JP4007241B2 - Austenitic stainless steel excellent in high-temperature strength and corrosion resistance, heat-resistant pressure-resistant member made of this steel, and manufacturing method thereof - Google Patents

Austenitic stainless steel excellent in high-temperature strength and corrosion resistance, heat-resistant pressure-resistant member made of this steel, and manufacturing method thereof Download PDF

Info

Publication number
JP4007241B2
JP4007241B2 JP2003105933A JP2003105933A JP4007241B2 JP 4007241 B2 JP4007241 B2 JP 4007241B2 JP 2003105933 A JP2003105933 A JP 2003105933A JP 2003105933 A JP2003105933 A JP 2003105933A JP 4007241 B2 JP4007241 B2 JP 4007241B2
Authority
JP
Japan
Prior art keywords
less
heat
steel
resistant member
pressure resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003105933A
Other languages
Japanese (ja)
Other versions
JP2004003000A (en
Inventor
敦朗 伊勢田
潤之 仙波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2003105933A priority Critical patent/JP4007241B2/en
Publication of JP2004003000A publication Critical patent/JP2004003000A/en
Application granted granted Critical
Publication of JP4007241B2 publication Critical patent/JP4007241B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、発電ボイラや化学工業用加熱炉等を構成する鋼管、鋼板、棒鋼および鍛鋼品等(以下、これらを総称して「耐熱耐圧部材」という。)の素材として好適なオーステナイト系ステンレス鋼、その鋼からなる高温強度と高温耐食性に優れた耐熱耐圧部材、およびその製造方法に関する。この耐熱耐圧部材は、高い高温強度と優れた高温耐食性を有するのに加えて、耐熱疲労特性と金属組織の安定性(以下、単に組織安定性という)にも優れている。
【0002】
【従来の技術】
近年、高効率化のために蒸気の温度と圧力を高めた超々臨界圧ボイラの新設が世界中で進められている。蒸気の温度に関しては、これまでの600℃前後から650℃以上、将来的には700℃以上にまで高めることが計画されている。これは、省エネルギーと資源の有効活用、および環境保全のためのCOガス排出量削減が大きな課題となっており、この課題の解決には、化石燃料を燃焼させる高効率の超々臨界圧ボイラが有利なためである。
【0003】
蒸気の高温高圧化、中でも高温化は、ボイラや化学工業用の加熱炉を構成する耐熱耐圧部材の温度を上昇させ、その温度は650℃以上に達する。このため、これらの耐熱耐圧部材には、高温強度と高温耐食性に加えて、耐熱疲労特性や長期にわたる組織安定性が要求される。
【0004】
オーステナイト系ステンレス鋼は、フェライト系鋼に比べて高温強度と高温耐食性が優れる。このため、強度と耐食性の観点からフェライト系鋼が使えなくなる650℃以上の高温域では、オーステナイト系ステンレス鋼が使われる。
【0005】
高温高圧用のオーステナイト系ステンレス鋼としては、SUS347HやSUS316等の18−8系のオーステナイト系ステンレス鋼が広く用いられているが、高温強度と耐食性において限界がある。また、耐食性を高めた25Cr系のSUS310もあるが、600℃以上の高温強度がSUS316よりも低い。
【0006】
このため、18−8系鋼以上の耐食性を有する20Cr以上のオーステナイト系ステンレス鋼をベースにして高温強度と高温耐食性を高めた多くの鋼が提案されている。これらの鋼は次の3つに大別される。
【0007】
(1)Cr量を20%以上に高めるとともに、固溶強化元素のWやMo等を複合添加して粒内強化を図った鋼(例えば、特開昭61−179833号公報および特開昭61−179835号公報)。
【0008】
(2)W、Moに加え、Nを積極的に添加して窒化物による析出強化を図った鋼(例えば、特開昭63−183155号公報)。
【0009】
(3)TiやAlの金属間化合物による析出強化を図った鋼(例えば、特開平7−216511号公報)。
【0010】
しかし、前記(1)の鋼は、高温域におけるクリープの主体が粒内の転位クリープから粒界すべりクリープとなるために、700℃以上での高温クリープ強度が低い。(2)および(3)の鋼は、強度は十分なものの、延性が著しく低く、しかも高温域における耐熱疲労特性と組織安定性が劣り、700℃以上でのクリープ強度とクリープ延性が低い。
【0011】
また、(3)の鋼は、TiやAlの金属間化合物が結晶粒の成長を抑制するために混粒組織となって粒界すべりクリープや不均一なクリープ変形が生じ、強度および靱性が大きく損なわれる。従って、これらの従来鋼は、700℃以上の高温で用いる耐熱耐圧部材、中でも組織が著しい混粒になりやすい肉厚が20mm以上の耐熱耐圧部材としては使用できない。
【0012】
【発明が解決しようとする課題】
本発明の第1の課題は、700℃以上の高温域において優れた耐熱疲労特性と組織安定性を示す耐熱耐圧部材の素材に適するオーステナイト系ステンレス鋼を提供することにある。
【0013】
本発明の第2の課題は、高温強度と耐熱疲労性に優れた耐熱耐圧部材を提供することにある。とりわけ、750℃、10,000時間のクリープ破断強度と絞り率がそれぞれ 80MPa以上、55%以上という特性を持つ耐熱耐圧部材を提供することにある。
【0014】
本発明の第3の課題は、上記の特性を持つ耐熱耐圧部材の製造方法を提供することにある。
【0015】
【課題を解決するための手段】
本発明のオーステナイト系ステンレス鋼は、下記(1)と(2)の鋼である。また、本発明の耐熱耐圧部材は下記(3)の部材である。さらに、本発明の耐熱耐圧部材を得るのに好適なその製造方法は下記(4)の方法である。
【0016】
(1)質量%で、C:0.03〜0.12%、Si:0.1〜1%、Mn:0.1〜2%、Cr:20%以上28%未満、Ni:35%を超え50%以下、W:4〜10%、Ti:0.01〜0.3%、Nb:0.01〜1%、sol.Al:0.0005〜0.04%、B:0.0005〜0.01%を含み、残部はFeおよび不純物からなり、不純物としてのPが0.04%以下、Sが0.010%以下、Moが0.5%未満、Nが0.02%未満、O(酸素)が0.005%以下の化学組成を有するとともに、オーステナイト結晶粒度番号が6以下および混粒率が10%以下の粗粒組織であることを特徴とするオーステナイト系ステンレス鋼。
【0017】
(2)上記(1)に記載の成分に加えて、さらに下記の第1群から第3群までの少なくとも1群の中から選んだ少なくとも1種の成分を含み、残部はFeおよび不純物で、不純物としてのP0.04%以下、Sが0.010%以下、Moが0.5%未満、Nが0.02%未満、O(酸素)が0.005%以下の化学組成を有するとともに、オーステナイト結晶粒度番号が6以下および混粒率が10%以下の粗粒組織であることを特徴とするオーステナイト系ステンレス鋼。
第1群…質量%で、0.0005〜0.1%のZr。
第2群…質量%で、0.0005〜0.05%のCa
第3群…質量%で、それぞれ0.0005〜0.2%の希土類元素、HfおよびPd。
【0018】
ここで、希土類元素とは、原始番号57のLaから同71のLuまでの15元素と、YおよびScを含めた17元素のことである。
【0019】
(3)上記(1)または(2)に記載のオーステナイト系ステンレス鋼からなることを特徴とする高温域での耐熱疲労特性と組織安定性に優れた耐熱耐圧部材。特に、750℃、10,000時間のクリープ破断強度と絞り率がそれぞれ、80MPa以上、55%以上である耐熱耐圧部材。
【0020】
ここで、上記のオーステナイト結晶粒度番号は、ASTM(American Society for Testing and Material:アメリカ材料試験協会)に規定される粒度番号を意味する。
【0021】
次に、混粒率(%)の計算方法を説明する。光学顕微鏡による上記オーステナイト結晶粒度番号の判定に際して観察した視野数をNとして、その1視野毎にその視野内に存在する結晶粒の数を数えることによって、オーステナイト結晶粒度番号を−3(粗粒)から+10(細粒)までのいずれかの粒度番号であると判定し、N個の判定結果を得て、粒度番号毎に頻度を計算する。そして、そのうち最大頻度を有する粒度番号Gを特定し、特定された粒度番号Gより3以上小さい粒度番号を有する視野数n1と、特定された粒度番号Gより3以上大きい粒度番号を有する視野数n2とを求める。この視野数n1とn2の合計数を全視野数Nで除したものの百分率、すなわち、100×(n1+n2)/Nが、混粒率である。
【0022】
(4)上記(1)または(2)に記載の化学組成を有する鋼を下記の工程(i)(ii)および(iii)で順次処理することを特徴とする上記(3)に記載の高温域での耐熱疲労特性と組織安定性に優れた耐熱耐圧部材の製造方法。
工程(i):熱間または冷間による最終加工前に、少なくとも1回、1100℃以上に加熱する。
工程(ii):断面減少率10%以上の塑性加工を行う。
工程(iii):1050℃以上で最終熱処理を行う。
【0023】
【発明の実施の形態】
本発明者らは、高温域での耐食性を確保するためにCr量を20%以上に高めたオーステナイト系ステンレス鋼の700℃以上におけるクリープや金属組織等に及ぼす合金元素の影響を詳細に調べた結果、以下の新たな知見を得た。
【0024】
(a)Moは700℃以上の高温域での高強度化にはほとんど効果がないだけでなく、かえって高温耐食性を低下させるので、不純物として含まれる場合でもその含有量は0.5%未満に制限する必要がある。
【0025】
(b)WはMoとは異なり700℃以上の高温域での強度を向上させ、しかも高温耐食性を低下させることがないので、Moの積極的添加を行わないことによる強度不足はWの多量添加により補える。
【0026】
(c)従来技術において高強度化のために利用されている多量のTiを含む炭窒化物や金属間化合物は、前述したように、粒界すべりクリープと不均一なクリープ変形を助長し、高温域での強度と延性を著しく低下させるので、できるだけ利用しない方がよい。
【0027】
(d)粒界すべりクリープと不均一なクリープ変形は、細粒組織よりも粗粒組織の方が生じにくく、特にオーステナイト結晶粒度番号が6以下で、しかも混粒率が10%以下の粗粒組織、好ましくは混粒率が0(ゼロ)の粗粒組織の場合に生じにくくなる。
【0028】
(e)オーステナイト結晶粒度番号が6以下、混粒率が10%以下の粗粒組織は、鋼中のTi含有量を0.01〜0.3%に制限するとともに、NとO(酸素)の含有量をそれぞれ0.02%未満、0.005%以下に制限し、かつ適量(0.0005〜0.01%)のBを含有させた前記(1)または(2)の化学組成の鋼を素材とし、この鋼を例えば上記の工程(i)から(iii)を経て処理すれば得られる。
【0029】
即ち、Ti、N、OおよびBの含有量を上記の範囲に制限した場合には、上記の工程(i)の後において鋼中に安定なTiやBを含む未固溶炭窒化物や酸化物が存在せず、工程(ii)において均一な歪みが蓄積され、工程(iii)において再結晶が均一に進行して、オーステナイト結晶粒度番号6以下、混粒率10%以下の粗粒組織を有する耐熱耐圧部材が得られる。
【0030】
(f)前記の量のTiおよびNbは、その組織がオーステナイト結晶粒度番号6以下、混粒率10%以下とされた耐熱耐圧部材を実際に使用した場合におけるクリープ中に、微細な炭化物として粒内と粒界に均一に析出し、高温クリープ強度を向上させる。その結果、この部材の750℃、10,000時間のクリープ破断強度が 80MPa以上、絞り率が55%以上になる。このような特性を持つ部材は、耐熱疲労特性にも優れる。
【0031】
以下、本発明のオーステナイト系ステンレス鋼の化学組成、結晶粒度および混粒率、この鋼からなる耐熱耐圧部材ならびにその好ましい製造方法の諸条件を上記のように定めた理由について詳細に説明する。なお、以下において「%」は特に断らない限り「質量%」を意味する。
【0032】
1.オーステナイト系ステンレス鋼の化学組成
C:0.03〜0.12%
Cは炭化物を形成して高温用オーステナイト系ステンレス鋼として必要な高温引張強さ、高温クリープ強度を確保する上で必要な成分であり、0.03%以上の含有量が必要である。しかし、その含有量が0.12%を超えると、未固溶炭化物が生じたり、Crの炭化物が増えて溶接性が低下するので上限は0.12%とした。望ましいC含有量は0.05〜0.10%である。
【0033】
Si:0.1〜1%
Siは、製鋼時に脱酸剤として添加されるが、鋼の耐水蒸気酸化性を高めるためにも必要な元素であり、最低でも0.1%の含有量が必要である。しかし、その含有量が過剰になると鋼の加工性が悪くなるので上限は1%とした。好ましい範囲は0.1〜0.5%である。
【0034】
Mn:0.1〜2%
Mnは、鋼中に含まれる不純物のSと結合してMnSを形成し、熱間加工性を向上させるが、その含有量が0.1%未満ではこの効果が得られない。一方、その含有量が過剰になると、鋼が硬くなって脆くなり、かえって加工性や溶接性を損なうので上限は2%とした。望ましいMn含有量は0.5〜1.2%である。
【0035】
P:0.04%以下
Pは不純物として不可避的に混入するが、過剰なPは溶接性および加工性を害するので、上限は0.04%とする。好ましい上限は0.03%である。なお、P含有量は少ないほどよい。
【0036】
S:0.010%以下
Sも上記のPと同様に不純物として不可避的に混入するが、過剰なSは溶接性および加工性を害するため、上限は0.010%とする。好ましい上限は0.008%である。なお、S含有量は加工性を向上させる上では少ないほどよいが、溶接時の湯流れ性を確保する上では0.004〜0.008%程度含有させるのがよい。
【0037】
Cr:20%以上、28%未満
Crは、耐酸化性、耐水蒸気酸化性および耐食性を確保するための重要な元素である。700℃以上の高温下での耐食性を18−8系鋼以上にするためには最低限20%の含有量が必要である。前記の耐食性はCr含有量が多いほど向上するが、その含有量が28%以上になると、組織安定性が低下してクリープ強度を損なう。また、オーステナイト組織を安定にするために高価なNi含有量の増加を余儀なくされるだけでなく、溶接性も低下する。よって、Cr含有量は20%以上で28%未満とする。好ましい範囲は22〜26%である。
【0038】
Ni:35%を超えて50%以下
Niは、オーステナイト組織を安定にする元素であり、耐食性の確保にも重要な合金元素である。上記のCr量とのバランスからNiは35%を超える量が必要である。一方、過剰なNiはコスト上昇を招くだけでなく、クリープ強度の低下を招くので、その上限は50%とする。望ましいのは40〜48%である。
【0039】
Mo:0.5%未満
Moは前述したように700℃以上の使用環境下で脆化相を生じたり耐食性を劣化させることがあるだけでなく、後述するWとの複合添加ではWの単独添加に比べて強度向上効果がほとんどない。このため、本発明ではMoは積極的には添加しない。しかし、不純物量であっても、その含有量が0.5%以上になると、700℃以上の高温域で使用した場合、脆化相の生成および耐食性の低下が著しくなる。従って、不純物としてのMo含有量は0.5%未満とした。好ましいのは0.3%以下、より好ましいのは分析の検出限界値未満である。なお、Moの検出限界値は、通常、0.01%である。
【0040】
W:4〜10%
Wも重要な元素の一つで、固溶強化作用によって700℃以上の高温域において優先する粒界すべりクリープを抑制するが、そのためには最低でも4%の含有量が必要である。一方、過剰なWはMoのように脆化相は生成させないものの、鋼を著しく硬化させ、加工性および溶接性を劣化させるので、上限は10%とする。望ましいのは6〜8%である。
【0041】
Ti:0.01〜0.3%
Tiは、未固溶炭窒化物や酸化物を形成してオーステナイト結晶粒の混粒化を助長したり、不均一なクリープ変形や延性低下の原因となるので、その含有量は0.3%以下とした。一方、その含有量が0.01%未満では、高温域での使用中における炭化物の析出による高温強度の向上が望めない。このため、Ti含有量は0.01〜0.3%とした。好ましいのは0.03〜0.2%である。
【0042】
Nb:0.01〜1%
Nbは、Tiのように有害な酸化物にはならないが、炭化物によるクリープ強度の向上のためには最低限0.01%の含有量が必要である。一方、過剰なNbは溶接性を害するので上限は1%とする。好ましいのは0.1〜0.5%である。
【0043】
sol.Al:0.0005〜0.04%
Alは、脱酸剤として添加させるが、多量に添加すると組織安定性が悪くなるので、その含有量はsol.Al含有量で0.04%以下とする。一方、十分な脱酸効果を得るには0.0005%以上のsol.Al含有量が必要である。好ましいのは0.005〜0.02%である。
【0044】
B:0.0005〜0.01%
Bは、後述するNおよびO(酸素)の含有量を低減して酸化物や窒化物を極力排除するようにした本発明の鋼においては極めて有効な粒界すべりクリープ抑制作用を有する元素であるが、その含有量が0.0005%未満ではこの効果が得られない。一方、0.01%を超えて含有させると溶接性を損なう。このため、B含有量は0.0005〜0.01%とした。好ましいのは0.001〜0.005%である。
【0045】
N:0.02%未満
Nおよび次に述べるOの含有量の低減が本発明の重要な要件の一つである。Nは、従来、炭窒化物による析出強化と高価なNiの一部に代える元素として積極的に添加されている。しかし、多量のNはTiやBの未固溶炭窒化物を生成し、これが組織を混粒にし、700℃以上の高温域での粒界すべりクリープおよび不均一なクリープ変形を助長して強度を損なう。従って、N含有量は極力低減する必要がある。NはCrとの親和力が強く、不純物として混入することが避けられない。しかし、その含有量が0.02%未満であれば前記の未固溶炭窒化物が生成しなくなるので、N含有量は0.02%未満とした。好ましいのは0.016%以下、より好ましいのは0.01%以下である。なお、N含有量は低いほどよい。
【0046】
O(酸素):0.005%以下
Oは、上記のNと同様に、TiやAlの未固溶酸化物を生成し、これが組織を混粒にし、700℃以上の高温域での粒界すべりクリープおよび不均一なクリープ変形を助長して強度を損なう。従って、O含有量も極力低減する必要がある。Oも不純物として混入することが避けられないが、その含有量が0.005%以下であれば前記の未固溶酸化物が生成しなくなるので、O含有量は0.005%以下とした。好ましいのは0.003%以下である。なお、O含有量も低いほどよい。
【0047】
本発明のオーステナイト系ステンレス鋼の残部は実質的にFe、言いかえればFeと上記以外の不純物である。
【0048】
本発明のオーステナイト系ステンレス鋼のもう一つは、前記の第1群から第3群までの少なくとも1群の中から選んだ少なくとも1種の成分を含む鋼である。以下、これらの成分について説明する。
【0049】
第1群(Zr)
Zrは、粒界を強化して高温強度を向上させる作用を有する。従って、その効果を得たい場合には積極的に添加含有させてもよい。その効果は、0.0005%以上の含有量で顕著になる。しかし、その含有量が0.1%を超えると、前記のTiと同様に未固溶の酸化物や窒化物を生成し、粒界すべりクリープおよび不均一なクリープ変形を助長するだけでなく鋼質をも劣化させ、高温域でのクリープ強度および延性を損なう。このため、添加する場合のZr含有量は0.0005〜0.1%とするのがよい。さらに好ましいのは0.001〜0.06%である。
【0050】
第2群(Ca
aはSと結合してSを安定化し、加工性を向上させる作用を有する。従って、その効果を得たい場合にはCaを積極的に添加含有させてもよく、その場合0.0005%以上の含有量で上記の効果が顕著になる。しかし0.05%を超えると、靱性、延性及び鋼質を損なう。従って、添加する場合のCa含有量は0.0005〜0.05%するのがよい。一層好ましいCa含有量は0.0005〜0.01%ある。
【0051】
第3群(希土類元素、HfおよびPd)
これらの元素は、いずれも無害で安定な酸化物や硫化物を形成して、OおよびSの好ましくない影響を小さくし、耐食性、加工性、クリープ強度およびクリープ延性を向上させる作用を有する。従って、その効果を得たい場合には1種以上を積極的に添加含有させてもよく、その場合、それぞれ0.0005%以上の含有量で上記の効果が顕著になる。しかし、それぞれの含有量が0.2%を超えると、酸化物等の介在物が多くなり、加工性および溶接性を損なうだけでなく、コストの上昇を招く。従って、添加する場合のこれら元素の含有量は、それぞれ0.0005〜0.2%とするのがよい。一層好ましい範囲はそれぞれ0.001〜0.1%である。
【0052】
なお、P、S、Mo、NおよびO以外の不純物としては、スクラップ等から混入することがあるCoおよびCuが挙げられる。しかし、Coは、本発明の鋼および耐熱耐圧部材の特性に特別な悪影響を及さない。従って、不純物として混入する場合のCo含有量は特に制限しない。ただし、Coは放射化元素でもあるから、混入する場合のCo含有量は0.8%以下、望ましくは0.5%以下にするのがよい。
【0053】
Cuは強度を向上させるものの、700℃以上の高温域での粒界すべりクリープを著しく助長させる。従って、不純物として混入する場合のCu含有量は0.5%以下、望ましくは0.2%以下にするのがよい。
【0054】
2.オーステナイト系ステンレス鋼および耐熱耐圧部材の金属組織
本発明のオーステナイト系ステンレス鋼および耐熱耐圧部材金属組織はオーステナイト結晶粒度番号で6以下、混粒率10%以下の粗粒組織でなければならない。その理由は次のとおりである。
【0055】
前述したように、700℃以上の高温域でのクリープ強度は、オーステナイト結晶粒の大きさと整粒の程度に大きく依存し、粒度番号が6を超える細粒組織の場合には粒界すべりクリープが生じる。また、粒度番号が6以下の粗粒組織であっても混粒率が10%を超える場合には不均一なクリープ変形が生じる。その結果、耐熱疲労特性と組織安定性が劣り、750℃、10,000時間のクリープ破断時間で80MPa以上、絞り率で55%以上が確保できなくなる。
【0056】
このため、本発明では、オーステナイト結晶粒度番号6以下、混粒率10%以下と定めた。好ましいオーステナイト結晶粒度番号は5.5〜3である。また、好ましい混粒率は0(ゼロ)%、即ち、粒度番号が6以下の粗粒でかつ整粒の組織である。なお、オーステナイト結晶粒度番号の下限は特に制限しないが、粒度番号が0未満の粗粒組織は、超音波探傷法による内部欠陥や表面疵の検査ができなくなるので、その下限は0番とするのがよい。
【0057】
3.耐熱耐圧部材の製造方法
次に、上記のオーステナイト結晶粒度番号が6以下、混粒率が10%以下の粗粒組織を有する本発明の耐熱耐圧部材を得るための好ましい製造方法について説明する。この製造方法は、先に述べた(i)から(iii)までの工程を順次経ることを特徴とする。
【0058】
工程(i)
本発明の方法においては、熱間または冷間による最終加工の前に少なくとも1回の加熱を行って、加工中に析出した鋼中の析出物を十分に固溶させる必要がある。しかし、その加熱温度が1100℃未満の場合には、加熱後の鋼中に安定なTiやBを含む未固溶炭窒化物や酸化物が存在するようになる。その結果、これが次の工程(ii)において不均一な歪みを蓄積させる原因となり、工程(iii)の最終熱処理において再結晶を不均一にする。また、未固溶炭窒化物や酸化物それ自体が均一な再結晶を阻害し、上記所定の粗粒組織が確保できなくなる。このため、本発明の好ましい方法においては、熱間または冷間による最終加工前に少なくとも1回、1100℃以上に加熱する。なお、加熱温度の上限は特に制限しないが、1350℃を超える温度に加熱すると、高温粒界割れや延性低下を引き起こすことがあるので、加熱温度の上限は1350℃とするのがよい。
【0059】
加熱後は直ちに熱間または冷間による最終加工を行ってもよい。加熱後および最終加工が熱間加工の場合における加工後の冷却条件には特別な制約はない。しかし、800℃から500℃までの間を冷却速度0.25℃/秒以上で冷却するのが望ましい。これは、冷却中に粗大な析出物をつくらせないためである。
【0060】
工程(ii)
工程(ii)の塑性加工は、工程(i)における最終加工が熱間加工の場合には熱間加工または温度500℃以下の温間加工を含む冷間加工のいずれであってもよい。また、工程(i)における最終加工が温度500℃以下の温間加工を含む冷間加工の場合には最終加工と同じ条件の冷間加工のことである。
【0061】
この工程の塑性加工は、次の最終熱処理において再結晶を促進させるために歪みを付与する目的で行う。この加工の断面減少率が10%未満の場合は、再結晶に必要な歪みを付与することができず、次の最終熱処理を行っても所望の粗粒組織は得られない。このため、塑性加工は断面減少率10%以上で行う。望ましい断面減少率の下限は20%である。なお、断面減少率は大きいほどよいので上限は規定しないが、通常の加工での最大値は90%程度である。また、この加工工程は製品の寸法を決定する工程でもある。
【0062】
工程(iii)
所望の粗粒組織を得るための熱処理である。この熱処理の加熱温度が1050℃よりも低いと、十分な再結晶が起こらず、所望の粗粒組織が得られない。また、結晶粒が扁平な加工組織となり、クリープ強度が低くなる。このため、最終熱処理は1050℃以上で行う。好ましい熱処理温度は、工程(i)における加熱温度よりも10℃以上低い温度である。なお、最終熱処理温度の上限は特に制限しないが、工程(i)の場合と同じ理由からその上限は1350℃とするのがよい。また、最終熱処理後は、工程(i)の場合と同じ理由から800℃から500℃までの間を冷却速度0.25℃/秒以上で冷却するのが望ましい。
【0063】
【実施例】
表1に示す化学組成を有する22種類の鋼を溶製した。なお、比較例中のNo.21はSUS310相当の鋼、No.22はSUS316相当の鋼である。
【0064】
No.1、2、4、6、7、9、11〜13、16および18〜20の鋼は、容量50kgの真空溶解炉を用いて溶製して鋼塊にした。そして、No.1、2、4および11〜13の鋼塊は、下記の製造法Aにより板に仕上げ、No.〜7およびNo.16の鋼塊は下記の製造法Bにより冷延板に仕上げた。また、No.およびNo.18〜20の鋼塊は下記の製造法Cにより鋼管に仕上げた。
【0065】
No.21〜29の鋼は、容量150kgの真空溶解炉を用いて溶製し、得られた鋼塊からそれぞれ表2に示すように下記の製造法A、B、Cで処理した。なお、これらの製造法はいずれも本発明の製造方法に属する。
【0066】
(1)製造法A
工程1(工程(i)に相当):1220℃に加熱、
工程2(工程(ii)に相当):断面減少率67%の熱間鍛造にて厚さ25mmの板材
に成形、
工程3:800℃から500℃以下まで0.55℃/秒で冷却、
工程4(工程(iii)に相当):1210℃に15分間保持後水冷。
【0067】
(2)製造法B
工程1(工程(i)に相当):1220℃に加熱、
工程2:断面減少率67%の熱間鍛造にて厚さ25mmの板材に成形、
工程3:800℃から500℃以下まで0.55℃/秒で冷却
工程4:外面切削にて厚さ20mmの板材に成形、
工程5(工程(ii)に相当):室温下にて断面減少率30%のロール圧延を行い厚さ
14mmの板材に成形、
工程6(工程(iii)に相当):1200℃に15分間保持後水冷。
【0068】
(3)製造法C
工程1:熱間鍛造と外削にて外径175mmの丸鋼に成形、
工程2(工程(i)に相当):丸鋼を1250℃に加熱、
工程3:加熱丸鋼を熱間押出し、外径64mm、肉厚10mmの鋼管に成形、
工程4(工程(i)に相当):鋼管を1220℃に10分間加熱後1℃/秒で冷却、
工程5(工程(ii)に相当):室温下にて断面減少率33%の引抜き加工を行い外径
50.8mm、肉厚8.5mmの鋼管に成形、
工程6(工程(iii)に相当):1210℃に10分間保持後水冷。
【0069】
【表1】

Figure 0004007241
【0070】
前記の工程A、BまたはCによって得られた熱間加工鋼板、冷間圧延鋼板および冷間加工鋼管について、オーステナイト結晶粒度番号と混粒率を調べた。オーステナイト結晶粒度番号は、ASTMに規定される方法に従って測定し、混粒率は前述した方法により求めた。その際、いずれの場合も20視野を観察した。
【0071】
同じく、工程A、BまたはCによって得られた熱間加工鋼板、冷間圧延鋼板および冷間加工鋼管から、外径6mm、標点距離30mmのクリープ試験片を採取してクリープ試験に供し、750℃、10,000時間のクリープ破断強度(MPa)と絞り率(内挿値:%)を調べた。以上の結果を、表2にまとめて示す。
【0072】
【表2】
Figure 0004007241
【0073】
表2からわかるように、化学組成が本発明で規定する範囲内の鋼(No.1、2、4、6、7、9、11〜13、16および18〜20)では、A、B、Cのどの方法で加工しても、オーステナイト結晶粒度番号と混粒率が本発明で規定する範囲になっている。その結果、750℃、10,000時間のクリープ破断強度が87MPa以上、絞り率が60%以上と高く、耐熱疲労特性と組織安定性に優れた耐熱耐圧部材が得られることが明らかである。
【0074】
No.21(SUS310)およびNo.22(SUS316)は、組織は本発明で規定する条件を満たす粗粒組織になっているが、化学組成が本発明で規定する範囲外であるため、クリープ破断強度がそれぞれ41MPaおよび55MPaと著しく低い。
【0075】
化学組成が本発明で規定する範囲外の鋼(No.23〜29)では、本発明の製造方法により加工熱処理しても、オーステナイト結晶粒度番号と混粒率の両方が本発明で規定する範囲内にある粗粒組織は得られていない。その結果、クリープ破断強度が68〜78MPa、絞り率が4〜23%と低い。No.25はO(酸素)含有量が高すぎ、また、No.26はNの含有量が高すぎるものである。No.29は、O含有量およびN含有量が両方とも高すぎる。これらのクリープ破断強度および絞り率が目標値をはるかに下回ることから、OとNの含有量を低く抑えることの重要性がわかる。即ち、これらの比較鋼では、700℃以上の高温域において優れた耐熱疲労特性と組織安定性を発揮する耐熱耐圧部材は得られない。
【0076】
【発明の効果】
本発明のオーステナイト系ステンレス鋼は、高温強度と高温耐食性が良好なだけでなく、オーステナイト結晶粒度番号と混粒率がそれぞれ6以下、10%以下の粗粒組織で、700℃以上の高温域での耐熱疲労特性と組織安定性に優れた耐熱耐圧部材の素材として好適である。また、本発明の耐熱耐圧部材は、750℃、10,000時間のクリープ破断強度が87MPa以上、絞り率が57%以上と高いので、蒸気温度が700℃以上というような超々臨界圧ボイラ等の構成部材として使用可能である。さらに、本発明の方法によれば、本発明の耐熱耐圧部材を低コストで製造することが可能である。[0001]
BACKGROUND OF THE INVENTION
The present invention is an austenitic stainless steel suitable as a material for steel pipes, steel plates, bar steels, forged steel products, etc. (hereinafter collectively referred to as “heat-resistant pressure-resistant members”) constituting power generation boilers, heating furnaces for chemical industries, and the like. The present invention relates to a heat and pressure resistant member made of the steel and excellent in high temperature strength and high temperature corrosion resistance, and a method for producing the same. In addition to having high high-temperature strength and excellent high-temperature corrosion resistance, this heat-resistant pressure-resistant member is also excellent in heat fatigue resistance and metal structure stability (hereinafter simply referred to as structure stability).
[0002]
[Prior art]
In recent years, new super-critical pressure boilers with higher steam temperature and pressure have been developed all over the world for higher efficiency. The steam temperature is planned to increase from around 600 ° C to 650 ° C or higher, and to 700 ° C or higher in the future. This is the CO for energy conservation, effective use of resources, and environmental conservation.2Reducing gas emissions has become a major issue, and a high-efficiency ultra-supercritical boiler that burns fossil fuel is advantageous in solving this problem.
[0003]
The high temperature and high pressure of the steam, especially the high temperature, raises the temperature of the heat-resistant pressure-resistant member constituting the heating furnace for the boiler and chemical industry, and the temperature reaches 650 ° C. or more. For this reason, in addition to high temperature strength and high temperature corrosion resistance, these heat and pressure resistant members are required to have heat fatigue characteristics and long-term structural stability.
[0004]
Austenitic stainless steel is superior in high-temperature strength and high-temperature corrosion resistance compared to ferritic steel. For this reason, austenitic stainless steel is used in a high temperature range of 650 ° C. or higher where ferritic steel cannot be used from the viewpoint of strength and corrosion resistance.
[0005]
As austenitic stainless steels for high temperature and high pressure, 18-8 austenitic stainless steels such as SUS347H and SUS316 are widely used, but there are limits in high temperature strength and corrosion resistance. There is also 25Cr SUS310 with improved corrosion resistance, but its high-temperature strength at 600 ° C or higher is lower than SUS316.
[0006]
For this reason, many steels having high temperature strength and high temperature corrosion resistance based on 20Cr or higher austenitic stainless steel having corrosion resistance higher than 18-8 series steel have been proposed. These steels can be divided into the following three categories.
[0007]
(1) Steel in which the Cr content is increased to 20% or more and the solid solution strengthening elements W, Mo, etc. are added in combination to enhance the intragranular strengthening (for example, Japanese Patent Laid-Open Nos. 61-179833 and 61) -179835).
[0008]
(2) Steel in which N is positively added in addition to W and Mo to enhance precipitation strengthening with nitrides (for example, JP-A-63-183155).
[0009]
(3) Steel that is precipitation strengthened by an intermetallic compound of Ti or Al (for example, JP-A-7-216511).
[0010]
However, the steel of the above (1) has a low high-temperature creep strength at 700 ° C. or higher because the main component of creep in the high-temperature region is from intergranular dislocation creep to intergranular slip creep. Although the steels (2) and (3) have sufficient strength, the ductility is remarkably low, the heat fatigue characteristics and the structural stability at high temperatures are inferior, and the creep strength and creep ductility at 700 ° C. or higher are low.
[0011]
The steel of (3) has high strength and toughness due to intergranular sliding creep and non-uniform creep deformation due to the mixed grain structure because the intermetallic compound of Ti and Al suppresses the growth of crystal grains. Damaged. Therefore, these conventional steels cannot be used as a heat and pressure resistant member used at a high temperature of 700 ° C. or higher, particularly as a heat resistant and pressure resistant member having a thickness of 20 mm or more, which tends to be a mixture with significant structure.
[0012]
[Problems to be solved by the invention]
A first object of the present invention is to provide an austenitic stainless steel suitable for a material of a heat and pressure resistant member exhibiting excellent heat fatigue characteristics and structural stability in a high temperature range of 700 ° C. or higher.
[0013]
The second object of the present invention is to provide a heat and pressure resistant member excellent in high temperature strength and heat fatigue resistance. In particular, the object is to provide a heat and pressure resistant member having the characteristics that the creep rupture strength and drawing rate at 750 ° C. for 10,000 hours are 80 MPa or more and 55% or more, respectively.
[0014]
A third object of the present invention is to provide a method for producing a heat and pressure resistant member having the above-mentioned characteristics.
[0015]
[Means for Solving the Problems]
The austenitic stainless steels of the present invention are the following steels (1) and (2). The heat-resistant pressure-resistant member of the present invention is the following member (3). Furthermore, the production method suitable for obtaining the heat and pressure resistant member of the present invention is the method (4) below.
[0016]
  (1) By mass%, C: 0.03-0.12%, Si: 0.1-1%, Mn: 0.1-2%, Cr: 20% or more and less than 28%, Ni: 35% Exceeding 50% or less, W: 4 to 10%, Ti: 0.01 to 0.3%, Nb: 0.01 to 1%, sol. Al: 0.0005-0.04%, B: 0.0005-0.01% included, the balance is made of Fe and impurities, P as impurities is 0.04% or less, S is 0.010% or less , Mo is less than 0.5%, N is less than 0.02%, O (oxygen) is 0.005% or lessA coarse grain structure having an austenite grain size number of 6 or less and a mixed grain ratio of 10% or less.An austenitic stainless steel characterized by
[0017]
  (2) In addition to the component described in (1) above, it further includes at least one component selected from at least one of the following first group to third group, the balance being Fe and impurities, P 0.04% or less as impurities, S 0.010% or less, Mo less than 0.5%, N less than 0.02%, O (oxygen) 0.005% or lessA coarse grain structure having an austenite grain size number of 6 or less and a mixed grain ratio of 10% or less.An austenitic stainless steel characterized by
First group: Zr of 0.0005 to 0.1% by mass%.
Second group: 0.0005 to 0.05% Ca by mass%.
Third group: 0.0005 to 0.2% of rare earth elements, Hf and Pd, respectively, by mass%.
[0018]
Here, the rare earth elements are 15 elements from La of the original number 57 to Lu of the same 71, and 17 elements including Y and Sc.
[0019]
  (3) From the austenitic stainless steel described in (1) or (2) aboveBecomeA heat and pressure resistant member excellent in heat fatigue characteristics and structural stability at high temperatures. In particular, a heat and pressure resistant member having a creep rupture strength and a drawing ratio of 750 ° C. for 10,000 hours and 80 MPa or more and 55% or more, respectively.
[0020]
Here, the above-mentioned austenite crystal grain size number means a grain size number defined by ASTM (American Society for Testing and Material).
[0021]
Next, a method for calculating the mixing rate (%) will be described. Assuming that the number of fields observed when determining the austenite grain size number with an optical microscope is N, by counting the number of crystal grains present in each field of view, the austenite grain size number is -3 (coarse) To +10 (fine grain), it is determined that the particle number is N, N determination results are obtained, and the frequency is calculated for each particle number. Then, the particle size number G having the maximum frequency is specified, the number of visual fields n1 having a particle size number 3 or less than the specified particle size number G, and the number of visual fields n2 having a particle size number 3 or more larger than the specified particle size number G. And ask. The percentage obtained by dividing the total number of the visual field numbers n1 and n2 by the total visual field number N, that is, 100 × (n1 + n2) / N is the mixed particle ratio.
[0022]
  (4) The steel having the chemical composition as described in (1) or (2) above is subjected to the following steps(i),(ii)and(iii)The method for producing a heat and pressure resistant member excellent in heat fatigue resistance and structure stability in a high temperature range as described in the above (3), wherein the heat treatment and pressure resistance member are excellently processed.
Process(i): Heat to 1100 ° C. or more at least once before final processing by hot or cold.
Process(ii): Plastic working with a cross-section reduction rate of 10% or more.
Process(iii): Final heat treatment is performed at 1050 ° C. or higher.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
The present inventors have examined in detail the influence of alloying elements on the creep and metal structure of austenitic stainless steel with a Cr content increased to 20% or more to ensure corrosion resistance in a high temperature range at 700 ° C. or higher. As a result, the following new findings were obtained.
[0024]
(A) Mo not only has little effect on increasing the strength at high temperatures above 700 ° C, but also reduces high-temperature corrosion resistance, so even if it is included as an impurity, its content is limited to less than 0.5%. There is a need.
[0025]
(B) Unlike Mo, W improves strength in the high temperature range of 700 ° C and higher, and does not reduce high temperature corrosion resistance. Insufficient addition of Mo results in insufficient addition of W. Can compensate.
[0026]
(C) As described above, carbonitrides and intermetallic compounds containing a large amount of Ti, which are used to increase the strength in the prior art, promote intergranular sliding creep and non-uniform creep deformation, resulting in high temperatures. It is better not to use as much as possible because it will significantly reduce the strength and ductility in the region.
[0027]
(D) Grain boundary sliding creep and non-uniform creep deformation are less likely to occur in the coarse-grained structure than in the fine-grained structure. It is less likely to occur in the case of a structure, preferably a coarse structure with a mixed particle ratio of 0 (zero).
[0028]
  (E) A coarse grain structure having an austenite grain size number of 6 or less and a mixed grain ratio of 10% or less restricts the Ti content in steel to 0.01 to 0.3%, and N and O (oxygen) Of the chemical composition according to (1) or (2), wherein the content of each of the above is limited to less than 0.02% and 0.005% or less, and an appropriate amount (0.0005 to 0.01%) of B is contained. Steel is used as a raw material, and this steel is used in the above process(i)From(iii)Can be obtained through the process.
[0029]
  That is, when the content of Ti, N, O and B is limited to the above range,(i)There is no undissolved carbonitride or oxide containing stable Ti or B in the steel after the process(ii)Uniform strain is accumulated in the process(iii)In this case, recrystallization proceeds uniformly to obtain a heat and pressure resistant member having a coarse grain structure with an austenite grain size number of 6 or less and a mixed grain ratio of 10% or less.
[0030]
(F) The above amounts of Ti and Nb are grains as fine carbides during creep in the case of actually using a heat and pressure resistant member whose structure is an austenite grain size number 6 or less and a mixed grain ratio 10% or less. Precipitates uniformly inside and at the grain boundaries, improving high-temperature creep strength. As a result, the creep rupture strength at 750 ° C. and 10,000 hours of this member is 80 MPa or more, and the drawing ratio is 55% or more. A member having such characteristics is also excellent in heat fatigue resistance.
[0031]
  Hereinafter, the chemical composition of the austenitic stainless steel of the present invention,Grain size and blending ratio,Heat resistant and pressure resistant member made of this steelThatThe reason why various conditions of the preferred manufacturing method are determined as described above will be described in detail. In the following, “%” means “mass%” unless otherwise specified.
[0032]
1. Chemical composition of austenitic stainless steel
C: 0.03-0.12%
C is a component necessary for forming high-temperature tensile strength and high-temperature creep strength necessary for high-temperature austenitic stainless steel by forming carbides, and a content of 0.03% or more is necessary. However, if the content exceeds 0.12%, undissolved carbides are produced, or Cr carbides increase and weldability decreases, so the upper limit was made 0.12%. A desirable C content is 0.05 to 0.10%.
[0033]
Si: 0.1-1%
Si is added as a deoxidizer during steelmaking, but it is also an element necessary for improving the steam oxidation resistance of steel, and a content of at least 0.1% is necessary. However, if the content is excessive, the workability of steel deteriorates, so the upper limit was made 1%. A preferred range is 0.1-0.5%.
[0034]
Mn: 0.1-2%
Mn combines with impurity S contained in the steel to form MnS and improves hot workability, but if its content is less than 0.1%, this effect cannot be obtained. On the other hand, if the content is excessive, the steel becomes hard and brittle, and on the contrary, the workability and weldability are impaired, so the upper limit was made 2%. A desirable Mn content is 0.5 to 1.2%.
[0035]
P: 0.04% or less
P is inevitably mixed as an impurity, but excess P impairs weldability and workability, so the upper limit is made 0.04%. A preferred upper limit is 0.03%. The smaller the P content, the better.
[0036]
S: 0.010% or less
S is inevitably mixed as an impurity as in the case of P described above, but excessive S impairs weldability and workability, so the upper limit is made 0.010%. A preferred upper limit is 0.008%. The S content is preferably as low as possible in order to improve the workability, but it is preferable to contain about 0.004 to 0.008% in order to ensure the hot water flow during welding.
[0037]
Cr: 20% or more, less than 28%
Cr is an important element for ensuring oxidation resistance, steam oxidation resistance and corrosion resistance. A minimum content of 20% is required to make the corrosion resistance at high temperatures of 700 ° C or higher 18 or higher. The corrosion resistance is improved as the Cr content is increased. However, when the Cr content is 28% or more, the structural stability is lowered and the creep strength is deteriorated. Moreover, not only is it necessary to increase the expensive Ni content in order to stabilize the austenite structure, but also the weldability is reduced. Therefore, the Cr content is 20% or more and less than 28%. A preferred range is 22-26%.
[0038]
Ni: Over 35% and 50% or less
Ni is an element that stabilizes the austenite structure, and is an alloy element that is also important for ensuring corrosion resistance. In view of the balance with the above Cr amount, Ni needs to exceed 35%. On the other hand, excessive Ni causes not only an increase in cost but also a decrease in creep strength, so the upper limit is made 50%. Desirable is 40-48%.
[0039]
Mo: Less than 0.5%
As described above, Mo not only causes an embrittlement phase and deteriorates corrosion resistance in an environment of use at 700 ° C. or higher, but combined addition with W, which will be described later, has an effect of improving strength compared to the addition of W alone. rare. For this reason, Mo is not actively added in the present invention. However, even if the amount of impurities is 0.5% or more, when used in a high temperature range of 700 ° C. or higher, the formation of an embrittled phase and a decrease in corrosion resistance become significant. Therefore, the Mo content as an impurity is set to less than 0.5%. It is preferably 0.3% or less, more preferably less than the detection limit value of the analysis. The detection limit value of Mo is usually 0.01%.
[0040]
W: 4-10%
W is one of the important elements and suppresses grain boundary sliding creep which is preferential in a high temperature range of 700 ° C. or higher by the solid solution strengthening action. For this purpose, a content of at least 4% is required. On the other hand, although excessive W does not generate an embrittlement phase like Mo, the steel is markedly hardened and deteriorates workability and weldability, so the upper limit is made 10%. 6-8% is desirable.
[0041]
Ti: 0.01-0.3%
Ti forms undissolved carbonitrides and oxides and promotes the mixing of austenite grains, and causes uneven creep deformation and reduced ductility. Therefore, its content is 0.3% or less. did. On the other hand, if the content is less than 0.01%, improvement in high temperature strength due to precipitation of carbide during use in a high temperature region cannot be expected. For this reason, Ti content was made into 0.01 to 0.3%. Preferred is 0.03 to 0.2%.
[0042]
Nb: 0.01-1%
Nb does not become a harmful oxide like Ti, but a minimum content of 0.01% is necessary to improve the creep strength due to carbide. On the other hand, excessive Nb impairs weldability, so the upper limit is made 1%. Preferred is 0.1 to 0.5%.
[0043]
sol.Al: 0.0005-0.04%
Al is added as a deoxidizer, but if added in a large amount, the stability of the structure deteriorates, so the content thereof is 0.04% or less in terms of sol.Al content. On the other hand, in order to obtain a sufficient deoxidation effect, a sol.Al content of 0.0005% or more is necessary. The preferred range is 0.005 to 0.02%.
[0044]
B: 0.0005-0.01%
B is an element having an extremely effective grain boundary slip creep inhibiting effect in the steel of the present invention in which the content of N and O (oxygen) described later is reduced to eliminate oxides and nitrides as much as possible. However, if the content is less than 0.0005%, this effect cannot be obtained. On the other hand, if it exceeds 0.01%, weldability is impaired. Therefore, the B content is set to 0.0005 to 0.01%. The preferred range is 0.001 to 0.005%.
[0045]
N: Less than 0.02%
One of the important requirements of the present invention is to reduce the content of N and O described below. Conventionally, N is positively added as an element replacing precipitation strengthening by carbonitride and a part of expensive Ni. However, a large amount of N produces undissolved carbonitrides of Ti and B, which mixes the structure and promotes intergranular slip creep and non-uniform creep deformation at high temperatures of 700 ° C and higher. Damage. Therefore, it is necessary to reduce the N content as much as possible. N has a strong affinity for Cr, and it is inevitable that it is mixed as an impurity. However, if the content is less than 0.02%, the undissolved carbonitride is not generated, so the N content is less than 0.02%. It is preferably 0.016% or less, more preferably 0.01% or less. The lower the N content, the better.
[0046]
O (oxygen): 0.005% or less
O, like N above, produces insoluble oxides of Ti and Al, which mixes the structure and promotes intergranular slip creep and non-uniform creep deformation at high temperatures above 700 ° C. And lose strength. Therefore, it is necessary to reduce the O content as much as possible. Although it is inevitable that O is also mixed as an impurity, if the content is 0.005% or less, the undissolved oxide is not generated, so the O content is set to 0.005% or less. It is preferably 0.003% or less. The lower the O content, the better.
[0047]
The balance of the austenitic stainless steel of the present invention is substantially Fe, in other words, Fe and impurities other than those described above.
[0048]
Another of the austenitic stainless steels of the present invention is a steel containing at least one component selected from at least one group from the first group to the third group. Hereinafter, these components will be described.
[0049]
First group (Zr)
Zr has the effect of strengthening grain boundaries and improving high temperature strength. Therefore, when it is desired to obtain the effect, it may be actively added and contained. The effect becomes remarkable when the content is 0.0005% or more. However, if its content exceeds 0.1%, it forms undissolved oxides and nitrides similar to Ti, and not only promotes intergranular sliding creep and non-uniform creep deformation, but also improves the steel quality. Deteriorate the creep strength and ductility at high temperatures. For this reason, the Zr content when added is preferably 0.0005 to 0.1%. More preferred is 0.001 to 0.06%.
[0050]
  Second group (Ca)
  Ca is,Combined with S, it stabilizes S and has an effect of improving workability. Therefore, if you want to get the effectCaMay be added actively in that case.,The above effect becomes remarkable at a content of 0.0005% or more. However,If it exceeds 0.05%, toughness, ductility and steel quality are impaired. Therefore, the Ca content when added is 0.0005 to 0.05%.WhenIt is good to do. More preferable Ca content is 0.0005 to 0.01%.sois there.
[0051]
Group 3 (rare earth elements, Hf and Pd)
All of these elements have the effect of forming harmless and stable oxides and sulfides, reducing the undesirable effects of O and S, and improving the corrosion resistance, workability, creep strength and creep ductility. Therefore, when it is desired to obtain the effect, one or more kinds may be positively added and contained, and in this case, the above effect becomes remarkable at a content of 0.0005% or more. However, when the content exceeds 0.2%, inclusions such as oxides increase, which not only impairs workability and weldability, but also increases costs. Therefore, the content of these elements when added is preferably 0.0005 to 0.2%. More preferable ranges are 0.001 to 0.1%, respectively.
[0052]
In addition, as impurities other than P, S, Mo, N, and O, Co and Cu which may be mixed from scrap etc. are mentioned. However, Co does not have a special adverse effect on the properties of the steel and the heat and pressure resistant member of the present invention. Therefore, the Co content when mixed as an impurity is not particularly limited. However, since Co is also an activation element, the Co content when mixed is 0.8% or less, preferably 0.5% or less.
[0053]
Although Cu improves strength, it significantly promotes grain boundary sliding creep at high temperatures of 700 ° C and higher. Therefore, the Cu content when mixed as an impurity is 0.5% or less, preferably 0.2% or less.
[0054]
  2.Austenitic stainless steel andHeat and pressure resistant materialMetallographic structure
  Of the present inventionAustenitic stainless steel andHeat and pressure resistant materialofThe metal structure should be a coarse grain structure with an austenite grain size number of 6 or less and a mixed grain ratio of 10% or less. The reason is as follows.
[0055]
As described above, the creep strength at a high temperature range of 700 ° C. or more greatly depends on the size of the austenite crystal grains and the degree of sizing. In the case of a fine grain structure having a grain size number exceeding 6, the grain boundary sliding creep is Arise. Further, even if the grain size number is 6 or less, if the mixing rate exceeds 10%, non-uniform creep deformation occurs. As a result, heat fatigue characteristics and structural stability are poor, and it is impossible to secure 80 MPa or more at a creep rupture time of 10,000 hours at 750 ° C. and 55% or more in a drawing ratio.
[0056]
Therefore, in the present invention, the austenite grain size number is set to 6 or less, and the mixed grain ratio is set to 10% or less. A preferred austenite grain size number is 5.5-3. Further, the preferable mixing ratio is 0 (zero)%, that is, a coarse and sized structure having a particle size number of 6 or less. The lower limit of the austenite grain size number is not particularly limited. However, the coarse grain structure having a grain size number of less than 0 cannot be inspected for internal defects and surface defects by the ultrasonic flaw detection method. Is good.
[0057]
  3. Manufacturing method for heat and pressure resistant members
  Next, a preferable manufacturing method for obtaining the heat and pressure resistant member of the present invention having a coarse grain structure with the austenite grain size number of 6 or less and a mixed grain ratio of 10% or less will be described. This manufacturing method is described above.(i)From(iii)It is characterized by sequentially going through the steps up to.
[0058]
  Process(i):
  In the method of the present invention, it is necessary to perform at least one heating before the final processing by hot or cold so that precipitates in the steel precipitated during the processing are sufficiently dissolved. However, when the heating temperature is less than 1100 ° C., undissolved carbonitrides and oxides containing stable Ti and B are present in the heated steel. As a result, this is the next step(ii)Causes non-uniform distortion to accumulate in the process(iii)In the final heat treatment, recrystallization is made non-uniform. In addition, the undissolved carbonitride or oxide itself inhibits uniform recrystallization, and the predetermined coarse grain structure cannot be secured. For this reason, in the preferred method of the present invention, heating is performed at 1100 ° C. or more at least once before the final processing by hot or cold. The upper limit of the heating temperature is not particularly limited, but heating to a temperature exceeding 1350 ° C. may cause high-temperature intergranular cracking and a decrease in ductility, so the upper limit of the heating temperature is preferably 1350 ° C.
[0059]
You may perform the final process by hot or cold immediately after a heating. There are no special restrictions on the cooling conditions after the heating and when the final processing is hot working. However, it is desirable to cool between 800 ° C. and 500 ° C. at a cooling rate of 0.25 ° C./second or more. This is because coarse precipitates are not formed during cooling.
[0060]
  Process(ii):
  Process(ii)The plastic working process(i)When the final processing in is hot processing, it may be either hot processing or cold processing including warm processing at a temperature of 500 ° C. or less. Also, process(i)In the case of cold working including warm working at a temperature of 500 ° C. or less, the cold working under the same conditions as the final working is used.
[0061]
The plastic working in this step is performed for the purpose of imparting strain in order to promote recrystallization in the next final heat treatment. When the cross-section reduction rate of this processing is less than 10%, the strain necessary for recrystallization cannot be imparted, and the desired coarse grain structure cannot be obtained even if the next final heat treatment is performed. For this reason, the plastic working is performed at a cross-section reduction rate of 10% or more. A desirable lower limit of the cross-section reduction rate is 20%. Note that the larger the cross-section reduction rate, the better, so the upper limit is not specified, but the maximum value in normal processing is about 90%. This processing step is also a step of determining the dimensions of the product.
[0062]
  Process(iii):
  Heat treatment for obtaining a desired coarse grain structure. When the heating temperature of this heat treatment is lower than 1050 ° C., sufficient recrystallization does not occur and a desired coarse grain structure cannot be obtained. Further, the crystal grains become a flat processed structure, and the creep strength is lowered. For this reason, the final heat treatment is performed at 1050 ° C. or higher. The preferred heat treatment temperature is the process(i)The temperature is 10 ° C. or more lower than the heating temperature at. The upper limit of the final heat treatment temperature is not particularly limited.(i)For the same reason as above, the upper limit is preferably 1350 ° C. In addition, after the final heat treatment,(i)For the same reason as above, it is desirable to cool between 800 ° C. and 500 ° C. at a cooling rate of 0.25 ° C./second or more.
[0063]
【Example】
  It has the chemical composition shown in Table 1.22Various types of steel were melted. In addition, No. in the comparative example. 21 is a steel equivalent to SUS310, No. 21. 22 is a steel equivalent to SUS316.
[0064]
  No. 12, 4, 6, 7, 9, 11-13, 16 and 18The steel of ˜20 was melted into a steel ingot using a vacuum melting furnace with a capacity of 50 kg. And No. 12, 4, and 11-13The steel ingot of No. 1 is finished into a plate by the following production method A.6-7 and No.16The steel ingot was finished into a cold-rolled sheet by the following production method B. No.9And No. Steel ingots 18 to 20 were finished into steel pipes by the following production method C.
[0065]
Steel Nos. 21 to 29 were melted using a vacuum melting furnace having a capacity of 150 kg, and each steel ingot obtained was treated by the following production methods A, B and C as shown in Table 2. These production methods all belong to the production method of the present invention.
[0066]
  (1) Manufacturing method A
  Process 1 (Process(i)Equivalent): heated to 1220 ° C,
Process 2 (Process(ii)Equivalent to :) 25 mm thick plate by hot forging with a cross-section reduction rate of 67%
Molded into,
Step 3: Cool from 800 ° C. to 500 ° C. or less at 0.55 ° C./second,
Process 4 (Process(iii)): Held at 1210 ° C. for 15 minutes and then water-cooled.
[0067]
  (2) Production method B
  Process 1 (Process(i)Equivalent): heated to 1220 ° C,
Process 2: Formed into a plate with a thickness of 25 mm by hot forging with a cross-section reduction rate of 67%.
Step 3: Cool from 800 ° C to 500 ° C or less at 0.55 ° C / second
Process 4: Formed into a 20 mm thick plate by external cutting,
Process 5 (process(ii)Equivalent to :) Roll thickness is reduced by 30% at room temperature.
Molded into a 14mm plate,
Process 6 (Process(iii)1): held at 1200 ° C. for 15 minutes and then water-cooled.
[0068]
  (3) Production method C
  Process 1: Forming round steel with outer diameter of 175mm by hot forging and cutting
Process 2 (Process(i)Equivalent to :) Round steel heated to 1250 ° C,
Process 3: Hot extruded round steel is hot-extruded and formed into a steel pipe having an outer diameter of 64 mm and a wall thickness of 10 mm.
Process 4 (Process(i)): The steel pipe was heated to 1220 ° C. for 10 minutes and then cooled at 1 ° C./second,
Process 5 (process(ii)): Outer diameter after drawing with a cross-section reduction rate of 33% at room temperature
Molded into a steel pipe with a thickness of 50.8 mm and a thickness of 8.5 mm,
Process 6 (Process(iii)): Held at 1210 ° C. for 10 minutes and then water-cooled.
[0069]
[Table 1]
Figure 0004007241
[0070]
About the hot-worked steel plate, cold-rolled steel plate, and cold-worked steel pipe obtained by the said process A, B, or C, the austenite grain size number and the mixing rate were investigated. The austenite grain size number was measured according to the method prescribed in ASTM, and the mixed grain ratio was determined by the method described above. At that time, 20 visual fields were observed in each case.
[0071]
Similarly, from the hot-worked steel sheet, cold-rolled steel sheet and cold-worked steel pipe obtained by the process A, B or C, a creep test piece having an outer diameter of 6 mm and a gauge distance of 30 mm is collected and subjected to a creep test. The creep rupture strength (MPa) at 10,000 ° C. for 10,000 hours and the drawing ratio (interpolated value:%) were examined. The above results are summarized in Table 2.
[0072]
[Table 2]
Figure 0004007241
[0073]
  As can be seen from Table 2, steel (No.2, 4, 6, 7, 9, 11-13, 16 and 18-20), The austenite grain size number and the mixed grain ratio are within the ranges defined by the present invention, regardless of the method of A, B, or C. As a result, the creep rupture strength at 750 ° C. for 10,000 hours is 87 MPa or more, and the drawing ratio is60%It is clear that a heat-resistant pressure-resistant member having high heat-resistance fatigue properties and structure stability can be obtained.
[0074]
No.21 (SUS310) and No.22 (SUS316) have a coarse-grained structure that satisfies the conditions specified in the present invention, but the chemical composition is outside the range specified in the present invention. The strength is remarkably low at 41 MPa and 55 MPa, respectively.
[0075]
For steels whose chemical compositions are outside the range specified in the present invention (Nos. 23 to 29), both the austenite grain size number and the mixed grain ratio are specified in the present invention even when the heat treatment is performed by the production method of the present invention. The coarse grain structure inside is not obtained. As a result, the creep rupture strength is as low as 68 to 78 MPa and the drawing rate is as low as 4 to 23%. No. 25 has an O (oxygen) content that is too high, and No. 26 has an N content that is too high. In No. 29, both the O content and the N content are too high. Since these creep rupture strength and drawing ratio are far below the target values, it is understood that it is important to keep the contents of O and N low. That is, with these comparative steels, a heat and pressure resistant member that exhibits excellent heat fatigue resistance and structural stability in a high temperature range of 700 ° C. or higher cannot be obtained.
[0076]
【The invention's effect】
The austenitic stainless steel of the present invention not only has good high temperature strength and high temperature corrosion resistance, but also has a coarse grain structure with an austenite grain size number and a mixture ratio of 6% or less and 10% or less, respectively, in a high temperature range of 700 ° C or higher. It is suitable as a material for a heat-resistant pressure-resistant member having excellent heat-resistant fatigue properties and structural stability. In addition, the heat and pressure resistant member of the present invention has a high creep rupture strength of 750 ° C. and 10,000 hours of 87 MPa or higher and a draw ratio of 57% or higher, so that the component temperature of a super super critical pressure boiler such as a steam temperature of 700 ° C. or higher Can be used as Furthermore, according to the method of the present invention, the heat and pressure resistant member of the present invention can be produced at low cost.

Claims (8)

質量%で、C:0.03〜0.12%、Si:0.1〜1%、Mn:0.1〜2%、Cr:20%以上28%未満、Ni:35%を超え50%以下、W:4〜10%、Ti:0.01〜0.3%、Nb:0.01〜1%、sol.Al:0.0005〜0.04%、およびB:0.0005〜0.01%を含み、残部はFeおよび不純物からなり、不純物としてのPが0.04%以下、Sが0.010%以下、Moが0.5%未満、Nが0.02%未満、O(酸素)が0.005%以下の化学組成を有するとともに、オーステナイト結晶粒度番号が6以下および混粒率が10%以下の粗粒組織であることを特徴とするオーステナイト系ステンレス鋼。In mass%, C: 0.03-0.12%, Si: 0.1-1%, Mn: 0.1-2%, Cr: 20% or more and less than 28%, Ni: more than 35% and 50% Hereinafter, W: 4 to 10%, Ti: 0.01 to 0.3%, Nb: 0.01 to 1%, sol. Al: 0.0005-0.04%, and B: 0.0005-0.01%, the balance is made of Fe and impurities, P as impurities is 0.04% or less, S is 0.010% Hereinafter, Mo has a chemical composition of less than 0.5%, N is less than 0.02%, O (oxygen) is 0.005% or less , an austenite grain size number of 6 or less, and a mixing ratio of 10% or less. An austenitic stainless steel characterized by having a coarse grain structure . 請求項1に記載の鋼からなることを特徴とする高温域での耐熱疲労特性と組織安定性に優れた耐熱耐圧部材。A heat and pressure resistant member excellent in heat fatigue resistance and structure stability in a high temperature range, comprising the steel according to claim 1. 750℃、10,000時間のクリープ破断強度が80MPa以上および絞り率が55%以上であることを特徴とする請求項2に記載の耐熱耐圧部材。The heat and pressure resistant member according to claim 2, wherein a creep rupture strength at 750 ° C for 10,000 hours is 80 MPa or more and a drawing ratio is 55% or more. 質量%で、C:0.03〜0.12%、Si:0.1〜1%、Mn:0.1〜2%、Cr:20%以上28%未満、Ni:35%を超え50%以下、W:4〜10%、Ti:0.01〜0.3%、Nb:0.01〜1%、sol.Al:0.0005〜0.04%、B:0.0005〜0.01%、および下記の第1群から第3群までの少なくとも1群の中から選んだ少なくとも1種の成分を含み、残部はFeおよび不純物からなり、不純物としてのPが0.04%以下、Sが0.010%以下、Moが0.5%未満、Nが0.02%未満、O(酸素)が0.005%以下の化学組成を有するとともに、オーステナイト結晶粒度番号が6以下および混粒率が10%以下の粗粒組織であることを特徴とするオーステナイト系ステンレス鋼。
第1群:質量%で、0.0005〜0.1%のZr。
第2群:質量%で、0.0005〜0.05%のCa
第3群:質量%で、それぞれ0.0005〜0.2%の希土類元素、HfおよびPd。
In mass%, C: 0.03-0.12%, Si: 0.1-1%, Mn: 0.1-2%, Cr: 20% or more and less than 28%, Ni: more than 35% and 50% Hereinafter, W: 4 to 10%, Ti: 0.01 to 0.3%, Nb: 0.01 to 1%, sol. Al: 0.0005-0.04%, B: 0.0005-0.01%, and at least one component selected from at least one group from the following first group to the third group, The balance consists of Fe and impurities. P as an impurity is 0.04% or less, S is 0.010% or less, Mo is less than 0.5%, N is less than 0.02%, and O (oxygen) is 0.00. An austenitic stainless steel having a chemical composition of 005% or less, a coarse grain structure having an austenite grain size number of 6 or less and a mixed grain ratio of 10% or less .
First group: 0.0005 to 0.1% Zr in mass%.
Second group: 0.0005 to 0.05% Ca by mass% .
Third group: 0.0005 to 0.2% of rare earth elements, Hf and Pd, respectively, by mass%.
請求項4に記載の鋼からなることを特徴とする高温域での耐熱疲労特性と組織安定性に優れた耐熱耐圧部材。A heat and pressure resistant member excellent in heat fatigue resistance and structure stability in a high temperature range, comprising the steel according to claim 4. 750℃、10,000時間のクリープ破断強度が80MPa以上および絞り率が55%以上であることを特徴とする請求項5に記載の耐熱耐圧部材。6. The heat and pressure resistant member according to claim 5, wherein a creep rupture strength at 750 ° C. for 10,000 hours is 80 MPa or more and a drawing ratio is 55% or more. 請求項1に記載の化学組成を有する鋼を、下記の工程(i)(ii)および(iii)で順次処理することを特徴とする請求項2または3に記載の高温域での耐熱疲労特性と組織安定性に優れた耐熱耐圧部材の製造方法。
工程(i):熱間または冷間による最終加工前に、少なくとも1回1100℃以上に加
熱する。
工程(ii):断面減少率10%以上の塑性加工を行う。
工程(iii):1050℃以上で最終熱処理を行う。
The heat-resistant fatigue in the high temperature range according to claim 2 or 3, wherein the steel having the chemical composition according to claim 1 is sequentially processed in the following steps (i) , (ii) and (iii): A method for producing a heat and pressure resistant member having excellent characteristics and structural stability.
Step (i) : Heating to 1100 ° C. or more at least once before final processing by hot or cold.
Step (ii) : Plastic working with a cross-section reduction rate of 10% or more is performed.
Step (iii) : Final heat treatment is performed at 1050 ° C. or higher.
請求項4に記載の化学組成を有する鋼を、下記の工程(i)(ii)および(iii)で順次処理することを特徴とする請求項5または6に記載の高温域での耐熱疲労特性と組織安定性に優れた耐熱耐圧部材の製造方法。
工程(i):熱間または冷間による最終加工前に、少なくとも1回、1100℃以上に
加熱する。
工程(ii):断面減少率10%以上の塑性加工を行う。
工程(iii):1050℃以上で最終熱処理を行う。
The heat-resistant fatigue in the high temperature range according to claim 5 or 6, wherein the steel having the chemical composition according to claim 4 is sequentially processed in the following steps (i) , (ii) and (iii): A method for producing a heat and pressure resistant member having excellent characteristics and structural stability.
Step (i) : Heat to 1100 ° C. or more at least once before final processing by hot or cold.
Step (ii) : Plastic working with a cross-section reduction rate of 10% or more is performed.
Step (iii) : Final heat treatment is performed at 1050 ° C. or higher.
JP2003105933A 2002-04-17 2003-04-10 Austenitic stainless steel excellent in high-temperature strength and corrosion resistance, heat-resistant pressure-resistant member made of this steel, and manufacturing method thereof Expired - Lifetime JP4007241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003105933A JP4007241B2 (en) 2002-04-17 2003-04-10 Austenitic stainless steel excellent in high-temperature strength and corrosion resistance, heat-resistant pressure-resistant member made of this steel, and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002114138 2002-04-17
JP2003105933A JP4007241B2 (en) 2002-04-17 2003-04-10 Austenitic stainless steel excellent in high-temperature strength and corrosion resistance, heat-resistant pressure-resistant member made of this steel, and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004003000A JP2004003000A (en) 2004-01-08
JP4007241B2 true JP4007241B2 (en) 2007-11-14

Family

ID=30447086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003105933A Expired - Lifetime JP4007241B2 (en) 2002-04-17 2003-04-10 Austenitic stainless steel excellent in high-temperature strength and corrosion resistance, heat-resistant pressure-resistant member made of this steel, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4007241B2 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2572156C (en) * 2004-06-30 2013-10-29 Sumitomo Metal Industries, Ltd. Fe-ni alloy pipe stock and method for manufacturing the same
CN101784685B (en) 2007-08-31 2012-02-15 日立金属株式会社 Low-thermal-expansion ni-based super-heat-resistant alloy for boiler and having excellent high-temperature strength, and boiler component and boiler component production method using the same
KR101280114B1 (en) 2008-06-16 2013-06-28 신닛테츠스미킨 카부시키카이샤 Heat-resistant austenitic alloy, heat-resistant pressure-resistant member comprising the alloy, and process for producing the same
WO2010038826A1 (en) * 2008-10-02 2010-04-08 住友金属工業株式会社 Ni‑BASED HEAT-RESISTANT ALLOY
JP4780189B2 (en) * 2008-12-25 2011-09-28 住友金属工業株式会社 Austenitic heat-resistant alloy
JP4631986B1 (en) 2009-09-16 2011-02-23 住友金属工業株式会社 Ni-based alloy product and manufacturing method thereof
CN101781743B (en) * 2010-02-26 2013-04-03 山西太钢不锈钢股份有限公司 Seamless steel tube for ultra supercritical boiler and manufacturing method thereof
JP5782753B2 (en) * 2010-03-19 2015-09-24 新日鐵住金株式会社 Manufacturing method of high Cr high Ni alloy tube and high Cr high Ni alloy
CA2738273C (en) * 2011-04-28 2018-01-23 Nova Chemicals Corporation Furnace coil with protuberances on the external surface
JP5273266B2 (en) * 2012-02-08 2013-08-28 新日鐵住金株式会社 Double pipe and welded structure using the same
JP5920047B2 (en) * 2012-06-20 2016-05-18 新日鐵住金株式会社 Austenitic heat-resistant material
JP5880310B2 (en) * 2012-06-25 2016-03-09 新日鐵住金株式会社 Austenitic stainless steel
JP5846074B2 (en) * 2012-08-10 2016-01-20 新日鐵住金株式会社 Austenitic heat-resistant alloy member and manufacturing method thereof
JP5998950B2 (en) * 2013-01-24 2016-09-28 新日鐵住金株式会社 Austenitic heat-resistant alloy members
JP6048169B2 (en) * 2013-01-29 2016-12-21 新日鐵住金株式会社 Austenitic heat-resistant alloy members and austenitic heat-resistant alloy materials
JP6492747B2 (en) * 2014-03-25 2019-04-03 新日鐵住金株式会社 Austenitic heat-resistant alloy tube manufacturing method and austenitic heat-resistant alloy tube manufactured by the manufacturing method
JP6520516B2 (en) * 2014-08-06 2019-05-29 日本製鉄株式会社 Austenitic heat-resistant alloy members
JP6736964B2 (en) * 2016-05-16 2020-08-05 日本製鉄株式会社 Austenitic heat resistant alloy material
CN110268079A (en) 2017-02-09 2019-09-20 日本制铁株式会社 Austenitic heat-resistant alloy and its manufacturing method
CN110291216A (en) * 2017-02-15 2019-09-27 日本制铁株式会社 Ni based heat resistant alloy and its manufacturing method
CN110709527B (en) * 2017-06-09 2021-08-31 日本制铁株式会社 Austenitic alloy pipe and method for producing same
JP7320936B2 (en) * 2018-11-16 2023-08-04 日鉄ステンレス株式会社 bar steel
CN111748720B (en) * 2019-03-27 2021-09-24 中国科学院金属研究所 Hot working process and application of nickel-iron-based alloy
CN114941107B (en) * 2022-05-31 2023-09-29 哈尔滨汽轮机厂有限责任公司 Preparation method of austenitic stainless steel material for 630 ℃ ultra-supercritical turbine blade
CN115505707B (en) * 2022-09-22 2023-09-26 内蒙古北方重工业集团有限公司 Grain size refinement manufacturing method of large-caliber TP316H stainless steel seamless steel pipe

Also Published As

Publication number Publication date
JP2004003000A (en) 2004-01-08

Similar Documents

Publication Publication Date Title
JP4007241B2 (en) Austenitic stainless steel excellent in high-temperature strength and corrosion resistance, heat-resistant pressure-resistant member made of this steel, and manufacturing method thereof
KR100532877B1 (en) Austenitic stainless steel excellent in high temperature strength and corrosion resistance, heat resistant pressurized parts, and the manufacturing method thereof
JP4424471B2 (en) Austenitic stainless steel and method for producing the same
JP3632672B2 (en) Austenitic stainless steel pipe excellent in steam oxidation resistance and manufacturing method thereof
JP6819700B2 (en) Ni-based heat-resistant alloy member and its manufacturing method
JP3838216B2 (en) Austenitic stainless steel
CN103352175B (en) A kind of control nitrogen austenitic stainless steel and manufacture method thereof
KR20120053080A (en) Ni-based alloy product and process for production thereof
WO2006109664A1 (en) Ferritic heat-resistant steel
JP2009293063A (en) METHOD FOR MANUFACTURING HIGH-Cr HEAT-RESISTANT FERRITIC STEEL MATERIAL
WO2016195106A1 (en) Austenitic stainless steel
JP2012255198A (en) Method for producing austenitic stainless steel pipe, and austenitic stainless steel pipe
JP7114998B2 (en) austenitic stainless steel
JP7272438B2 (en) Steel material, manufacturing method thereof, and tank
JP6772735B2 (en) Ni-based heat-resistant alloy member and its manufacturing method
CN109913758B (en) Ferritic stainless steel plate with good high-temperature strength and forming performance and preparation method thereof
JP7278079B2 (en) Cold-rolled stainless steel sheet, hot-rolled stainless steel sheet, and method for manufacturing hot-rolled stainless steel sheet
JP5239642B2 (en) Ferritic stainless steel with excellent thermal fatigue properties, high temperature fatigue properties and oxidation resistance
JP3886864B2 (en) Ferritic stainless steel cold-rolled annealed material excellent in secondary workability and manufacturing method thereof
JP3570288B2 (en) High Cr martensitic heat resistant steel with excellent hot workability
JP6690499B2 (en) Austenitic stainless steel sheet and method for producing the same
JP3969279B2 (en) Martensitic iron-base heat-resistant alloy and method for producing the same
JP5239644B2 (en) Ferritic stainless steel with excellent thermal fatigue properties, high temperature fatigue properties, oxidation resistance and toughness
JP2002146481A (en) Oxide dispersion strengthened ferritic steel for electric resistance welded boiler having excellent electric resistance weldability and steel tube thereof
JP5239643B2 (en) Ferritic stainless steel with excellent thermal fatigue properties, high temperature fatigue properties, oxidation resistance and workability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4007241

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term