いで0.99mm及び引き続き0.8mmに圧延し、それぞれの圧延工程の後に1150℃で4時間焼鈍する。圧延工程ごとの横断面積の低減率は20%である。   The plate was rolled to 2.4 mm and subsequently annealed at 1150 ° C. for 4 hours. Thereafter, the plate is rolled to 1.92 mm and annealed at 1150 ° C. for 4 hours. Then, it is rolled to 1.53 mm and annealed again at 1150 ° C. for 4 hours. The rolling and annealing steps are repeated three more times, initially rolling to 1.22 mm, then to 0.99 mm and then to 0.8 mm and annealing at 1150 ° C. for 4 hours after each rolling step. The reduction rate of the cross sectional area for each rolling process is 20%.

実施例4
上述の方法により得られた、約3mmの厚さの半製品前駆体2を、本発明に従って次の圧延工程及び焼鈍工程により後続加工する。
Example 4
The semifinished product precursor 2 with a thickness of about 3 mm obtained by the above-mentioned method is further processed by the following rolling and annealing steps according to the present invention.

この板材を2.4mmに圧延し、引き続き1300℃で4時間焼鈍した。その後、この板材を1.92mmに圧延し、1300℃で4時間焼鈍する。次いで、1.53mmに圧延し、再び1300℃で4時間焼鈍する。圧延工程及び焼鈍工程を更に3回繰り返し、この際、初めは1.22mm、次いで0.99mm及び引き続き0.8mmに圧延し、それぞれの圧延工程の後に1300℃で4時間焼鈍する。圧延工程ごとの横断面積の低減率は20%である。   The plate was rolled to 2.4 mm and subsequently annealed at 1300 ° C. for 4 hours. Thereafter, the plate is rolled to 1.92 mm and annealed at 1300 ° C. for 4 hours. Then, it is rolled to 1.53 mm and annealed again at 1300 ° C. for 4 hours. The rolling and annealing steps are repeated three more times, initially rolling to 1.22 mm, then to 0.99 mm and then to 0.8 mm and annealing at 1300 ° C. for 4 hours after each rolling step. The reduction rate of the cross sectional area for each rolling process is 20%.

実施例5
上述の方法により得られた、約3mmの厚さの半製品前駆体2を、本発明に従って次の圧延工程及び焼鈍工程により後続加工する。
Example 5
The semifinished product precursor 2 with a thickness of about 3 mm obtained by the above-mentioned method is further processed by the following rolling and annealing steps according to the present invention.

この板材を2.4mmに圧延し、引き続き1400℃で4時間焼鈍した。その後、この板材を1.92mmに圧延し、1400℃で4時間焼鈍する。次いで、1.53mmに圧延し、再び1400℃で4時間焼鈍する。圧延工程及び焼鈍工程を更に3回繰り返し、この際、初めは1.22mm、次いで0.99mm及び引き続き0.8mmに圧延し、それぞれの圧延工程の後に1400℃で4時間焼鈍する。圧延工程ごとの横断面積の低減率は20%である。   The plate was rolled to 2.4 mm and subsequently annealed at 1400 ° C. for 4 hours. Thereafter, the plate is rolled to 1.92 mm and annealed at 1400 ° C. for 4 hours. Then, it is rolled to 1.53 mm and annealed again at 1400 ° C. for 4 hours. The rolling and annealing steps are repeated three more times, initially rolling to 1.22 mm, then to 0.99 mm and then to 0.8 mm and annealing at 1400 ° C. for 4 hours after each rolling step. The reduction rate of the cross sectional area for each rolling process is 20%.

実施例6
上述の方法により得られた、約3mmの厚さの半製品前駆体2を、本発明に従って次の圧延工程及び焼鈍工程により後続加工する。
Example 6
The semifinished product precursor 2 with a thickness of about 3 mm obtained by the above-mentioned method is further processed by the following rolling and annealing steps according to the present invention.

この板材を2.55mmに圧延し、引き続き1400℃で4時間焼鈍した。その後、この板材を2.16mmに圧延し、1400℃で4時間焼鈍する。次いで、1.84mmに圧延し、再び1400℃で4時間焼鈍する。圧延工程及び焼鈍工程を更に5回繰り返し、この際、初めは1.56mm、次いで1.33mm、次いで1.13mm、次いで0.96mm及び引き続き0.8mmに圧延し、それぞれの圧延工程の後に1400℃で4時間焼鈍する。圧延工程ごとの横断面積の低減率は15%である。   The plate was rolled to 2.55 mm and subsequently annealed at 1400 ° C. for 4 hours. Thereafter, the plate is rolled to 2.16 mm and annealed at 1400 ° C. for 4 hours. It is then rolled to 1.84 mm and annealed again at 1400 ° C. for 4 hours. The rolling and annealing steps are repeated five more times, first rolling 1.56 mm, then 1.33 mm, then 1.13 mm, then 0.96 mm and then 0.8 mm, and after each rolling step 1400 Anneal at 4 ° C for 4 hours. The reduction rate of the cross sectional area for each rolling process is 15%.

実施例7
上述の方法により得られた、約3mmの厚さの半製品前駆体3を、本発明に従って次の圧延工程及び焼鈍工程により後続加工する。
Example 7
The semifinished product precursor 3 with a thickness of about 3 mm obtained by the above-mentioned method is further processed by the following rolling and annealing steps according to the present invention.

この板材を2.4mmに圧延し、引き続き1150℃で4時間焼鈍した。その後、この板材を1.92mmに圧延し、1150℃で4時間焼鈍する。次いで、1.53mmに圧延し、再び1150℃で4時間焼鈍する。圧延工程及び焼鈍工程を更に3回繰り返し、この際、初めは1.22mm、次いで0.99mm及び引き続き0.8mmに圧延し、それぞれの圧延工程の後に1150℃で4時間焼鈍する。圧延工程ごとの横断面積の低減率は20%である。   The plate was rolled to 2.4 mm and subsequently annealed at 1150 ° C. for 4 hours. Thereafter, the plate is rolled to 1.92 mm and annealed at 1150 ° C. for 4 hours. Then, it is rolled to 1.53 mm and annealed again at 1150 ° C. for 4 hours. The rolling and annealing steps are repeated three more times, initially rolling to 1.22 mm, then to 0.99 mm and then to 0.8 mm and annealing at 1150 ° C. for 4 hours after each rolling step. The reduction rate of the cross sectional area for each rolling process is 20%.

実施例8
上述の方法により得られた、約3mmの厚さの半製品前駆体3を、本発明に従って次の圧延工程及び焼鈍工程により後続加工する。
Example 8
The semifinished product precursor 3 with a thickness of about 3 mm obtained by the above-mentioned method is further processed by the following rolling and annealing steps according to the present invention.

この板材を2.55mmに圧延し、引き続き1400℃で4時間焼鈍した。その後、この板材を2.16mmに圧延し、1400℃で4時間焼鈍する。次いで、1.84mmに圧延し、再び1400℃で4時間焼鈍する。圧延工程及び焼鈍工程を更に5回繰り返し、この際、初めは1.56mm、次いで1.33mm、次いで1.13mm、次いで0.96mm及び引き続き0.8mmに圧延し、それぞれの圧延工程の後に1400℃で4時間焼鈍する。圧延工程ごとの横断面積の低減率は15%である。   The plate was rolled to 2.55 mm and subsequently annealed at 1400 ° C. for 4 hours. Thereafter, the plate is rolled to 2.16 mm and annealed at 1400 ° C. for 4 hours. It is then rolled to 1.84 mm and annealed again at 1400 ° C. for 4 hours. The rolling and annealing steps are repeated five more times, first rolling 1.56 mm, then 1.33 mm, then 1.13 mm, then 0.96 mm and then 0.8 mm, and after each rolling step 1400 Anneal at 4 ° C for 4 hours. The reduction rate of the cross sectional area for each rolling process is 15%.

実施例9
上述の方法により得られた、約3mmの厚さの半製品前駆体3を、本発明に従って次の圧延工程及び焼鈍工程により後続加工する。
Example 9
The semifinished product precursor 3 with a thickness of about 3 mm obtained by the above-mentioned method is further processed by the following rolling and annealing steps according to the present invention.

この板材を2.7mmに圧延し、引き続き1400℃で4時間焼鈍した。その後、この板材を2.43mmに圧延し、1400℃で4時間焼鈍する。次いで、2.19mmに圧延し、再び1400℃で4時間焼鈍した。圧延工程及び焼鈍工程を更に9回繰り返し、この際、初めは1.97mm、次いで1.77mm、次いで1.60mm、次いで1.44mm、次いで1.29mm、次いで1.16mm、次いで1.05mm、次いで0.94mm及び引き続き0.85mmに圧延し、それぞれの圧延工程の後に1400℃で4時間焼鈍する。圧延工程ごとの横断面積の低減率は10%である。   The plate was rolled to 2.7 mm and subsequently annealed at 1400 ° C. for 4 hours. Thereafter, the plate is rolled to 2.43 mm and annealed at 1400 ° C. for 4 hours. It was then rolled to 2.19 mm and annealed again at 1400 ° C. for 4 hours. The rolling process and the annealing process are repeated nine more times, with 1.97 mm then 1.77 mm then 1.60 mm then 1.44 mm then 1.29 mm then 1.16 mm then 1.16 mm then 1.05 mm. It is then rolled to 0.94 mm and subsequently to 0.85 mm and annealed at 1400 ° C. for 4 hours after each rolling step. The reduction rate of the cross sectional area for each rolling process is 10%.

実施例10
実施例9をほぼ繰り返すが、0.85mmの最終厚さへの圧延の後に、最終焼鈍を1700℃で1時間実施する。
Example 10
Example 9 is largely repeated, but after rolling to a final thickness of 0.85 mm, a final annealing is carried out at 1700 ° C. for 1 hour.

実施例11
上述の方法により得られた、約3mmの厚さの半製品前駆体3を、本発明に従って次の圧延工程及び焼鈍工程により後続加工する。
Example 11
The semifinished product precursor 3 with a thickness of about 3 mm obtained by the above-mentioned method is further processed by the following rolling and annealing steps according to the present invention.

この板材を1100℃(熱間成形)で1.5mmに圧延し、引き続き1400℃で4時間焼鈍した。その後、この板材を1.2mmに圧延し(第1の冷間成形)、引き続き1250℃で4時間焼鈍する。次いで、1.02mmに圧延し(第2の冷間成形)、引き続き1250℃で4時間焼鈍する。圧延工程及び焼鈍工程を3回繰り返し、この際、初めは0.94mm(第3の冷間成形)に、次いで0.86mm(第4の冷間成形)に、引き続き0.8mm(第5の冷間成形)に圧延し、それぞれの圧延工程の後に1250℃で4時間焼鈍する。横断面積の低減率は、熱間成形工程で50%で、冷間成形工程でまず20%、次いで15%、その後、それぞれ8%である。   This plate was rolled to 1.5 mm at 1100 ° C. (hot forming) and subsequently annealed at 1400 ° C. for 4 hours. Thereafter, the plate is rolled to 1.2 mm (first cold forming) and subsequently annealed at 1250 ° C. for 4 hours. It is then rolled to 1.02 mm (second cold forming) and subsequently annealed at 1250 ° C. for 4 hours. The rolling process and the annealing process are repeated three times, first at 0.94 mm (third cold forming), then at 0.86 mm (fourth cold forming), and then 0.8 mm (fifth Cold forming) and annealing for 4 hours at 1250 ° C. after each rolling step. The reduction rate of the cross sectional area is 50% in the hot forming step, 20% first in the cold forming step, then 15%, and then 8% respectively.

比較例1
上述の方法により得られた、約2mmの厚さの半製品前駆体1を、通常の方法により後続加工する。このため、この板材を1mmに直接圧延し、1000℃で焼鈍する。その後、0.85mmに圧延し、最終焼鈍を1000℃で1時間実施する。
Comparative Example 1
The semifinished product precursor 1 with a thickness of about 2 mm obtained by the above-mentioned method is further processed by the usual method. Therefore, the plate is directly rolled to 1 mm and annealed at 1000 ° C. Thereafter, it is rolled to 0.85 mm and final annealing is performed at 1000 ° C. for 1 hour.

比較例2
上述の方法により得られた、約3mmの厚さの半製品前駆体2を、通常の方法により後続加工する。このため、この板材を1.5mmに圧延し、1400℃で4時間焼鈍する。その後、0.8mmに圧延する。圧延工程ごとの横断面積の低減率は50%である。
Comparative example 2
The semifinished product precursor 2 with a thickness of about 3 mm obtained by the above-mentioned method is further processed by the usual method. Therefore, this plate is rolled to 1.5 mm and annealed at 1400 ° C. for 4 hours. After that, it is rolled to 0.8 mm. The reduction rate of the cross sectional area for each rolling process is 50%.

比較例3
上述の方法により得られた、約3mmの厚さの半製品前駆体3を、通常の方法により後続加工する。このため、この板材を1.5mmに圧延し、1400℃で4時間焼鈍する。その後、0.8mmに圧延する。圧延工程ごとの横断面積の低減率は50%である。
Comparative example 3
The semifinished product precursor 3 with a thickness of about 3 mm obtained by the above-mentioned method is further processed by the usual method. Therefore, this plate is rolled to 1.5 mm and annealed at 1400 ° C. for 4 hours. After that, it is rolled to 0.8 mm. The reduction rate of the cross sectional area for each rolling process is 50%.

得られた白金材料の機械特性
破壊試験による耐クリープ性
耐クリープ性の測定のために、0.85mm×3.9mmの横断面及び120mmの長さの板材試料(実施例1、2、9、10及び比較例1)又は0.8mm×3.9mmの横断面及び120mmの長さの板材試料(実施例3、4、5、6、7、8、11及び比較例2及び3)に、上述の横断面に対してMPaで示す所望の荷重に相当する重りを懸ける。この試料を、電流により加熱し、かつ高温計測定により所望の温度で一定に調節する。試料が破壊されるまでの時間を決定し、耐クリープ性を示す。
Mechanical Properties of Obtained Platinum Material Creep Resistance by Fracture Test For measurement of creep resistance, plate samples of 0.85 mm × 3.9 mm cross section and 120 mm length (Examples 1, 2, 9; 10 and Comparative Example 1) or to a plate sample (Examples 3, 4, 5, 6, 7, 8, 11 and Comparative Examples 2 and 3) having a cross section of 0.8 mm × 3.9 mm and a length of 120 mm, The weight corresponding to the desired load, indicated in MPa, is suspended for the above-mentioned cross section. The sample is heated by electrical current and regulated at the desired temperature by pyrometer measurement. Determine the time to failure of the sample and show creep resistance.

表1:1600℃及び9MPaの荷重で、破壊されるまでの耐クリープ性

Figure 0006530402
Table 1: Creep resistance to failure at loads of 600 ° C and 9MPa
Figure 0006530402

撓み試験による耐クリープ性
耐クリープ性を評価するための他の方法は、撓み試験である。このために、0.85mm×10mmの横断面及び140mmの長さの板材(実施例1、2、9、10及び比較例1)又は0.8mm×10mmの横断面及び140mmの長さの板材(実施例3、4、5、6、7、8、11及び比較例2及び3)を、100mmの間隔の2本の平行のセラミック棒上に載せ、中央を30gの重りで荷重をかけた。この試料構成を、室炉中で1650℃に加熱し、40時間後に試料の撓みを測定した。
Creep Resistance by Deflection Test Another method to evaluate creep resistance is deflection test. To this end, plate materials having a cross section of 0.85 mm × 10 mm and a length of 140 mm (Examples 1, 2, 9, 10 and Comparative Example 1) or a plate having a cross section of 0.8 mm × 10 mm and a length of 140 mm (Examples 3, 4, 5, 6, 7, 8, 11 and Comparative Examples 2 and 3) were placed on two parallel ceramic bars spaced 100 mm apart and loaded with a 30 g weight in the middle . The sample configuration was heated to 1650 ° C. in a chamber furnace and after 40 hours the deflection of the sample was measured.

表2:撓み試験による耐クリープ性

Figure 0006530402
Table 2: Creep resistance by deflection test
Figure 0006530402

上述の実施例は、本発明による措置により、機械特性の意外な改善を達成でき、ここで、この改善は、更に1100℃を越える温度、特に1500℃を越える温度での焼鈍工程によって高めることができることを示す。   The embodiments described above can achieve a surprising improvement in mechanical properties by means of the measures according to the invention, wherein this improvement is further enhanced by an annealing process at temperatures above 1100 ° C., in particular above 1500 ° C. Show what you can do.

上述の明細書、並びに特許請求の範囲、及び実施例に開示された、本発明の特徴は、本発明の多様な実施態様の場合の本発明の実現のために、単独でも、各々の任意の組み合わせとしても重要であることができる。   The features of the invention disclosed in the above specification, as well as in the claims and in the examples, either alone or in each case for the realization of the invention in the case of the various embodiments of the invention. It can also be important as a combination.

Claims (19)

次の工程:
金少なくとも70質量%及び他の貴金属最大29.95質量%、並びにジルコニウム、セリウム、スカンジウム及びイットリウムから選択された卑金属であって、少なくとも部分的に酸化された少なくとも1種の卑金属0.05質量%〜0.5質量%からなり、ただし通常の不純物が含まれていてよい分散強化白金組成物の体積体を準備する工程、
前記分散強化白金組成物の体積体を冷間成形する工程、ここで前記冷間成形の際に、前記分散強化白金組成物からなる前記体積体の横断面積を最大20%低減させる、及び引き続き、
冷間成形された前記体積体を熱処理する工程、ここで前記熱処理の際に、冷間成形された前記体積体を少なくとも1100℃で少なくとも1時間焼き戻しする
を特徴とする、分散強化白金組成物を加工する方法。
Next step:
70 wt% even without platinum small and other precious metals up to 29.95% by weight, and zirconium, cerium, a base metal selected from scandium and yttrium, at least one at least partially oxidized Providing a volume of dispersion-strengthened platinum composition consisting of 0.05% to 0.5% by weight of a base metal, but containing normal impurities ,
Cold forming the volume of the dispersion strengthened platinum composition, wherein the cross section of the volume of the dispersion strengthened platinum composition is reduced by up to 20% during the cold forming, and subsequently
Heat treating the cold-formed volume, wherein during the heat treatment tempering the cold-formed volume at least at 1100 ° C. for at least 1 hour, dispersion-strengthened platinum composition How to work.
前記冷間成形の前に、前記分散強化白金組成物を、熱間成形により少なくとも800℃の温度で成形することを特徴とする、請求項1に記載の方法。 Before the cold forming, the dispersion strengthened platinum composition, characterized and Turkey be molded at a temperature of at least 800 ° C. by hot forming method according to claim 1. 前記冷間成形の前に、前記分散強化白金組成物を、熱間成形により少なくとも1250℃の温度で成形することを特徴とする、請求項1に記載の方法。The method of claim 1, wherein prior to the cold forming, the dispersion strengthened platinum composition is formed by hot forming at a temperature of at least 1250 ° C. 複数回の冷間成形を互いに連続して実施し、かつ前記複数回の冷間成形により前記体積体の横断面積を20%より大きく低減し、ここで個々の冷間成形の際には、前記分散強化白金組成物からなる前記体積体の横断面積を最大20%低減し、各冷間成形の間に、前記冷間成形された体積体の熱処理を実施し、前記熱処理の際に、前記冷間成形された体積体を少なくとも1100℃で少なくとも1時間焼き戻すことを特徴とする、請求項1から3までのいずれか1項に記載の方法。 A plurality of cold formings are carried out successively from one another, and the multiple cold formings reduce the cross-sectional area of the volume by more than 20%, wherein in the case of individual cold formings The cross-sectional area of the volume consisting of the dispersion-strengthened platinum composition is reduced by up to 20%, and the heat treatment of the cold-formed volume is carried out during each cold-forming, during the heat treatment the cold-forming volume 4. A method according to any one of the preceding claims, characterized in that the in-moulded volume is tempered at at least 1100 <0> C for at least 1 hour. 前記体積体の最後の冷間成形の後の最後の熱処理の際に、前記冷間成形された体積体を、少なくとも1550℃で少なくとも24時間、少なくとも1600℃で少なくとも12時間、少なくとも1650℃で少なくとも1時間焼き戻すか又は1690℃〜1740℃の温度で少なくとも30分間焼き戻すことを特徴とする、請求項1からまでのいずれか1項に記載の方法。 During the final heat treatment after the last cold-forming of the volume , the cold-formed volume is at least 15 hours at least 15 hours and at least 16 hours at 16 days. and returning at least baked for 30 minutes at 1 hour baked back or temperature of 1690 ℃ ~1740 ℃, method according to any one of claims 1 to 4. 冷間成形で線材を引き抜き加工又は圧縮加工し、前記冷間成形で前記分散強化白金組成物からなる前記線材の横断面積を最大20%低減するか、又は冷間成形で板材を圧延加工、引き抜き加工、圧縮加工又は加圧加工し、前記冷間成形で前記分散強化白金組成物からなる板材の横断面積又は前記板材の厚さを最大20%低減するか、又は冷間成形で管材を圧延加工、引き抜き加工又は圧縮加工する場合、前記冷間成形で前記分散強化白金組成物からなる管材の横断面積を最大20%低減することを特徴とする、請求項1からまでのいずれか1項に記載の方法。 The wire is drawn or compressed by cold forming, and the cross-sectional area of the wire made of the dispersion strengthened platinum composition is reduced by up to 20% by the cold forming, or the plate is rolled or drawn by cold forming. Process, compress or press, reduce the cross-sectional area of the plate made of the dispersion strengthened platinum composition by the cold forming or the thickness of the plate by up to 20%, or roll process the tube by cold forming The method according to any one of claims 1 to 5 , wherein, in the case of drawing processing or compression processing, the cross-sectional area of the pipe material made of the dispersion strengthened platinum composition is reduced by at most 20% by the cold forming. Method described. 前記冷間成形を、500℃以下の温度で実施することを特徴とする、請求項1からまでのいずれか1項に記載の方法。 It said cold forming, which comprises carrying out at 500 ° C. below the temperature A method according to any one of claims 1 to 6. 前記冷間成形された体積体の前記1回以上の熱処理を、前記体積体の欠陥の回復のために適用することを特徴とする、請求項1からまでのいずれか1項に記載の方法。 Said one or more heat treatment of the cold-shaped volume element, and wherein applying for recovery of a defect of the volume body A method according to any one of claims 1 to 7 . 前記冷間成形された体積体の熱処理の際に、少なくとも1250℃の温度で少なくとも1時間焼き戻すことを特徴とする、請求項1からまでのいずれか1項に記載の方法。 During heat treatment of the cold-formed volumetric body, and returning at least 1 hour baked at a temperature of at least 1250 ° C., the method according to any one of claims 1 to 8. 前記冷間成形された体積体の熱処理の際に、少なくとも1400℃の温度で1〜3時間焼き戻すことを特徴とする、請求項1から9までのいずれか1項に記載の方法。10. A method according to any one of the preceding claims, characterized in that during the heat treatment of the cold-formed volume, it is tempered at a temperature of at least 1400 <0> C for 1 to 3 hours. 請求項1から10までのいずれか1項に記載の方法による分散強化白金組成物からなる製品の製造方法において、前記分散強化白金組成物の準備の前に、白金少なくとも70質量%及び他の貴金属最大29.95質量%、並びにルテニウム、ジルコニウム、セリウム、スカンジウム及びイットリウムから選択される少なくとも1種の卑金属0.05質量%〜0.5質量%からなり、ただし通常の不純物が含まれていてよい組成物から、前記1種以上の卑金属の少なくとも部分的な酸化により前記分散強化白金組成物を製造することを特徴とする、分散強化白金組成物からなる製品の製造方法。 A method of producing a product comprising a dispersion-strengthened platinum composition according to any one of claims 1 to 10 , wherein at least 70% by weight of platinum and other noble metals are provided prior to the preparation of the dispersion-strengthened platinum composition. up 29.95 wt%, and ruthenium, zirconium, cerium, at least one base metal 0.05 wt% is selected from scandium and yttrium to 0.5 wt% Tona is, however contain the usual impurities A method of producing a product comprising a dispersion strengthened platinum composition, characterized in that said dispersion strengthened platinum composition is produced from a good composition by at least partial oxidation of said one or more base metals. 前記1種以上の卑金属の少なくとも部分的な酸化を、600℃〜1600℃の温度において酸化雰囲気下で行うことを特徴とする、請求項11に記載の方法。 The one or more at least partial oxidation of the base metal, characterized by the TURMERIC line in an oxidizing atmosphere at a temperature of 600 ° C. to 1600 ° C., The method of claim 11. 前記1種以上の卑金属の少なくとも部分的な酸化を、800℃〜1000℃の温度において酸化雰囲気下で行うことを特徴とする、請求項11に記載の方法。The method according to claim 11, characterized in that at least partial oxidation of the one or more base metals is performed at a temperature of 800 ° C to 1000 ° C under an oxidizing atmosphere. 白金少なくとも70質量%及び他の貴金属最大29.95質量%、並びにジルコニウム、セリウム、スカンジウム及びイットリウムから選択された卑金属であって、少なくとも部分的に酸化された少なくとも1種の卑金属0.05質量%〜0.5質量%からなり、ただし通常の不純物が含まれていてよい分散強化白金材料であって、
前記分散強化白金材料からなる円柱状の体積体が、1600℃の温度で、前記体積体の長さ方向で9MPaの引張荷重で少なくとも40時間引きちぎれることなく耐え、及び/又は前記分散強化白金材料からなる、0.85mm×3.9mmの長方形断面でかつ長さ140mmの板材は、前記板材を炉室内で1650℃において、100mmの間隔で平行に配置された2つの、円形横断面でかつ2mmの直径の円柱状の棒の上に置き、かつ前記板材の中央を30gの重りで荷重をかけた場合に、40時間後の撓みが40mm未満であることを特徴とする、分散強化白金材料。
At least 70% by weight of platinum and up to 29.95% by weight of other noble metals, and 0.05% by weight of at least one base metal selected from zirconium, cerium, scandium and yttrium, at least partially oxidized A dispersion-strengthened platinum material consisting of ̃0.5% by mass, but may contain normal impurities ,
The cylindrical volume of the dispersion-strengthened platinum material withstands at least 40 hours under a tensile load of 9 MPa in the longitudinal direction of the volume at a temperature of 1600 ° C. and / or the dispersion-strengthened platinum material A plate of rectangular cross section of 0.85 mm × 3.9 mm and having a length of 140 mm consisting of two circular cross sections of 2 circular cross sections arranged in parallel at a distance of 100 mm at 1650 ° C. in the furnace chamber. A dispersion-strengthened platinum material , characterized in that the deflection after 40 hours is less than 40 mm when placed on a cylindrical rod of a diameter of 50 mm and the center of the plate is loaded with a 30 g weight .
前記分散強化白金材料は、板材、管材もしくは線材であるか、又は線材、管材及び/又は板材から形成されることを特徴とする、請求項14に記載の分散強化白金材料。 The dispersion-strengthened platinum material is characterized plate, or a tube or wire, or wire, to be formed from the tubing and / or sheet material, dispersion strengthened platinum material according to claim 14. 前記分散強化白金材料は、ジルコニウム、セリウム、スカンジウム及びイットリウムから選択される、少なくとも部分的に酸化された、少なくとも1種の卑金属を0.05質量%〜0.3質量%含むことを特徴とする、請求項14又は15に記載の分散強化白金材料。 The dispersion strengthened platinum material is characterized in that it contains 0.05% by mass to 0.3% by mass of an at least partially oxidized at least one base metal selected from zirconium, cerium, scandium and yttrium. The dispersion strengthened platinum material according to claim 14 or 15 . 前記分散強化白金材料からなる円柱状の体積体は、1600℃の温度で、前記体積体の長さ方向で9MPaの引張荷重で少なくとも100時間引きちぎれることなく耐えることを特徴とする、請求項14から16までのいずれか1項に記載の分散強化白金材料。The cylindrical volume of said dispersion strengthened platinum material is characterized in that it withstands at a temperature of 1600 ° C. with a tensile load of 9 MPa in the lengthwise direction of said volume for at least 100 hours without tearing. 16. Dispersion-strengthened platinum material according to any one of the preceding claims. 前記分散強化白金材料からなる、0.85mm×3.9mmの長方形断面でかつ長さ140mmの板材は、前記板材を炉室内で1650℃において、100mmの間隔で平行に配置された2つの、円形横断面でかつ2mmの直径の円柱状の棒の上に置き、かつ前記板材の中央を30gの重りで荷重をかけた場合に、40時間後の撓みが20mm未満であることを特徴とする、請求項14から17までのいずれか1項に記載の分散強化白金材料。A 0.85 mm × 3.9 mm rectangular cross-section plate having a length of 140 mm, made of the dispersion-strengthened platinum material, is a circular plate in which the plate material is arranged in parallel at an interval of 100 mm at 1650 ° C. in a furnace chamber. It is characterized in that the deflection after 40 hours is less than 20 mm when it is placed on a cylindrical rod of transverse cross section and a diameter of 2 mm and the center of the plate is loaded with a weight of 30 g, The dispersion strengthened platinum material according to any one of claims 14 to 17. ガラス工業において又は実験室において使用されるべき機器のための、請求項14から18までのいずれか1項に記載の分散強化白金材料の使用。 For devices to be used in or laboratory in the glass industry, use of dispersion-strengthened platinum materials according to any one of claims 14 to 18.
JP2016536823A 2013-12-06 2014-12-04 Method of processing a dispersion strengthened platinum composition Active JP6530402B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102013225187.4A DE102013225187B4 (en) 2013-12-06 2013-12-06 Method for processing a dispersion-hardened platinum composition
DE102013225187.4 2013-12-06
PCT/EP2014/076600 WO2015082630A1 (en) 2013-12-06 2014-12-04 Method for processing a dispersion-hardened platinum composition

Publications (2)

Publication Number Publication Date
JP2017502170A JP2017502170A (en) 2017-01-19
JP6530402B2 true JP6530402B2 (en) 2019-06-12

Family

ID=52101298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016536823A Active JP6530402B2 (en) 2013-12-06 2014-12-04 Method of processing a dispersion strengthened platinum composition

Country Status (7)

Country Link
US (1) US20160289808A1 (en)
EP (1) EP3077556B1 (en)
JP (1) JP6530402B2 (en)
KR (1) KR101831090B1 (en)
CN (1) CN105765092B (en)
DE (1) DE102013225187B4 (en)
WO (1) WO2015082630A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108165812B (en) * 2017-11-16 2019-09-24 重庆材料研究院有限公司 A kind of dispersion strengthening type material and its preparation method and application for platinum base vessel
EP3971311B1 (en) * 2020-09-17 2022-07-06 Heraeus Deutschland GmbH & Co. KG Improved dispersion-hardened precious metal alloy
EP3978884B1 (en) 2020-10-02 2024-05-29 Heraeus Precious Metals GmbH & Co. KG Wire with platinum composition for contacting temperature sensors
EP4282526A1 (en) 2022-05-25 2023-11-29 Heraeus Deutschland GmbH & Co. KG Catalyst network comprising a noble metal wire of a dispersion strengthened noble metal alloy

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US156A (en) * 1837-03-30 Improvement in machines for packing and pressing flour
US2636819A (en) * 1951-01-31 1953-04-28 Baker & Co Inc Grain stabilizing metals and alloys
GB1280815A (en) 1968-07-12 1972-07-05 Johnson Matthey Co Ltd Improvements in and relating to the dispersion strengthening of metals
GB1340076A (en) 1970-01-23 1973-12-05 Johnson Matthey Co Ltd Dispersion strengthening of platinum group metals platinum group metal based alloys gold and gold based alloys
JPS56501457A (en) * 1979-10-04 1981-10-08
DE3030751A1 (en) 1980-08-14 1982-03-18 Degussa Ag, 6000 Frankfurt METHOD FOR PRODUCING SEMI-PRODUCTS FROM DISPERSION-HARDENED PLATINUM
US4507156A (en) * 1984-04-09 1985-03-26 Owens-Corning Fiberglas Corporation Creep resistant dispersion strengthened metals
DE4417495C1 (en) 1994-05-19 1995-09-28 Schott Glaswerke Prodn. of pure platinum materials reinforced with yttrium oxide
DE19714365A1 (en) 1997-04-08 1998-10-15 Heraeus Gmbh W C Dispersion strengthening platinum material, process for its production and its use
US6569270B2 (en) * 1997-07-11 2003-05-27 Honeywell International Inc. Process for producing a metal article
DE19813988C1 (en) 1998-03-28 1999-10-28 Heraeus Gmbh W C Process for the production of a welded molded body consisting of finely divided, small particles of base metal oxide and strengthened platinum material, in particular a tube, in particular having at least one inner wall
JP3778338B2 (en) * 2000-06-28 2006-05-24 田中貴金属工業株式会社 Method for producing oxide dispersion strengthened platinum material
DE10046456C2 (en) * 2000-09-18 2003-04-10 Heraeus Gmbh W C Through finely divided, small particles of base metal oxide, dispersion-strengthened, gold-free platinum material
JP4136914B2 (en) * 2003-11-28 2008-08-20 田中貴金属工業株式会社 Method for producing reinforced platinum material
CN100500898C (en) * 2006-09-08 2009-06-17 国内贸易部物资再生利用研究所 Reinforced platinum material and method of manufacture and use thereof
DE102007007873A1 (en) 2007-02-14 2008-08-21 W.C. Heraeus Gmbh Dispersion-hardened platinum-containing materials comprise platinum or its alloy with rhodium, gold or palladium and dispersion-hardener comprising cerium, zirconium, scandium or yttrium oxidized to extent of at least 90 percent by weight

Also Published As

Publication number Publication date
CN105765092A (en) 2016-07-13
KR101831090B1 (en) 2018-02-21
DE102013225187B4 (en) 2018-07-19
WO2015082630A1 (en) 2015-06-11
CN105765092B (en) 2018-10-19
US20160289808A1 (en) 2016-10-06
KR20160097249A (en) 2016-08-17
JP2017502170A (en) 2017-01-19
EP3077556B1 (en) 2019-06-19
EP3077556A1 (en) 2016-10-12
DE102013225187A1 (en) 2015-06-11

Similar Documents

Publication Publication Date Title
TWI589704B (en) Thermo-mechanical processing of nickel-titanium alloys
JP6530402B2 (en) Method of processing a dispersion strengthened platinum composition
JP6499159B2 (en) Copper alloy wire and method for producing the same
KR101719889B1 (en) Copper-alloy wire rod and manufacturing method therefor
CN103341520A (en) Preparation process of TB9 titanium alloy wire with rectangular section
KR101719888B1 (en) Copper-alloy wire rod and manufacturing method therefor
KR100851064B1 (en) Manufacturing method of the oxide dispersed platinum material using a thermal spray process
US20200354816A1 (en) Nickel-titanium-yttrium alloys with reduced oxide inclusions
CN108555039B (en) Preparation method of copper/steel laminated composite material and composite material prepared by preparation method
KR102194944B1 (en) Method of making rod from titanium based alloy
JP2021130878A (en) Method for making deformed semi-finished products from aluminum-based alloys
JPH0581195B2 (en)
JP2019119929A (en) Copper alloy wire
RU2389568C1 (en) Method to produce sub micro-crystalline structure in unalloyed titanium
JP6091912B2 (en) Copper-chromium alloy wire and method for non-heating production of high ductility, high-strength copper-chromium alloy wire
CN106111725A (en) A kind of dispersion-strengtherning platinum rhodium thermocouple wire production method
JP5549981B2 (en) Mg-based alloy cold worked parts
RU2604075C1 (en) Method of producing nanostructured rods of round section from titanium alloy vt22
JPH03219039A (en) Rhenium-tungsten alloy material excellent in workability and its manufacture
KR101279555B1 (en) Method of manufacturing an oxide dispersion strengthened Platinum materials using a Cross-roll
JP4253846B2 (en) Magnesium alloy wire, method for producing the same, and magnesium alloy molded body
RU2375484C1 (en) Alloy on titanium base
JP2633530B2 (en) Molybdenum members with excellent secondary formability
JP4253845B2 (en) Magnesium alloy wire, method for producing the same, and magnesium alloy molded body
Boumerzoug et al. Heat Treatments Effect on the Mechanical Properties of Industrial Drawn Copper Wires

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190516

R150 Certificate of patent or registration of utility model

Ref document number: 6530402

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250