JP4751603B2 - Stainless steel pipe manufacturing method - Google Patents

Stainless steel pipe manufacturing method Download PDF

Info

Publication number
JP4751603B2
JP4751603B2 JP2004336896A JP2004336896A JP4751603B2 JP 4751603 B2 JP4751603 B2 JP 4751603B2 JP 2004336896 A JP2004336896 A JP 2004336896A JP 2004336896 A JP2004336896 A JP 2004336896A JP 4751603 B2 JP4751603 B2 JP 4751603B2
Authority
JP
Japan
Prior art keywords
stainless steel
degreasing
pipe
steel pipe
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004336896A
Other languages
Japanese (ja)
Other versions
JP2006045659A (en
Inventor
昌幸 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2004336896A priority Critical patent/JP4751603B2/en
Publication of JP2006045659A publication Critical patent/JP2006045659A/en
Application granted granted Critical
Publication of JP4751603B2 publication Critical patent/JP4751603B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Description

本発明は、半導体製造、化学工業、食品産業、火力または原子力発電設備等の分野で広く用いられている表面清浄度および耐食性に優れたステンレス鋼の製造方法およびステンレス鋼管の製造方法に関する。なお、前記の「ステンレス鋼」とは、ここでは、主としてステンレス鋼製の鋼材(ステンレス鋼材)を指すが、これに限らず、前記ステンレス鋼材に加工される前の中間成品も含めた、冷間材としての「ステンレス鋼」をいう。   The present invention relates to a method for producing stainless steel and a method for producing a stainless steel pipe, which are widely used in the fields of semiconductor manufacturing, chemical industry, food industry, thermal power, nuclear power generation equipment, etc. and excellent in surface cleanliness and corrosion resistance. The “stainless steel” here mainly refers to a steel material (stainless steel material) made of stainless steel, but is not limited to this, and includes a cold product including an intermediate product before being processed into the stainless steel material. “Stainless steel” as a material.

鋼管、鋼板を始めとするステンレス鋼材は、高強度を有し、耐食性に優れていることから、半導体製造、化学工業、食品産業、火力または原子力発電設備等の産業分野で、設備、装置類の構成部材として広く使用されている。特に、ステンレス鋼製の鋼管(以下、「ステンレス鋼管」という)は、例えば、原子力発電設備等に設けられる給水加熱器の伝熱管等として多用されており、通常は、小径かつ長尺管として用いられる場合が多い。   Stainless steel materials such as steel pipes and steel plates have high strength and excellent corrosion resistance. Therefore, in the industrial fields such as semiconductor manufacturing, chemical industry, food industry, thermal power or nuclear power generation equipment, Widely used as a component. In particular, stainless steel pipes (hereinafter referred to as “stainless steel pipes”) are widely used, for example, as heat transfer pipes for feed water heaters installed in nuclear power generation facilities, etc., and are usually used as small diameter and long pipes. It is often done.

しかし、高耐食性を備えるステンレス鋼であっても、その表面にフッ化物、塩化物等のハロゲン化合物や、燐酸塩、硫酸塩等が付着すると、表面清浄度が低下し、耐食性が必ずしも十分ではなくなる。特にステンレス鋼管の場合は、管内面の付着物は除去されにくく、その部分が腐食して金属イオンが溶出する場合もある。   However, even in the case of stainless steel having high corrosion resistance, if halogen compounds such as fluoride and chloride, phosphates, sulfates, etc. adhere to the surface, the surface cleanliness decreases and the corrosion resistance is not always sufficient. . In particular, in the case of a stainless steel pipe, deposits on the inner surface of the pipe are difficult to remove, and the portion may corrode and metal ions may be eluted.

また、例えば、ステンレス鋼管の冷間加工時に、その内外表面に潤滑剤として塗布した炭素や炭素化合物(潤滑油)が、その後の洗浄(脱脂)処理で完全には除去されず、一部が残留した場合、そのままの状態で熱処理すると、管の表面からの炭素の侵入拡散によって炭素濃度が上昇し、浸炭が発生することがある。   Also, for example, during cold working of stainless steel pipes, carbon and carbon compounds (lubricating oil) applied as a lubricant on the inner and outer surfaces are not completely removed by the subsequent cleaning (degreasing) treatment, and a part remains. In this case, if the heat treatment is performed as it is, the carbon concentration may increase due to intrusion diffusion of carbon from the surface of the tube, and carburization may occur.

表面に浸炭が発生した鋼管は、溶接などの熱影響により鋭敏化しやすく、粒界腐食が発生するおそれがある。すなわち、溶接時における熱影響によって、あるいは、装置に組み込まれ長時間の使用による熱影響によって、粒界にCrカーバイドが析出し、その付近(粒界隣接部)にCr欠乏層が出現して耐食性が著しく劣化するので、その部分で優先的に腐食が進行する。   Steel pipes that have carburized on the surface are susceptible to sensitization due to thermal effects such as welding, and may cause intergranular corrosion. In other words, Cr carbide precipitates at the grain boundary due to the thermal effect during welding or due to the long-term use incorporated in the equipment, and a Cr-deficient layer appears in the vicinity (adjacent to the grain boundary), resulting in corrosion resistance. Is significantly deteriorated, and corrosion preferentially proceeds in that portion.

このようなステンレス鋼が本来有している優れた耐食性の発現が阻害されるのを防止するために、従来は、ステンレス鋼管を例にとると、管表面の付着物を洗浄により除去する方法が主として採られてきた。すなわち、洗浄に用いる薬品の成分管理、洗浄液の頻繁な更新、洗浄処理時間と回数の増加、付着物の除去等の確認、付着物の分析および付着量の把握、腐食試験の実施等である。しかし、この方法(付着物の洗浄除去)には作業のバラツキ、確認作業での抜け(見落とし)があり、費用と労力を要するだけではなく、信頼性の面でも不安があった。   In order to prevent the development of the excellent corrosion resistance inherent in such stainless steel, conventionally, when a stainless steel pipe is taken as an example, there is a method of removing the deposit on the pipe surface by washing. It has been mainly taken. That is, management of chemical components used for cleaning, frequent renewal of cleaning liquid, increase of cleaning processing time and number of times, confirmation of removal of deposits, analysis of deposits, grasp of amount of deposit, implementation of corrosion test, etc. However, this method (cleaning and removal of deposits) has variations in work and missing (oversight) in the confirmation work, which is not only costly and labor intensive but also uneasy in terms of reliability.

切削・研削加工により表面の平滑性と清浄度を高めて耐食性を確保する方法も考えられるが、切削・研削加工は、能率が悪く、切粉が排出することから歩留も悪く、結果として製造コストが上昇する。   Although it is conceivable to increase the surface smoothness and cleanliness by cutting and grinding to ensure corrosion resistance, cutting and grinding are inefficient and the yield is low because chips are discharged. Cost increases.

ステンレス鋼の耐食性を向上させる方法として、例えば、特許文献1には、ステンレス鋼材の表面処理方法が提案されている。この方法は、(i)冷間加工したステンレス鋼材を用意し、(ii)水溶性無機珪酸塩を含む水溶液に浸漬し、または、浸漬して電解洗浄を行い、(iii)次いで酸化性雰囲気で焼鈍し、(iv)その後酸洗または酸洗後軽度の冷間加工を行う各工程を備えた方法で、(ii)の工程でステンレス鋼材表面に付着した珪酸塩(一部は酸化物として付着)が、焼鈍により生じる酸化スケールの生長を抑制してステンレス鋼材表面および粒界のCr濃度低下の程度を少なくし、ステンレス鋼材の耐食性が改善される、としている。   As a method for improving the corrosion resistance of stainless steel, for example, Patent Document 1 proposes a surface treatment method for a stainless steel material. In this method, (i) a cold-worked stainless steel material is prepared, (ii) immersed in an aqueous solution containing a water-soluble inorganic silicate, or subjected to electrolytic cleaning by immersion, and (iii) then in an oxidizing atmosphere. Silicate (partially deposited as an oxide) attached to the surface of stainless steel in step (ii) in a method that includes annealing and (iv) then pickling or mild cold working after pickling. However, it is said that the growth of oxide scale caused by annealing is suppressed to reduce the degree of decrease in Cr concentration on the surface of the stainless steel material and grain boundaries, and the corrosion resistance of the stainless steel material is improved.

この方法は、ステンレス鋼材表面および粒界のCr濃度の低下の抑制には有効であると思われる。しかし、前述した表面清浄度の低下に起因し、ステンレス鋼が本来有している優れた耐食性の発現が阻害されることに対する対策については何の提案もなされていない。   This method seems to be effective for suppressing the decrease in Cr concentration on the stainless steel surface and grain boundaries. However, no proposal has been made for measures against the deterioration of the excellent corrosion resistance inherent in stainless steel due to the above-described decrease in surface cleanliness.

特開平7−150399号公報JP 7-150399 A

本発明は、ステンレス鋼またはステンレス鋼管が本来有している優れた耐食性が、前述したような表面清浄度の低下により損なわれるのを防止し、半導体製造、化学工業、食品産業、火力または原子力発電設備等の産業分野で、設備、装置類の構成部材として広く適用し得る、表面清浄度および耐食性に優れたステンレス鋼またはステンレス鋼管の製造方法、特に、原子力発電設備等に設けられる給水加熱器の伝熱管等、小径かつ長尺管として好適なステンレス鋼管の製造方法を提供することを目的としている。   The present invention prevents the excellent corrosion resistance inherent in stainless steel or stainless steel pipes from being deteriorated by the reduction in surface cleanliness as described above, and provides semiconductor manufacturing, chemical industry, food industry, thermal power or nuclear power generation. A method of manufacturing stainless steel or stainless steel pipe having excellent surface cleanliness and corrosion resistance, which can be widely applied as a component of equipment and devices in industrial fields such as equipment, particularly for feed water heaters installed in nuclear power generation equipment, etc. It aims at providing the manufacturing method of a stainless steel pipe suitable as a small diameter and long pipe, such as a heat exchanger tube.

本発明者は、上記の課題を解決するため、ステンレス鋼またはステンレス鋼管の表面に機械研削または電解研磨を施すことにより、表面の清浄度を向上させる方法について検討した。その結果、ステンレス鋼管について、その表面の塩化物や硫化物、あるいは潤滑剤として塗布した潤滑油等の付着物を、鋼管を脱脂液(アルカリ脱脂液を使用)に浸漬する洗浄作業に加えて、機械研削または電解研磨を実施することにより除去し、その後熱処理することにより、管表面の清浄性を高め、耐食性を向上させ得ることを見いだした。   In order to solve the above problems, the present inventor has studied a method for improving the cleanliness of the surface by subjecting the surface of the stainless steel or stainless steel pipe to mechanical grinding or electrolytic polishing. As a result, for stainless steel pipes, in addition to the cleaning work of immersing the steel pipe in degreasing liquid (using alkaline degreasing liquid), deposits such as chloride and sulfide on the surface, or lubricating oil applied as a lubricant, It has been found that the surface can be removed by performing mechanical grinding or electropolishing, followed by heat treatment to improve the cleanliness of the tube surface and improve the corrosion resistance.

本発明は、この知見に基づいてなされたもので、下記(2)のステンレス鋼管の製造方法を要旨としている。下記(1)のステンレス鋼の製造方法は参考の発明である。
The present invention has been made based on this finding, and the gist of the method for manufacturing a stainless steel tube under SL (2). The following (1) stainless steel production method is a reference invention.

(1)ステンレス素鋼を冷間加工し、脱脂を行った後、熱処理を行うステンレス鋼の製造方法であって、前記脱脂工程が、
(a)浸漬による第1脱脂工程と
(b)機械研削による第2脱脂工程
とからなるステンレス鋼の製造方法。
(1) A stainless steel manufacturing method in which stainless steel is cold worked, degreased and then heat treated, wherein the degreasing step comprises:
(A) a first degreasing step by immersion (b) method for producing a stainless steel and a second degreasing step by cutting machine Lab.

前記(1)のステンレス鋼の製造方法において、冷間加工を油潤滑により行うこととすれば、表面粗さの劣化がなく、望ましい。   In the method for producing stainless steel according to (1), it is desirable that the cold working is performed by oil lubrication so that the surface roughness does not deteriorate.

ここで、「ステンレス鋼」とは、前述のように、主として、鋼管、鋼板を始めとするステンレス鋼材を指すが、これに限らず、前記ステンレス鋼材に加工される前の中間成品も含めた、冷間材としての「ステンレス鋼」をいう。なお、「ステンレス素鋼」とは、熱間工程で得られた、冷間加工に供される素材である。   Here, as described above, “stainless steel” mainly refers to a stainless steel material including a steel pipe and a steel plate, but is not limited to this, including intermediate products before being processed into the stainless steel material, "Stainless steel" as a cold material. The “stainless steel” is a material that is obtained in a hot process and that is subjected to cold working.

(2)ステンレス鋼素管を冷間加工し、脱脂を行った後、熱処理を行うステンレス鋼管の製造方法であって、前記脱脂工程が、
(a)浸漬による第1脱脂工程と
(b)管の表面を砥粒を用いたブラスト処理で研削する第2脱脂工程
とからなるステンレス鋼管の製造方法。
(2) A stainless steel pipe manufacturing method in which a stainless steel base pipe is cold worked and degreased, followed by heat treatment, wherein the degreasing step comprises:
(A) The 1st degreasing process by immersion, (b) The manufacturing method of the stainless steel pipe which consists of the 2nd degreasing process which grinds the surface of a pipe | tube by the blast process which uses an abrasive grain .

前記(2)のステンレス鋼管の製造方法において、冷間加工を油潤滑により行うこととすれば、表面粗さの劣化がなく、望ましい。   In the method for producing a stainless steel pipe according to (2), it is preferable that the cold working is performed by oil lubrication so that the surface roughness does not deteriorate.

前記の「ステンレス鋼素管」とは、熱間製管で得られた、冷間加工に供される素材である。   The above-mentioned “stainless steel pipe” is a material obtained by hot pipe making and used for cold working.

なお、本発明の方法は、オーステナイト系ステンレス鋼やフェライト系ステンレス鋼などクロムを含むステンレス鋼に適用することができ、それ以外のNi基合金等にも適用可能である。   The method of the present invention can be applied to stainless steel containing chromium such as austenitic stainless steel and ferritic stainless steel, and can also be applied to other Ni-based alloys.

本発明のステンレス鋼の製造方法またはステンレス鋼管の製造方法によれば、表面清浄度および耐食性に優れたステンレス鋼またはステンレス鋼管、特に製造の対象が管内面の洗浄作業が困難な小径かつ長尺の伝熱管であっても、優れた表面清浄度および耐食性を有する伝熱管を製造することができる。   According to the manufacturing method of a stainless steel or the manufacturing method of a stainless steel pipe of the present invention, a stainless steel or a stainless steel pipe excellent in surface cleanliness and corrosion resistance, in particular, a small diameter and long length whose manufacturing target is difficult to clean the inner surface of the pipe. Even if it is a heat exchanger tube, the heat exchanger tube which has the outstanding surface cleanliness and corrosion resistance can be manufactured.

本発明のステンレス鋼の製造方法(前記(1)の方法)は、『ステンレス素鋼を冷間加工し、脱脂を行った後、熱処理を行うステンレス鋼の製造方法であって、前記脱脂工程が、
(a)浸漬による第1脱脂工程と
(b)機械研削または電解研磨による第2脱脂工程
とからなるステンレス鋼の製造方法』である。ここで、脱脂工程を、「第1脱脂工程」、「第2脱脂工程」と呼称して区別したのは、脱脂をこの順に行う(すなわち、第1脱脂工程を実施した後、第2脱脂工程を実施する)ことを明示するためである。
The method for producing stainless steel according to the present invention (method (1)) is “a method for producing stainless steel in which a stainless steel is cold worked and degreased, followed by heat treatment, wherein the degreasing step comprises: ,
(A) A first degreasing step by dipping and (b) a stainless steel manufacturing method comprising a second degreasing step by mechanical grinding or electrolytic polishing ”. Here, the degreasing process is referred to as the “first degreasing process” and the “second degreasing process” to distinguish the degreasing processes in this order (that is, after performing the first degreasing process, the second degreasing process). This is to clearly show that

一方、前記(2)のステンレス鋼管の製造方法は、ステンレス鋼のうち特に「ステンレス鋼管」を製造の対象とする方法であり、『ステンレス鋼素管を冷間加工し、脱脂を行った後、熱処理を行うステンレス鋼管の製造方法であって、前記脱脂工程が、
(a)浸漬による第1脱脂工程と
(b)機械研削または電解研磨による第2脱脂工程
とからなるステンレス鋼管の製造方法』である。
On the other hand, the method for producing a stainless steel pipe of the above (2) is a method for producing “stainless steel pipe” in particular among stainless steels, and “after cold working and degreasing a stainless steel base pipe, A method of manufacturing a stainless steel pipe for performing heat treatment, wherein the degreasing step includes:
(A) A first degreasing step by dipping and (b) a method for producing a stainless steel pipe comprising a second degreasing step by mechanical grinding or electrolytic polishing ”.

ここで、ステンレス鋼の一般的な製造工程を、以下に概説する。   Here, the general manufacturing process of stainless steel is outlined below.

〔溶解、精錬工程〕
この工程では、電気炉にて溶解した溶鋼または高炉の溶銑を精錬炉に投入して、脱硫、脱りん、脱炭処理を行った後、製品の成分規定内に納めるべく合金元素の添加を行い、脱酸処理を行う。ステンレス鋼やNi基合金の精錬では、一般にAOD炉またはVOD炉単独もしくはAOD炉後にVOD炉を組み合わせて処理が行われる。特に、高純度フェライト系ステンレス鋼などの窒素含有量を極力低く押さえることが必要な鋼種には、VOD炉での処理を行う。さらに、キャビティ対策、偏析や析出物軽減等の目的で二次溶解を組み合わせるものもある。
[Melting and refining process]
In this process, molten steel melted in an electric furnace or molten iron from a blast furnace is put into a refining furnace, desulfurized, dephosphorized, and decarburized, and then alloying elements are added so as to be within the product component regulations. And deoxidation treatment. In the refining of stainless steel and Ni-base alloy, generally, processing is performed by using an AOD furnace, a VOD furnace alone, or a VOD furnace after an AOD furnace. In particular, a steel type that needs to keep the nitrogen content as low as possible, such as high purity ferritic stainless steel, is processed in a VOD furnace. In addition, there are some which combine secondary dissolution for the purpose of countermeasures against cavities, segregation and precipitate reduction.

この電気炉や高炉での溶解の原料として、スクラップを用いる方法や鉄鉱石を原料として得られる溶融銑鉄を用いる方法、およびそれらを組み合わせて用いる方法がある。   As a raw material for melting in this electric furnace or blast furnace, there are a method using scrap, a method using molten pig iron obtained using iron ore as a raw material, and a method using a combination thereof.

スクラップを用いる方法では、製品に比較的近い組成を有するスクラップを原料として使用することで、追加投入する合金原料の投入量を削減でき、成分調整が容易という利点がある。しかし、一般的にスクラップには不純物の混入が避けられず、その不純物は精錬工程での除去が難しく、純度の高い高価な合金原料を用いて溶解し製品の不純物量を下げる必要がある。   In the method using scrap, by using a scrap having a composition relatively close to that of a product as a raw material, there is an advantage that the amount of additional alloy raw material to be added can be reduced and the component adjustment is easy. However, in general, it is inevitable that impurities are mixed into scrap, and it is difficult to remove the impurities in the refining process, and it is necessary to dissolve the scrap using high-priced and expensive alloy raw material to reduce the amount of impurities in the product.

一方、溶銑を用いる方法では、溶銑は鉄鉱石を高温で還元したものであるため、炭素を多く含むものの合金元素や不純物の含有量は少なく、製品の純度が高い。そのため、一般に耐食性や熱間加工性などの材料特性上好ましくないP、S、Cu等の不純物の含有量を低く押さえることができる。また、高純度フェライト系ステンレス鋼の製造において、スクラップからのNiの混入も防止できる。原子力関係で使用される鋼材に対しては、放射線汚染上有害なCoを極少に低減できるので、この溶銑を用いる方法は有効である。   On the other hand, in the method using hot metal, since hot metal is iron ore reduced at a high temperature, the content of alloying elements and impurities is high but the purity of the product is high. Therefore, the content of impurities such as P, S, and Cu, which are generally undesirable in terms of material properties such as corrosion resistance and hot workability, can be kept low. Further, in the production of high purity ferritic stainless steel, it is possible to prevent Ni from being mixed from scrap. For steel materials used in nuclear power, Co, which is harmful to radiation contamination, can be reduced to a minimum, so this hot metal method is effective.

さらに、電気炉での溶解と比べて、高炉では大量に溶解することが可能なため、低コストでの溶解が可能である。   Furthermore, compared with melting in an electric furnace, a large amount can be melted in a blast furnace, so that melting at a low cost is possible.

しかし、溶銑を用いた場合は、成分調整のための合金原料の投入量が増えるため、鉄以外の合金元素の含有量が多い高合金の製造には向かない。   However, when hot metal is used, the amount of alloy raw material used for adjusting the components increases, so that it is not suitable for the production of high alloys having a high content of alloy elements other than iron.

〔造塊、素材製造工程〕
精錬工程で製造された溶鋼をステンレス鋼鋳片に造塊する方法として、鋼塊法や連続鋳造法がある。鋼塊法や連続鋳造法で製造された鋳片は、圧延や鍛造によりスラブ、ブルーム、ビレット等の次工程の鋼管や鋼板等を製造する素材に加工される。なお、連続鋳造法では、湾曲型連続鋳造機、垂直型連続鋳造機や水平型連続鋳造機等の装置を用いて、横断面が矩形の鋳片(スラブ、ブルーム)や丸形の鋳片(ビレット)を製造することができる。また、鋼板や鋼管の製造には連続鋳造で得られた鋳片(スラブやビレット)をそのまま素材として用いてもよい。
[Ingot making, material manufacturing process]
There are a steel ingot method and a continuous casting method as a method of ingoting molten steel produced in a refining process into a stainless steel slab. The slab manufactured by the steel ingot method or the continuous casting method is processed into a material for manufacturing a steel pipe, a steel plate, or the like of the next process such as a slab, a bloom, or a billet by rolling or forging. In the continuous casting method, a slab having a rectangular cross section (slab, bloom) or a round slab (such as a curved continuous caster, a vertical continuous caster or a horizontal continuous caster) Billet). Moreover, you may use the slab (slab and billet) obtained by continuous casting as a raw material for manufacture of a steel plate or a steel pipe.

鋳片を圧延または鍛造して得られる素材は、鋳片の鋳造組織である巨大結晶が破壊されて、微細な圧延組織になっているため、その後の鋼板や鋼管製造工程での加工割れ等のトラブルが少ない。また、連続鋳造法は鋼塊法と比べて歩留まりが高く、連続鋳造素材をそのまま鋼板や鋼管製造用の素材として用いる場合は、圧延や鍛造工程が省略されるのでより経済的効果が大きい。
The material obtained by rolling or forging the slab is broken down into giant crystals that are the cast structure of the slab, resulting in a fine rolled structure. There are few troubles. In addition, the continuous casting method has a higher yield than the steel ingot method, and when the continuous casting material is used as it is as a material for manufacturing a steel plate or a steel pipe, the rolling and forging processes are omitted, so that the economic effect is greater.

〔鋼板製造工程〕
前記の造塊、素材製造工程で得られた素材を厚板圧延機やホットストリップミルを用いて熱間圧延し、板状又はコイル状のステンレス鋼板とする。得られた熱間圧延鋼板は、その後、熱処理を施され、酸洗され、場合によりさらに冷間圧延されることもある。
[Steel plate manufacturing process]
The material obtained in the ingot-making and material manufacturing process is hot-rolled using a thick plate rolling machine or a hot strip mill to obtain a plate-shaped or coil-shaped stainless steel plate. The obtained hot-rolled steel sheet is then heat-treated, pickled, and in some cases, further cold-rolled.

〔鋼管製造工程〕
前記造塊、素材製造工程で得られた素材を用いたステンレス鋼管の製造方法としては、継目無製管方法として知られる、熱間でプレスピアシングミル、傾斜圧延穿孔ミルを用いて素材の中心部を穿孔した後、マンドレルミル、プラグミル、アッセルミル、ピルガミルで管を延伸し、サイザー、レデューサーで定径や絞り圧延を行う傾斜圧延方式の熱間製管法や、エアハルトプッシュベンチ製管法、ユジーンセジュルネ製管法、マンドレル鍛造等のプレス方式の熱間製管法が挙げられる。熱間製管の後に、さらに抽伸や圧延といった冷間加工を組み合わせて冷間仕上げステンレス鋼管を得ることもある。
[Steel pipe manufacturing process]
As a method for producing a stainless steel pipe using the material obtained in the agglomeration and material production process, the center portion of the material using a hot press piercing mill and an inclined rolling perforation mill is known as a seamless pipe production method. After that, the tube is stretched with a mandrel mill, plug mill, assel mill, and pilga mill, and the inclined pipe type hot pipe manufacturing method, air hull push bench pipe manufacturing method, Eugene Examples thereof include a hot pipe manufacturing method of a press method such as a Jurney tube manufacturing method and mandrel forging. A cold-finished stainless steel pipe may be obtained by combining cold working such as drawing and rolling after hot pipe making.

また、継目無製管方法以外に、鋼板製造で得られた熱間圧延コイルや冷間圧延コイルなどを用いて造管、溶接し、ステンレス溶接鋼管を得る場合もある。   In addition to the seamless pipe manufacturing method, a stainless steel tube may be obtained by pipe forming and welding using a hot rolled coil or a cold rolled coil obtained by manufacturing a steel plate.

〔熱処理、精整、検査工程〕
前記工程を経て製造されたステンレス鋼板や鋼管は、必要に応じて軟化や固溶化のための熱処理や、酸洗、ショットブラスト、表面研磨等の精整処理が行われた後、非破壊検査や寸法検査等の検査工程を経て製品となる。
[Heat treatment, finishing, inspection process]
Stainless steel plates and steel pipes manufactured through the above steps are subjected to heat treatment for softening and solidification, as well as finishing treatments such as pickling, shot blasting, surface polishing, etc. It becomes a product through inspection processes such as dimensional inspection.

以下では、本発明の特徴部分である、熱間加工後の、前記(1)のステンレス鋼の製造方法について主に説明し、必要に応じて(2)のステンレス鋼管の製造方法について述べる。   Below, the manufacturing method of the stainless steel of said (1) after hot processing which is the characterizing part of this invention is mainly demonstrated, and the manufacturing method of the stainless steel pipe of (2) is described as needed.

(1)のステンレス鋼の製造方法を工程順に整理すると、以下のとおりである。なお、この工程順は、前記(2)のステンレス鋼管の製造方法においても、(イ)でステンレス素鋼としてステンレス鋼素管を用いることを除いては、同じである。   It is as follows when the manufacturing method of the stainless steel of (1) is arranged in order of a process. In addition, this process order is the same also in the manufacturing method of the stainless steel pipe of said (2) except using a stainless steel base pipe as a stainless steel base in (A).

(イ)ステンレス素鋼を冷間加工する
(ロ)浸漬による第1脱脂を行う
(ハ)機械研削または電解研磨による第2脱脂を行う
(ニ)熱処理を行う。
(B) Cold working stainless steel (b) First degreasing by dipping (c) Second degreasing by mechanical grinding or electrolytic polishing (d) Heat treatment is performed.

すなわち、このステンレス鋼の製造方法は、〔冷間加工〕→〔浸漬脱脂〕→〔機械研削による脱脂〕→〔熱処理〕、または〔冷間加工〕→〔浸漬脱脂〕→〔電解研磨による脱脂〕→〔熱処理〕の概略工程を有するステンレス鋼の製造方法である。なお、前記の「浸漬脱脂」とは、被処理物を、例えば、アルカリ液等の脱脂液に浸漬することにより行う脱脂である。   That is, this stainless steel manufacturing method is [cold working] → [dip degreasing] → [degreasing by mechanical grinding] → [heat treatment] or [cold working] → [immersion degreasing] → [degreasing by electrolytic polishing] → This is a method for producing stainless steel having a general process of [heat treatment]. The “immersion degreasing” is degreasing performed by immersing the workpiece in a degreasing liquid such as an alkaline liquid.

図1は、ステンレス鋼が特にステンレス鋼管の場合で、前記(2)のステンレス鋼管の製造方法を適用した一般的なステンレス鋼管の製管工程例を示す図である。同図の(a)は従来方式の工程例、(b)は比較のための工程例、(c)は本発明の製造方法を適用した工程例である。   FIG. 1 is a diagram showing an example of a general stainless steel pipe manufacturing process to which the stainless steel pipe manufacturing method of (2) is applied, particularly when the stainless steel is a stainless steel pipe. (A) of the figure is a process example of the conventional method, (b) is a process example for comparison, and (c) is a process example to which the manufacturing method of the present invention is applied.

図1(c)において、破線で囲んだ部分が本発明で規定する前記(イ)〜(ニ)の工程に該当する。すなわち、図中の破線内に示した(イ)、(ロ)、(ハ)および(ニ)の工程が、それぞれ本発明で規定する前記(イ)、(ロ)、(ハ)および(ニ)の工程に対応する。なお、図中に示した(ロ)の工程の「脱脂」は、浸漬脱脂を意味する。   In FIG.1 (c), the part enclosed with the broken line corresponds to the process of said (A)-(D) prescribed | regulated by this invention. That is, the steps (a), (b), (c) and (d) shown in the broken line in the figure are respectively the above-mentioned (a), (b), (c) and (d) defined in the present invention. ). In addition, “degreasing” in the step (b) shown in the figure means immersion degreasing.

図1(c)に示すように、熱間製管で得られたステンレス鋼素管は、化成皮膜潤滑処理または油潤滑処理を施された後、(イ)〜(ニ)の工程で、冷間加工、脱脂および熱処理を施され、必要に応じ「酸洗」処理された後、「精整」、「検査」の各工程で、常法によって曲がり矯正、切断、管端仕上げ等の「精整」や、「検査」が行われる。さらに、必要に応じ、Uベンド加工と精整検査が行われる。   As shown in FIG. 1 (c), the stainless steel base tube obtained by hot pipe making is subjected to a chemical conversion film lubrication treatment or an oil lubrication treatment and then cooled in the steps (a) to (d). After being subjected to hot working, degreasing and heat treatment and, if necessary, "pickling" treatment, in each process of "preparation" and "inspection" Adjustment "and" inspection "are performed. Furthermore, U-bending processing and finishing inspection are performed as necessary.

これに対して、図1(a)の従来方式の工程例では、前述した本発明の規定に対応する工程が、〔冷間加工〕→〔脱脂〕→〔熱処理〕であり、機械研削による脱脂の工程は含まれていない。また、前掲の特許文献1でも、(i)冷間加工したステンレス鋼材を用意し、(ii)水溶性無機珪酸塩を含む水溶液に浸漬し(脱脂も兼ねる)、(iii)酸化性雰囲気で焼鈍する、という、〔冷間加工〕→〔脱脂〕→〔熱処理〕の工程は記載されているが、機械研削(または電解研磨)による脱脂については、何も記載されていない。   On the other hand, in the process example of the conventional method in FIG. 1A, the process corresponding to the above-mentioned provision of the present invention is [cold working] → [degreasing] → [heat treatment], and degreasing by mechanical grinding. This process is not included. Also in the aforementioned Patent Document 1, (i) a cold-worked stainless steel material is prepared, (ii) immersed in an aqueous solution containing a water-soluble inorganic silicate (also serves as degreasing), and (iii) annealed in an oxidizing atmosphere. The process of [cold working] → [degreasing] → [heat treatment] is described, but nothing is described about degreasing by mechanical grinding (or electropolishing).

以下に、本発明のステンレス鋼の製造方法で規定する(イ)〜(ニ)の工程について、詳細に説明する。   Below, the process of (i)-(d) prescribed | regulated with the manufacturing method of the stainless steel of this invention is demonstrated in detail.

前記(イ)の工程は、「ステンレス素鋼を冷間加工する」工程である。   The step (a) is a step of “cold working stainless steel”.

熱間工程で得られたステンレス素鋼の表面は、スケールの生成に起因して表面粗さが粗く、かつ粗さのばらつきも大きい。表面にはスケール生成に伴う脱Cr層があり、特に粒界部分ではこの脱Cr層が深くまで達している。スケールを除去した後のステンレス素鋼の表面は、結晶粒界が酸洗による脱スケールの際の腐食によって溝状に掘られた状態になっている。この溝は、全面に網目状に存在し、熱間加工時に高温にさらされた時間、加工度や雰囲気にも依存するが、通常は、数μm〜数十μm程度に達しており、潤滑剤や汚染物が溜まりやすい形状になっている。   The surface of the stainless steel obtained by the hot process has a rough surface due to the generation of scale, and the variation in roughness is large. On the surface, there is a Cr removal layer that accompanies scale formation, and this Cr removal layer reaches deeper, especially at the grain boundary portion. The surface of the stainless steel after the scale has been removed is in a state where the crystal grain boundaries are dug into a groove shape due to corrosion during descaling by pickling. This groove exists on the entire surface in a mesh shape, and usually depends on the time, degree of processing, and atmosphere exposed to high temperature during hot working, but usually reaches about several μm to several tens of μm. And the shape that is easy to collect contaminants.

このステンレス鋼に冷間加工を施すと、表面は、高い面圧の下での工具との接触で潰され、延伸される時に、摩擦力でせん断変形を受け、溝状部分は擦り潰されるように変形し、溝状に開口した部分は密着される。すなわち、溝に溜まっていた潤滑剤や汚れは搾り出されてしまい、かつ表面の粗さも改善される。これは加工度が高いほど顕著である。このように耐食性が特に要求される用途向けのステンレス鋼は、表面平滑性と清浄度を高めた冷間加工品でなければならない。   When this stainless steel is cold worked, the surface is crushed by contact with the tool under high surface pressure, and when it is stretched, it undergoes shear deformation due to frictional force, and the groove-like portion is crushed. The part which deform | transformed into this and opened in groove shape is contact | adhered. That is, the lubricant and dirt accumulated in the groove are squeezed out, and the surface roughness is also improved. This is more conspicuous as the degree of processing is higher. Thus, the stainless steel for applications in which corrosion resistance is particularly required must be a cold-worked product with improved surface smoothness and cleanliness.

前記の脱Cr層を酸洗除去した後の粗い表面は、切削・研削加工によっても平滑にすることは可能である。しかし、冷間加工に比べて能率が悪く、切粉が排出することから歩留も悪く、コストが嵩む結果となる。したがって、本発明のステンレス鋼の製造方法では、冷間加工が必須の工程である。   The rough surface after pickling and removing the de-Cr layer can be smoothed by cutting and grinding. However, the efficiency is lower than that of cold working, and chips are discharged, resulting in poor yield and increased cost. Therefore, cold working is an essential process in the method for producing stainless steel of the present invention.

冷間加工は少なくとも1回実施し、新生面の創出と粗さの改善を行う。冷間加工時の断面減少率は20%以上とすることが望ましい。さらに望ましくは、40%以上である。これによって、新生面が創出され、脱Cr層が押し潰され、平均化されて表層部分のCr濃度が正常化し、かつ表面粗さの改善により潤滑剤や汚れ等が除去される。   Cold work is performed at least once to create a new surface and improve roughness. The cross-sectional reduction rate during cold working is desirably 20% or more. More desirably, it is 40% or more. As a result, a new surface is created, the removed Cr layer is crushed and averaged to normalize the Cr concentration in the surface layer portion, and the lubricant and dirt are removed by improving the surface roughness.

加工方法は特に限定されない。ステンレス鋼管を製造する場合であれば、引抜き、圧延のいずれでもよく、引抜きと圧延を組み合わせてもよい。引抜きは、内面に工具を用いる芯金引きとする。空引きの場合は、内面における新生面の生成が不十分であるため、望ましくない。   The processing method is not particularly limited. If a stainless steel pipe is produced, either drawing or rolling may be used, and drawing and rolling may be combined. The drawing is a core drawing with a tool on the inner surface. In the case of emptying, generation of a new surface on the inner surface is insufficient, which is not desirable.

良好な新生面を得るには、断面減少率を大きく取れる圧延を少なくとも1回実施するのが望ましい。   In order to obtain a good new surface, it is desirable to carry out rolling at least once so as to obtain a large cross-sectional reduction rate.

なお、冷間加工前に潤滑処理を施すが、化成皮膜潤滑処理または油潤滑処理により行う。化成皮膜潤滑処理は、化学反応により化成皮膜を形成させて潤滑性を付与する潤滑方法で、エッチング(腐食)により表面粗さが劣化し、また、潤滑膜(化成皮膜)の除去が困難で、冷間加工後に「酸洗」による脱皮膜処理が必要になるという問題がある。一方、油潤滑処理の場合は、潤滑剤(油)が管表面に物理的に付着しているだけなので、冷間加工後に行う浸漬脱脂により潤滑剤はほとんど除去される。したがって、冷間加工前に油潤滑処理を行うのが望ましく、複数回の冷間加工を行う場合は、少なくとも最終のパスでは、油潤滑処理を行って加工することが望ましい。   In addition, although a lubrication process is performed before cold working, it is performed by a chemical conversion film lubrication process or an oil lubrication process. Chemical film lubrication treatment is a lubrication method that imparts lubricity by forming a chemical film by chemical reaction. Surface roughness is degraded by etching (corrosion), and it is difficult to remove the lubricating film (chemical film). There is a problem that it is necessary to remove the film by “pickling” after cold working. On the other hand, in the case of oil lubrication, since the lubricant (oil) is only physically attached to the pipe surface, the lubricant is almost removed by immersion degreasing performed after cold working. Therefore, it is desirable to perform oil lubrication before cold working, and when performing cold working a plurality of times, it is desirable to perform oil lubrication at least in the final pass.

前記(ロ)の工程は、「浸漬による第1脱脂を行う」工程である。   The step (b) is a step of “performing first degreasing by immersion”.

冷間加工した後のステンレス鋼には、潤滑剤が付着しており、これをそのまま熱処理すると浸炭を起こし、品質上の問題が生じる。この潤滑剤を除去するために、先ず浸漬による脱脂を行う。「浸漬による脱脂」とは、脱脂液に浸漬することにより行う脱脂で、通常用いられている方法で行えばよい。浸漬脱脂には、アルカリ液の他、有機溶剤などの溶液を用いることができる。浸漬脱脂を行う際には、用いる溶液によっては加温してもよい。   Lubricant adheres to the stainless steel after cold working, and if this is heat-treated as it is, carburization occurs, resulting in quality problems. In order to remove the lubricant, degreasing is first performed by immersion. “Degreasing by dipping” is degreasing performed by dipping in a degreasing solution, and may be performed by a commonly used method. For the immersion degreasing, a solution such as an organic solvent can be used in addition to an alkaline solution. When performing immersion degreasing, depending on the solution used, it may be heated.

前記(イ)の冷間加工に際して、化成皮膜潤滑処理を行った場合には、浸漬脱脂後、さらに酸洗が必要となる。しかしながら、酸洗処理を行うと、結晶粒界が特に浸食され、表面粗さが劣化するので、極力避けることが望ましい。油潤滑処理を行った場合は、潤滑剤は物理的に付着しているだけで、浸漬脱脂でほとんど除去されるので、酸洗は必要とされない。   When the chemical conversion film lubrication treatment is performed during the cold working of (a), pickling is further required after immersion degreasing. However, when the pickling treatment is performed, the grain boundaries are particularly eroded and the surface roughness is deteriorated. When oil lubrication is performed, the lubricant is only physically attached and is almost removed by immersion degreasing, so pickling is not required.

前記(ハ)の工程は、「機械研削または電解研磨による第2脱脂を行う」工程である。   The step (c) is a step of “performing second degreasing by mechanical grinding or electrolytic polishing”.

このような処理を行うのは、冷間加工を行い、浸漬脱脂した後のステンレス鋼の表面では、脱脂剤(油潤滑処理に用いた潤滑油)が見かけ上は除去されていると判断されても、僅かではあるが残存(付着)しており、加熱すると残留付着物から炭化水素その他の腐食性のガスが発生するからである。特に、ステンレス鋼管の場合は、次に述べるように、管の内面付着物の除去が困難で、配管として使用する際に、管内面の腐食や、管内を通過する物質に対する汚染が生じ易い。   It is judged that the degreasing agent (lubricating oil used in the oil lubrication treatment) is apparently removed on the surface of the stainless steel after the cold working and immersion degreasing to perform such treatment. This is because a slight amount remains (deposits), and when heated, hydrocarbons and other corrosive gases are generated from the remaining deposits. In particular, in the case of a stainless steel pipe, as described below, it is difficult to remove deposits on the inner surface of the pipe, and when used as a pipe, corrosion of the inner surface of the pipe and contamination with substances passing through the pipe are likely to occur.

金属の加工時に用いる潤滑油は一般的に油脂を主成分とし、極圧添加剤としてF、Cl、S、P等の化合物を含んでいる。付着物は管の内外面に存在しているが、熱処理時には、外面の付着物から発生するガスは炉内に飛散して薄まり、さらに連続的に供給される雰囲気ガスで希釈されるので影響は少ない。しかし、内面の付着物から発生したガスは管内に滞留し、管内の内容積に対して無視できない量になる。   Lubricating oils used during metal processing generally contain oils and fats as main components and contain compounds such as F, Cl, S, and P as extreme pressure additives. The deposits are present on the inner and outer surfaces of the tube, but during heat treatment, the gas generated from the deposits on the outer surface scatters and dilutes into the furnace and is further diluted with the ambient gas supplied continuously. Few. However, the gas generated from the deposits on the inner surface stays in the pipe and becomes a non-negligible amount with respect to the internal volume in the pipe.

本発明の第2脱脂工程、すなわち前記(ハ)の工程を行わずに、油潤滑処理を施して冷間加工を行った後のステンレス鋼管を、(ロ)の工程の浸漬による脱脂を行った後直ぐに、雰囲気ガスとして水素を使用する従来の水素炉で熱処理(光輝熱処理)した際の管内のガスを採取し、分析した。その結果、管内を十分に水素で置換した後に被処理材を炉内に装入して熱処理をしても、炭化水素、CO、CO2、N2、O2を主体とするガスが合わせて6〜10体積%(残部は、雰囲気ガスのH2)含まれていることが判明した。炭化水素、CO、CO2は、脱脂後の残留付着物から発生したガスであり、N2、O2は装入前の管内に存在していた空気に由来するものと考えられる。また、微量ではあるが、潤滑油中の極圧添加剤に含まれるF、Cl、S等を含有するガスが残留付着物から発生し、管内に滞留することも確認された。なお、これらの成分は、配管または伝熱管として使用された際には、管内通過物質に対する“汚染”という観点からは、微量でも問題となる成分である。 Without performing the second degreasing step of the present invention, that is, the step (c), the stainless steel pipe after the oil lubrication treatment and the cold working was degreased by dipping in the step (b). Immediately thereafter, the gas in the tube when heat-treated (bright heat treatment) in a conventional hydrogen furnace using hydrogen as the atmospheric gas was collected and analyzed. As a result, even after the inside of the tube is sufficiently replaced with hydrogen, the gas mainly composed of hydrocarbon, CO, CO 2 , N 2 , and O 2 is combined even if the material to be treated is charged into the furnace and heat treated. It was found that 6 to 10% by volume (the balance was H 2 of the atmospheric gas) was contained. Hydrocarbon, CO, and CO 2 are gases generated from residual deposits after degreasing, and N 2 and O 2 are considered to be derived from the air that was present in the pipe before charging. It was also confirmed that a gas containing F, Cl, S, etc. contained in the extreme pressure additive in the lubricating oil was generated from the residual deposits and stayed in the pipe although it was a small amount. In addition, these components are components which are problematic even in a minute amount from the viewpoint of “contamination” with respect to substances passing through the tube when used as piping or heat transfer tubes.

さらに、このような残留付着物からのガスの発生は、200℃を超えると認められ、300℃を超えるとその発生量が次第に減少し、500℃以上では殆ど発生しなくなることが判明した。   Furthermore, it was found that the generation of gas from such residual deposits was found to exceed 200 ° C., and the generation amount gradually decreased when the temperature exceeded 300 ° C., and almost no generation occurred at 500 ° C. or higher.

これらのガス(前記の炭化水素やCO)が管内に滞留したまま熱処理を続けると、ガスのC(炭素)活量が高まり、例えばステンレス鋼のC活量より高くなると浸炭が生じるおそれがある。   If the heat treatment is continued while these gases (the above-mentioned hydrocarbons and CO) remain in the pipe, the C (carbon) activity of the gas increases. For example, if the C activity of stainless steel is higher, carburization may occur.

また、フッ化物、塩化物等のハロゲン元素は、冷間加工時にステンレス鋼管表面と反応して、常温から300℃程度の範囲でガス化し、また凝縮する鉄、Niのハロゲン化合物として存在しているケースが多い。この鉄、Niのハロゲン化合物は熱処理時にガス化し、管の外表面のものは前述のように飛散希薄化するが、管内表面でガス化したものは管内に滞留し、冷却時に管の内面に再付着する。再付着したものは濃縮されており、大気中でも錆を発生させるなどの悪影響を及ぼす。   In addition, halogen elements such as fluoride and chloride exist as halogen compounds of iron and Ni that react with the surface of the stainless steel tube during cold working to gasify and condense in the range from room temperature to about 300 ° C. There are many cases. The iron and Ni halogen compounds are gasified during heat treatment, and those on the outer surface of the tube are scattered and diluted as described above, but those gasified on the inner surface of the tube stay in the tube and reappear on the inner surface of the tube during cooling. Adhere to. The reattached material is concentrated and has adverse effects such as generating rust even in the atmosphere.

したがって、本発明では、冷間加工((イ)の工程)した後、浸漬脱脂((ロ)の工程)後の熱処理((ニ)の工程)前に、特に管の内面に残存する付着物を機械的に取り除く機械研削または電解研磨による第2の脱脂((ハ)の工程)を行う。   Therefore, in the present invention, deposits remaining on the inner surface of the tube, particularly after cold working (step (b)) and before heat treatment (step (d)) after immersion degreasing (step (b)). The second degreasing (step (c)) is performed by mechanical grinding or electropolishing to remove mechanically.

その方法として、砥粒による研削、フェルトまたはスポンジクリーニングなどが適用できる。その際、研磨に使用する研磨ベルト、砥石などの研磨剤と、クーラント等の冷却材には、前述のようなガスの発生源となるものは含まれないことが望ましい。   As the method, grinding with abrasive grains, felt or sponge cleaning can be applied. At that time, it is desirable that the polishing agent used for polishing, such as a polishing belt and a grindstone, and the coolant such as the coolant do not include those which are the sources of gas as described above.

研磨剤には、研磨ベルト、砥石のように砥粒を固め保持するためにバインダーが用いられるが、これらの研磨剤で研磨した場合、表面が研削されると同時に、表面へのバインダーの摺り込みが生じる。通常、バインダーには樹脂が用いられる場合が多く、C源になり得るので、ブラスト法のように、砥粒と圧縮空気(エアー)のみを用いる方法が望ましい。   For abrasives, binders are used to solidify and hold abrasive grains like abrasive belts and grindstones. When these abrasives are used for polishing, the surface is ground and the binder is rubbed into the surface at the same time. Occurs. In general, a resin is often used for the binder and can be a C source. Therefore, a method using only abrasive grains and compressed air (air), such as a blast method, is desirable.

砥粒としては、通常、サンド(砂)、アルミナ、ジルコニア等を用いるのがよい。これらには、ハロゲン元素、C源、Zn、Sn、Cu等の低融点金属が含まれていないことが望ましい。例えば、砂を用いる場合、処理の対象がステンレス鋼であれば、塩素分を極力含まない川砂を用いる。海砂は塩素を多量に含むので、望ましくない。   As abrasive grains, it is usually preferable to use sand, alumina, zirconia or the like. It is desirable that these do not contain a low melting point metal such as a halogen element, a C source, Zn, Sn, or Cu. For example, when sand is used, if the object of treatment is stainless steel, river sand containing as little chlorine as possible is used. Sea sand is not desirable because it contains a large amount of chlorine.

エアーにも圧縮機に使用する潤滑剤が混入する恐れがあるので、フィルターリングし、油分等が含まれない状態にしておくことが望ましい。   Since there is a possibility that the lubricant used in the compressor may be mixed into the air, it is desirable to filter it and keep it free from oil.

フェルトまたはスポンジクリーニングは、汚れをふき取る使い方としては効果がある。しかし、表面に強く押し付け、それによる発熱が大きい使い方をした場合は、熱で炭化したものが鋼表面に付着する危険性がある。また、フェルトやスポンジは、汚れの除去を確認する目的でも用いる。   Felt or sponge cleaning is an effective way to wipe off dirt. However, if it is pressed strongly against the surface and used in a manner that generates a large amount of heat, there is a risk that carbonized by heat will adhere to the steel surface. Felt and sponge are also used to confirm the removal of dirt.

クーラント(冷却材)や汚れ取りに有機溶剤を用いると、それがガス発生源となるので、有機溶剤は極力用いないのがよい。冷却用や、汚れを取り除く洗浄用の溶媒として、純水は用いても差し支えないが、水道水は塩素を含むので望ましくない。   When an organic solvent is used for coolant (cooling material) or dirt removal, it becomes a gas generation source. Therefore, it is better not to use an organic solvent as much as possible. Pure water may be used as a solvent for cooling and cleaning to remove dirt, but tap water contains chlorine and is not desirable.

小径かつ長尺のステンレス鋼管を多量に処理する場合であっても、砥粒としてサンド等を用いるブラスト法が適している。既に(ロ)の工程で、浸漬による第1脱脂を実施した後なので、管の内表面全体に砥粒が行きわたるようにして表面を僅かに研削するだけで、表面に残留する付着物を除去できる。このため、数十秒間のブラストで十分な除去効果が得られる。管内における流量の安定化に要する時間も含めて2分間程度のブラストでよい。したがって、この場合のブラスト前後の内径変化(肉厚減少)は極めて小さく、計測の誤差範囲内である。   Even when processing a large amount of a small diameter and long stainless steel pipe, a blasting method using sand or the like as an abrasive is suitable. Since the first degreasing by dipping has already been carried out in the process (b), the surface remains slightly ground so that the abrasive grains are distributed over the entire inner surface of the tube, and the deposits remaining on the surface are removed. it can. For this reason, a sufficient removal effect can be obtained by blasting for several tens of seconds. Blasting for about 2 minutes including the time required for stabilizing the flow rate in the pipe may be used. Therefore, the inner diameter change (thickness reduction) before and after blasting in this case is extremely small and within the measurement error range.

なお、本発明の方法によりステンレス鋼管、特に、小径で長尺の鋼管を製造する場合、管内面の表面粗さが大きな影響を及ぼす。すなわち、表面粗さが大きいと、凹部分には潤滑剤等の汚れが溜まりやすく、これを浸漬脱脂により洗浄除去することが困難であり、機械研削による脱脂の際も、凹部分に砥粒が届くまでにその周辺を多量に研削することが必要になる。そのため、一定の清浄度を得るのに要する時間と労力が極めて大きくなる。したがって、特に、小径で長尺のステンレス鋼管を製造する場合は、前記(イ)の工程で、断面減少率を大きくとれる冷間加工を行って、内表面の平滑度を高めておくことが重要である。   In addition, when manufacturing a stainless steel pipe by the method of this invention, especially a long steel pipe with a small diameter, the surface roughness of a pipe inner surface has big influence. That is, if the surface roughness is large, dirt such as lubricant is likely to accumulate in the concave portion, and it is difficult to wash and remove this by immersion degreasing, and abrasive grains are also present in the concave portion during degreasing by mechanical grinding. It is necessary to grind a large amount of the periphery before it reaches. For this reason, the time and labor required to obtain a certain degree of cleanliness become extremely large. Therefore, in particular, when manufacturing a long stainless steel pipe with a small diameter, it is important to increase the smoothness of the inner surface by performing cold working that can increase the cross-section reduction rate in the step (a). It is.

浸漬脱脂後に行う第2脱脂には、機械研削による脱脂の代わりに電解研磨による脱脂を行ってもよい。電解研磨とは、ステンレス鋼を陽極として、電解研磨液を介して直流電流を流し、鋼表面を溶解させることにより研磨効果を得る方法である。電解研磨によっても鋼表面が研削されるので、機械研削を行った場合と同様の効果が得られる。   In the second degreasing performed after the immersion degreasing, degreasing by electropolishing may be performed instead of degreasing by mechanical grinding. Electropolishing is a method of obtaining a polishing effect by using a stainless steel as an anode and passing a direct current through an electrolytic polishing solution to dissolve the steel surface. Since the steel surface is also ground by electrolytic polishing, the same effect as when mechanical grinding is performed can be obtained.

電解研磨液は、通常使用されている硝酸ナトリウム(NaNO3)等を用いればよい。電解研磨時の電流密度および電解時間は、ステンレス鋼表面に残存する付着物の量、除去の難易性にもよるが、通常は、0.1〜0.5A/cm2で、30〜500秒間通電するのがよい。 As the electrolytic polishing liquid, sodium nitrate (NaNO 3 ) or the like that is usually used may be used. The current density and electrolysis time during electropolishing are usually 0.1 to 0.5 A / cm 2 for 30 to 500 seconds, although depending on the amount of deposits remaining on the stainless steel surface and the difficulty of removal. It is good to energize.

前記(ニ)の工程は、「熱処理を行う」工程である。   The step (d) is a step of “performing heat treatment”.

熱処理時の雰囲気は特に限定されないが、通常は、大気と燃焼ガスを使用する大気炉熱処理を行うのがよい。すなわち、大気雰囲気炉を熱処理炉として使用し、この熱処理炉内に、例えば燃料であるLNGの燃焼排ガスを通過させる方法で、熱処理コストを低下させることができる。しかし、この場合は、浸炭を防止するために、ステンレス鋼のC活量よりも雰囲気ガスのC活量を下げておくことが必要である。そのためには、燃料ガスを完全燃焼させて雰囲気ガス中の一酸化炭素濃度を低減するのがよい。通常は、燃焼用空気の供給量を理論空気量以上としておけば問題ない。   Although the atmosphere during the heat treatment is not particularly limited, it is usually preferable to perform an air furnace heat treatment using air and combustion gas. That is, the heat treatment cost can be reduced by using an atmospheric furnace as a heat treatment furnace and passing the combustion exhaust gas of LNG as a fuel through the heat treatment furnace, for example. However, in this case, in order to prevent carburization, it is necessary to lower the C activity of the atmospheric gas than the C activity of stainless steel. For this purpose, it is preferable to reduce the carbon monoxide concentration in the atmospheric gas by completely burning the fuel gas. Normally, there is no problem if the supply amount of combustion air is set to a theoretical air amount or more.

雰囲気ガスとして水素を主成分とする水素炉での熱処理(光輝熱処理)でもよい。このような雰囲気ガスを使用するのは、ステンレス鋼の表面酸化を抑えるためで、水素のみでもよいし、水素に、例えば、He、Ar等の不活性ガスを混合してもよい。ただ、不活性ガスは高価なので、通常は積極的には添加しない。   Heat treatment (bright heat treatment) in a hydrogen furnace containing hydrogen as a main component may be used. Such an atmospheric gas is used in order to suppress the surface oxidation of the stainless steel, and only hydrogen may be used, or an inert gas such as He or Ar may be mixed with hydrogen. However, since inert gas is expensive, it is usually not added aggressively.

窒素は、安価なガスであり、水素に混合して用いることは可能であるが、ステンレス鋼管の窒素含有レベルによっては、母材への浸透(窒化)または脱窒を生じる。したがって、その混合割合は、母材の窒素レベルに応じて0〜10体積%の範囲で調整するのがよい。なお、水素を主成分とする雰囲気ガスを用いる場合、不可避的に混入する不純物ガスは許容される。   Nitrogen is an inexpensive gas and can be used by mixing with hydrogen. However, depending on the nitrogen content level of the stainless steel pipe, penetration (nitriding) or denitrification of the base material occurs. Therefore, the mixing ratio is preferably adjusted in the range of 0 to 10% by volume according to the nitrogen level of the base material. Note that when an atmospheric gas containing hydrogen as a main component is used, an inevitably mixed impurity gas is allowed.

雰囲気ガスについては、ステンレス鋼またはステンレス鋼管の製造上の制約、製品の用途等に応じて、前記各種のガスから適宜選択して使用すればよい。   The atmospheric gas may be appropriately selected from the above-mentioned various gases according to restrictions on the production of stainless steel or stainless steel pipe, the use of the product, and the like.

以上述べたように、本発明のステンレス鋼の製造方法またはステンレス鋼管の製造方法は、〔冷間加工〕→〔浸漬脱脂〕→〔機械研削または電解研磨による脱脂〕→〔熱処理〕の工程を有するステンレス鋼管の製造方法である。これに対して、従来方式の工程例は、〔冷間加工〕→〔脱脂〕→〔熱処理〕であり、〔機械研削または電解研磨による脱脂〕の工程は含まれていない。   As described above, the stainless steel manufacturing method or stainless steel pipe manufacturing method of the present invention includes the steps of [cold working] → [immersion degreasing] → [degreasing by mechanical grinding or electrolytic polishing] → [heat treatment]. It is a manufacturing method of a stainless steel pipe. On the other hand, the process example of the conventional method is [cold working] → [degreasing] → [heat treatment] and does not include the [degreasing by mechanical grinding or electrolytic polishing] process.

一方、従来において、熱処理後に脱スケールを実施する場合がある。これを、図1(b)に比較例として示した。すなわち、〔冷間加工〕→〔脱脂〕→〔熱処理〕の後に、〔メカニカルデスケール〕の工程を有する方式で、機械研削手段を用いることから、形式的には、本発明のステンレス鋼の製造方法またはステンレス鋼管の製造方法は、比較例における〔熱処理〕と〔機械研削(メカニカルデスケール)〕とを入れ替えただけとも見ることができる。   On the other hand, conventionally, descaling may be performed after heat treatment. This is shown as a comparative example in FIG. That is, after [cold working] → [degreasing] → [heat treatment], a mechanical grinding means is used in a method having a process of [mechanical descale], and formally, the method for producing stainless steel of the present invention Or the manufacturing method of a stainless steel pipe can be seen only by exchanging [heat treatment] and [mechanical grinding (mechanical descale)] in the comparative example.

しかし、以下の点において、前記比較例の方法と本発明の方法とは根本的に相違している。   However, the method of the comparative example and the method of the present invention are fundamentally different in the following points.

第1に、比較例の方法によれば、浸漬脱脂後にステンレス鋼またはステンレス鋼管表面に残留する付着物は、熱処理の際に500℃未満でガス化し、ガス化生成した成分が均熱時にステンレス鋼母材内に拡散侵入する。そのため、ガス化成分が拡散侵入した部分を除去するに要する研磨時間は膨大であり、また、拡散深さの把握ができず、その部分を除去し得たか否かの確認は極めて難しい。これに対し、本発明の方法では、浸漬脱脂で除去できなかった僅かの付着物を除去するだけなので、前述したように、短時間の処理で目的が達せられる。   First, according to the method of the comparative example, the deposits remaining on the surface of the stainless steel or the stainless steel pipe after immersion degreasing are gasified at a temperature of less than 500 ° C. during the heat treatment, and the gasified component is stainless steel during the soaking. It diffuses and penetrates into the base material. Therefore, the polishing time required to remove the portion where the gasification component has diffused and penetrated is enormous, and the diffusion depth cannot be grasped, and it is extremely difficult to confirm whether or not the portion has been removed. On the other hand, in the method of the present invention, only a small amount of deposits that could not be removed by immersion degreasing are removed, so that the object can be achieved in a short time as described above.

第2に、比較例の方法では、前記のガス化成分の侵入部分を除去するために研削代を大きくせざるを得ないので、管の内径が大きくなり肉厚が減少し、公差に入らない場合も起こり得る。本発明の方法では、短時間の処理なので寸法変化は僅少である。   Secondly, in the method of the comparative example, the grinding allowance must be increased in order to remove the invasion portion of the gasification component, so that the inner diameter of the tube is increased, the wall thickness is reduced, and the tolerance is not entered. Cases can also occur. In the method of the present invention, since the processing is performed for a short time, the dimensional change is small.

第3に、比較例の方法では、〔熱処理〕後、〔メカニカルデスケール〕を実施するまでに、待機等で時間が空いた場合、母材内へ拡散侵入したガス成分が例えばハロゲン化合物であると、腐食がすみやかに進行するので、腐食深さの保証が難しく、不合格とせざるを得ない。本発明の方法では、熱処理で付着物が分解ガス化する前に除去するので、このような問題は生じない。   Third, in the method of the comparative example, after [heat treatment] and when [mechanical descaling] is performed, if there is time in standby or the like, the gas component diffused and entered into the base material is, for example, a halogen compound. Since corrosion proceeds promptly, it is difficult to guarantee the depth of corrosion, and it must be rejected. In the method of the present invention, such a problem does not occur because the deposit is removed before being decomposed and gasified by the heat treatment.

このように、本発明の方法で得られたステンレス鋼またはステンレス鋼管は、表面清浄度に優れ、したがって耐食性に優れている。このステンレス鋼またはステンレス鋼管は、浸漬脱脂後に、必要最小限の機械研削または電解研磨による脱脂を行うので、例えば、機械研削として砥粒をブラストした場合でも、表面の加工歪層を極少とし、かつ、塩化物、硫化物等の付着量をも極少とすることが可能である。   Thus, the stainless steel or stainless steel pipe obtained by the method of the present invention is excellent in surface cleanliness and therefore excellent in corrosion resistance. Since this stainless steel or stainless steel pipe is degreased by the minimum necessary mechanical grinding or electrolytic polishing after immersion degreasing, for example, even when abrasive grains are blasted as mechanical grinding, the surface processing strain layer is minimized, and It is also possible to minimize the amount of adhesion of chloride, sulfide and the like.

表面に加工歪層があると、鋭敏化が加速され、転位密度が高く割れやすいことは公知であり、また、塩化物、硫化物がステンレス鋼またはステンレス鋼管の応力腐食割れ(SCC)を加速する作用があることもよく知られているが、本発明の方法で得られたステンレス鋼またはステンレス鋼管は、これら悪影響を及ぼす要因を僅少に抑え、耐応力腐食割れ性に極めて優れた性質を有することも大きな特徴である。   It is well known that when there is a work strain layer on the surface, sensitization is accelerated, dislocation density is high and it is easy to crack, and chloride and sulfide accelerate stress corrosion cracking (SCC) of stainless steel or stainless steel pipe. It is well known that there is an action, but the stainless steel or stainless steel pipe obtained by the method of the present invention has a very excellent property with respect to stress corrosion cracking resistance by suppressing these adverse effects slightly. Is also a big feature.

溶解、精錬工程および造塊、素材製造工程を経て得られたSUS304L(オーステナイト系ステンレス鋼)を素材とする継目無製管方法で得られたステンレス鋼素管を用いて、前記図1(c)に例示した熱間製管後の製管工程に準じた工程でステンレス鋼管を製造し、機械研削または電解研磨(以下、「機械研削等」という)による肉厚減少量、表面粗さ、表面加工歪み層深さ、カーバイド析出(10%蓚酸による腐食試験)および付着物(塩化物、硫化物)量を調査した。なお、前記製造した管の寸法は、外径16mm、厚さ1.2mm、長さ14〜20mである。   FIG. 1 (c) shows a stainless steel base tube obtained by a seamless pipe manufacturing method using SUS304L (austenitic stainless steel) obtained through melting, refining process, ingot making, and raw material manufacturing process. A stainless steel pipe is manufactured in a process according to the pipe making process after hot pipe exemplification as shown in, and the thickness reduction, surface roughness, and surface processing by mechanical grinding or electrolytic polishing (hereinafter referred to as “mechanical grinding, etc.”) The depth of strain layer, carbide precipitation (corrosion test with 10% oxalic acid) and the amount of deposits (chloride, sulfide) were investigated. In addition, the dimensions of the manufactured tube are an outer diameter of 16 mm, a thickness of 1.2 mm, and a length of 14 to 20 m.

評価方法は次のとおりである。   The evaluation method is as follows.

〔機械研削等による肉厚減少量〕
製造した管の3箇所(長さ方向に両端と中央の部位)で肉厚減少量を測定し、その平均値が2/100mm以下の場合「○印(良好)」、2/100mmを超える場合「×印(不良)」とした。
[Thickness reduction due to mechanical grinding, etc.]
When the thickness reduction amount is measured at three locations (both ends and the center in the length direction) of the manufactured tube, and the average value is 2/100 mm or less, “○ (good)”, if it exceeds 2/100 mm "X mark (defect)".

〔表面粗さ〕
管の内面3箇所の表面粗さを中心線平均粗さRa(μm)で表示し、その平均値が0.5μm以下であれば「◎印(極めて良好)」、0.5μm超え1μm以下であれば「○印(良好)」、1μm超えであれば「△印(良)」とした。
〔Surface roughness〕
The surface roughness of the three inner surfaces of the tube is indicated by the centerline average roughness Ra (μm). If the average value is 0.5 μm or less, “◎ (very good)”, 0.5 μm to 1 μm or less If there was “◯ mark (good)”, if it exceeded 1 μm, “△ mark (good)”.

〔表面加工歪み層深さ〕
表面加工歪み層深さとは、浸漬脱脂後に行う機械研削等による材料表面の加工歪層の厚さで、ステンレス鋼管の横断面のミクロ観察でスベリ線が見られる結晶粒のうち最深部にある結晶粒の深さである。スベリ線が無いかもしくは前記最深部にある結晶粒の深さが3/100mm以下であれば「○印(良好)」、3/100mm超えであれば「×印(不良)」とした。
[Surface depth of surface processed strain]
Surface processed strained layer depth is the thickness of the processed strained layer on the surface of the material by mechanical grinding, etc. performed after immersion degreasing, and the crystal in the deepest part of the crystal grains where a sliver line is observed by micro observation of the cross section of the stainless steel pipe The depth of the grain. If there was no slip line or the depth of the crystal grain in the deepest part was 3/100 mm or less, it was rated as “◯ (good)”, and if it exceeded 3/100 mm, it was marked “x (defect)”.

〔カーバイド析出(10%蓚酸による腐食試験)〕
冷間加工後に熱処理を施した前記ステンレス鋼管のそれぞれについて、長さ方向に5mの等間隔で試験片を採取し、625℃×2時間の鋭敏化処理を行って、粒界にCrカーバイドを析出させ、粒界隣接部にCr欠乏層(領域)を生じさせた後、10%蓚酸による腐食試験を実施した。試験は、JIS G 0571(ステンレス鋼の10%しゅう酸エッチ試験方法)に規定される方法に準じて行った。
[Carbide precipitation (corrosion test with 10% oxalic acid)]
For each of the stainless steel pipes that had been heat-treated after cold working, specimens were taken at 5 m regular intervals in the length direction and subjected to sensitization treatment at 625 ° C. for 2 hours to precipitate Cr carbide at the grain boundaries. After forming a Cr-deficient layer (region) in the grain boundary adjacent portion, a corrosion test with 10% oxalic acid was performed. The test was performed according to the method specified in JIS G 0571 (10% oxalic acid etch test method for stainless steel).

前記試験において、いずれの結晶粒においても粒界に溝状組織が認められなければ「◎印(極めて良好)」、溝状組織が認められた場合であっても、いずれの結晶粒においても溝状組織が粒界の5%以下でしか認められなければ「○印(良好)」、溝状組織が粒界の5%を超える部分に認められる結晶粒が1個でもあれば「×印(不良)」とした。   In the above test, if no groove-like structure is observed at the grain boundary in any crystal grain, “◎ (very good)”, even in the case where a groove-like structure is observed, the groove is found in any crystal grain. "○ mark (good)" when the grain structure is recognized only at 5% or less of the grain boundary, "X mark (when the crystal grain structure is found at a portion where the groove structure exceeds 5% of the grain boundary" Bad) ”.

〔付着物量(塩化物および硫化物量)〕
管内に純水を封入し、内面の付着物を溶出させた後、封入水中のClイオン、SO4イオンの濃度をイオンクロマトグラフィーにより求め、封入水量と管内の表面積から単位表面積当たりの塩化物量(mg/m2)、および硫化物量(mg/m2)を算出した。塩化物および硫化物の合計量が1mg/m2以下であれば「○印(良好)」、1mg/m2超えであれば「×印(不良)」とした。
[Amount of deposit (amount of chloride and sulfide)]
After the pure water is sealed in the tube and the deposits on the inner surface are eluted, the concentration of Cl ion and SO 4 ion in the sealed water is obtained by ion chromatography, and the amount of chloride per unit surface area is determined from the amount of sealed water and the surface area in the tube ( mg / m 2 ) and the amount of sulfide (mg / m 2 ) were calculated. When the total amount of chloride and sulfide was 1 mg / m 2 or less, “◯” (good), and when it exceeded 1 mg / m 2 , “×” (bad).

製管条件を表1に、調査結果を表2に示す。   The pipe making conditions are shown in Table 1, and the survey results are shown in Table 2.

Figure 0004751603
Figure 0004751603

Figure 0004751603
Figure 0004751603

表1において、「脱脂方法」の欄の「アルカリ」とは、アルカリ液に浸漬して脱脂し、その後温水で洗浄する処理を、「アルカリ→酸洗」とは、アルカリ液に浸漬して脱脂し、その後温水で洗浄する処理をした後、酸洗し、次いで水洗する処理を意味する。   In Table 1, “alkali” in the column of “degreasing method” means degreasing by immersing in an alkaline solution and then washing with warm water, and “alkali → pickling” is degreasing by immersing in an alkaline solution. Then, after washing with warm water, pickling and then washing with water.

機械研削では、いずれも0.4MPa(ゲージ圧)のクリーンエアーを使用した。「機械研削または電解研磨」の「種類」の欄で、例えば、「ブラスト/1分」とは、ブラストの噴射時間が1分であることを、「往復研磨/10回」とは、ペーパー等による研磨を10回往復させて行ったことを、「クリーニング/5回」とは、フェルト等によるクリーニングを5回行ったことを表す。   In mechanical grinding, 0.4 MPa (gauge pressure) clean air was used in all cases. In the “type” column of “mechanical grinding or electropolishing”, for example, “blast / minute” means that the blast injection time is one minute, “reciprocating grinding / 10 times” means paper, etc. “Cleaning / 5 times” means that the polishing by reciprocating was performed 10 times, and “cleaning / 5 times” represents that cleaning by felt or the like was performed 5 times.

「電解研磨」は、電解研磨液にNaNO3(温度20℃)を用い、電流密度0.3A/cm2の直流電流を120秒間通電することにより行った。 The “electropolishing” was performed by using NaNO 3 (temperature 20 ° C.) as the electrolytic polishing liquid and applying a direct current with a current density of 0.3 A / cm 2 for 120 seconds.

また、「熱処理」の「雰囲気ガス」の欄の「水素」は、H2が実質的に100体積%であることを意味する。 “Hydrogen” in the “Atmosphere gas” column of “Heat treatment” means that H 2 is substantially 100% by volume.

表1および表2から明らかなように、浸漬脱脂後、熱処理前に機械研削等を行った本発明例1〜6、および本発明例8〜11では、機械研削等による肉厚減少量をはじめ、調査した全項目について良好であった。本発明例7で表面粗さRaがやや大きかったが、これは冷間加工前の潤滑処理で化成皮膜潤滑処理を行ったためで、これ以外の機械研削等による肉厚減少量、表面加工歪み層深さ、10%蓚酸による腐食試験および付着物(塩化物、硫化物)量では、良好な結果が得られた。   As is clear from Tables 1 and 2, Examples 1 to 6 and Examples 8 to 11 of the present invention in which machine grinding or the like was performed after immersion degreasing and before heat treatment, included reduction in thickness due to mechanical grinding or the like. All items surveyed were good. In Example 7 of the present invention, the surface roughness Ra was slightly large, but this was because the chemical conversion film was lubricated before the cold working. Good results were obtained in the depth 10% oxalic acid corrosion test and the amount of deposits (chlorides, sulfides).

これに対して、浸漬脱脂後、熱処理前に機械研削等を行わなかった従来例12〜14のうち、冷間加工前に化成皮膜潤滑処理を行った従来例12では、表面粗さRaが劣り、10%蓚酸による腐食試験でも良好な結果は得られなかった。また、油潤滑処理を行った従来例13および14では、管内残留付着物の除去が十分ではなかったため、管内に付着物が認められた。   On the other hand, among the conventional examples 12 to 14 in which mechanical grinding or the like was not performed before the heat treatment after the immersion degreasing, the conventional example 12 in which the chemical conversion film lubrication treatment was performed before the cold working had a poor surface roughness Ra. Even in a corrosion test with 10% oxalic acid, good results were not obtained. Moreover, in the prior art examples 13 and 14 which performed the oil lubrication process, since the removal of the deposit | attachment in a pipe | tube was not enough, the deposit | attachment was recognized in the pipe | tube.

一方、浸漬脱脂後に、機械研削を行ったが、本発明で規定する「熱処理前」ではなく、「熱処理→酸洗後」または「熱処理後」に行った比較例15、17、18では、いずれも表面加工歪み層深さが不良で、冷間加工前に化成皮膜潤滑処理を行った比較例15では、付着物(塩化物、硫化物)量を除き、総じて良好な結果が得られなかった。比較例16はフェルトクリーニングであることから、切削力がなく浸炭部の除去がなされず、10%蓚酸腐食試験が不良であった。比較例18で付着物(塩化物、硫化物)量が不良だったのは、海砂を用いたブラスト処理(機械研削)を熱処理後に行ったことに起因して、海砂に含まれる塩素が塩化物として付着し残留したためである。
On the other hand, although mechanical grinding was performed after immersion degreasing, in Comparative Examples 15, 17, and 18 performed not after “before heat treatment” as defined in the present invention but after “heat treatment → after pickling” or “after heat treatment”, In Comparative Example 15 in which the surface processed strained layer depth was poor and the chemical conversion film lubrication treatment was performed before cold working, generally good results were not obtained except for the amount of deposits (chlorides and sulfides). . Since Comparative Example 16 was felt cleaning, there was no cutting force and the carburized portion was not removed, and the 10% oxalic acid corrosion test was poor. Deposits in Comparative Example 18 (chlorides, sulfides) of the amount was poor, due to the blast treatment with sea sand (mechanical grinding) was performed after the heat treatment, chlorine contained in the sand This is because it adhered and remained as chloride .

なお、この実施例は、SUS304Lを素材とするステンレス鋼管についての調査結果であるが、これ以外のオーステナイト系ステンレス鋼やフェライト系ステンレス鋼などクロムを含むステンレス鋼、さらにはNi基合金についても、同様の結果が得られた。   In addition, although this Example is the investigation result about the stainless steel pipe which uses SUS304L as a raw material, it is the same also about stainless steel containing chromium, such as other austenitic stainless steel and ferritic stainless steel, and also Ni base alloy Results were obtained.

本発明のステンレス鋼の製造方法またはステンレス鋼管の製造方法は、半導体製造、化学工業、食品産業、火力または原子力発電設備等の産業分野で、設備、装置類の構成部材として広く適用し得る、表面清浄度および耐食性に優れたステンレス鋼またはステンレス鋼管の製造、特に、原子力発電設備等に設けられる給水加熱器の伝熱管等、小径かつ長尺管として用いられるステンレス鋼管の製造に好適に利用することができる。   The method for producing stainless steel or the method for producing stainless steel pipe of the present invention can be widely applied as a component of equipment and equipment in industrial fields such as semiconductor production, chemical industry, food industry, thermal power and nuclear power generation equipment. Suitable for manufacturing stainless steel pipes with excellent cleanliness and corrosion resistance, especially stainless steel pipes used as small and long pipes, such as heat transfer pipes for water heaters installed in nuclear power generation facilities, etc. Can do.

本発明のステンレス鋼管の製造方法を適用した一般的なステンレス鋼管の熱間製管後の製管工程例を示す図で、(a)は従来方式の工程例、(b)は比較のための工程例、(c)は本発明の製造方法を適用した工程例である。It is a figure which shows the example of a pipe making process after the hot pipe making of the general stainless steel pipe which applied the manufacturing method of the stainless steel pipe of this invention, (a) is a process example of a conventional system, (b) is for a comparison. A process example, (c) is a process example to which the production method of the present invention is applied.

Claims (2)

ステンレス鋼素管を冷間加工し、脱脂を行った後、熱処理を行うステンレス鋼管の製造方法であって、前記脱脂工程が、
(1)浸漬による第1脱脂工程と
(2)管の表面を砥粒を用いたブラスト処理で研削する第2脱脂工程
とからなることを特徴とするステンレス鋼管の製造方法。
A stainless steel pipe is cold-worked, degreased, and then subjected to heat treatment, which is a method for producing a stainless steel pipe, wherein the degreasing step includes:
(1) A first degreasing step by dipping and (2) a second degreasing step of grinding the surface of the tube by blasting using abrasive grains .
冷間加工を油潤滑により行うことを特徴とする請求項に記載のステンレス鋼管の製造方法。 The method for producing a stainless steel pipe according to claim 1 , wherein cold working is performed by oil lubrication.
JP2004336896A 2004-06-29 2004-11-22 Stainless steel pipe manufacturing method Active JP4751603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004336896A JP4751603B2 (en) 2004-06-29 2004-11-22 Stainless steel pipe manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004191555 2004-06-29
JP2004191555 2004-06-29
JP2004336896A JP4751603B2 (en) 2004-06-29 2004-11-22 Stainless steel pipe manufacturing method

Publications (2)

Publication Number Publication Date
JP2006045659A JP2006045659A (en) 2006-02-16
JP4751603B2 true JP4751603B2 (en) 2011-08-17

Family

ID=36024579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004336896A Active JP4751603B2 (en) 2004-06-29 2004-11-22 Stainless steel pipe manufacturing method

Country Status (1)

Country Link
JP (1) JP4751603B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2517801B1 (en) * 2009-12-21 2019-07-24 Nippon Steel Corporation Base tube for cold-drawing, manufacturing method for same, and manufacturing method for cold-drawn tube
DE102015102255A1 (en) * 2015-02-17 2016-08-18 Sandvik Materials Technology Deutschland Gmbh Method for producing a strand of stainless steel and strand of stainless steel
TWI709669B (en) * 2018-03-02 2020-11-11 日商德山股份有限公司 Austin iron series stainless steel component and manufacturing method thereof
JP7133427B2 (en) * 2018-10-12 2022-09-08 日鉄ステンレス株式会社 Manufacturing method of stainless steel pipe
CN109536856B (en) * 2018-12-27 2023-07-07 无锡鑫常钢管有限责任公司 Small-diameter seamless high-pressure stainless steel oil pipe
CN110681705B (en) * 2019-10-31 2024-04-09 太原中金天威不锈钢管股份有限公司 Purging pre-degreasing device and method for cold-rolled seamless stainless steel tube
CN113600728B (en) * 2021-08-05 2022-11-29 沈阳工业大学 High-precision magnesium alloy thin-wall micro-fine tube and composite preparation method thereof

Also Published As

Publication number Publication date
JP2006045659A (en) 2006-02-16

Similar Documents

Publication Publication Date Title
TWI597370B (en) Hot-stamping steel plate and method of manufacturing the same, and hot-stamping formed body
JP2996245B2 (en) Martensitic stainless steel with oxide scale layer and method for producing the same
JP2932943B2 (en) High corrosion resistance and high strength steel for springs
WO2008156195A1 (en) Ferritic stainless steel sheet having excellent corrosion resistance against sulfuric acid, and method for production thereof
CN108291282B (en) Hot-rolled steel sheet, steel material, and container
CN113939607B (en) Martensitic stainless steel pipe and method for producing martensitic stainless steel pipe
JP4751603B2 (en) Stainless steel pipe manufacturing method
TWI639714B (en) Steel plate
JP6108504B1 (en) Manufacturing method of ferritic stainless steel sheet
US5395461A (en) Method of producing titanium material resistant to hydrogen absorption in aqueous hydrogen sulfide solution
JP4100371B2 (en) Metal tube manufacturing method
Kain et al. Controlling corrosion in the back end of fuel cycle using nitric acid grade stainless steels
JP5658651B2 (en) Steel material for rolling roll for galvanized steel sheet excellent in spalling resistance, and rolling roll for galvanized steel sheet
CN116917523A (en) Duplex stainless steel pipe and method for manufacturing same
JP4720491B2 (en) Stainless steel pipe manufacturing method
JP3819255B2 (en) Method for producing martensitic stainless steel strip with excellent punchability
JP4008159B2 (en) Manufacturing method of austenitic stainless steel sheet with excellent buffing ability
JPH11267731A (en) Roll and roller for hot rolling shop
JP2002348700A (en) DESCALING METHOD FOR COLD-ROLLED AND ANNEALED Cr-BASED STAINLESS STEEL SHEET
JP2002256472A (en) Ferritic stainless steel-sheet and manufacturing method therefor
TWI757044B (en) Wostian iron series stainless steel
JP7215369B2 (en) METHOD FOR MANUFACTURING MARTENSITE STAINLESS STEEL PIPE
WO2023022222A1 (en) Steel material
JP4529640B2 (en) Stainless steel pipe manufacturing method
JP3539160B2 (en) Method for producing stainless steel with excellent descalability, surface properties and productivity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090825

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090909

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20091016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110523

R150 Certificate of patent or registration of utility model

Ref document number: 4751603

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350