JP5782753B2 - Manufacturing method of high Cr high Ni alloy tube and high Cr high Ni alloy - Google Patents

Manufacturing method of high Cr high Ni alloy tube and high Cr high Ni alloy Download PDF

Info

Publication number
JP5782753B2
JP5782753B2 JP2011050393A JP2011050393A JP5782753B2 JP 5782753 B2 JP5782753 B2 JP 5782753B2 JP 2011050393 A JP2011050393 A JP 2011050393A JP 2011050393 A JP2011050393 A JP 2011050393A JP 5782753 B2 JP5782753 B2 JP 5782753B2
Authority
JP
Japan
Prior art keywords
alloy
heat treatment
soaking
temperature
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011050393A
Other languages
Japanese (ja)
Other versions
JP2011214141A (en
Inventor
吉澤 満
満 吉澤
岡田 浩一
浩一 岡田
聡史 露口
聡史 露口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2011050393A priority Critical patent/JP5782753B2/en
Publication of JP2011214141A publication Critical patent/JP2011214141A/en
Application granted granted Critical
Publication of JP5782753B2 publication Critical patent/JP5782753B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、高温構造材料(耐熱材料)として使用される、良好な靱性を備えた高Cr高Ni合金管の製造方法に関する。また、本発明は、良好な靱性を備えた高Cr高Ni合金に関する。   The present invention relates to a method for producing a high Cr high Ni alloy tube having good toughness used as a high temperature structural material (heat resistant material). The present invention also relates to a high Cr high Ni alloy having good toughness.

別に記載がない限り、本明細書における用語の定義は次のとおりである。
「%」:対象物に含まれる各成分の質量百分率(質量%)を表す。
「高Cr高Ni合金」:Niを主成分とし、その含有量がステンレス鋼よりも多く、Ni基合金よりは少なく、CrをNiに次いで多く含む合金をいう。概念的には、ステンレス鋼とNi基合金の中間に位置する合金である。管、板、その他定形もしくは不定形の部材、またはそれらの加工品であって、前記成分範囲内の合金はいずれもここでいう高Cr高Ni合金である。なお、「高Cr高Ni合金管」とは、高Cr高Ni合金製の管である。
Unless otherwise stated, the definitions of terms in this specification are as follows.
“%”: Represents a mass percentage (mass%) of each component included in the object.
“High Cr high Ni alloy”: An alloy containing Ni as a main component, the content of which is higher than that of stainless steel, less than that of the Ni-based alloy, and higher than that of Ni. Conceptually, it is an alloy located between stainless steel and a Ni-based alloy. Tubes, plates, other shaped or irregular shaped members, or processed products thereof, and the alloys within the component ranges are all high Cr high Ni alloys. The “high Cr high Ni alloy pipe” is a pipe made of high Cr high Ni alloy.

「Cr析出量」:本発明の高Cr高Ni合金管の製造工程で、熱間加工後もしくは熱間加工に加えて冷間加工の後に熱処理を行った際に結晶粒界に析出するCrの析出物(主として、炭化物)、または本発明の高Cr高Ni合金において結晶粒界に析出しているCrの析出物(主として、炭化物)中のCr量の当該高Cr高Ni合金量に対する比率(百分率表示)をいう。この「Cr析出量」は、熱処理を行った後の高Cr高Ni合金管を電解して得られた抽出残渣の定量分析により求められる。   “Cr precipitation amount”: In the manufacturing process of the high Cr high Ni alloy tube of the present invention, the amount of Cr that precipitates at the grain boundaries when heat treatment is performed after hot working or after cold working in addition to hot working. The ratio of the amount of Cr in the precipitate (mainly carbide) or the amount of Cr in the precipitate (mainly carbide) of Cr precipitated in the high Cr high Ni alloy of the present invention to the amount of the high Cr high Ni alloy ( Percentage display). This “Cr precipitation amount” is obtained by quantitative analysis of the extraction residue obtained by electrolyzing the high Cr high Ni alloy tube after the heat treatment.

火力発電用ボイラ、蒸気タービンおよびガスタービン、化学工業用各種反応装置、原子力プラント等において使用される耐熱材料には、高温強度(引張強さ、クリープ強さ)が高く、高温耐酸化性・耐食性に優れていることに加え、延性、靱性も良好であることが要求される。耐熱材料としては、実際の使用環境の温度(使用温度)に応じて、Cr−Mo系低合金鋼、Cr量が9%以上のフェライト系およびマルテンサイト系ステンレス鋼、18Cr−8NiにMo、Nb、Ti等の合金元素を添加し、またはさらにCrやNiを増量したオーステナイト系ステンレス鋼、Niを主成分とし、Cr量を増した高Cr高Ni合金、Feをほとんど含まないNi基合金等が使用されている。   Heat-resistant materials used in thermal power generation boilers, steam turbines and gas turbines, various chemical reactors, nuclear power plants, etc. have high high-temperature strength (tensile strength and creep strength), and high-temperature oxidation and corrosion resistance. It is required that the ductility and toughness are also good. As heat-resistant materials, Cr—Mo low alloy steel, ferritic and martensitic stainless steels with a Cr content of 9% or more, 18Cr-8Ni, Mo, Nb depending on the temperature (operating temperature) of the actual usage environment. An austenitic stainless steel to which an alloying element such as Ti is added or Cr or Ni is further increased, a high Cr high Ni alloy mainly containing Ni and having an increased Cr content, a Ni-based alloy containing almost no Fe, etc. It is used.

高Cr高Ni合金は、耐用温度の高い耐熱材料として、従来から火力発電プラントやガスタービンの高温部、原子力プラントの蒸気発生器等において使用されてきた。   A high Cr high Ni alloy has been conventionally used as a heat resistant material having a high durability temperature in a thermal power plant, a high temperature part of a gas turbine, a steam generator of a nuclear power plant, and the like.

ところが、高Cr高Ni合金製の管においては、製造の過程で、耐熱材料に要求される重要な特性の一つである靭性(シャルピー衝撃試験における20℃の衝撃値、以下、「20℃シャルピー衝撃値」、または単に「20℃衝撃値」ともいう)が低くなる場合があった。   However, in a tube made of a high Cr high Ni alloy, toughness (an impact value at 20 ° C. in the Charpy impact test, hereinafter referred to as “20 ° C. Charpy”), which is one of the important characteristics required for heat-resistant materials during the manufacturing process. “Impact value” or simply “20 ° C. impact value”) may be low.

高Cr高Ni合金管は、例えば、電気炉により溶製して得られた合金塊に、均熱処理、分塊(鍛造)、熱間での圧延または押出し加工が施され、必要に応じて、引き抜きまたは圧延による冷間加工、溶体化熱処理、およびスケール除去のための酸洗等の各工程を経て製造される。   The high Cr high Ni alloy tube is subjected to, for example, uniform heat treatment, slabbing (forging), hot rolling or extrusion to the alloy ingot obtained by melting with an electric furnace, It is manufactured through various processes such as cold working by drawing or rolling, solution heat treatment, and pickling for removing scale.

具体的な例をあげると、Crを22.8%、Niを44.6%含有し、C、Si、Mn、Ti、Nb、Al、BおよびWを特定した(残部はFeおよび不純物)高Cr高Ni合金の管を、溶体化熱処理後、靭性(20℃シャルピー衝撃値)が低下する場合がある。靱性の低下は、後に詳述するように、溶体化熱処理の際にCr炭化物が粒界に析出したことによるものである。同様の靭性低下は、Crを29.8%、Niを50.1%含有し、C、Si、Mn、Ti、Nb、Zr、Al、BおよびWを特定した(残部はFeおよび不純物)高Cr高Ni合金の管を、溶体化熱処理した材料でも確認された。   Specific examples include 22.8% Cr and 44.6% Ni, and specified C, Si, Mn, Ti, Nb, Al, B and W (the balance being Fe and impurities). After the solution heat treatment, the toughness (20 ° C. Charpy impact value) of the Cr high Ni alloy tube may decrease. The decrease in toughness is due to the precipitation of Cr carbides at the grain boundaries during the solution heat treatment, as will be described in detail later. Similar toughness reductions included 29.8% Cr and 50.1% Ni, and identified C, Si, Mn, Ti, Nb, Zr, Al, B and W (the balance being Fe and impurities). A Cr high Ni alloy tube was also confirmed by a solution heat-treated material.

前記の靱性低下の抑制を課題として取り上げ、解決策を提示している文献等は見当たらない。しかし、粒界近傍における腐食損傷を低減させ、耐粒界応力腐食割れ性を向上させるための研究開発は従来から行われてきた。   There is no literature or the like that takes up the suppression of toughness as a problem and presents a solution. However, research and development for reducing corrosion damage in the vicinity of grain boundaries and improving resistance to intergranular stress corrosion cracking has been performed conventionally.

例えば、特許文献1には、Ni:58%以上、Cr:28〜31%を含有するNi基合金を加圧水型原子炉の発電プラントの蒸気発生器伝熱管に使用する場合の耐粒界腐食損傷性を大幅に向上させるNi基合金の製造方法が開示されている。この方法は、5〜20%の冷間加工と1070〜1200℃で1〜60分間の熱処理を組み合わせることによってNi基合金中に再結晶を生じさせ、耐腐食性の大きい対応粒界(両側の結晶粒がある結晶軸を対称に数度傾けると結晶格子が同じになる結晶粒界)の生成率を上げることにより耐粒界腐食損傷性を高める方法である。   For example, Patent Document 1 discloses intergranular corrosion damage when a Ni-based alloy containing Ni: 58% or more and Cr: 28-31% is used in a steam generator heat transfer tube of a power plant of a pressurized water reactor. A method for producing a Ni-based alloy that greatly improves the properties is disclosed. This method combines 5-20% cold working and heat treatment at 1070-1200 ° C. for 1-60 minutes to cause recrystallization in the Ni-based alloy, corresponding grain boundaries with high corrosion resistance (on both sides) This is a method of increasing the resistance to intergranular corrosion damage by increasing the generation rate of crystal grain boundaries in which the crystal lattice is the same when the crystal axis is tilted several degrees symmetrically.

特許文献2には、Cr:35%を超え40%以下、Ni:50〜57%を含有するNi基合金を加圧水型原子力発電所の熱交換器伝熱管に使用する場合の耐応力腐食割れ性に優れたNi基合金の熱処理方法が開示されている。この方法は、Ni基合金の製造時の最終焼鈍(溶体化処理に相当する)において、1000〜1200℃の温度域で1〜60分間保持した後、900〜500℃の温度範囲を冷却速度1〜100℃/secで冷却する方法である。   Patent Document 2 discloses stress corrosion cracking resistance when a Ni-based alloy containing Cr: more than 35% and 40% or less and Ni: 50-57% is used in a heat exchanger tube of a pressurized water nuclear power plant. An excellent heat treatment method for Ni-based alloys is disclosed. In this method, in the final annealing (corresponding to the solution treatment) at the time of manufacturing the Ni-based alloy, the temperature range of 900 to 500 ° C. is held for 1 to 60 minutes, and the cooling rate is set to 900 to 500 ° C. This is a method of cooling at ~ 100 ° C / sec.

しかし、特許文献1、2に記載の方法はいずれも、CrおよびNiの含有量が本発明で対象とする高Cr高Ni合金における含有量とは異なる。さらに、これら文献に記載の方法は、粒界近傍における腐食損傷を低減させ、または耐粒界応力腐食割れ性を向上させるための手段であり、靱性低下の抑制については何も記載されていない。   However, in any of the methods described in Patent Documents 1 and 2, the content of Cr and Ni is different from the content in the high Cr high Ni alloy targeted in the present invention. Furthermore, the methods described in these documents are means for reducing the corrosion damage in the vicinity of the grain boundary or improving the intergranular stress corrosion cracking resistance, and nothing is described about the suppression of the toughness deterioration.

特開2002−309355号公報JP 2002-309355 A 特開平−239739号公報Japanese Patent Laid-Open No. 239739

本発明の目的は、耐熱材料として高Cr高Ni合金管を製造するにあたって、靭性(シャルピー衝撃試験における20℃の衝撃値)の低下が起こらず、良好な靱性を備えた高Cr高Ni合金管の製造方法を提供することである。
本発明の他の目的は、良好な靱性を備えた高Cr高Ni合金を提供することである。
An object of the present invention is to produce a high Cr high Ni alloy pipe having good toughness without causing a decrease in toughness (impact value at 20 ° C. in Charpy impact test) in producing a high Cr high Ni alloy pipe as a heat resistant material. It is to provide a manufacturing method.
Another object of the present invention is to provide a high Cr high Ni alloy with good toughness.

(1)質量%でC:0.05〜0.09%、Si:0.1〜0.3%、Mn:0.05〜1.3%、P:0.015%以下、S:0.005%以下、Ni:44〜52%、Cr:27〜32%、Ti:0.05〜1.0%、sol.Al:0.005〜0.2%、B:0.001〜0.008%およびW:4〜10%、並びにNb:0.005〜0.25%およびZr:0.001〜0.05%のうちの1種または2種を含有し、残部がFeおよび不純物からなる高Cr高Ni合金管の製造方法であって、熱間加工後の連続熱処理炉またはバッチ炉を用いた熱処理において、当該高Cr高Ni合金管を1180℃以上に加熱する均熱処理を行った後、放冷過程に続き、水冷過程で下記(i)式を満たす条件で冷却することを特徴とする高Cr高Ni合金管の製造方法。
ΔT×Δt/2≦100 ・・・(i)
ただし、ΔT:均熱温度と均熱後の急冷開始温度との差(℃)
Δt:均熱後、急冷開始までの時間(min)
(1) By mass%: C: 0.05 to 0.09%, Si: 0.1 to 0.3% , Mn: 0.05 to 1.3%, P: 0.015% or less, S: 0 0.005% or less, Ni: 44 to 52%, Cr: 27 to 32%, Ti: 0.05 to 1.0%, sol. Al: 0.005-0.2%, B: 0.001-0.008% and W: 4-10%, and Nb: 0.005-0.25% and Zr: 0.001-0.05 %, And the balance is made of Fe and impurities, and the heat treatment using a continuous heat treatment furnace or a batch furnace after hot working, The high Cr high Ni alloy tube is subjected to soaking treatment in which the high Cr high Ni alloy tube is heated to 1180 ° C. or higher, and then cooled under a condition that satisfies the following formula (i) in the water cooling process following the cooling process. Manufacturing method of alloy pipe.
ΔT × Δt / 2 ≦ 100 (i)
However, ΔT: difference between the soaking temperature and the rapid cooling start temperature after soaking (° C)
Δt: Time from soaking to the start of rapid cooling (min)

本発明の高Cr高Ni合金管の製造方法によれば、溶体化熱処理の際のCr炭化物の粒界析出による靭性(20℃シャルピー衝撃値)の低下が起こらない、良好な靱性を備えた高Cr高Ni合金管を製造することができる。また、本発明の高Cr高Ni合金は、管、板その他いかなる形状の部材やそれらの加工品であっても良好な靱性を備えている。   According to the method for producing a high Cr high Ni alloy pipe of the present invention, high toughness with good toughness that does not cause a decrease in toughness (20 ° C. Charpy impact value) due to grain boundary precipitation of Cr carbide during solution heat treatment occurs. Cr high Ni alloy tubes can be manufactured. Moreover, the high Cr high Ni alloy of this invention is equipped with favorable toughness even if it is a pipe, a plate, a member of any shape, or a processed product thereof.

Cr析出量と20℃衝撃値の関係を示す図であり、(a)は第一の調査に用いた高Cr高Ni合金管の結果を示し、(b)は第二の調査に用いた高Cr高Ni合金管の結果を示している。It is a figure which shows the relationship between Cr precipitation amount and a 20 degreeC impact value, (a) shows the result of the high Cr high Ni alloy pipe used for the 1st investigation, (b) shows the high used for the 2nd investigation. The result of a Cr high Ni alloy pipe is shown. ΔT×Δt/2とCr析出量の関係を示す図であり、(a)は第一の調査に用いた高Cr高Ni合金管の結果を示し、(b)は第二の調査に用いた高Cr高Ni合金管の結果を示している。It is a figure which shows the relationship between (DELTA) Tx (DELTA) t / 2 and Cr precipitation amount, (a) shows the result of the high Cr high Ni alloy pipe | tube used for the 1st investigation, (b) was used for the 2nd investigation. The result of the high Cr high Ni alloy pipe is shown. 熱処理における合金素管の経時的な温度変化を模式的に示す図である。It is a figure which shows typically the time-dependent temperature change of the alloy element pipe | tube in heat processing.

本発明者らは、靭性(20℃シャルピー衝撃値)の低下を抑えて良好な靱性を備えた高Cr高Ni合金管の製造方法を確立するために、溶体化熱処理により、シャルピー衝撃試験における20℃の衝撃値が、一般に良好とされている範囲(150J/cm2以上)から外れて110J/cm2程度まで低下した高Cr高Ni合金の小径管(外径50.8mm)について、材料表面およびその近傍の組織を調査した。 In order to establish a manufacturing method of a high Cr high Ni alloy tube having good toughness while suppressing a decrease in toughness (20 ° C. Charpy impact value), the present inventors have conducted 20 in a Charpy impact test by solution heat treatment. impact value ℃ is, for generally being a good range (150 J / cm 2 or more) smaller diameter tubes of high Cr and high Ni alloy decreases to about 110J / cm 2 off the (outer diameter 50.8 mm), the material surface And the organization in the vicinity was investigated.

第一の調査に用いた高Cr高Ni合金管の化学組成は、C:0.08%、Si:0.30%、Mn:0.92%、P:0.010%、S:0.0005%、Cr:22.8%、Ni:44.6%、W:6.87%、Ti:0.10%、Nb:0.18%、sol.Al:0.027およびB:0.0047%を含有し、残部がFeおよび不純物である。第一の調査の結果、酸洗による材料表面の荒れ(以下、「酸荒れ」という)が認められた。さらに、光学顕微鏡観察によると、材料表面近傍の粒界に割れが生じており、その粒界には比較的粗大な析出物が析出していることが判明した。   The chemical composition of the high Cr high Ni alloy tube used in the first investigation is as follows: C: 0.08%, Si: 0.30%, Mn: 0.92%, P: 0.010%, S: 0.00. 0005%, Cr: 22.8%, Ni: 44.6%, W: 6.87%, Ti: 0.10%, Nb: 0.18%, sol. Al: 0.027 and B: 0.0047% are contained, and the balance is Fe and impurities. As a result of the first investigation, surface roughness of the material due to pickling (hereinafter referred to as “acid roughness”) was observed. Further, observation with an optical microscope revealed that cracks occurred at the grain boundaries near the material surface, and relatively coarse precipitates were deposited at the grain boundaries.

第二の調査に用いた高Cr高Ni合金管の化学組成は、C:0.07%、Si:0.11%、Mn:0.15%、P:0.010%、S:0.0005%、Cr:29.8%、Ni:50.1%、W:4.95%、Ti:0.77%、Nb:0.02%、Zr:0.026%、sol.Al:0.100%およびB:0.0023%を含有し、残部がFeおよび不純物である。第二の調査の結果、光学顕微鏡による組織観察から、結晶粒界に比較的粗大な析出物が析出していることが判明した。この粗大な析出物が靭性低下の一因になっていると推定された。一方、熱処理後の酸洗による酸荒れは認められなかった。   The chemical composition of the high Cr high Ni alloy tube used in the second investigation is as follows: C: 0.07%, Si: 0.11%, Mn: 0.15%, P: 0.010%, S: 0.00. 0005%, Cr: 29.8%, Ni: 50.1%, W: 4.95%, Ti: 0.77%, Nb: 0.02%, Zr: 0.026%, sol. Al: 0.100% and B: 0.0023% are contained, and the balance is Fe and impurities. As a result of the second investigation, it was found from the observation of the structure with an optical microscope that relatively coarse precipitates were deposited at the grain boundaries. It was estimated that this coarse precipitate contributed to the decrease in toughness. On the other hand, acid roughening due to pickling after heat treatment was not observed.

そこで、材料を10%アセチルアセトン−1%テトラメチルアンモニウムクロライド−メタノール溶液で電解して析出物を残渣として抽出し、抽出残渣の定量分析を実施した。分析の結果、Cr析出量(すなわち、析出物中のCr量の材料質量に対する百分率)は、第一の調査に用いた材料では0.40%、第二の調査に用いた材料では0.46%であることが明らかになった。また、分析結果から、粒界に析出している炭化物はM236などのCr炭化物と推定された。 Therefore, the material was electrolyzed with a 10% acetylacetone-1% tetramethylammonium chloride-methanol solution to extract the precipitate as a residue, and the extraction residue was quantitatively analyzed. As a result of the analysis, the Cr precipitation amount (that is, the percentage of the Cr amount in the precipitate with respect to the material mass) is 0.40% for the material used in the first investigation and 0.46% for the material used in the second investigation. % Became clear. From the analysis results, the carbides precipitated at the grain boundaries were estimated to be Cr carbides such as M 23 C 6 .

以上の結果を総合すると、以下のように結論づけることができる。
(a)調査に用いた高Cr高Ni合金管では、溶体化熱処理の際にCr炭化物が粒界に析出して靭性が低下する。
(b)炭化物の周囲(粒界近傍)にはCr濃度の低い領域(以下、「Cr欠乏領域」という)が形成されると推定される。材料中のCr濃度が25%以下の材料ではCr欠乏領域の形成により、酸洗処理の際に粒界近傍の酸による腐食が促進され、酸荒れや粒界に沿った割れが生じることがある。母材のCr含有量が29.8%と高い場合には酸荒れはみられない。
By summing up the above results, we can conclude as follows.
(A) In the high Cr high Ni alloy pipe used for the investigation, Cr carbide precipitates at the grain boundaries during the solution heat treatment, and the toughness decreases.
(B) It is presumed that a region having a low Cr concentration (hereinafter referred to as “Cr-deficient region”) is formed around the carbide (near the grain boundary). In a material having a Cr concentration of 25% or less in the material, formation of a Cr-deficient region promotes corrosion by an acid near the grain boundary during pickling, and may cause acid roughening or cracking along the grain boundary. . When the Cr content of the base material is as high as 29.8%, no acid roughening is observed.

したがって、本発明合金の靭性を確保するためには、溶体化熱処理後の粒界への炭化物の析出を抑制することが重要であると考えられる。
そこで、溶体化熱処理後の結晶粒界への炭化物の析出を抑制するために、具体的にどのような熱処理が必要であるかを検討した。
Therefore, in order to ensure the toughness of the alloy of the present invention, it is considered important to suppress the precipitation of carbides at the grain boundaries after the solution heat treatment.
Therefore, in order to suppress the precipitation of carbides at the grain boundaries after the solution heat treatment, what kind of heat treatment is necessary was examined.

前記第一の調査および第二の調査に用いた高Cr高Ni合金管と同様の素材から、肉厚11mm×幅11mm×長さ55mmの試験用素材を採取し、試験片の中央部10mmを高周波誘導加熱し、表1および表2に示す条件で熱処理を実施した。均熱温度は1230℃とした。急冷はヘリウムガスによる制御冷却を実施し、急冷開始までの温度勾配は、時間に対して直線関係になるように設定した。   A test material having a thickness of 11 mm, a width of 11 mm, and a length of 55 mm is collected from the same material as that of the high Cr high Ni alloy tube used in the first and second investigations, and the central portion of the test piece is 10 mm. High-frequency induction heating was performed, and heat treatment was performed under the conditions shown in Tables 1 and 2. The soaking temperature was 1230 ° C. For rapid cooling, controlled cooling with helium gas was performed, and the temperature gradient until the start of rapid cooling was set to have a linear relationship with time.

熱処理後の試験片から衝撃試験片(JIS Z 2202で規定されるVノッチシャルピー試験片)を採取して20℃で衝撃試験を行うとともに、抽出残渣を採取してCr析出量を調査した。第一の調査に用いた高Cr高Ni合金管の結果を表1に示し、第二の調査に用いた高Cr高Ni合金管の結果を表2に示す。   An impact test piece (V-notch Charpy test piece defined in JIS Z 2202) was taken from the heat-treated test piece and subjected to an impact test at 20 ° C., and an extraction residue was taken to investigate the Cr precipitation amount. The results of the high Cr high Ni alloy pipe used in the first investigation are shown in Table 1, and the results of the high Cr high Ni alloy pipe used in the second investigation are shown in Table 2.

Figure 0005782753
Figure 0005782753

Figure 0005782753
Figure 0005782753

表1および表2に、20℃衝撃試験結果およびCr析出量の調査結果を併せて示す。
表1および表2の「20℃衝撃値」欄の記号の意味は次のとおりである。
○:良好。20℃衝撃値が150J/cm2以上であることを示す。
×:不良。20℃衝撃値が150J/cm2未満であることを示す。
Tables 1 and 2 also show the 20 ° C. impact test results and the investigation results of the Cr precipitation amount.
The meanings of the symbols in the “20 ° C. impact value” column of Tables 1 and 2 are as follows.
○: Good. The 20 ° C. impact value is 150 J / cm 2 or more.
X: Defect. The 20 ° C. impact value is less than 150 J / cm 2 .

図1は、表1および表2に示した結果を図示したものであり、Cr析出量と20℃衝撃値の関係を示す図である。図1(a)は第一の調査に用いた高Cr高Ni合金管の結果を示し、図1(b)は第二の調査に用いた高Cr高Ni合金管の結果を示している。同図によれば、Cr析出量と20℃衝撃値の間には明瞭な相関関係がある。20℃衝撃値が150J/cm2以上であれば、高Cr高Ni合金系耐熱材料の靱性として良好であるといえる。 FIG. 1 illustrates the results shown in Tables 1 and 2, and is a diagram illustrating the relationship between the Cr precipitation amount and the 20 ° C. impact value. FIG. 1A shows the result of the high Cr high Ni alloy pipe used in the first investigation, and FIG. 1B shows the result of the high Cr high Ni alloy pipe used in the second investigation. According to the figure, there is a clear correlation between the Cr precipitation amount and the 20 ° C. impact value. If the 20 ° C. impact value is 150 J / cm 2 or more, it can be said that the toughness of the high Cr high Ni alloy heat resistant material is good.

図1(a)、(b)から、20℃シャルピー衝撃値が150J/cm2以上のときのCr析出量は0.3%以下であることが分かる。したがって、溶体化熱処理後の粒界への炭化物の析出をCr析出量で0.3%以下とすることにより、靭性の低下を抑えて靱性を良好に維持することが可能となる。 1 (a) and 1 (b), it can be seen that the Cr deposition amount is 0.3% or less when the 20 ° C. Charpy impact value is 150 J / cm 2 or more. Therefore, by setting the carbide precipitation to the grain boundary after the solution heat treatment to be 0.3% or less in terms of the Cr precipitation amount, it is possible to suppress the decrease in toughness and maintain good toughness.

図2は、同じく表1および表2に示した結果を図示したものであり、ΔT×Δt/2とCr析出量の関係を示す図である。図2(a)は第一の調査に用いた高Cr高Ni合金管の結果を示し、図2(b)は第二の調査に用いた高Cr高Ni合金管の結果を示している。ΔT×Δt/2とCr析出量の間には明瞭な相関関係が認められる。   FIG. 2 illustrates the results shown in Table 1 and Table 2 and shows the relationship between ΔT × Δt / 2 and the amount of deposited Cr. FIG. 2A shows the result of the high Cr high Ni alloy pipe used in the first investigation, and FIG. 2B shows the result of the high Cr high Ni alloy pipe used in the second investigation. A clear correlation is observed between ΔT × Δt / 2 and the amount of deposited Cr.

図2(a)、(b)から、Cr析出量を0.3%以下とするためには、溶体化熱処理後の冷却条件を制御して、ΔT×Δt/2を100以下とすればよいことが分かる。     2 (a) and 2 (b), in order to make the Cr precipitation amount 0.3% or less, the cooling condition after the solution heat treatment should be controlled so that ΔT × Δt / 2 should be 100 or less. I understand that.

本発明は、上記の知見に基づきなされたものである。   The present invention has been made based on the above findings.

以下に、本発明において、高Cr高Ni合金の化学組成、冷間加工後の熱処理条件、さらには当該合金の電解抽出残渣中のCr析出量を上記のように定めた理由について詳細に説明する。   Hereinafter, in the present invention, the chemical composition of the high Cr high Ni alloy, the heat treatment conditions after the cold working, and the reason why the Cr precipitation amount in the electrolytic extraction residue of the alloy is determined as described above will be described in detail. .

1.高Cr高Ni合金の化学組成
C:0.05〜0.09%
Cは炭化物を形成して高Cr高Ni合金として必要な高温引張強さ、高温クリープ強度を確保する上で必要な成分であり、0.05%以上含有させることが必要である。しかし、その含有量が0.09%を超えると、Crの炭化物が増えて高Cr高Ni合金の靱性に悪影響を及ぼすおそれがあるので上限は0.09%とした。望ましいC含有量は0.055〜0.085%である。
1. Chemical composition of high Cr high Ni alloy C: 0.05-0.09%
C is a component necessary for forming carbide and ensuring high-temperature tensile strength and high-temperature creep strength necessary as a high Cr high Ni alloy, and it is necessary to contain 0.05% or more. However, if its content exceeds 0.09%, Cr carbide increases, which may adversely affect the toughness of the high Cr high Ni alloy, so the upper limit was made 0.09%. A desirable C content is 0.055 to 0.085%.

Si:0.1〜0.3%
Siは、溶製時の脱酸剤として必要な元素であり、最低でも0.05%含有させることが必要である。しかし、その含有量が過剰になると当該合金の加工性が低下する。Si含有量は0.1〜0.3%である。
Si: 0.1 to 0.3%
Si is an element necessary as a deoxidizer at the time of melting, and it is necessary to contain at least 0.05%. However, the workability of the alloy decrease if the content is excessive. The Si content is 0.1 to 0.3%.

Mn:0.05〜1.3%
Mnは、当該合金中に含まれる不純物のSと結合してMnSを形成し、熱間加工性を向上させるが、その含有量が0.05%未満ではこの効果が十分ではない。一方、その含有量が過剰になると合金が硬くなり、加工性や溶接性が損なわれるので上限は1.3%とした。望ましいMn含有量は0.7〜1.1%であり、さらに望ましくは0.9〜1.1%である。
Mn: 0.05 to 1.3%
Mn combines with the impurity S contained in the alloy to form MnS to improve hot workability, but this effect is not sufficient if its content is less than 0.05%. On the other hand, if the content is excessive, the alloy becomes hard and the workability and weldability are impaired, so the upper limit was made 1.3%. A desirable Mn content is 0.7 to 1.1%, and more desirably 0.9 to 1.1%.

P:0.015%以下
Pは不純物として不可避的に混入する。過剰なPは溶接性および加工性を害するので、上限は0.015%とする。望ましい上限は0.012%である。
P: 0.015% or less P is inevitably mixed as an impurity. Since excess P impairs weldability and workability, the upper limit is made 0.015%. A desirable upper limit is 0.012%.

S:0.005%以下
SもPと同様に不純物として不可避的に混入する。過剰なSは溶接性および加工性を害するので、上限は0.005%とする。望ましい上限は0.0015%である。
S: 0.005% or less S, like P, is inevitably mixed as an impurity. Since excessive S impairs weldability and workability, the upper limit is made 0.005%. A desirable upper limit is 0.0015%.

Ni:44〜52%
Niは、本発明の高Cr高Ni合金の主成分であり、オーステナイト組織を安定にする元素である。高温耐食性を確保する上からも重要な合金元素である。Ni量はCr量とのバランスから決定されるため一概に上下限を定めることは難しいが、Crの下限が22%の場合でも44%以上は必要である。一方、Crの上限が32%の場合にNiの含有量が過剰になるとコスト上昇を招くので、上限は52%とした。
Ni: 44-52%
Ni is a main component of the high Cr high Ni alloy of the present invention, and is an element that stabilizes the austenite structure. It is an important alloying element from the viewpoint of ensuring high temperature corrosion resistance. Since the amount of Ni is determined from the balance with the amount of Cr, it is difficult to determine the upper and lower limits in general, but even when the lower limit of Cr is 22%, 44% or more is necessary. On the other hand, when the upper limit of Cr is 32%, an excessive Ni content causes an increase in cost, so the upper limit was set to 52%.

Cr:27〜32%
Crは、高温耐酸化性・耐食性を確保するための重要な合金元素である。高温下での十分な耐食性を確保するためには22%以上含有させることが必要である。Cr含有量が多いほど高温耐食性は向上する。さらにCrを27%以上含有する場合、高温での使用中にCr主体の微細な析出物が析出して高温強度に寄与する。そのため、高温強度を高めたい場合、27%以上のCrを含有させる。一方、その含有量が32%を超えるとオーステナイト組織を安定にするためにNi含有量を高めなければならず、コスト上昇を招くので、上限は32%とした。
Cr: 27 ~32%
Cr is an important alloying element for ensuring high-temperature oxidation resistance and corrosion resistance. In order to ensure sufficient corrosion resistance at high temperatures, it is necessary to contain 22% or more. The higher the Cr content, the higher the high temperature corrosion resistance. Further, when Cr is contained in an amount of 27% or more, fine precipitates mainly composed of Cr are deposited during use at a high temperature and contribute to the high temperature strength. Therefore, when it is desired to increase the high temperature strength, 27% or more of Cr is contained. On the other hand, if the content exceeds 32%, the Ni content must be increased in order to stabilize the austenite structure, leading to an increase in cost, so the upper limit was made 32%.

Ti:0.05〜1.0%
Tiは、高温域での使用中における炭化物の析出による高温強度の向上効果がある。本発明合金では高温強度を確保する目的で0.05%以上含有させる。一方、その含有量が過剰になると不均一なクリープ変形や延性低下の原因となるのでその上限は1.0%とした。
Ti: 0.05-1.0%
Ti has an effect of improving high temperature strength due to precipitation of carbides during use in a high temperature range. The alloy of the present invention contains 0.05% or more for the purpose of securing high temperature strength. On the other hand, if its content is excessive, it causes non-uniform creep deformation and ductility reduction, so the upper limit was made 1.0%.

Nb:0.005〜0.25%、Zr:0.001〜0.05%の1種または2種
NbおよびZrは、炭化物の析出によるクリープ強度の向上効果がある。しかし、それぞれの含有量がNb 0.005%、Zr 0.001%未満ではこれらの効果が十分に発揮されない。一方、その含有量が過剰になると溶接性が損なわれることから、それぞれの上限をNb 0.25%、Zr 0.05%とした。
One or two types of Nb: 0.005 to 0.25% and Zr: 0.001 to 0.05% Nb and Zr have an effect of improving the creep strength due to precipitation of carbides. However, when the respective contents are less than 0.005% Nb and 0.001% Zr, these effects are not sufficiently exhibited. On the other hand, if the content is excessive, weldability is impaired, so the upper limits of each were Nb 0.25% and Zr 0.05%.

sol.Al:0.005〜0.2%
Alは、Siと同様に脱酸作用を有する元素であり、十分な脱酸効果を得るには0.005%以上含有させることが必要である。一方、その含有量が過剰になると組織安定性が悪くなるのでその上限は0.2%とした。望ましいsol.Al含有量は0.008〜0.13%である。
sol. Al: 0.005 to 0.2%
Al is an element having a deoxidizing action similar to Si, and 0.005% or more is necessary to obtain a sufficient deoxidizing effect. On the other hand, if the content is excessive, the stability of the structure deteriorates, so the upper limit was made 0.2%. Desirable sol. Al content is 0.008 to 0.13%.

B:0.001〜0.008%
Bは、クリープ抑制作用を有する元素であるが、その含有量が0.001%未満ではこの効果が得られない。一方、その含有量が過剰になると溶接性が損なわれるのでその上限は0.008%とした。望ましいB含有量は0.001〜0.003%である。
B: 0.001 to 0.008%
B is an element having a creep inhibiting action, but if its content is less than 0.001%, this effect cannot be obtained. On the other hand, if the content is excessive, weldability is impaired, so the upper limit was made 0.008%. A desirable B content is 0.001 to 0.003%.

W:4〜10%
Wは、固溶強化作用によりクリープ抑制作用を有する元素であるが、その含有量が4%未満ではこの効果が得られない。一方、その含有量が過剰になると当該合金を著しく硬化させ、加工性および溶接性を劣化させるのでその上限は10%とした。望ましいW含有量は4.5〜9%である。
W: 4-10%
W is an element having a creep inhibiting action due to a solid solution strengthening action, but if its content is less than 4%, this effect cannot be obtained. On the other hand, if the content is excessive, the alloy is remarkably hardened and the workability and weldability are deteriorated, so the upper limit was made 10%. A desirable W content is 4.5 to 9%.

本発明の高Cr高Ni合金は上記の成分を含有し、残部はFeおよび不純物である。ここで「Feおよび不純物」における「不純物」とは、合金を工業的に製造する際に、鉱石あるいはスクラップ等のような原料を始めとして、製造工程の種々の要因によって混入するものをいう。   The high Cr high Ni alloy of the present invention contains the above components, with the balance being Fe and impurities. Here, “impurities” in “Fe and impurities” refers to those mixed due to various factors in the manufacturing process, including raw materials such as ore or scrap, when the alloy is industrially manufactured.

2.熱間加工または冷間加工後の熱処理条件
本発明の高Cr高Ni合金管の製造方法においては、上記の化学組成を有する合金を溶製する。次いで、得られた合金塊を均熱し、分塊(鍛造)、熱間加工(圧延または押出し)の順に処理した後、必要に応じて冷間加工を実施する。冷間加工では引き抜きまたは圧延による加工を行う。その後、熱処理(すなわち、均熱後、急冷する溶体化熱処理)を実施する。その後必要に応じて、酸洗または機械的処理(工具による内外削やショットブラストなど)を施し、高Cr高Ni合金管とする。
2. Heat treatment conditions after hot working or cold working In the method for producing a high Cr high Ni alloy tube of the present invention, an alloy having the above chemical composition is melted. Next, the obtained alloy lump is soaked and processed in the order of lump (forging) and hot working (rolling or extruding), and then cold working is performed as necessary. In cold working, drawing or rolling is used. Thereafter, a heat treatment (that is, a solution heat treatment for rapid cooling after soaking) is performed. Thereafter, pickling or mechanical treatment (internal / external cutting with a tool, shot blasting, etc.) is performed as necessary to obtain a high Cr high Ni alloy tube.

前記の熱処理において、当該高Cr高Ni合金管を1180℃以上に加熱する均熱処理を行うのは、当該合金素管中の析出物を十分に固溶させるためである。均熱処理温度が1180℃未満の場合には、処理後の合金素管中に安定なTiやB、およびCrを含む未固溶の炭化物や酸化物が存在するようになり、均質化しない。なお、加熱温度の上限は特に限定しないが、1270℃を超える温度まで加熱すると、粒界溶融が生じるので、加熱温度の上限は1270℃とするのがよい。   In the above heat treatment, the soaking process in which the high Cr high Ni alloy pipe is heated to 1180 ° C. or higher is performed to sufficiently dissolve the precipitate in the alloy base pipe. When the soaking temperature is lower than 1180 ° C., stable solid solution carbides and oxides containing Ti, B, and Cr are present in the alloy pipe after the treatment, and the alloy is not homogenized. In addition, although the upper limit of heating temperature is not specifically limited, If it heats to the temperature exceeding 1270 degreeC, a grain boundary melting will arise, Therefore It is good for the upper limit of heating temperature to be 1270 degreeC.

加熱時間は特に規定しない。従来の作業管理基準等を勘案して、均熱の目的が達せられるよう適宜定めればよい。   The heating time is not specified. What is necessary is just to determine suitably so that the objective of heat equalization may be achieved in consideration of the conventional work management standard.

均熱処理後、下記(i)式を満たす条件で冷却するのは、溶体化熱処理後の結晶粒界への炭化物の析出を抑制するためである。(i)式のΔTおよびΔtについての下記定義において、「均熱温度」とは、実際に均熱処理を行った温度である。「急冷開始温度」とは、水冷を開始する温度である(次に述べる図3参照)。
ΔT×Δt/2≦100 ・・・(i)
ただし、ΔT:均熱温度と均熱後の急冷開始温度との差(℃)
Δt:均熱後、急冷開始までの時間(min)
The reason for cooling under the condition satisfying the following formula (i) after the soaking is to suppress the precipitation of carbides at the crystal grain boundaries after the solution heat treatment. In the following definitions of ΔT and Δt in the equation (i), “soaking temperature” is the temperature at which the soaking process is actually performed. The “rapid cooling start temperature” is a temperature at which water cooling is started (see FIG. 3 described below).
ΔT × Δt / 2 ≦ 100 (i)
However, ΔT: difference between the soaking temperature and the rapid cooling start temperature after soaking (° C)
Δt: Time from soaking to the start of rapid cooling (min)

図3は、熱処理における合金素管の経時的な温度変化を模式的に示す図である。この図は、高Cr高Ni合金管の素管を、送管速度1000mm/分で均熱炉内を通過させつつ1180℃以上に均熱した後、急冷する溶体化熱処理を行ったときの合金素管の温度を示している。   FIG. 3 is a diagram schematically showing a change in temperature of the alloy base pipe over time during the heat treatment. This figure shows an alloy when a solution heat treatment is performed in which a base of a high Cr high Ni alloy pipe is soaked at 1180 ° C. or higher while passing through a soaking furnace at a feeding speed of 1000 mm / min and then rapidly cooled. The temperature of the raw tube is shown.

図3において、破線Aが均熱炉の出口位置を表す。均熱炉内を通過した合金素管は急冷されるが、急冷の過程を詳細に述べると、合金素管が均熱炉から排出された直後の「放冷」過程(図3中の破線Aと破線Bの間)と、放冷過程に続く「水冷」過程(図3中の破線B以降)とがある。図3に示すように、合金素管が均熱炉内を通過した後放冷過程おかれる時間がΔt(min)である。また、均熱温度と均熱後の急冷開始温度(つまり、「水冷」を開始する温度)との差がΔT(℃)である。   In FIG. 3, the broken line A represents the outlet position of the soaking furnace. The alloy tube that has passed through the soaking furnace is rapidly cooled, but the rapid cooling process will be described in detail. The “cooling” process (the broken line A in FIG. 3) immediately after the alloy tube is discharged from the soaking furnace. And a broken line B) and a “water cooling” process (after the broken line B in FIG. 3) following the cooling process. As shown in FIG. 3, Δt (min) is the time during which the alloy tube is allowed to cool after passing through the soaking furnace. Further, the difference between the soaking temperature and the rapid cooling start temperature after soaking (that is, the temperature at which “water cooling” starts) is ΔT (° C.).

前記(i)式の関係は、前述したように、高Cr高Ni合金の試験用素材を用いて、前記表1および表2に示した条件で(すなわち、ΔTおよびΔtを変化させて)熱処理を行い、20℃シャルピー衝撃値およびCr析出量を調査した結果導き出された関係である。   As described above, the relationship of the above formula (i) is the heat treatment using the high Cr high Ni alloy test material under the conditions shown in Tables 1 and 2 (that is, by changing ΔT and Δt). The relationship was derived as a result of investigating the 20 ° C. Charpy impact value and the Cr precipitation amount.

すなわち、前記図2(a)、(b)に示したように、ΔT×Δt/2が100℃・min以下であれば、Cr析出量が0.3%以下となる。そして、前記図1(a)、(b)に示したように、Cr析出量が0.3%以下であれば、20℃シャルピー衝撃値が150J/cm2以上となるので、前記(i)式を満たす条件で冷却することにより、Cr炭化物の結晶粒界への析出を抑制して良好な靱性を備えた高Cr高Ni合金管を製造することができる。 That is, as shown in FIGS. 2A and 2B, when ΔT × Δt / 2 is 100 ° C. · min or less, the Cr precipitation amount is 0.3% or less. As shown in FIGS. 1A and 1B, when the Cr precipitation amount is 0.3% or less, the 20 ° C. Charpy impact value is 150 J / cm 2 or more. By cooling under conditions satisfying the equation, it is possible to manufacture a high Cr high Ni alloy tube having good toughness by suppressing the precipitation of Cr carbide to the crystal grain boundary.

本発明に適用する熱処理は、必ずしも前述した連続炉で実施する必要はなく、バッチ式の熱処理炉を用い均熱後水冷する場合にも、前述の定義と同様のΔTおよびΔtを制御すれば良好な靭性が得られる。   The heat treatment applied to the present invention does not necessarily need to be carried out in the above-mentioned continuous furnace, and even when water cooling is performed after soaking using a batch-type heat treatment furnace, it is good if the same ΔT and Δt as defined above are controlled. Toughness is obtained.

3.Cr析出量
Cr析出量とは、先に述べたように、熱処理を行った後の合金管を電解して得られた抽出残渣の定量分析により求められるCr析出量である。本発明の高Cr高Ni合金管の製造方法においては、さらに、製造する高Cr高Ni合金管のCr析出量を0.3%以下とする実施形態を採用することが望ましい。Cr析出量が0.3%以下という規定を構成要件に加えることにより、製造する高Cr高Ni合金管のCr析出量を管理し、安定して良好な靱性を備えた高Cr高Ni合金管を製造することができるからである。
3. Cr Precipitation Amount As described above, the Cr precipitation amount is a Cr precipitation amount determined by quantitative analysis of an extraction residue obtained by electrolyzing an alloy tube after heat treatment. In the manufacturing method of the high Cr high Ni alloy pipe of the present invention, it is further desirable to adopt an embodiment in which the Cr precipitation amount of the high Cr high Ni alloy pipe to be manufactured is 0.3% or less. High Cr high Ni alloy tube with stable and good toughness by controlling the Cr precipitation amount of high Cr high Ni alloy tube to be manufactured by adding the rule that Cr precipitation amount is 0.3% or less It is because it can manufacture.

Cr析出量を求めるにあたり、抽出残渣の採取に供する合金管は、熱処理を行った後のものであればよく、酸洗処理前の合金素管であっても、酸洗処理後の成品としての合金管であってもよい。   In determining the Cr precipitation amount, the alloy tube used for collecting the extraction residue may be the one after heat treatment, even if it is an alloy base tube before pickling treatment, as a product after pickling treatment. An alloy tube may be used.

当該合金管の電解および抽出残渣の定量分析(Crの定量)は、常法に準じて行えばよい。例えば、合金管の電解は、10%アセチルアセトン−1%テトラメチルアンモニウムクロライド−メタノール溶液を用い、常温で電解することにより行うことができる。また、抽出残渣中のCrの定量は、ICP分光分析法(誘導結合高周波プラズマ分光分析)等により行うことができる。   The electrolytic analysis of the alloy tube and the quantitative analysis of the extraction residue (Cr determination) may be performed according to a conventional method. For example, electrolysis of the alloy tube can be performed by electrolysis at room temperature using a 10% acetylacetone-1% tetramethylammonium chloride-methanol solution. The amount of Cr in the extraction residue can be determined by ICP spectroscopy (inductively coupled high-frequency plasma spectroscopy) or the like.

本発明の高Cr高Ni合金は、前記のように、本発明の製造方法で製造する高Cr高Ni合金管と同じ化学組成を有する合金であって、当該高Cr高Ni合金を電解して得られた抽出残渣の定量分析により求められるCr析出量が0.3%以下であることを特徴とする高Cr高Ni合金である。   As described above, the high Cr high Ni alloy of the present invention is an alloy having the same chemical composition as the high Cr high Ni alloy tube manufactured by the manufacturing method of the present invention, and the high Cr high Ni alloy is electrolyzed. It is a high Cr high Ni alloy characterized in that the Cr precipitation amount obtained by quantitative analysis of the obtained extraction residue is 0.3% or less.

本発明の高Cr高Ni合金が前記の化学組成を有する理由は、前述のとおりである。   The reason why the high Cr high Ni alloy of the present invention has the above chemical composition is as described above.

本発明の高Cr高Ni合金は、当該合金を電解して得られた抽出残渣の定量分析により求められるCr析出量が0.3%以下なので、図1(a)、(b)に示したように、20℃シャルピー衝撃値が150J/cm2以上であり、良好な靱性を備えている。 The high Cr high Ni alloy of the present invention is shown in FIGS. 1 (a) and 1 (b) because the Cr precipitation amount obtained by quantitative analysis of the extraction residue obtained by electrolyzing the alloy is 0.3% or less. Thus, the 20 ° C. Charpy impact value is 150 J / cm 2 or more, and it has good toughness.

表3に示す供試材1および供試材2の化学組成を有し、外径:50.8mm、内径:33.2mm、肉厚:8.8mmで、長さが7000mmの高Cr高Ni合金管を製造し、20℃シャルピー衝撃値およびCr析出量を調査して本発明の効果を確認した。   High Cr high Ni having the chemical composition of specimen 1 and specimen 2 shown in Table 3, outer diameter: 50.8 mm, inner diameter: 33.2 mm, wall thickness: 8.8 mm, and length of 7000 mm An alloy tube was manufactured, and the effect of the present invention was confirmed by examining the 20 ° C. Charpy impact value and the Cr precipitation amount.

Figure 0005782753
Figure 0005782753

前記合金管の製造に際しては、ビレットから熱間押出しにより鋼管を製造し、一部はそのまま熱処理に供した。また一部は冷間圧延により前記寸法の合金管とした。   In manufacturing the alloy pipe, a steel pipe was manufactured by hot extrusion from a billet, and a part thereof was subjected to heat treatment as it was. Further, some of the alloy pipes having the above dimensions were formed by cold rolling.

熱処理は、連続熱処理炉またはバッチ炉を用いて実施した。連続炉は、加熱帯:15m、加熱帯から水冷帯までの距離:750mmである。加熱帯では、均熱温度を1230℃に設定した。バッチ炉は長さ9000mmのガス焚き雰囲気炉で、均熱1230℃に設定した。   The heat treatment was performed using a continuous heat treatment furnace or a batch furnace. The continuous furnace has a heating zone: 15 m and a distance from the heating zone to the water cooling zone: 750 mm. In the heating zone, the soaking temperature was set to 1230 ° C. The batch furnace was a gas-fired atmosphere furnace with a length of 9000 mm, and the soaking was set to 1230 ° C.

均熱後の冷却過程では、ΔTを50〜230℃の範囲内で、Δtを0.25〜1.8分の範囲内で変化させた。また、送管速度は、300〜1500mm/分の範囲内で変化させた。前記供試材1を用いた場合の熱処理条件を表4に、前記供試材2を用いた場合の熱処理条件を表5に示す。   In the cooling process after soaking, ΔT was changed within a range of 50 to 230 ° C., and Δt was changed within a range of 0.25 to 1.8 minutes. Moreover, the pipe feeding speed was changed within a range of 300 to 1500 mm / min. Table 4 shows heat treatment conditions when the sample material 1 is used, and Table 5 shows heat treatment conditions when the sample material 2 is used.

Figure 0005782753
Figure 0005782753

Figure 0005782753
Figure 0005782753

熱処理後、酸洗または機械加工により脱スケールを行った。酸洗は、合金管を弗硝酸(弗酸:5%、硝酸:10%)に浸漬することにより行った。   After the heat treatment, descaling was performed by pickling or machining. The pickling was performed by immersing the alloy tube in hydrofluoric acid (hydrofluoric acid: 5%, nitric acid: 10%).

脱スケール後の合金管から、JIS Z 2202で規定されるVノッチシャルピー試験片を採取し、20℃でシャルピー衝撃試験を行った。また、当該合金管を10%アセチルアセトン−1%テトラメチルアンモニウムクロライド−メタノール溶液を用いて電解し、抽出残渣に含まれるCrをICP分光分析法により定量してCr析出量を求めた。   A V-notch Charpy test piece defined by JIS Z 2202 was taken from the descaled alloy tube and subjected to a Charpy impact test at 20 ° C. Further, the alloy tube was electrolyzed using a 10% acetylacetone-1% tetramethylammonium chloride-methanol solution, and Cr contained in the extraction residue was quantified by ICP spectroscopic analysis to obtain a Cr precipitation amount.

20℃シャルピー衝撃値およびCr析出量の調査結果を表4および表5に併せて示す。
表4および表5の「20℃衝撃試験」欄の記号の意味は、前記表1および表2の場合と同様で、次のとおりである。
○:良好。20℃衝撃値が150J/cm2以上であることを示す。
×:不良。20℃衝撃値が150J/cm2未満であることを示す。
The investigation results of the 20 ° C. Charpy impact value and the Cr precipitation amount are shown together in Tables 4 and 5.
The meanings of the symbols in the “20 ° C. impact test” column of Tables 4 and 5 are the same as those in Tables 1 and 2, and are as follows.
○: Good. The 20 ° C. impact value is 150 J / cm 2 or more.
X: Defect. The 20 ° C. impact value is less than 150 J / cm 2 .

表4および表5の結果から、本発明で規定するΔT×Δt/2≦100の条件が満たされる場合、20℃シャルピー衝撃値が150J/cm2以上であって、高Cr高Ni合金管は良好な靱性を備えていることが確認できた。この場合、酸洗による酸荒れも認められなかった。 From the results of Table 4 and Table 5, when the condition of ΔT × Δt / 2 ≦ 100 defined in the present invention is satisfied, the 20 ° C. Charpy impact value is 150 J / cm 2 or more, and the high Cr high Ni alloy tube is It was confirmed that it had good toughness. In this case, acid roughening due to pickling was not observed.

本発明は、耐熱材料として良好な靱性を備えた高Cr高Ni合金の製造に利用できる。   The present invention can be used for the production of a high Cr high Ni alloy having good toughness as a heat resistant material.

Claims (2)

質量%でC:0.05〜0.09%、Si:0.1〜0.3%、Mn:0.05〜1.3%、P:0.015%以下、S:0.005%以下、Ni:44〜52%、Cr:27〜32%、Ti:0.05〜1.0%、sol.Al:0.005〜0.2%、B:0.001〜0.008%およびW:4〜10%、並びにNb:0.005〜0.25%およびZr:0.001〜0.05%のうちの1種または2種を含有し、残部がFeおよび不純物からなる高Cr高Ni合金管の製造方法であって、
熱間加工後の連続熱処理炉またはバッチ炉を用いた熱処理において、当該高Cr高Ni合金管を1180℃以上に加熱する均熱処理を行った後、放冷過程に続き、水冷過程で下記(i)式を満たす条件で冷却することを特徴とする高Cr高Ni合金管の製造方法。
ΔT×Δt/2≦100 ・・・(i)
ただし、ΔT:均熱温度と均熱後の急冷開始温度との差(℃)
Δt:均熱後、急冷開始までの時間(min)
C: 0.05 to 0.09% by mass, Si: 0.1 to 0.3%, Mn: 0.05 to 1.3%, P: 0.015% or less, S: 0.005% Hereinafter, Ni: 44 to 52%, Cr: 27 to 32%, Ti: 0.05 to 1.0%, sol. Al: 0.005-0.2%, B: 0.001-0.008% and W: 4-10%, and Nb: 0.005-0.25% and Zr: 0.001-0.05 %, And the balance is made of Fe and impurities, and a high Cr high Ni alloy tube manufacturing method comprising:
In the heat treatment using a continuous heat treatment furnace or a batch furnace after hot working, after performing soaking treatment in which the high Cr high Ni alloy tube is heated to 1180 ° C. or higher, the cooling process is followed by the following (i ) A method for producing a high Cr high Ni alloy tube, characterized by cooling under conditions satisfying the formula.
ΔT × Δt / 2 ≦ 100 (i)
However, ΔT: difference between the soaking temperature and the rapid cooling start temperature after soaking (° C)
Δt: Time from soaking to the start of rapid cooling (min)
前記熱処理を、熱間加工に加えて冷間加工を行った後に行うことを特徴とする請求項1に記載の高Cr高Ni合金管の製造方法。   2. The method for producing a high Cr high Ni alloy tube according to claim 1, wherein the heat treatment is performed after cold working in addition to hot working.
JP2011050393A 2010-03-19 2011-03-08 Manufacturing method of high Cr high Ni alloy tube and high Cr high Ni alloy Active JP5782753B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011050393A JP5782753B2 (en) 2010-03-19 2011-03-08 Manufacturing method of high Cr high Ni alloy tube and high Cr high Ni alloy

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010064993 2010-03-19
JP2010064993 2010-03-19
JP2011050393A JP5782753B2 (en) 2010-03-19 2011-03-08 Manufacturing method of high Cr high Ni alloy tube and high Cr high Ni alloy

Publications (2)

Publication Number Publication Date
JP2011214141A JP2011214141A (en) 2011-10-27
JP5782753B2 true JP5782753B2 (en) 2015-09-24

Family

ID=44944177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011050393A Active JP5782753B2 (en) 2010-03-19 2011-03-08 Manufacturing method of high Cr high Ni alloy tube and high Cr high Ni alloy

Country Status (1)

Country Link
JP (1) JP5782753B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5212533B2 (en) * 2011-11-15 2013-06-19 新日鐵住金株式会社 Seamless austenitic heat-resistant alloy tube
JP6492747B2 (en) * 2014-03-25 2019-04-03 新日鐵住金株式会社 Austenitic heat-resistant alloy tube manufacturing method and austenitic heat-resistant alloy tube manufactured by the manufacturing method
JP7131332B2 (en) * 2018-11-26 2022-09-06 日本製鉄株式会社 Austenitic heat-resistant alloys and parts of austenitic heat-resistant alloys
JP7256374B2 (en) * 2019-03-28 2023-04-12 日本製鉄株式会社 Austenitic heat-resistant alloy member

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4007241B2 (en) * 2002-04-17 2007-11-14 住友金属工業株式会社 Austenitic stainless steel excellent in high-temperature strength and corrosion resistance, heat-resistant pressure-resistant member made of this steel, and manufacturing method thereof
ES2728670T3 (en) * 2008-06-16 2019-10-28 Nippon Steel Corp Austenitic heat-resistant alloy, heat-resistant pressure member comprising the alloy, and method for manufacturing the same member

Also Published As

Publication number Publication date
JP2011214141A (en) 2011-10-27

Similar Documents

Publication Publication Date Title
JP5633489B2 (en) Ni-base alloy and method for producing Ni-base alloy
JP6819700B2 (en) Ni-based heat-resistant alloy member and its manufacturing method
JP6256458B2 (en) Austenitic stainless steel and manufacturing method thereof
JP4609491B2 (en) Ferritic heat resistant steel
JP5880788B2 (en) High strength oil well steel and oil well pipe
JP5097017B2 (en) Manufacturing method of high Cr ferritic heat resistant steel
CN103352175B (en) A kind of control nitrogen austenitic stainless steel and manufacture method thereof
JP6614347B2 (en) Austenitic stainless steel
JP5589965B2 (en) Austenitic stainless steel pipe manufacturing method and austenitic stainless steel pipe
JP2012082488A (en) Austenitic stainless steel excellent in adhesion to film
JPWO2019131954A1 (en) Austenitic heat resistant alloy
JP6520546B2 (en) Austenitic heat-resistant alloy member and method of manufacturing the same
JP5782753B2 (en) Manufacturing method of high Cr high Ni alloy tube and high Cr high Ni alloy
JP6816779B2 (en) Austenitic heat-resistant alloy member and its manufacturing method
JP7114998B2 (en) austenitic stainless steel
JP2021127517A (en) Austenitic stainless steel material
JP6772735B2 (en) Ni-based heat-resistant alloy member and its manufacturing method
WO2020067444A1 (en) Austenitic alloy
JP4321434B2 (en) Low alloy steel and manufacturing method thereof
JP5835079B2 (en) Method for producing ferritic heat resistant steel
JP5780212B2 (en) Ni-based alloy
JP3969279B2 (en) Martensitic iron-base heat-resistant alloy and method for producing the same
JP6575265B2 (en) Austenitic stainless steel
JP6575266B2 (en) Austenitic stainless steel
JP2021113354A (en) Austenitic stainless steel

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140827

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140827

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150522

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150706

R151 Written notification of patent or utility model registration

Ref document number: 5782753

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350