JP4100371B2 - Metal tube manufacturing method - Google Patents

Metal tube manufacturing method Download PDF

Info

Publication number
JP4100371B2
JP4100371B2 JP2004125818A JP2004125818A JP4100371B2 JP 4100371 B2 JP4100371 B2 JP 4100371B2 JP 2004125818 A JP2004125818 A JP 2004125818A JP 2004125818 A JP2004125818 A JP 2004125818A JP 4100371 B2 JP4100371 B2 JP 4100371B2
Authority
JP
Japan
Prior art keywords
furnace
pipe
heat treatment
tube
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004125818A
Other languages
Japanese (ja)
Other versions
JP2005307273A (en
Inventor
昌幸 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2004125818A priority Critical patent/JP4100371B2/en
Publication of JP2005307273A publication Critical patent/JP2005307273A/en
Application granted granted Critical
Publication of JP4100371B2 publication Critical patent/JP4100371B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Metal Extraction Processes (AREA)
  • Heat Treatment Of Articles (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Description

本発明は、金属管の製造方法に関し、特に、半導体製造、化学工業、食品産業、火力または原子力発電設備等の分野で広く用いられている表面清浄度および耐食性に優れたステンレス鋼鋼管を始めとする金属管の製造方法に関する。   The present invention relates to a method for producing a metal pipe, and in particular, a stainless steel pipe excellent in surface cleanliness and corrosion resistance, which is widely used in the fields of semiconductor production, chemical industry, food industry, thermal power or nuclear power generation equipment, etc. The present invention relates to a method for manufacturing a metal tube.

各種の合金鋼、チタンその他の非鉄金属またはそれらの合金からなる金属管が、その特性に応じて種々の産業分野で使用されている。特に、ステンレス鋼製の鋼管(以下、「ステンレス鋼管」という)は、高強度を有し、耐食性に優れていることから、半導体製造、化学工業、食品産業、火力または原子力発電設備等の産業分野で、配管用の部材として広く使用されている。   Various alloy steels, titanium and other non-ferrous metals, or metal tubes made of alloys thereof are used in various industrial fields depending on their properties. In particular, stainless steel pipes (hereinafter referred to as “stainless steel pipes”) have high strength and excellent corrosion resistance, so that they are used in industrial fields such as semiconductor manufacturing, chemical industry, food industry, thermal power or nuclear power generation equipment. Therefore, it is widely used as a member for piping.

しかし、高耐食性を備えるステンレス鋼管であっても、管の内外表面にフッ化物、塩化物等のハロゲン化合物や、燐酸塩、硫酸塩等が付着すると、表面清浄度が低下し、耐食性が劣化する。特に管内面の付着物は除去されにくく、その部分が腐食して金属イオンが溶出する場合もある。   However, even with a stainless steel pipe having high corrosion resistance, if halogen compounds such as fluoride and chloride, phosphates, sulfates, etc. adhere to the inner and outer surfaces of the pipe, the surface cleanliness decreases and the corrosion resistance deteriorates. . In particular, the deposit on the inner surface of the tube is difficult to remove, and the portion may corrode and metal ions may elute.

また、例えば、ステンレス鋼管の冷間加工時に、その内外表面に潤滑剤として塗布した炭素や炭素化合物が、その後の洗浄(脱脂)処理で完全には除去されず、一部が残留した場合、そのままの状態で熱処理すると、管の表面からの炭素の浸入拡散によって炭素濃度が上昇する(浸炭が発生する)ことがある。表面に浸炭が発生した鋼管は、溶接などの熱影響により鋭敏化しやすく、粒界腐食が発生するおそれがある。前記の塩化物や硫化物が応力腐食割れ(SCC)を加速する作用があることもよく知られている。   Also, for example, during cold working of stainless steel pipes, carbon and carbon compounds applied as lubricants on the inner and outer surfaces are not completely removed by subsequent cleaning (degreasing) treatment, and if some remain, When the heat treatment is performed in this state, the carbon concentration may increase (carburization occurs) due to the infiltration and diffusion of carbon from the surface of the tube. Steel pipes that have carburized on the surface are susceptible to sensitization due to thermal effects such as welding, and may cause intergranular corrosion. It is also well known that the chlorides and sulfides have the effect of accelerating stress corrosion cracking (SCC).

さらに、金属加工用の潤滑油は、一般的に油脂を主成分とし、それに添加される極圧添加剤は、F、Cl、S、Pなどの化合物を含んでおり、脱脂後、僅かではあるが残留した潤滑油が管の内外面に付着している場合がある。熱処理時に、管外面の残留潤滑油(付着物)から発生したガスは炉内に飛散するとともに、連続的に供給される雰囲気ガスで希釈されるので、清浄度や耐食性に及ぼす影響は少ない。しかし、管内面の残留付着物から発生したガスは管内に滞留しやすく、滞留したガスは温度が低下すると凝縮して管内面に付着し、配管として使用する際に再びガス発生し、管内を通過する物質に汚染を生じさせる。   Further, lubricating oils for metal processing generally contain fats and oils as a main component, and extreme pressure additives added to them include compounds such as F, Cl, S, and P, and are slight after degreasing. In some cases, residual lubricant oil adheres to the inner and outer surfaces of the pipe. During the heat treatment, the gas generated from the residual lubricating oil (adhered matter) on the outer surface of the pipe is scattered in the furnace and diluted with the continuously supplied atmospheric gas, so there is little influence on the cleanliness and corrosion resistance. However, the gas generated from the residual deposits on the inner surface of the pipe tends to stay in the pipe, and the accumulated gas condenses and adheres to the inner face of the pipe when the temperature drops, and it is generated again when used as a pipe and passes through the pipe. Cause contamination of the substances.

また、ステンレス鋼管においては、溶接時における熱影響によって、あるいは、装置に組み込まれ長時間の使用による熱影響によって、粒界にCrカーバイドが析出し、その付近にCr欠乏層が出現して耐食性が著しく劣化する恐れもある。そのような場合、前記残留付着物等に起因して表面清浄度が低下していると、特にその部分で腐食が生じやすい。   In stainless steel pipes, Cr carbide precipitates at grain boundaries due to thermal effects during welding or due to long-term use built into the equipment, and a Cr-deficient layer appears in the vicinity, resulting in corrosion resistance. There is also a risk of significant deterioration. In such a case, if the surface cleanliness is lowered due to the residual deposits or the like, corrosion tends to occur particularly in that portion.

このようなステンレス鋼管が本来有している優れた耐食性の発現が阻害されるのを防止するために、従来は、管表面の付着物を洗浄により除去する方法が主として採られてきた。すなわち、洗浄に用いる薬品の成分管理、洗浄液の頻繁な更新、洗浄処理時間と回数の増加、付着物の除去等の確認、付着物の分析および付着量の把握、腐食試験の実施等である。しかし、この方法(付着物の洗浄除去)には作業のバラツキ、確認作業での抜け(見落とし)があり、費用と労力を要するだけではなく、信頼性の面でも不安があった。   In order to prevent the occurrence of the excellent corrosion resistance inherent in such stainless steel pipes, conventionally, a method of removing deposits on the pipe surface by washing has been mainly employed. That is, management of chemical components used for cleaning, frequent renewal of cleaning liquid, increase of cleaning processing time and number of times, confirmation of removal of deposits, analysis of deposits, grasp of amount of deposit, implementation of corrosion test, etc. However, this method (cleaning and removal of deposits) has variations in work and missing (oversight) in the confirmation work, which is not only costly and labor intensive but also uneasy in terms of reliability.

切削・研削加工により表面の平滑性と清浄度を高めて耐食性を確保する方法も考えられるが、切削・研削加工は、能率が悪く、切粉が排出することから歩留も悪く、結果として製造コストが上昇する。   Although it is conceivable to increase the surface smoothness and cleanliness by cutting and grinding to ensure corrosion resistance, cutting and grinding are inefficient and the yield is low because chips are discharged. Cost increases.

一方、前述した管内面の残留付着物から発生したガス(F、Cl、S、Pなどの化合物や、炭素化合物等)に起因する管内通過物質の汚染や浸炭の発生を防止するためには、熱処理する際に、管内のガスを雰囲気ガスで完全に置換する方法が有効であり、従来から、そのための種々の対策が提案されている。   On the other hand, in order to prevent the contamination of the substance passing through the pipe and the occurrence of carburization caused by the gases (compounds such as F, Cl, S, P, and carbon compounds) generated from the residual deposits on the inner surface of the pipe described above, In the heat treatment, a method of completely replacing the gas in the tube with the atmospheric gas is effective, and various countermeasures have been proposed for this purpose.

例えば、特許文献1では、弾性パッドが対向部に設けられた一対の開閉扉をパージ室の入口部の上下に夫々上下動するように設け、搬入される直管を入口部にて一時停止させ、上下から開閉扉により挟んでパージ室の雰囲気ガスの圧力を高くすることにより、直管内を雰囲気ガスに置換するようにした管内ガスパージ装置が提案されている。   For example, in Patent Document 1, a pair of open / close doors provided with elastic pads at opposing portions is provided so as to move up and down above the inlet portion of the purge chamber, respectively, and the straight pipe to be carried in is temporarily stopped at the inlet portion. An in-pipe gas purging apparatus has been proposed in which the atmosphere gas in the purge chamber is increased from above and below by an open / close door to increase the pressure of the atmosphere gas in the purge chamber.

特許文献2に開示される熱処理装置では、直状管を雰囲気ガス中で熱処理するための熱処理炉の側方には、直状管の入口に向けて直状管を送り込む為の装入テーブルを配設し、この装入テーブルには、直状管の先端が上記熱処理炉内に入った状態において、その直状管の後端が位置する場所を負圧にする為の負圧手段を設けている。これにより、直状管内のパージ作業を極めて簡易に行えるとしている。   In the heat treatment apparatus disclosed in Patent Document 2, a charging table for feeding the straight tube toward the inlet of the straight tube is provided on the side of the heat treatment furnace for heat-treating the straight tube in the atmospheric gas. This charging table is provided with a negative pressure means for making a negative pressure at a position where the rear end of the straight pipe is located in a state where the front end of the straight pipe enters the heat treatment furnace. ing. As a result, the purging operation in the straight pipe can be performed very easily.

しかしながら、特許文献1で提案された装置では、パージ室の入口部でその都度直管の装入を停止させる必要があるため、熱処理能率が著しく低下すると同時に、加熱雰囲気での弾性パッドの品質劣化が激しく、要求性能が得られない場合や、頻繁に交換を要するという問題がある。また、特許文献2が開示する装置は、大容量の負圧手段を必要とするため、大がかりな設備投資を要し、鋼管製造費が高コストになるという問題がある。   However, in the apparatus proposed in Patent Document 1, since it is necessary to stop charging the straight pipe each time at the inlet of the purge chamber, the heat treatment efficiency is remarkably lowered, and at the same time, the quality of the elastic pad deteriorates in a heated atmosphere. However, there is a problem that required performance cannot be obtained or that frequent replacement is required. Moreover, since the apparatus disclosed in Patent Document 2 requires a large-capacity negative pressure means, there is a problem that a large-scale capital investment is required and the steel pipe manufacturing cost becomes high.

また、耐食性を高めるためには、酸化被膜の形成が有効であり、例えば、特許文献3には、Ni基合金管内に、露点が−60℃から+20℃までの範囲内にある水素を主体とする雰囲気ガスを供給しつつ管を連続式熱処理炉内に装入し、所定の条件で加熱して管内表面に高温水環境でNiの溶出を抑制する酸化被膜を生成させる熱処理方法が記載されている。   In order to improve the corrosion resistance, it is effective to form an oxide film. For example, Patent Document 3 mainly describes hydrogen in a Ni-based alloy tube having a dew point in the range from −60 ° C. to + 20 ° C. A heat treatment method is described in which a tube is inserted into a continuous heat treatment furnace while supplying an atmospheric gas to be heated and heated under predetermined conditions to generate an oxide film that suppresses elution of Ni in a high temperature water environment on the tube inner surface. Yes.

また、特許文献4では、所定の化学組成を有する二相ステンレス鋼製の鋼材に、露点が−30℃以下のガス雰囲気(H2濃度が実質的に100%)中で熱処理を施して、表面から少なくとも50μmにわたる表層がフェライト単相である高純度ガス用二相ステンレス鋼材の製造方法が提案されている。この二相ステンレス鋼材を10〜1000ppmの水蒸気を含む不活性ガス雰囲気中で500〜1000℃に加熱保持することにより、その表面にCr濃度の均一なCr酸化物を生成させることができるとしている。 In Patent Document 4, a steel material made of a duplex stainless steel having a predetermined chemical composition is subjected to a heat treatment in a gas atmosphere (H 2 concentration is substantially 100%) having a dew point of −30 ° C. or less, and the surface Has been proposed for producing a high-purity gas duplex stainless steel material whose surface layer is at least 50 μm and has a ferrite single phase. By heating and maintaining this duplex stainless steel material at 500 to 1000 ° C. in an inert gas atmosphere containing 10 to 1000 ppm of water vapor, a Cr oxide having a uniform Cr concentration can be generated on the surface.

しかし、特許文献3に記載される熱処理方法では、雰囲気ガスの管内への供給を、2基のガス供給装置とガス導入管とを用い、被処理管の進行に合わせて一方のガス供給装置から他方のガス供給装置へ切り替えながら行わなければならない。また、特許文献4に記載の二相ステンレス鋼材の製造方法では、熱処理とは別に酸化皮膜形成処理を行う必要があり、工程数の増大は避けられない。   However, in the heat treatment method described in Patent Document 3, the supply of the atmospheric gas into the pipe is performed by using two gas supply apparatuses and a gas introduction pipe and from one gas supply apparatus in accordance with the progress of the pipe to be processed. It must be done while switching to the other gas supply device. Further, in the method for producing a duplex stainless steel material described in Patent Document 4, it is necessary to perform an oxide film forming treatment separately from the heat treatment, and an increase in the number of steps is inevitable.

特開平5−320745号公報JP-A-5-320745

特開平6−128645号公報JP-A-6-128645 特開2003−239060号公報JP 2003-239060 A 特開平10−88288号公報Japanese Patent Laid-Open No. 10-88288

本発明は、このような状況に鑑みてなされたもので、半導体製造、化学工業、食品産業、火力または原子力発電設備等の分野で好適に使用できる表面清浄度および耐食性に優れたステンレス鋼管を始めとする金属管の製造方法、特に、製造時における管内面の洗浄作業が困難な小径かつ長尺の伝熱管であっても、優れた表面清浄度および耐食性を有する伝熱管とすることができる金属管の製造方法を提供することを目的としている。   The present invention has been made in view of such circumstances, and includes stainless steel pipes excellent in surface cleanliness and corrosion resistance that can be suitably used in the fields of semiconductor manufacturing, chemical industry, food industry, thermal power or nuclear power generation equipment. A metal tube manufacturing method, particularly a metal that can be used as a heat transfer tube having excellent surface cleanliness and corrosion resistance, even if it is a small diameter and long heat transfer tube that is difficult to clean the inner surface of the tube The object is to provide a method of manufacturing a tube.

本発明者は、上記の課題を解決するため、ステンレス鋼管について検討を重ねた結果、下記の知見を得た。   In order to solve the above-mentioned problems, the present inventor has studied the stainless steel pipe, and as a result, has obtained the following knowledge.

(イ)熱間加工ままでは、スケールの生成とその除去のための酸洗によって管表面の結晶粒界に深さが数マイクロメートル〜数十マイクロメートルの溝状腐食部分が生じており、この溝の部分(いわば、汚染物質の「ポケット」となる部分)に汚染物質が捕捉される。ポケットが大きいと汚染の程度も大きく、表面清浄度および耐食性が大きく損なわれる。   (B) In the hot working state, the formation of scales and pickling for removal of them produce groove-like corroded portions with a depth of several micrometers to several tens of micrometers at the grain boundaries on the tube surface. Contaminants are trapped in the grooves (so-called “pockets”). If the pocket is large, the degree of contamination is large, and the surface cleanliness and corrosion resistance are greatly impaired.

(ロ)この溝状腐食部分は、冷間加工で押し潰すことが可能である。   (B) This groove-like corroded portion can be crushed by cold working.

(ハ)熱処理炉として、500℃以上で管内に雰囲気ガスの通気のある構造の熱処理炉を用いることにより、管内の付着物のガス化により生じた発生ガスを管内から完全に排出することができる。   (C) By using a heat treatment furnace having a structure in which the atmosphere gas is passed through the pipe at 500 ° C. or higher as the heat treatment furnace, the generated gas generated by gasification of the deposits in the pipe can be completely discharged from the pipe. .

(ニ)熱処理時の雰囲気ガスとしては、i)水素を主体とする雰囲気ガス、または、ii)大気と燃料であるLNGの燃焼ガスまたは不活性ガスを使用する。   (D) As the atmospheric gas at the time of heat treatment, i) atmospheric gas mainly composed of hydrogen, or ii) LNG combustion gas or inert gas which is air and fuel is used.

(ホ)前記の(ハ)および(ニ)の条件を満たした熱処理を実施すれば、管内面の付着物のガス化・除去と熱処理とを同時に行うことができる。   (E) If the heat treatment satisfying the above conditions (c) and (d) is performed, the gasification / removal of the deposits on the inner surface of the pipe and the heat treatment can be performed simultaneously.

本発明は、これらの知見に基づいてなされたものであり、下記の金属管の製造方法を要旨としている。   This invention is made | formed based on these knowledge, and makes the summary the manufacturing method of the following metal tube.

『熱間加工により製管した金属素管を冷間加工して金属管を製造する方法であって、下記(1)〜(3)の工程を含む金属管の製造方法。
(1)油潤滑処理を施して断面減少率が20%以上の冷間加工を行う冷間加工工程
(2)脱脂工程
(3)炉入口から加熱帯の被熱処理管が最高温度となる位置までの炉内圧力が2段階以上で順次高くなり、被熱処理管が加熱されて500℃となる管進行方向位置での炉内圧力が、炉外圧よりも高く、かつ炉内最大圧力よりも低い圧力となる連続熱処理炉を用いて熱処理を行う熱処理工程』
“A method of manufacturing a metal tube by cold-working a metal tube manufactured by hot working, and including the following steps (1) to (3).
(1) Cold working process in which oil lubrication is performed to perform cold working with a cross-section reduction rate of 20% or more (2) Degreasing process (3) From the furnace inlet to the position where the heat-treated pipe in the heating zone reaches the maximum temperature The pressure inside the furnace gradually increases in two or more stages , and the pressure inside the furnace in the tube traveling direction where the heat-treated tube is heated to 500 ° C. is higher than the outside pressure and lower than the maximum pressure in the furnace heat treatment step of performing a heat treatment using a continuous heat treatment furnace door ing "

本発明の金属管の製造方法によれば、表面清浄度および耐食性に優れたステンレス鋼管を始めとする金属管、特に、製造の対象が管内面の洗浄作業が困難な小径かつ長尺の伝熱管であっても、優れた表面清浄度および耐食性を有する伝熱管を製造することができる。   According to the method for producing a metal tube of the present invention, a metal tube including a stainless steel tube having excellent surface cleanliness and corrosion resistance, particularly a small-diameter and long heat transfer tube whose production target is difficult to clean the inner surface of the tube. Even so, a heat transfer tube having excellent surface cleanliness and corrosion resistance can be produced.

前記のように、本発明の金属管の製造方法は、『熱間加工により製管した金属素管を冷間加工して金属管を製造する方法であって、
(1)油潤滑処理を施して断面減少率が20%以上の冷間加工を行う冷間加工工程
(2)脱脂工程
(3)炉入口から加熱帯の被熱処理管が最高温度となる位置までの炉内圧力が2段階以上で順次高くなり、被熱処理管が加熱されて500℃となる管進行方向位置での炉内圧力が、炉外圧よりも高く、かつ炉内最大圧力よりも低い圧力となる連続熱処理炉を用いて熱処理を行う熱処理工程の各工程を含む製造方法』である。
As described above, the manufacturing method of the metal tube of the present invention is “a method of manufacturing a metal tube by cold-working a metal base tube manufactured by hot processing,
(1) Cold working process in which oil lubrication is performed to perform cold working with a cross-section reduction rate of 20% or more (2) Degreasing process (3) From the furnace inlet to the position where the heat-treated pipe in the heating zone reaches the maximum temperature The pressure inside the furnace gradually increases in two or more stages , and the pressure inside the furnace in the tube traveling direction where the heat-treated tube is heated to 500 ° C. is higher than the outside pressure and lower than the maximum pressure in the furnace a preparative manufacturing method comprising the steps of heat treatment step of performing heat treatment using a ing continuous heat treatment furnace. "

図1は、本発明の金属管の製造方法を適用した一般的なステンレス鋼管の製管工程例を示す図で、(a)は従来方式の工程例、(b)と(c)は本発明の製造方法を適用した工程例である。(b)は熱間加工により製管した(つまり、「熱間製管」した)金属素管に対して1パスの冷間加工を行う場合、(c)は同素管に対して2パス以上の冷間加工を行う場合である。   FIG. 1 is a diagram showing an example of a process for producing a general stainless steel pipe to which a method for producing a metal pipe according to the present invention is applied, wherein (a) shows an example of a conventional process, and (b) and (c) show the present invention. It is an example of a process to which the manufacturing method is applied. (B) shows a case in which one pass of cold working is performed on a metal base tube made by hot working (that is, “hot pipe making”). This is a case where the above cold working is performed.

図1(b)において、破線で囲んだ部分が本発明で規定する(1)〜(3)の工程に該当する。すなわち、図中の破線内に示した(1)、(2)および(3)が、それぞれ本発明で規定する(1)、(2)および(3)に対応する工程である。図1(c)では、仕上げパスで、本発明で規定する(1)〜(3)の工程を実施している。   In FIG.1 (b), the part enclosed with the broken line corresponds to the process of (1)-(3) prescribed | regulated by this invention. That is, (1), (2), and (3) shown in the broken line in the figure are steps corresponding to (1), (2), and (3) defined in the present invention, respectively. In FIG.1 (c), the process of (1)-(3) prescribed | regulated by this invention is implemented by a finishing pass.

以下に、本発明の金属管の製造方法で規定する(1)〜(3)の工程について詳細に説明する。   Below, the process of (1)-(3) prescribed | regulated with the manufacturing method of the metal tube of this invention is demonstrated in detail.

前記(1)の工程は、「油潤滑処理を施して断面減少率が20%以上の冷間加工を行う冷間加工工程」である。   The step (1) is “a cold working step in which an oil lubrication treatment is performed and a cold working with a cross-sectional reduction rate of 20% or more is performed”.

熱間製管法で得られたステンレス鋼管素管の表面は、スケールの生成に起因して表面粗さは粗く、かつバラツキも大きい。表面にはスケール生成に伴う脱Cr層があり、粒界部分ではこの脱Cr層がより深くまで達している。   The surface of the stainless steel pipe base tube obtained by the hot pipe making method has a rough surface and a large variation due to the generation of scale. There is a Cr removal layer accompanying the scale formation on the surface, and this Cr removal layer reaches deeper in the grain boundary portion.

図2は、このステンレス鋼管素管のスケールを除去した後のSEM写真の一例で、(a)は管の表面のSEM写真、(b)は断面のSEM写真である。図2に矢印を付して例示(上下矢印の間の部分)するように、結晶粒界が酸洗による脱スケールの際の腐食によって溝状に掘られた状態になっている。   FIG. 2 is an example of an SEM photograph after removing the scale of the stainless steel tube, (a) is an SEM photograph of the surface of the tube, and (b) is an SEM photograph of a cross section. As illustrated with an arrow in FIG. 2 (part between the up and down arrows), the crystal grain boundary is in a state of being dug into a groove shape due to corrosion during descaling by pickling.

図3は、結晶粒界の状態を模式的に示す図で、(a)は熱間製管して、スケールを除去した後の状態、(b)は冷間加工後の状態を示す。なお、図3(a)および(b)において、管の表面と断面を同じ平面に示している。図3(a)の「管の表面」が、図2(a)の管の表面のSEM写真に対応する模式図であり、同じく図3(a)の「管の断面」が、図2(b)の管の断面のSEM写真に対応する模式図である。   3A and 3B are diagrams schematically showing a state of a crystal grain boundary, where FIG. 3A shows a state after hot pipe making and scale removal, and FIG. 3B shows a state after cold working. 3A and 3B, the surface and cross section of the tube are shown on the same plane. The “surface of the tube” in FIG. 3A corresponds to the SEM photograph of the surface of the tube in FIG. 2A, and the “cross section of the tube” in FIG. It is a schematic diagram corresponding to the SEM photograph of the cross section of the pipe | tube of b).

前記の結晶粒界が腐食されて生じた溝は、図3(a)に示すように、全面にわたって網目状に存在している。溝の深さd(図3(a)参照)は、熱間加工時に高温にさらされた時間、加工度や雰囲気にも依存するが、通常は、数μm〜数十μm程度に達しており、潤滑剤や汚染物が溜まりやすい形状になっている。   The grooves formed by the corrosion of the crystal grain boundaries are present in a mesh shape over the entire surface, as shown in FIG. The depth d of the groove (see FIG. 3 (a)) usually depends on the time, degree of processing and atmosphere exposed to high temperature during hot working, but usually reaches about several μm to several tens of μm. The shape is easy to collect lubricant and contaminants.

本発明の金属管の製造方法では、このような表面状態にあるステンレス鋼管素管に、図1(b)に示すように、「油潤滑処理」を施す。この場合は、潤滑剤(油)が管表面に物理的に付着しているだけなので、「冷間加工」後、次の(2)の工程の「脱脂」処理により潤滑剤はほとんど除去される。このとき、「脱脂」処理は、アルカリ脱脂および温水洗浄により行うこと(アルカリ脱脂→温水洗浄)が望ましい。さらに、必要により「酸洗」による脱脂処理を施してもよい。   In the metal pipe manufacturing method of the present invention, an “oil lubrication process” is performed on the stainless steel pipe base pipe in such a surface state as shown in FIG. In this case, since the lubricant (oil) is only physically attached to the pipe surface, the lubricant is almost removed by the “degreasing” treatment in the next step (2) after “cold working”. . At this time, the “degreasing” treatment is preferably performed by alkali degreasing and hot water washing (alkali degreasing → hot water washing). Further, if necessary, degreasing treatment by “pickling” may be performed.

これに対して、従来は、図1(a)に示すように、通常、「化成皮膜潤滑処理」を行っていた。化成皮膜潤滑処理は、化学反応により化成皮膜を形成させて潤滑性を付与する潤滑方法である。すなわち表面を腐食して粗くし、腐食生成物により表面を覆うものであり、密着性良く表面を覆い、潤滑性を付与させたものである。冷間加工時には工具と材料表面の間に皮膜が介在するため、摩擦せん断力は比較的弱くかつ皮膜が詰まった状態の表面凹部(ポケット)はすり潰され難い。また、潤滑膜(化成皮膜)の除去は困難で、冷間加工後は、アルカリ脱脂および温水洗浄に加え、「酸洗」による脱皮膜処理が必要になる(図1(a)参照)。このような処理の後も表面凹部には皮膜残存物があり、熱処理時に熱分解により発生するガスの増大をまねく。   On the other hand, conventionally, as shown in FIG. 1 (a), the “chemical conversion film lubrication treatment” is usually performed. The chemical conversion film lubrication treatment is a lubrication method in which a chemical conversion film is formed by a chemical reaction to impart lubricity. That is, the surface is corroded and roughened, and the surface is covered with a corrosion product. The surface is covered with good adhesion, and lubricity is imparted. Since a film is interposed between the tool and the material surface during cold working, the frictional shear force is relatively weak and the surface recesses (pockets) in a state where the film is clogged are hardly crushed. Moreover, it is difficult to remove the lubricating film (chemical conversion film), and after cold working, in addition to alkali degreasing and hot water cleaning, a film removal treatment by “pickling” is required (see FIG. 1A). Even after such treatment, there is a film residue on the surface recess, which leads to an increase in gas generated by thermal decomposition during the heat treatment.

本発明の油潤滑処理を施したステンレス鋼管に冷間加工を加えると、表面は工具により高い面圧を受けて延伸されるが、その際、摩擦力でせん断変形を受け、溝状部分は擦り潰されるように変形し、図3(b)に示すように、溝状に開口した部分は密着した状態になる。すなわち、溝に溜まっていた潤滑剤や汚れは搾り出されてしまい、かつ表面の粗さも改善される。これは加工度が高いほど顕著である。   When cold working is applied to the stainless steel pipe subjected to the oil lubrication treatment of the present invention, the surface is stretched by receiving a high surface pressure by the tool, but at that time, it is subjected to shear deformation by frictional force, and the groove portion is rubbed. As shown in FIG. 3B, the portion that is deformed so as to be crushed is in close contact with the groove-shaped opening. That is, the lubricant and dirt accumulated in the groove are squeezed out, and the surface roughness is also improved. This is more conspicuous as the degree of processing is higher.

耐食性が要求される用途向けの金属管においては、このように、表面の平滑性と清浄度を高めることが重要である。これは、先に述べたように、切削・研削加工によっても得られるが、冷間加工に比べて能率が悪く、歩留まりの低下も大きい。   Thus, it is important to improve the smoothness and cleanliness of the surface in a metal tube for applications requiring corrosion resistance. As described above, this can also be obtained by cutting and grinding, but the efficiency is lower than that of cold working, and the yield is greatly reduced.

「冷間加工」は少なくとも1回実施する。冷間加工の加工率は断面減少率で20%以上とする。望ましくは、40%以上である。これによって、管の内外表面に新生面が創出され、脱Cr層が押し潰され、平均化されてCr濃度が正常化する。それと同時に、表面の粗さが改善され、溝に溜まっていた潤滑剤や汚れ等が表面部分から除去される。   “Cold working” is performed at least once. The processing rate of cold working is 20% or more in terms of cross-sectional reduction rate. Desirably, it is 40% or more. This creates a new surface on the inner and outer surfaces of the tube, crushes the de-Cr layer, averages it, and normalizes the Cr concentration. At the same time, the roughness of the surface is improved, and the lubricant, dirt, etc. accumulated in the groove are removed from the surface portion.

加工方法は引抜き、圧延のいずれでもよく、引抜きと圧延を組み合わせてもよい。引抜きは管内に工具を挿入する芯金引きとする。空引きは、内面における新生面の生成が不十分であるため、望ましくない。   The processing method may be either drawing or rolling, and may be a combination of drawing and rolling. Pulling is performed with a cored bar that inserts a tool into the pipe. Emptying is not desirable because the generation of new surfaces on the inner surface is insufficient.

良好な新生面を得るためには、断面減少率を大きく取れる圧延を少なくとも1回実施するのが望ましい。   In order to obtain a good new surface, it is desirable to perform rolling at least once so that the reduction rate of the cross section can be increased.

複数回(2パス以上)の冷間加工を行う場合は、図1(c)に例示すように、最終のパスを「油潤滑処理」をして行い、最終パス後の「脱脂」処理を、酸洗を含まない非酸洗脱脂(アルカリ脱脂→温水洗浄)とするのが望ましい。複数回の冷間加工でこの方法(油潤滑処理→非酸洗脱脂)を実施し、中間での熱処理も後述する本発明で使用する連続熱処理炉を適用して行うのが、より望ましい。   When performing cold working multiple times (2 passes or more), as shown in FIG. 1C, the final pass is “oil lubricated” and the “degreasing” treatment after the final pass is performed. It is desirable to use non-pickling degreasing (alkali degreasing → hot water washing) that does not include pickling. It is more desirable to carry out this method (oil lubrication treatment → non-pickling degreasing) by a plurality of cold workings, and to carry out intermediate heat treatment by applying a continuous heat treatment furnace used in the present invention described later.

前記(2)の工程は、「脱脂工程」である。   The step (2) is a “degreasing step”.

冷間加工前の潤滑処理が油潤滑の場合は、前述のように、潤滑剤(油)が管表面に物理的に付着しているだけなので、「アルカリ脱脂→温水洗浄」処理により潤滑剤はほとんど除去される。したがって、「酸洗」による脱脂処理を要しない。ただし、「酸洗」を実施しても、表面清浄度良好であったものなので悪影響はない。なお、アルカリ脱脂は、通常用いられている方法で行えばよい。   When the lubrication process before cold working is oil lubrication, as described above, the lubricant (oil) is only physically attached to the pipe surface, so the lubricant is removed by the "alkali degreasing → hot water cleaning" process. Almost eliminated. Therefore, degreasing treatment by “pickling” is not required. However, even if “pickling” is performed, the surface cleanliness is good, so there is no adverse effect. In addition, what is necessary is just to perform alkali degreasing by the method used normally.

図4は、冷間加工後、脱脂処理した後のステンレス鋼管の断面のSEM写真(二次電子像)で、(a)は油潤滑処理を行った場合、(b)は化成皮膜潤滑処理を行った場合である。化成皮膜潤滑処理を行った場合は、前述のとおり工具と材料表面の間に皮膜を介在させた加工なので、表面の凹凸の改善が少ない。   FIG. 4 is a SEM photograph (secondary electron image) of a cross section of a stainless steel pipe after degreasing after cold working. (A) shows oil lubrication treatment, (b) shows chemical film lubrication treatment. This is the case. When the chemical film lubrication treatment is performed, since the film is interposed between the tool and the material surface as described above, there is little improvement in surface irregularities.

前記(3)の工程は、「炉入口から加熱帯の被熱処理管が最高温度となる位置までの炉内圧力が2段階以上で順次高くなり、被熱処理管が加熱されて500℃となる管進行方向位置での炉内圧力が、炉外圧よりも高く、かつ炉内最大圧力よりも低い圧力となる連続熱処理炉を用いて熱処理を行う熱処理工程」である。 The step (3) is “a tube in which the pressure in the furnace from the furnace inlet to the position where the heat-treated tube in the heating zone reaches the maximum temperature is increased in two or more stages , and the heat-treated tube is heated to 500 ° C. furnace pressure at process position is higher than Rogaiatsu, and a furnace up to a pressure heat treatment step of performing heat treatment using a low pressure and Na Ru continuous heat treatment furnace than ".

前記の「炉入口から加熱帯の被熱処理管が最高温度となる位置までの炉内圧力が2段階以上で順次高くなり、被熱処理管が加熱されて500℃となる管進行方向位置での炉内圧力が、炉外圧よりも高く、かつ炉内最大圧力よりも低い圧力となる連続熱処理炉」を具体例に基づいて説明すると、例えば、入口帯、加熱帯、冷却帯および出口帯で構成される熱処理炉において、入口帯の内圧が、炉外圧以上で加熱帯の圧力以下となるように設定された(この場合は、2段階で順次高くなる)熱処理炉である。以下、炉内圧力が「2段階で順次高くなる」ことを「2段階に変化する」という。 The furnace at the position in the tube advancing direction where the pressure in the furnace from the furnace inlet to the position where the heat-treated tube in the heating zone reaches the maximum temperature increases in two steps or more and the heat-treated tube is heated to 500 ° C. inner pressure is higher than Rogaiatsu, and will be described on the basis furnace up to low pressure and Na Ru continuous heat treatment furnace than the pressure "to specific examples, for example, the inlet zone, heating zone, composed of the cooling zone and an outlet zone In the heat treatment furnace, the internal pressure of the inlet zone is set to be equal to or higher than the pressure outside the furnace and equal to or lower than the pressure of the heating zone (in this case, the heat pressure is gradually increased in two stages). Hereinafter, the fact that the pressure in the furnace “sequentially increases in two stages” is referred to as “change in two stages”.

このような熱処理炉を用いるのは、冷間加工を行い、脱脂(非酸洗脱脂)処理した後の金属管の内外表面では、通常、脱脂剤(油潤滑処理に用いた潤滑油)は、見かけ上は除去されていると判断されても、僅かではあるが残存(付着)しており、加熱すると残留付着物からガスが発生し、管内に滞留するからである。   Such a heat treatment furnace is used for cold working, and on the inner and outer surfaces of the metal tube after degreasing (non-pickling degreasing), the degreasing agent (the lubricating oil used for the oil lubrication treatment) is usually This is because even if it is judged that it is apparently removed, it remains (attached) to a slight extent, and when heated, gas is generated from the residual deposit and stays in the tube.

すなわち、油潤滑処理を施して冷間加工を行った後のステンレス鋼管を、雰囲気ガスとして水素を使用する従来の水素炉(「光輝炉」ともいう)で熱処理した際の管内のガスを採取し、分析した結果、炉内を十分に水素で置換した後に被処理材を炉内に装入して熱処理をしても、炭化水素、CO、CO2、N2、O2を主体とするガスが合わせて6〜10体積%(残部は、雰囲気ガスのH2)含まれていることが判明した。炭化水素、CO、CO2は、脱脂後の残留付着物から発生したガスであり、N2、O2は装入前の管内に存在していた空気に由来するものと考えられる。また、微量ではあるが、潤滑油中の極圧剤に含まれるF、Cl、S等を含有するガスが残留付着物から発生し、管内に滞留することも確認された。なお、これらの成分は、管内通過物質に対する“汚染”という観点からは、微量でも問題となる成分である。 That is, the gas in the pipe when the stainless steel pipe after the oil lubrication treatment and the cold working is heat-treated in a conventional hydrogen furnace (also referred to as “bright furnace”) using hydrogen as an atmospheric gas is collected. As a result of analysis, even if the furnace was sufficiently replaced with hydrogen, the gas containing mainly hydrocarbons, CO, CO 2 , N 2 , and O 2 even when the material to be treated was charged into the furnace and subjected to heat treatment Are contained in an amount of 6 to 10% by volume (the balance being H 2 of the atmospheric gas). Hydrocarbon, CO, and CO 2 are gases generated from residual deposits after degreasing, and N 2 and O 2 are considered to be derived from the air that was present in the pipe before charging. It was also confirmed that a gas containing F, Cl, S, etc. contained in the extreme pressure agent in the lubricating oil was generated from the residual deposits and stayed in the pipe, although it was a small amount. Note that these components are problematic even in a minute amount from the viewpoint of “contamination” with respect to substances passing through the pipe.

さらに、このような残留付着物からのガスの発生は、200℃を超えると認められ、300℃を超えるとその発生量が次第に減少し、500℃以上では殆ど発生しなくなることが判明した。   Furthermore, it was found that the generation of gas from such residual deposits was found to exceed 200 ° C., and the generation amount gradually decreased when the temperature exceeded 300 ° C., and almost no generation occurred at 500 ° C. or higher.

これらのガスが管内に滞留したままであると、ガスのC活量が高まり、例えばステンレス鋼のC活量より高くなると浸炭が生じるおそれがある。また、フッ化物、塩化物等のハロゲン化合物は、熱処理の冷却時に再付着する。再付着したものは、配管等としての使用時に悪影響を及ぼすことは前述したとおりである。したがって、残留付着物からのガスの発生が終了する500℃以上で炉内の雰囲気ガスを管内に通気させ、管内から完全に排出する必要がある。   If these gases remain in the pipe, the C activity of the gas increases. For example, if the C activity of stainless steel is higher than that, carburization may occur. In addition, halogen compounds such as fluoride and chloride are reattached when the heat treatment is cooled. As described above, the reattached material has an adverse effect when used as piping. Therefore, it is necessary to vent the atmosphere gas in the furnace through the pipe at 500 ° C. or higher where generation of gas from the residual deposits is finished and exhaust the gas completely from the pipe.

図5(イ)は、本発明の金属管の製造方法で使用する、圧力が炉内で2段階以上に変化する連続熱処理炉の断面構成例を模式的に示す図である。この(イ)図、ならびに、この熱処理炉を用いた場合の金属管(例えば、ステンレス鋼管)の温度パターン、炉内圧力分布および管内面の残留付着物から発生するガスの排出効果をそれぞれ模式的に示す図5の(ロ)、(ハ)および(ニ)を参照して、「圧力が炉内で2段階以上に変化する連続熱処理炉」を用いることにより、管内の残留付着物から発生するガスを滞留させず、管外へ完全に排出することができる理由、すなわち、この熱処理炉の作用効果を説明する。   FIG. 5A is a diagram schematically showing a cross-sectional configuration example of a continuous heat treatment furnace used in the method for manufacturing a metal tube of the present invention, in which the pressure changes in two or more stages in the furnace. This figure (a) and the temperature pattern of the metal pipe (for example, stainless steel pipe), the pressure distribution in the furnace, and the exhaust effect of the gas generated from the residual deposits on the inner surface of the pipe are shown schematically. Referring to (b), (c) and (d) of FIG. 5, it is generated from residual deposits in the pipe by using a “continuous heat treatment furnace in which the pressure changes in two or more stages in the furnace”. The reason why the gas can be completely discharged out of the pipe without retaining it, that is, the effect of the heat treatment furnace will be described.

図5(イ)に示す熱処理炉は、入口帯1、加熱帯2、冷却帯3および出口帯4を有しており、加熱帯2に雰囲気ガスを導入して、金属管をその軸方向に沿って入口帯1から連続的に炉内に装入し、所定の熱処理を施し、出口帯4から搬出する構造になっている。炉床には、金属管を搬送するための送管用ローラ(図示せず)が配置されている。   The heat treatment furnace shown in FIG. 5 (a) has an inlet zone 1, a heating zone 2, a cooling zone 3 and an outlet zone 4, and an atmosphere gas is introduced into the heating zone 2 so that the metal tube is in the axial direction. Along with this, the furnace is continuously charged from the inlet zone 1 into the furnace, subjected to a predetermined heat treatment, and carried out from the outlet zone 4. A pipe feeding roller (not shown) for conveying the metal pipe is disposed on the hearth.

入口帯1の入側と、加熱帯2の入側近傍および出口帯4の出側にそれぞれシールカーテン5a、5bおよび5cが取り付けられている。   Seal curtains 5a, 5b, and 5c are attached to the entrance side of the inlet zone 1, the vicinity of the entrance side of the heating zone 2, and the exit side of the exit zone 4, respectively.

図5(ハ)は、炉内の圧力分布で、前記のようにシールカーテン5a、5bおよび5cを取り付けることにより、シールカーテン5aを挟んで入口帯1と連続熱処理炉外との間で圧力差が生じ、シールカーテン5bを挟んで加熱帯2と入口帯1との間で圧力差が生じる。すなわち、炉内圧を炉外の圧力に対して入口帯1の部分と加熱帯2の部分とで2段階に変化させることができる。なお、シールカーテン5bとシールカーテン5cの間には圧力差はなく、シールカーテン5cを挟んで出口帯4と炉外との間に前記2段階分の圧力差が存在する。   FIG. 5 (c) shows the pressure distribution in the furnace. By attaching the seal curtains 5a, 5b and 5c as described above, the pressure difference between the inlet zone 1 and the outside of the continuous heat treatment furnace with the seal curtain 5a interposed therebetween. And a pressure difference is generated between the heating zone 2 and the inlet zone 1 across the seal curtain 5b. That is, the internal pressure of the furnace can be changed in two stages with respect to the pressure outside the furnace, in the inlet zone 1 and the heating zone 2. Note that there is no pressure difference between the seal curtain 5b and the seal curtain 5c, and there is a pressure difference of the two stages between the outlet belt 4 and the outside of the furnace across the seal curtain 5c.

図5(ロ)は、金属管の温度パターンである。金属管は、加熱帯2で加熱され、シールカーテン5bの手前で500℃に達し、さらに昇温して、固溶化熱処理温度で所定時間保持された後、冷却帯3で所定温度まで冷却され、その後は徐々に冷却される。なお、前記の500℃とは、先に述べたように、残留付着物からのF、Cl、S等を含有するガスの発生がこの温度までには終了する“ガス発生の上限温度”である。   FIG. 5B is a temperature pattern of the metal tube. The metal tube is heated in the heating zone 2, reaches 500 ° C. before the seal curtain 5 b, further rises in temperature, is held at a solution heat treatment temperature for a predetermined time, and then cooled to a predetermined temperature in the cooling zone 3, After that, it is gradually cooled. The 500 ° C. is the “upper limit gas generation temperature” at which the generation of gas containing F, Cl, S, etc. from the residual deposits is completed by this temperature, as described above. .

図5(ニ)は、管内面の残留付着物から発生するガスの排出効果を説明するための図で、連続熱処理炉に装入された金属管が、金属管6aの位置から6eの位置まで炉内を搬送されていく間に、管内のガスが管外へ排出される状態を表している。金属管6aの全体、または管6bの後端側半分等の薄黒色を施した部分は、残留付着物から未だガスが発生していないか、発生していても、完全には排出されておらず、管内に滞留していることを表す。また、金属管6aから6eの先端および後端に記した薄黒色の矢印は、管内を流れる雰囲気ガスの流れの方向を示している。   FIG. 5 (d) is a view for explaining the effect of discharging the gas generated from the residual deposits on the inner surface of the pipe, from the position of the metal pipe 6a to the position of 6e from the position of the metal pipe 6a. This shows a state in which the gas in the pipe is discharged out of the pipe while being transported in the furnace. The entire metal tube 6a or the light black portion such as the rear half of the tube 6b has not been completely discharged even if gas has not yet been generated from the residual deposits. It means that it stays in the pipe. Moreover, the light black arrow described at the front-end | tip and the rear end of the metal pipes 6a-6e has shown the direction of the flow of the atmospheric gas which flows through the inside of a pipe | tube.

図5(ニ)において、金属管6aは、その先端側3/4程度が炉内に装入され、管の先端がシールカーテン5bに達する直前の状態にある。管の大部分がまだ加熱されておらず、先端部でも500℃に昇温していない。炉外と入口帯1との間には圧力差があるので雰囲気ガスは管の先端から後端に向かって流れてはいるが、管内面の残留付着物からのガス発生は管の先端近傍で始まったばかりで、管の大部分では未だガス発生は起こっていない。   In FIG. 5 (d), the metal tube 6a is in a state immediately before its tip side about 3/4 is inserted into the furnace and the tip of the tube reaches the seal curtain 5b. Most of the tube has not yet been heated, and the tip has not been heated to 500 ° C. Although there is a pressure difference between the outside of the furnace and the inlet zone 1, the atmospheric gas flows from the tip to the rear end of the tube, but gas generation from residual deposits on the inner surface of the tube is near the tip of the tube. It has only just begun and gas generation has not yet occurred in most of the tubes.

金属管6bは、管の先端が加熱帯2にあり、管の後端が入口帯1にある状態で、管の先端側の半分は既に500℃以上に昇温して残留付着物からのガス発生が終わっており、一方、管の先端と後端との間には圧力差があるので、雰囲気ガスは管の先端から後端に向かって流れ、管の先端側半分の発生ガスは管外へ排出される。金属管6cは、この管外への排出が更に進んだ状態を示している。   In the metal tube 6b, the tip of the tube is in the heating zone 2 and the rear end of the tube is in the inlet zone 1, and the half on the tip side of the tube has already been heated to 500 ° C. or higher, and the gas from the residual deposits On the other hand, since there is a pressure difference between the tip and the rear end of the tube, the atmospheric gas flows from the tip of the tube toward the rear end, and the generated gas in the tip half of the tube is outside the tube. Is discharged. The metal pipe 6c shows a state where the discharge to the outside of the pipe has further progressed.

金属管6dは、管全体が500℃以上に昇温して残留付着物からのガス発生が終わり、雰囲気ガスの管先端から後端への流れにより発生ガスが管外へ排出された状態を表している。そして、金属管6eは管の先端が炉外へ搬出された状態で、未だ炉内にある管の後端側の方が圧力が高いので、雰囲気ガスは逆に管の後端から先端へ流れる(薄黒色の矢印参照)。   The metal pipe 6d represents a state in which the entire pipe is heated to 500 ° C. or more and the gas generation from the residual deposits is finished, and the generated gas is discharged out of the pipe by the flow of the atmospheric gas from the front end to the rear end. ing. The metal tube 6e is in a state in which the tip of the tube is carried out of the furnace, and the pressure at the rear end side of the tube still in the furnace is higher, so the atmospheric gas flows from the rear end of the tube to the tip. (See light black arrow).

図6は、本発明の金属管の製造方法で使用する他の連続熱処理炉の断面構成例(図6(イ))、金属管の温度パターン(同(ロ))、炉内圧力分布(同(ハ))および管内面の残留付着物から発生するガスの排出効果(同(ニ))を模式的に示す図である。図6の(ロ)〜(ニ)における横方向の長さはいずれも(イ)のそれに対応している。   FIG. 6 shows a cross-sectional configuration example (FIG. 6 (a)) of another continuous heat treatment furnace used in the metal tube manufacturing method of the present invention, the temperature pattern of the metal tube (same (b)), and the furnace pressure distribution (same as above). It is a figure which shows typically the discharge effect (the same (d)) of the gas which generate | occur | produces from the (c) and the residual deposit | attachment of a pipe inner surface. The lengths in the horizontal direction in (B) to (D) of FIG. 6 correspond to those in (A).

図6に示した熱処理炉と前記図5に示した炉との違いは、図6に示した熱処理炉においては、さらに、出口帯4の入側(換言すれば、冷却帯3の出側)にシールカーテン5dが取り付けられている点である。そのため、図6(ハ)に示すように、炉内の圧力分布が炉の出口帯4側でも2段階に変化している。   The difference between the heat treatment furnace shown in FIG. 6 and the furnace shown in FIG. 5 is that, in the heat treatment furnace shown in FIG. 6, the entry side of the exit zone 4 (in other words, the exit side of the cooling zone 3). The point is that a seal curtain 5d is attached. Therefore, as shown in FIG. 6C, the pressure distribution in the furnace changes in two stages on the outlet zone 4 side of the furnace.

管内面の残留付着物から発生するガスの排出効果に関しては、図6(ニ)に示すように、前記図5に示した熱処理炉の場合と同等である。   As shown in FIG. 6 (d), the effect of discharging the gas generated from the residual deposits on the inner surface of the tube is the same as that of the heat treatment furnace shown in FIG.

図7は、本発明の金属管の製造方法で使用するさらに他の連続熱処理炉の断面構成例(図7(イ))、金属管の温度パターン(同(ロ))、炉内圧力分布(同(ハ))および管内面の残留付着物から発生するガスの排出効果(同(ニ))を模式的に示す図で、(ロ)〜(ニ)における横方向の長さはいずれも(イ)のそれに対応している。   FIG. 7 is a cross-sectional configuration example of another continuous heat treatment furnace used in the method of manufacturing a metal tube of the present invention (FIG. 7 (a)), a metal tube temperature pattern (same (b)), and the furnace pressure distribution ( (C)) and the exhaust effect of the gas generated from the residual deposits on the inner surface of the pipe (same (d)). The horizontal lengths in (b) to (d) are all ( It corresponds to that of b).

図7に示した熱処理炉と前記図5に示した炉との違いは、入口帯1のシールカーテンの取り付け位置で、図7に示した熱処理炉では、入口帯1の入側ではなく、後端にシールカーテン5a′が取り付けられている。そのため、図7(ハ)に示すように、炉内の圧力分布が若干相違し、炉内の1段目の圧力の範囲が狭くなっている。   The difference between the heat treatment furnace shown in FIG. 7 and the furnace shown in FIG. 5 is the attachment position of the seal curtain in the inlet zone 1, and in the heat treatment furnace shown in FIG. A seal curtain 5a 'is attached to the end. Therefore, as shown in FIG. 7C, the pressure distribution in the furnace is slightly different, and the first-stage pressure range in the furnace is narrow.

管内面の残留付着物からのガスの排出効果に関しては、図7(ニ)に示すように、前記図5に示した熱処理炉の場合と同じである。   As shown in FIG. 7 (d), the effect of discharging the gas from the residual deposits on the inner surface of the tube is the same as in the case of the heat treatment furnace shown in FIG.

図8は、本発明の金属管の製造方法で使用するさらに他の連続熱処理炉の断面構成例(図8(イ))、金属管の温度パターン(同(ロ))、炉内圧力分布(同(ハ))および管内面の残留付着物から発生するガスの排出効果(同(ニ))を模式的に示す図で、(ロ)〜(ニ)における横方向の長さはいずれも(イ)のそれに対応している。   FIG. 8 is a cross-sectional configuration example of still another continuous heat treatment furnace used in the metal tube manufacturing method of the present invention (FIG. 8 (a)), the temperature pattern of the metal tube (same (b)), and the furnace pressure distribution ( (C)) and the exhaust effect of the gas generated from the residual deposits on the inner surface of the pipe (same (d)). The horizontal lengths in (b) to (d) are all ( It corresponds to that of b).

図8に示した熱処理炉と前記図5に示した炉との違いは、入口帯1に予熱器7を設け、加熱帯2のシールカーテン5bを外して、入口帯1の後端にシールカーテン5a′を取り付けた点である。そのため、図8(ハ)に示すように、金属管の温度が500℃に到達する領域が入口帯1側へ移行するとともに、炉内の2段目の圧力の範囲が広くなっている。   The difference between the heat treatment furnace shown in FIG. 8 and the furnace shown in FIG. 5 is that a preheater 7 is provided in the inlet zone 1, the seal curtain 5 b of the heating zone 2 is removed, and the seal curtain at the rear end of the inlet zone 1. 5a 'is attached. For this reason, as shown in FIG. 8C, the region where the temperature of the metal tube reaches 500 ° C. shifts to the inlet zone 1 side, and the pressure range of the second stage in the furnace is widened.

その結果、管内面の残留付着物からのガスの排出効果に関しては、図(ニ)に示すように、残留付着物からのガス発生が早期に起こるので、発生ガスの管外への排出が迅速に行われる。これによって、熱処理炉内への送管速度の上昇が可能となる。
As a result, as shown in Fig. 8 (d), the gas generation from the residual deposit on the inner surface of the pipe causes the gas generation from the residual deposit at an early stage. Done quickly. This makes it possible to increase the pipe feeding speed into the heat treatment furnace.

シールカーテンの材質、形状等について特に限定はなく、従来使用されている耐熱性のカーテンが使用できる。複数枚を重ね、更にそれを複数セットで使用すれば、シールカーテンの前後における圧力差の維持に効果的である。   There are no particular limitations on the material, shape, etc. of the seal curtain, and conventionally used heat-resistant curtains can be used. If a plurality of sheets are stacked and further used in a plurality of sets, it is effective for maintaining a pressure difference before and after the seal curtain.

前記の説明は、炉内の圧力が入口帯と加熱帯とで2段階に変化している例であるが、3段階以上に変化する炉を用いてもよい。   Although the above description is an example in which the pressure in the furnace changes in two stages in the inlet zone and the heating zone, a furnace that changes in three stages or more may be used.

図9は、従来使用されてきた連続熱処理炉の断面構成例(図9(イ))、金属管の温度パターン(同(ロ))、炉内圧力分布(同(ハ))および管内面の残留付着物から発生するガスの排出効果(同(ニ))を模式的に示す図で、本発明の被膜形成方法で使用する連続熱処理炉との比較のためにここで説明する。なお、図9の(ロ)〜(ニ)における横方向の長さはいずれも(イ)のそれに対応している。   FIG. 9 shows a cross-sectional configuration example (FIG. 9 (a)) of a conventionally used continuous heat treatment furnace, the temperature pattern of the metal tube (same (b)), the pressure distribution in the furnace (same (c)) and the inner surface of the tube. It is a figure which shows typically the discharge effect (the same (d)) of the gas which generate | occur | produces from a residual deposit, and demonstrates here for the comparison with the continuous heat processing furnace used with the film formation method of this invention. Note that the horizontal lengths in (B) to (D) of FIG. 9 correspond to those in (A).

図9に示した熱処理炉と前記図5〜図8に示した熱処理炉との違いは、加熱帯2のシールカーテン5bと、入口帯1の後端におけるシールカーテン5a′の有無である。すなわち、図5〜図8に示した熱処理炉はシールカーテン5bまたはシールカーテン5a′を備えているので、炉内の圧力を2段階に変化させることが可能であるが、図9に示した従来の熱処理炉では、図9(ハ)に示すように、炉内の圧力分布は1段である。   The difference between the heat treatment furnace shown in FIG. 9 and the heat treatment furnace shown in FIGS. 5 to 8 is the presence or absence of the seal curtain 5 b in the heating zone 2 and the seal curtain 5 a ′ at the rear end of the inlet zone 1. That is, since the heat treatment furnace shown in FIGS. 5 to 8 includes the seal curtain 5b or the seal curtain 5a ′, the pressure in the furnace can be changed in two stages, but the conventional heat treatment furnace shown in FIG. In the heat treatment furnace, the pressure distribution in the furnace is one stage as shown in FIG.

そのため、図9(ニ)に示すように、金属管全体が炉内に装入された状態(金属管6b、6c、6d)では、炉内雰囲気ガスの管先端から後端へ向かう流れは生じず、残留付着物から発生したガスが管内に滞留したままで固溶化熱処理を受け、浸炭が発生したり、熱処理の冷却時にフッ化物、塩化物等のハロゲン化合物が再付着したりすることになる。   Therefore, as shown in FIG. 9 (d), in the state where the entire metal tube is charged in the furnace (metal tubes 6b, 6c, 6d), the flow of the atmosphere gas from the furnace toward the rear end occurs. However, the gas generated from the residual deposits remains in the tube and undergoes a solution heat treatment, and carburization occurs, and halogen compounds such as fluoride and chloride are reattached during cooling of the heat treatment. .

金属管6eの状態になると管の先端部分が炉外に搬出されるので、管の後端から先端へ向かう雰囲気ガスの流れが生じるが、発生ガスが完全に排出(除去)される前に管全体が炉外へ搬出されると、発生ガスが一部管内に残留し、管内表面に凝縮、付着し、配管として使用する際に、管内を通過する物質に汚染を生じさせることになる。   When the state of the metal tube 6e is reached, the tip portion of the tube is carried out of the furnace, so that an atmosphere gas flows from the rear end of the tube to the tip, but before the generated gas is completely discharged (removed), When the whole is carried out of the furnace, a part of the generated gas remains in the pipe, condenses and adheres to the inner surface of the pipe, and causes contamination of substances passing through the pipe when used as piping.

以上説明したように、図5〜図8に例示した連続熱処理炉を用いれば、金属管内部に管の進行方向先端から後端に向かう雰囲気ガスの流れを自然に生じさせることができる。したがって、冷間加工後の洗浄工程を「アルカリ脱脂→温水洗浄」のみとした場合であっても、金属管の温度が熱処理温度(この例では、固溶化熱処理温度)に達する前に管内部の残留付着物を気化し、雰囲気ガスにより完全に置換、除去することができる。   As described above, if the continuous heat treatment furnace illustrated in FIGS. 5 to 8 is used, the flow of the atmospheric gas from the front end to the rear end in the traveling direction of the pipe can be naturally generated inside the metal pipe. Therefore, even if the washing process after cold working is only “alkaline degreasing → warm water washing”, the temperature inside the pipe is reduced before the temperature of the metal pipe reaches the heat treatment temperature (in this example, the solution heat treatment temperature). Residual deposits can be vaporized and completely replaced and removed by atmospheric gas.

熱処理時の雰囲気ガスとしては、水素を主体とする雰囲気ガスや、大気と燃焼ガス、または不活性ガスを使用する。   As the atmospheric gas at the time of heat treatment, an atmospheric gas mainly composed of hydrogen, the air and a combustion gas, or an inert gas is used.

水素を主体とする雰囲気ガスを使用するのは、表面酸化を抑えるためである。この場合は、水素のみでもよいし、水素に、例えば、He、Ar等の不活性ガスを混合してもよい。ただ、不活性ガスは高価なので、通常は積極的には添加しない。   The reason why the atmospheric gas mainly containing hydrogen is used is to suppress surface oxidation. In this case, only hydrogen may be used, or an inert gas such as He or Ar may be mixed with hydrogen. However, since inert gas is expensive, it is usually not added aggressively.

窒素は、不活性なガスで、かつ安価であり、水素に混合して用いることは可能であるが、ステンレス鋼管の窒素含有レベルによっては、母材への浸透(窒化)または脱窒を生じる。したがって、その混合割合は、母材の窒素レベルに応じて0〜10体積%の範囲で調整するのがよい。なお、これらのガスの他、不可避的に混入する不純物は許容される。   Nitrogen is an inert gas and is inexpensive and can be mixed with hydrogen and used. However, depending on the nitrogen content level of the stainless steel pipe, penetration (nitriding) or denitrification of the base metal occurs. Therefore, the mixing ratio is preferably adjusted in the range of 0 to 10% by volume according to the nitrogen level of the base material. In addition to these gases, impurities inevitably mixed are allowed.

大気と燃焼ガスを使用すれば、すなわち、熱処理炉内に例えば、燃料であるLNGの燃焼排ガスを通過させる方法を採用すれば、熱処理コストを低下させることができる。しかし、この場合は、例えば、ステンレス鋼への浸炭を防止すべく、ステンレス鋼のC活量よりも雰囲気ガスのC活量を下げておくことが必要である。そのためには、燃料ガスを完全燃焼させて雰囲気ガス中の一酸化炭素濃度を低減するのがよい。通常は、燃焼用空気の供給量を理論空気量以上としておけば問題ない。   If the atmosphere and the combustion gas are used, that is, if, for example, a method of passing the combustion exhaust gas of LNG as a fuel through the heat treatment furnace, the heat treatment cost can be reduced. However, in this case, for example, in order to prevent carburizing into stainless steel, it is necessary to lower the C activity of the atmospheric gas than the C activity of stainless steel. For this purpose, it is preferable to reduce the carbon monoxide concentration in the atmospheric gas by completely burning the fuel gas. Normally, there is no problem if the supply amount of combustion air is set to a theoretical air amount or more.

また、材料面その他の要請から、水素の使用が忌避される場合は、例えば、Ar等の不活性ガスを使用することも可能である。   Further, in the case where the use of hydrogen is avoided due to demands for materials and other requirements, it is possible to use an inert gas such as Ar, for example.

これらの雰囲気ガスを用いた場合、非酸化性ガス(水素、窒素や、He、Ar等の不活性ガス)においては材料表面にスケールが形成されることはないので、熱処理後の酸洗は必要ない(ただし、酸洗を行っても差し支えない)。大気と燃焼ガスを雰囲気ガスとして使用する場合も、燃焼ガスが主体で、スケールの形成はほんの僅かなので、金属管の用途等に応じ酸洗の要否を選択する。   When these atmospheric gases are used, scales are not formed on the surface of non-oxidizing gases (inert gases such as hydrogen, nitrogen, He, and Ar), so pickling after heat treatment is necessary. No (however, pickling may be performed). When air and combustion gas are used as the atmospheric gas, the combustion gas is mainly used and the formation of scale is very small. Therefore, the necessity of pickling is selected according to the use of the metal tube.

なお、雰囲気ガスについては、金属管の製造上の制約、製品の用途等に応じて、前記各種のガスから適宜選択して使用すればよい。   Note that the atmospheric gas may be appropriately selected from the various gases according to restrictions on the production of the metal tube, the use of the product, and the like.

以上述べた「圧力が炉内で2段階以上に変化する連続熱処理炉を用いて熱処理を行う」ことにより、脱脂(非酸洗脱脂)の際に管の表面(特に、管内面)に残存した付着物をガス化除去し、加熱を継続したまま清浄な表面を維持しつつ熱処理を行うことができる。すなわち、通常のアルカリ脱脂および温水洗浄では完全に除去することが困難な残留付着物のガス化除去と、固溶化等の熱処理とを同時に行うことが可能である。   As described above, by performing heat treatment using a continuous heat treatment furnace in which the pressure changes in two or more stages in the furnace, it remains on the surface of the tube (particularly the inner surface of the tube) during degreasing (non-pickling degreasing). The deposit can be removed by gasification and heat treatment can be performed while maintaining a clean surface while heating is continued. That is, it is possible to simultaneously perform gasification and removal of residual deposits that are difficult to remove completely by normal alkaline degreasing and hot water cleaning, and heat treatment such as solid solution.

前記図1(b)、(c)では、この(3)の工程で行う熱処理を、「管内に雰囲気ガスの通気のある熱処理」と表示している。なお、図1(a)に示した従来例における熱処理は、炉内の圧力の段階的な変化がなく、大気雰囲気下で行う「大気炉熱処理」で、この場合は、生成するスケールを除去するための「酸洗」処理が必要になる。また、図1(c)の「仕上げパス」前の冷間加工時の熱処理、すなわち「大気炉熱処理または光輝熱処理」における「光輝熱処理」とは、炉内の圧力の段階的な変化がなく、水素または水素主体の雰囲気下で行う熱処理で、この場合はスケールが生成しないので、「酸洗」処理は不要である。更に表面の清浄度を高める為に、酸洗および純水等により洗浄を追加して行ってもよい。この場合、本発明の方法で得た金属管は、洗浄の手間が少なく良好な清浄度を得ることができる。   In FIG. 1B and FIG. 1C, the heat treatment performed in the step (3) is indicated as “heat treatment with ventilation of atmospheric gas in the tube”. Note that the heat treatment in the conventional example shown in FIG. 1A is an “atmospheric furnace heat treatment” performed in an air atmosphere without any stepwise change in the pressure in the furnace. In this case, the generated scale is removed. Therefore, a “pickling” process is required. In addition, the heat treatment during the cold working before the “finishing pass” in FIG. 1C, that is, the “bright heat treatment” in the “atmospheric furnace heat treatment or bright heat treatment”, has no stepwise change in pressure in the furnace, In the heat treatment performed in an atmosphere mainly composed of hydrogen or hydrogen, no scale is generated in this case, so that the “pickling” treatment is unnecessary. Further, in order to increase the cleanliness of the surface, washing may be additionally performed with pickling or pure water. In this case, the metal tube obtained by the method of the present invention can obtain a good cleanliness with little trouble of washing.

前記(1)〜(3)の工程を経た後、図1に示すように、「精整」工程、「検査」工程で、常法に従って曲がり矯正、切断、管端仕上げ等の「精整」や、「検査」を行い、さらに、必要に応じ、Uベンド加工と精整検査を行う。   After passing through the steps (1) to (3), as shown in FIG. 1, in the “refining” step and “inspection” step, “refining” such as bending correction, cutting, pipe end finishing, etc. in accordance with ordinary methods. In addition, “inspection” is performed, and further, U-bending processing and precision inspection are performed as necessary.

以上、主としてステンレス鋼管について説明したが、本発明の製造方法は、その他の合金鋼、あるいはNi基合金、その他の非鉄金属を素材とする金属管の製造にも適用することができる。   As mentioned above, although the stainless steel pipe was mainly demonstrated, the manufacturing method of this invention is applicable also to manufacture of the metal pipe which uses other alloy steel, Ni base alloy, and another nonferrous metal as a raw material.

SUS304(オーステナイト系ステンレス鋼)を素材とするステンレス鋼管(以下、単に「管」ともいう)を、前記図1(b)または(c)に例示した製管工程に準じた工程で製造し、表面粒界腐食深さ、表面粗さ、カーバイド析出(10%蓚酸による腐食試験)および付着物(塩化物、硫化物)量を調査した。なお、前記製造した管の寸法は、外径16mm、厚さ1.2mm、長さ14〜20mである。   A stainless steel pipe (hereinafter also simply referred to as “pipe”) made of SUS304 (austenitic stainless steel) is manufactured by a process according to the pipe making process illustrated in FIG. 1 (b) or (c). Intergranular corrosion depth, surface roughness, carbide precipitation (corrosion test with 10% oxalic acid) and the amount of deposits (chloride, sulfide) were investigated. In addition, the dimensions of the manufactured tube are an outer diameter of 16 mm, a thickness of 1.2 mm, and a length of 14 to 20 m.

評価方法は次のとおりである。   The evaluation method is as follows.

〔表面粒界腐食深さ〕
管の縦断面のミクロ観察を行い、表面(縦断面)における結晶粒界に沿った浸食深さのうち最大深さを求めて、これを表面粒界腐食深さとし、この深さが1/100mm以下の場合「◎印(極めて良好)」、1/100mmを超え2/100mm以下の場合「○印(良好)」、2/100mmを超える場合「×印(不良)」とした。
[Surface grain boundary corrosion depth]
Microscopic observation of the longitudinal section of the tube is performed, and the maximum depth of the erosion depths along the crystal grain boundaries on the surface (longitudinal section) is obtained. This is defined as the surface grain boundary corrosion depth, and this depth is 1/100 mm. In the following cases, “◎” (very good), “◯” (good) when it exceeds 1/100 mm and 2/100 mm or less, and “× (bad)” when it exceeds 2/100 mm.

〔表面粗さ〕
管の内面3箇所の表面粗さを中心線平均粗さRa(μm)で表示し、その平均値が0.5μm以下であれば「◎印(極めて良好)」、0.5μm超え1μm以下であれば「○印(良好)」、1μm超えであれば「×印(不良)」とした。
〔Surface roughness〕
The surface roughness of the three inner surfaces of the tube is indicated by the centerline average roughness Ra (μm). If the average value is 0.5 μm or less, “◎ (very good)”, 0.5 μm to 1 μm or less If there was “◯ mark (good)”, if it exceeded 1 μm, it was marked “x mark (defect)”.

〔カーバイド析出(10%蓚酸による腐食試験)〕
冷間加工後の熱処理を施した前記ステンレス鋼管20本のそれぞれについて、長さ方向に5mの等間隔で試験片を採取し、625℃×2時間の鋭敏化処理を行って、粒界にCrカーバイドを析出させ、粒界隣接部にCr欠乏層(領域)を生じさせた後、10%蓚酸による腐食試験を実施した。試験は、JIS G 0571(ステンレス鋼の10%しゅう酸エッチ試験方法)に規定される方法に準じて行った。
[Carbide precipitation (corrosion test with 10% oxalic acid)]
For each of the 20 stainless steel pipes subjected to the heat treatment after cold working, specimens were taken at equal intervals of 5 m in the length direction, subjected to sensitization treatment at 625 ° C. × 2 hours, and Cr was applied to the grain boundaries. Carbide was precipitated to form a Cr-deficient layer (region) in the grain boundary adjacent portion, and then a corrosion test with 10% oxalic acid was performed. The test was performed according to the method specified in JIS G 0571 (10% oxalic acid etch test method for stainless steel).

前記試験において、いずれの結晶粒においても粒界に溝状組織が認められなければ「◎印(極めて良好)」、溝状組織が認められた場合であっても、いずれの結晶粒においても溝状組織が粒界の5%以下でしか認められなければ「○印(良好)」、溝状組織が粒界の5%以上に認められる結晶粒が1個でもあれば「×印(不良)」とした。   In the above test, if no groove-like structure is observed at the grain boundary in any crystal grain, “◎ (very good)”, even in the case where a groove-like structure is observed, the groove in any crystal grain "○ mark (good)" if the texture is found only at 5% or less of the grain boundary, "X mark (bad) if there is at least one crystal grain whose groove structure is found at 5% or more of the grain boundary" "

〔付着物量(塩化物および硫化物量)〕
管内に純水を封入し、内面の付着物を溶出させた後、封入水中のClイオン、SO4イオンの濃度をイオンクロマトグラフィーにより求め、封入水量と管内の表面積から単位表面積当たりの塩化物量(mg/m2)、および硫化物量(mg/m2)を算出した。塩化物および硫化物の合計量が1mg/m2以下であれば「○印(良好)」、1mg/m2超えであれば「×印(不良)」とした。
[Amount of deposit (amount of chloride and sulfide)]
After the pure water is sealed in the tube and the deposits on the inner surface are eluted, the concentration of Cl ion and SO 4 ion in the sealed water is obtained by ion chromatography, and the amount of chloride per unit surface area is determined from the amount of sealed water and the surface area in the tube ( mg / m 2 ) and the amount of sulfide (mg / m 2 ) were calculated. When the total amount of chloride and sulfide was 1 mg / m 2 or less, “◯” (good), and when it exceeded 1 mg / m 2 , “×” (bad).

製管条件を表1に、調査結果を表2に示す。   The pipe making conditions are shown in Table 1, and the survey results are shown in Table 2.

Figure 0004100371
Figure 0004100371

Figure 0004100371
Figure 0004100371

表1の「炉の形式」の欄の「2段階炉内圧1」とは、炉内圧力が図5の(ハ)のような分布を示す炉であり、「2段階炉内圧2」とは、同じく図6の(ハ)、「2段階炉内圧4」とは、同じく図8の(ハ)のような炉内圧分布を示す炉である。そして、比較例の「従来水素炉」とは、炉内の圧力の段階的な変化のない水素炉(光輝炉)である。また、「雰囲気ガス」の欄の「水素」は、H2が実質的に100体積%であることを意味する。 “Two-stage furnace pressure 1” in the column of “Type of furnace” in Table 1 is a furnace in which the furnace pressure has a distribution as shown in FIG. Similarly, (c) in FIG. 6 and “two-stage furnace pressure 4” are furnaces showing the furnace pressure distribution as in (c) in FIG. The “conventional hydrogen furnace” in the comparative example is a hydrogen furnace (bright furnace) that does not have a stepwise change in pressure in the furnace. Further, “hydrogen” in the “atmosphere gas” column means that H 2 is substantially 100% by volume.

表1および表2から明らかなように、圧力が炉内で2段階に変化する熱処理炉を用いた本発明例1〜9では、表面粒界腐食深さ、表面粗さRa、カーバイド析出(10%蓚酸による腐食試験)および付着物量のいずれも良好であった。   As is apparent from Tables 1 and 2, in Examples 1 to 9 of the present invention using the heat treatment furnace in which the pressure changes in two stages in the furnace, the surface intergranular corrosion depth, the surface roughness Ra, the carbide precipitation (10 Both the corrosion test with% oxalic acid) and the amount of deposits were good.

これに対して、冷間加工前に「化成皮膜潤滑処理」を行い、熱処理炉として「従来水素炉(光輝炉)」を用いた比較例1では、表面粗さRaが劣り、10%蓚酸による腐食試験でも良好な結果は得られなかった。また、「油潤滑処理」を行ったが、「従来水素炉(光輝炉)」を用いた比較例2、3では、「熱処理」工程での管内残留付着物のガス化除去が十分ではなかったことに起因して、管内に付着物が認められた。   On the other hand, in Comparative Example 1 in which a “chemical conversion film lubrication treatment” was performed before cold working and a “conventional hydrogen furnace (bright furnace)” was used as a heat treatment furnace, the surface roughness Ra was inferior, and 10% oxalic acid was used. In the corrosion test, good results were not obtained. Moreover, although “oil lubrication treatment” was performed, in Comparative Examples 2 and 3 using the “conventional hydrogen furnace (bright furnace)”, gasification and removal of the residual deposits in the pipe in the “heat treatment” step was not sufficient. Due to this, deposits were observed in the tube.

なお、この実施例は、SUS304を素材とするステンレス鋼管についての調査結果であるが、これ以外のオーステナイト系ステンレス鋼やフェライト系ステンレス鋼などクロムを含むステンレス鋼やNi基合金についても、同様の結果が得られる。   In addition, although this Example is a result of investigation on a stainless steel pipe made of SUS304, similar results are obtained for stainless steel and Ni-based alloys containing chromium such as other austenitic stainless steels and ferritic stainless steels. Is obtained.

本発明の金属管の製造方法は、半導体製造、化学工業、食品産業、火力または原子力発電設備等の分野で広く用いられている表面清浄度および耐食性に優れたステンレス鋼管を始めとする金属管の製造、特に、製造時における管内面の洗浄作業が困難な、小径かつ長尺の伝熱管の製造等に好適に利用することが可能である。   The metal pipe manufacturing method of the present invention is a metal pipe including a stainless steel pipe excellent in surface cleanliness and corrosion resistance, which is widely used in the fields of semiconductor manufacturing, chemical industry, food industry, thermal power or nuclear power generation equipment. It can be suitably used for manufacturing, in particular, manufacturing a small-diameter and long heat transfer tube that is difficult to clean the inner surface of the tube during manufacturing.

本発明の金属管の製造方法を適用した一般的なステンレス鋼管の製管工程例を示す図で、(a)は従来方式の工程例、(b)と(c)は本発明の製造方法を適用した工程例である。It is a figure which shows the pipe manufacturing process example of the general stainless steel pipe to which the manufacturing method of the metal pipe of this invention is applied, (a) is a process example of a conventional system, (b) and (c) are the manufacturing methods of this invention. It is an applied process example. 熱間製管法で得られたステンレス鋼管素管のスケールを除去した後のSEM写真の一例で、(a)は管の表面のSEM写真、(b)は断面のSEM写真である。It is an example of the SEM photograph after removing the scale of the stainless steel pipe base tube obtained by the hot pipe making method, (a) is the SEM photograph of the surface of a pipe, and (b) is the SEM photograph of a section. ステンレス鋼管の結晶粒界の状態を模式的に示す図で、(a)は熱間製管して、スケールを除去した後の状態、(b)は冷間加工後の状態を示す図である。It is a figure which shows typically the state of the crystal grain boundary of a stainless steel pipe, (a) is a state after hot pipe making and removing a scale, (b) is a figure which shows the state after cold working. . 冷間加工後、脱脂処理した後のステンレス鋼管の断面のSEM写真(二次電子像)で、(a)は油潤滑処理を行った場合、(b)は化成皮膜潤滑処理を行った場合である。SEM photograph (secondary electron image) of a cross section of a stainless steel pipe after degreasing after cold working, (a) when oil lubrication is performed, (b) when chemical film lubrication is performed is there. 本発明の金属管の製造方法で使用する連続熱処理炉の断面構成例(図5(イ))、金属管の温度パターン(同(ロ))、炉内圧力分布(同(ハ))および管内面の残留付着物から発生するガスの排出効果(同(ニ))を模式的に示す図である。Cross-sectional configuration example (FIG. 5 (a)) of a continuous heat treatment furnace used in the method for producing a metal tube of the present invention, temperature pattern of the metal tube (same (b)), pressure distribution in the furnace (same (c)) and inside the tube It is a figure which shows typically the discharge effect (the same (d)) of the gas generated from the residue deposit on a surface. 本発明の被膜形成方法で使用する他の連続熱処理炉の断面構成例(図6(イ))、金属管の温度パターン(同(ロ))、炉内圧力分布(同(ハ))および管内面の残留付着物から発生するガスの排出効果(同(ニ))を模式的に示す図である。Example of cross-sectional structure of another continuous heat treatment furnace used in the film forming method of the present invention (FIG. 6 (a)), temperature pattern of metal pipe (same (b)), pressure distribution in the furnace (same (c)), and inside the pipe It is a figure which shows typically the discharge effect (the same (d)) of the gas generated from the residue deposit on a surface. 本発明の被膜形成方法で使用するさらに他の連続熱処理炉の断面構成例(図7(イ))、金属管の温度パターン(同(ロ))、炉内圧力分布(同(ハ))および管内面の残留付着物から発生するガスの排出効果(同(ニ))を模式的に示す図である。A cross-sectional configuration example of still another continuous heat treatment furnace used in the film forming method of the present invention (FIG. 7 (a)), a metal tube temperature pattern (same (b)), a furnace pressure distribution (same (c)) and It is a figure which shows typically the discharge effect (the same (d)) of the gas which generate | occur | produces from the residual deposit | attachment of a pipe inner surface. 本発明の被膜形成方法で使用するさらに他の連続熱処理炉の断面構成例(図5(イ))、金属管の温度パターン(同(ロ))、炉内圧力分布(同(ハ))および管内面の残留付着物から発生するガスの排出効果(同(ニ))を模式的に示す図である。A cross-sectional configuration example of still another continuous heat treatment furnace used in the film forming method of the present invention (FIG. 5 (a)), a metal tube temperature pattern (same (b)), a furnace pressure distribution (same (c)) and It is a figure which shows typically the discharge effect (the same (d)) of the gas which generate | occur | produces from the residual deposit | attachment of a pipe inner surface. 従来使用されてきた連続熱処理炉の断面構成例(図6(イ))、金属管の温度パターン(同(ロ))、炉内圧力分布(同(ハ))および管内面の残留付着物から発生するガスの排出効果(同(ニ))を模式的に示す図である。From the cross-sectional configuration example of a continuous heat treatment furnace that has been used in the past (Fig. 6 (a)), the temperature pattern of the metal tube (same (b)), the pressure distribution in the furnace (same (c)) and the residual deposits on the inner surface of the tube It is a figure which shows typically the discharge effect (the same (d)) of the generated gas.

符号の説明Explanation of symbols

1:入口帯
2:加熱帯
3:冷却帯
4:出口帯
5a、5a′、5b、5c、5d:シールカーテン
6a、6b、6c、6d、6e:金属管
7:予熱器
1: Inlet zone 2: Heating zone 3: Cooling zone 4: Outlet zone 5a, 5a ', 5b, 5c, 5d: Seal curtain 6a, 6b, 6c, 6d, 6e: Metal pipe 7: Preheater

Claims (1)

熱間加工により製管した金属素管を冷間加工して金属管を製造する方法であって、下記(1)〜(3)の工程を含むことを特徴とする金属管の製造方法。
(1)油潤滑処理を施して断面減少率が20%以上の冷間加工を行う冷間加工工程
(2)脱脂工程
(3)炉入口から加熱帯の被熱処理管が最高温度となる位置までの炉内圧力が2段階以上で順次高くなり、被熱処理管が加熱されて500℃となる管進行方向位置での炉内圧力が、炉外圧よりも高く、かつ炉内最大圧力よりも低い圧力となる連続熱処理炉を用いて熱処理を行う熱処理工程
A method of manufacturing a metal pipe by cold-working a metal base pipe manufactured by hot working, which includes the following steps (1) to (3).
(1) Cold working process in which oil lubrication is performed to perform cold working with a cross-section reduction rate of 20% or more (2) Degreasing process (3) From the furnace inlet to the position where the heat-treated pipe in the heating zone reaches the maximum temperature The pressure inside the furnace gradually increases in two or more stages , and the pressure inside the furnace in the tube traveling direction where the heat-treated tube is heated to 500 ° C. is higher than the outside pressure and lower than the maximum pressure in the furnace heat treatment step of performing heat treatment using a continuous heat treatment furnace preparative ing
JP2004125818A 2004-04-21 2004-04-21 Metal tube manufacturing method Expired - Lifetime JP4100371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004125818A JP4100371B2 (en) 2004-04-21 2004-04-21 Metal tube manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004125818A JP4100371B2 (en) 2004-04-21 2004-04-21 Metal tube manufacturing method

Publications (2)

Publication Number Publication Date
JP2005307273A JP2005307273A (en) 2005-11-04
JP4100371B2 true JP4100371B2 (en) 2008-06-11

Family

ID=35436369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004125818A Expired - Lifetime JP4100371B2 (en) 2004-04-21 2004-04-21 Metal tube manufacturing method

Country Status (1)

Country Link
JP (1) JP4100371B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007013126A1 (en) 2005-07-25 2007-02-01 Sumitomo Metal Industries, Ltd. Continuous heat treatment furnace and utilizing the same, metal pipe and method of heat treatment
JP5212025B2 (en) * 2008-11-05 2013-06-19 新日鐵住金株式会社 Atmospheric gas flow rate control method, continuous heat treatment furnace and tube using the same
CN102665951B (en) 2009-12-21 2015-02-11 新日铁住金株式会社 Base tube for cold-drawing, manufacturing method for same, and manufacturing method for cold-drawn tube
CN108723111A (en) * 2018-05-08 2018-11-02 浙江义腾特种钢管有限公司 A kind of processing technology of the pressure-resistant stainless steel tube of center integrated form heating system
CN114457225A (en) * 2022-01-18 2022-05-10 安阳钢铁股份有限公司 Normalizing process for improving inhibiting capability of high magnetic induction oriented silicon steel inhibitor
CN117655145A (en) * 2023-11-14 2024-03-08 中冶南方工程技术有限公司 Stainless steel plate continuous production line and production method

Also Published As

Publication number Publication date
JP2005307273A (en) 2005-11-04

Similar Documents

Publication Publication Date Title
KR100591362B1 (en) Stainless steel and stainless steel pipe having resistance to carburization and coking
EP2397573B1 (en) Method for producing metal tube
JP2996245B2 (en) Martensitic stainless steel with oxide scale layer and method for producing the same
JPWO2005078148A1 (en) Metal tube for use in carburizing gas atmosphere
CN115341144B (en) Austenitic stainless steel material and welded joint
EP3816311B1 (en) Steel pipe and steel sheet
CN100549204C (en) Martensitic stainless steel
JP4853515B2 (en) Stainless steel pipe manufacturing method
JP4100371B2 (en) Metal tube manufacturing method
WO2007013126A1 (en) Continuous heat treatment furnace and utilizing the same, metal pipe and method of heat treatment
JP6729682B2 (en) Austenitic stainless steel and manufacturing method thereof
MX2007006789A (en) Martensitic stainless steel pipe for oil well.
JP4442331B2 (en) Stainless steel and stainless steel pipe with carburization and caulking resistance
JP4751603B2 (en) Stainless steel pipe manufacturing method
JP5782753B2 (en) Manufacturing method of high Cr high Ni alloy tube and high Cr high Ni alloy
EP3406361A1 (en) Titanium plate
JP4175285B2 (en) Film formation method
JP2004239505A (en) Continuous heating treatment furnace, steel pipe and heat treating method using the same
JP5045819B2 (en) Cold drawing element tube, method for manufacturing the same, and method for manufacturing cold drawing tube
JP4720491B2 (en) Stainless steel pipe manufacturing method
JP2005023354A (en) Piping welded joint of low carbon stainless steel and its producing method
JP4403815B2 (en) Continuous heat treatment furnace, steel pipe using the same, and heat treatment method
JP2002001402A (en) Roll die in cold pilger mill and its manufacturing method
EP4317505A1 (en) Two-phase stainless steel welded joint
JP7111092B2 (en) Seamless steel pipe rolling plug, method for manufacturing seamless steel pipe rolling plug, seamless steel pipe rolling plug mill, method for rolling seamless steel pipe, and method for manufacturing seamless steel pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080310

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4100371

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350