EP3257920A1 - Polymères de lubrifiant - Google Patents

Polymères de lubrifiant Download PDF

Info

Publication number
EP3257920A1
EP3257920A1 EP16305740.9A EP16305740A EP3257920A1 EP 3257920 A1 EP3257920 A1 EP 3257920A1 EP 16305740 A EP16305740 A EP 16305740A EP 3257920 A1 EP3257920 A1 EP 3257920A1
Authority
EP
European Patent Office
Prior art keywords
monomers
alkyl methacrylate
lubricant
copolymer
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP16305740.9A
Other languages
German (de)
English (en)
Inventor
Denis LANÇON
Valérie Doyen
Isabelle Rogues De Fursac
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TotalEnergies Marketing Services SA
Original Assignee
Total Marketing Services SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Total Marketing Services SA filed Critical Total Marketing Services SA
Priority to EP16305740.9A priority Critical patent/EP3257920A1/fr
Priority to ARP170101642A priority patent/AR108746A1/es
Priority to CN201780037544.7A priority patent/CN109328226A/zh
Priority to KR1020197001301A priority patent/KR20190018700A/ko
Priority to SG11201810869SA priority patent/SG11201810869SA/en
Priority to JP2018565308A priority patent/JP2019518122A/ja
Priority to PCT/EP2017/064736 priority patent/WO2017216327A1/fr
Priority to TW106120270A priority patent/TW201809241A/zh
Priority to BR112018076024-2A priority patent/BR112018076024A2/pt
Priority to EP17729882.5A priority patent/EP3472275B1/fr
Priority to RU2018144257A priority patent/RU2018144257A/ru
Priority to US16/310,691 priority patent/US20190177643A1/en
Publication of EP3257920A1 publication Critical patent/EP3257920A1/fr
Priority to JP2021128713A priority patent/JP2021169633A/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M145/00Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
    • C10M145/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M145/10Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate
    • C10M145/12Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate monocarboxylic
    • C10M145/14Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/52Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of 30 or more atoms
    • C10M133/54Amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M161/00Lubricating compositions characterised by the additive being a mixture of a macromolecular compound and a non-macromolecular compound, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • C10M169/041Mixtures of base-materials and additives the additives being macromolecular compounds only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • C10M169/044Mixtures of base-materials and additives the additives being a mixture of non-macromolecular and macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/003Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/1006Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/26Amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/069Linear chain compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/071Branched chain compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/04Detergent property or dispersant property
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/12Inhibition of corrosion, e.g. anti-rust agents or anti-corrosives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/52Base number [TBN]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/56Boundary lubrication or thin film lubrication
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/252Diesel engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/04Aerosols

Definitions

  • This invention relates to a lubricant composition comprising a copolymer, a method for its production and its uses.
  • lubricants One of the primary function of lubricants is to decrease friction. Frequently, however, lubricating oils need additional properties to be used effectively. For example, lubricants used in large diesel engines, such as, for example, marine diesel engines, are often subjected to operating conditions requiring special considerations.
  • Two-stroke marine engines are of crosshead design also named slow-speed engines, they are used for the largest, deep ocean going vessels and certain other industrial applications.
  • Two-stroke Slow-speed engines are unique in size and method of operation. The output of these engines can be as high as 100,000 horsepower (84MW) with engine revolutions of 80 to about 200 revolutions per minute (rpm).
  • Two-stroke Slow-speed marine engines have a high to very high power range (600 to 6000 kW per cylinder).
  • These engines always consist of two separately lubricated parts, namely the piston/cylinder assembly lubricated with a highly viscous cylinder oil, generally of SAE 50 or 60 grade, and the crankshaft, crossheads, conrods, lubricated by a less viscous system oil, generally of SAE 30 grade.
  • the cylinders are lubricated on a total loss basis with the cylinder oil being injected separately into each cylinder by means of lubricators positioned around the cylinder liner. Oil is distributed to the lubricators by means of pumps, which are, in modem engine designs, actuated to apply the oil directly onto the rings to reduce oil wastage.
  • the unique design of these engines creates the need for lubricants with enhanced rheological properties. Accordingly, lubricants used in a marine engine must protect the engine parts from corrosion which can reduce engine efficiency and lifetime. Also, the residual fuels commonly used in these diesel engines typically contain significant quantities of sulfur. During the combustion process, the sulfur oxide can combine with water to form sulfuric acid, the presence of which leads to corrosive wear. In particular, areas around the cylinder liners and piston rings can be corroded and worn by the acid. Therefore, it is important for marine engine to resist such corrosion and wear by being properly lubricated.
  • the lubricant is applied to the cylinder wall, typically by a pulse lubricating system or by spraying the lubricant onto the piston's rings pack through an injector.
  • the lubrication in a two-stroke marine engine differs significantly from any other type of engine.
  • a defined volume per x stroke of lubricant is injected or sprayed on the piston's rings pack and spread most of the time horizontally by the sprayer or injector and also spread vertically by the piston rings when the piston is in its upward motion onto the cylinder liner.
  • said system may not guarantee accessibility of the lubricant over the entire cylinder liner surface because the lubricant is not sufficiently well spread on the liner surface after its delivery. Further, the use of said system for spraying lubricant over the liner surface underlines that although the lubricant is not well spread, the property of well self-spreading of the lubricant is not sufficient. This induces a large efficiency drop of the lubrication process and an increase the corrosion of the corrosion process in marine engines.
  • a lubricant additive that will provide effective corrosion resistance. Additionally, there is a need for a lubricant additive that will provide any rheology improvements, notably spreading and self-spreading rheology, in order to enhance lubricating efficacy and reduce the corrosion.
  • the term "spreading rheology property" of the lubricant means the rheological property of the lubricant after its spreading on the cylinder liner surface.
  • marine engine lubricating oils comprising the copolymers of the disclosure as an additive, surprisingly allows increasing the spreading of the lubricant and its self-spreading on the liner surface after its delivery with respect to prior art oils, thereby leading to better lubrication and less engine cylinder wear and corrosion. It has been also shown that marine engine lubricating oils comprising the copolymers of the disclosure as an additive surprisingly allows increasing of the self-spreading of the lubricant on the liner surface.
  • the present disclosure provides the use of a lubricant composition
  • a lubricant composition comprising a base oil and a copolymer of alkyl methacrylate monomers, wherein said alkyl methacrylate monomers comprise at least:
  • the present disclosure provides the use of a lubricant composition
  • a lubricant composition comprising a copolymer obtained by combining alkyl methacrylate monomers, wherein said alkyl methacrylate monomers comprise at least:
  • the present disclosure provides a method for increasing the spreading of the lubricant on the surface liner after its delivery said method comprising formulating the marine lubricant according to the first and the second aspects.
  • the present disclosure provides the use of a lubricant of the first aspect and the second aspects for increasing the self-spreading of the lubricant on the liner surface after its delivery.
  • the present disclosure provides a method for increasing the self-spreading of the lubricant on the surface liner after its delivery said method comprising formulating the marine lubricant according to the first and the second aspects.
  • the present disclosure provides the use of a lubricant of the first aspect and the second aspects for increasing the spreading and the self-spreading of the lubricant on the liner surface after its delivery.
  • the present disclosure provides a method for increasing the spreading and self-spreading of the lubricant on the surface liner after its delivery said method comprising formulating the lubricant according to the first and the second aspects.
  • the present disclosure provides the use of a lubricant composition
  • a lubricant composition comprising a base oil and a copolymer of alkyl methacrylate monomers, wherein said alkyl methacrylate monomers comprise at least:
  • the copolymer used in the lubricant composition according to the invention is prepared from a mixture of monomers that comprises at least two monomers: one monomer (A) and one monomer (B), distinct from one another.
  • Such copolymers can comprise units derived from other monomers.
  • Other monomers can be selected for example from C1-C5 alkyl methacrylates and C16-C24 alkyl methacrylates, cross-linking monomers, C1-C24 alkyl acrylates, styrene...
  • monomers (A) selected from C6-C10 alkyl methacrylate monomers, and monomers (B) selected from C10-C18 alkyl methacrylate monomers represent at least 75% by weight of the total weight of monomers used to prepare the copolymer, advantageously they represent at least 90%, even more preferably at least 95 %, or better 99% by weight.
  • the weight ratio of monomers (B) to monomers (A) in the copolymer is about 99:1 to about 10:90.
  • monomers (A) comprise at least 50% by weight of C8 alkyl methacrylate, as compared to the total weight of monomers (A), even more preferably at least 75% by weight, even better at least 90% by weight, and even more advantageously at least 99% by weight.
  • monomers (A) are branched, like for example 2-ethyl hexyl methacrylate, isodecylmethacrylate.
  • monomers (B) comprise a mixture of at least C10 alkyl methacrylate, C12 alkyl methacrylate, C14 alkyl methacrylate, C16 alkyl methacrylate and C18 alkyl methacrylate.
  • monomers (B) comprise a mixture of at least :
  • monomers (B) comprise a mixture of at least:
  • monomers (B) are linear, like for example n-C10-alkyl methacrylate, n-C11-alkyl methacrylate, lauryl methacrylate (n-C12-alkym methacrylate), n-C13-alkyl methacrylate, myristyl methacrylate (n-C14-alkyl methacrylate), n-C15-alkyl methacrylate, n-C16-alkyl methacrylate, n-C17-alkyl methacrylate, n-C18-alkyl methacrylate.
  • the ratio of monomers in all aspects of the disclosure can be adjusted to manipulate the characteristics of the copolymer as desired.
  • the monomers can be present in ratios of C10-C18-alkyl methacrylate to C6-C10-alkyl methacrylate of 10:90, 15:85, 20:80, 25:75, 30:70, 35:65, 40:60, 45:55, 50:50, 55:45, 60:40, 65:35, 70:30, 75:25, 80:20, 85:15, 90:10, 95:5, and 99:1.
  • the monomers can be present in ratios of C10-C18-alkyl methacrylate to C8-alkyl methacrylate of 10:90, 15:85, 20:80, 25:75, 30:70, 35:65, 40:60, 45:55, 50:50, 55:45, 60:40, 65:35, 70:30, 75:25, 80:20, 85:15, 90:10, 95:5, and 99:1.
  • the C8 alkyl methacrylate is linear or branched C8 alkyl. In some favourite embodiments, the C8 alkyl methacrylate is 2-ethylhexyl methacrylate.
  • the copolymer is a copolymer of 2-ethyl hexyl methacrylate and a mixture of monomers comprising C10 alkyl methacrylate, C12 alkyl methacrylate, C14 alkyl methacrylate, C16 alkyl methacrylate and C18 alkyl methacrylate.
  • the copolymer is a copolymer of a mixture of monomers comprising C10 alkyl methacrylate, C12 alkyl methacrylate, C14 alkyl methacrylate, C16 alkyl methacrylate and C18 alkyl methacrylate and a C8 alkyl methacrylate, wherein the mass ratio of the mixture in the copolymer to C8 alkyl methacrylate monomers in the copolymer is about 99:1 to about 10:90 by weight.
  • the copolymer is a copolymer of a mixture of monomers comprising at least, or even more preferably consisting of: a C8 alkyl methacrylate, a C12 alkyl methacrylate, a C14 alkyl methacrylate, and a C16 alkyl methacrylate, and they are present in the mixture in weight ratio of:
  • copolymers according to the disclosure have an average Root Mean Square Radius of Gyration (Rg) as measured by Hydrodynamic Column Chromatography-Multi Angle Light Scattering (HCC-MALS) from about 100 to about 200 (nm) Rg, from about 120 to about 190 (nm), from about 130 to 180, or from about 140 to about 170 (nm) Rg.
  • Rg Root Mean Square Radius of Gyration
  • HCC-MALS Hydrodynamic Column Chromatography-Multi Angle Light Scattering
  • the present disclosure provides a lubricant composition
  • a lubricant composition comprising a copolymer obtained by combining and polymerizing alkyl methacrylate monomers, wherein said alkyl methacrylate monomers comprise at least:
  • Favourite embodiments according to the second aspect are identical to those disclosed above for the first aspect.
  • the copolymer may be synthesized by conventional methods for vinyl addition polymerization known to those skilled in the art, such as, but not limited to, solution polymerization, precipitation polymerization, and dispersion polymerizations, including suspension polymerization and emulsion polymerization.
  • the polymer is formed by suspension polymerization, wherein monomers that are insoluble in water or poorly soluble in water are suspended as droplets in water.
  • the monomer droplet suspension is maintained by mechanical agitation and the addition of stabilizers.
  • Surface active polymers such as cellulose ethers, poly(vinyl alcohol-co-vinyl acetate), poly(vinyl pyrrolidone) and alkali metal salts of (meth)acrylic acid containing polymers and colloidal (water insoluble) inorganic powders such as tricalcium phosphate, hydroxyapatite, barium sulfate, kaolin, and magnesium silicates can be used as stabilizers.
  • surfactants such as sodium dodecylbenzene sulfonate can be used together with the stabilizer(s).
  • Polymerization is initiated using an oil soluble initiator. Suitable initiators include peroxides such as benzoyl peroxide, peroxy esters such as tert -butylperoxy-2-ethylhexanoate, and azo compounds such as 2,2'-azobis(2-methylbutyronitrile).
  • solid polymer product can be separated from the reaction medium by filtration and washed with water, acid, base, or solvent to remove unreacted monomer or free stabilizer.
  • the polymer is formed by emulsion polymerization, one or more monomers are dispersed in an aqueous phase and polymerization is initiated using a water soluble initiator.
  • the monomers are typically water insoluble or very poorly soluble in water, and a surfactant or soap is used to stabilize the monomer droplets in the aqueous phase.
  • Polymerization occurs in the swollen micelles and latex particles.
  • Other ingredients that might be present in an emulsion polymerization include chain transfer agents such as mercaptans (e.g.
  • dodecyl mercaptan to control molecular weight, electrolytes to control pH, and small amounts of organic solvent, preferably water soluble organic solvents, including but not limited acetone, 2-butanone, methanol, ethanol, and isopropanol, to adjust the polarity of the aqueous phase.
  • organic solvent preferably water soluble organic solvents, including but not limited acetone, 2-butanone, methanol, ethanol, and isopropanol, to adjust the polarity of the aqueous phase.
  • Suitable initiators include alkali metal or ammonium salts of persulfate such as ammonium persulfate, water-soluble azo compounds such as 2,2'-azobis(2-aminopropane)dihydrochloride, and redox systems such as Fe(II) and cumene hydroperoxide, and tert-butyl hydroperoxide-Fe(II)-sodium ascorbate.
  • Suitable surfactants include anionic surfactants such as fatty acid soaps (e.g. sodium or potassium stearate), sulfates and sulfonates (e.g. sodium dodecyl 20 benzene sulfonate), sulfosuccinates (e.g.
  • dioctyl sodium sulfosuccinate dioctyl sodium sulfosuccinate
  • non-ionic surfactants such as octylphenol ethoxylates and linear and branched alcohol ethoxylates
  • cationic surfactants such as cetyl trimethyl ammonium chloride
  • amphoteric surfactants Anionic surfactants and combinations of anionic surfactants and non-ionic surfactants are most commonly used.
  • Polymeric stabilizers such as poly(vinyl alcohol-co-vinyl acetate) can also be used as surfactants.
  • the solid polymer product free of the aqueous medium can be obtained by a number of processes including destabilization/coagulation of the final emulsion followed by filtration, solvent precipitation of the polymer from latex, or spray drying of the latex.
  • the polymer can be isolated by conventional methods known to those skilled in the art, such as, but not limited to, solvent exchange, evaporation of solvent, spray drying and freeze-drying.
  • An initiator system can be a single initiator compound (e.g. , a persulfate salt) or a mixture of two or more components (e.g ., hydrogen peroxide and sodium ascorbate).
  • the initiator system can include an oxidant, a reductant, and optionally a metal salt.
  • the oxidant can be a persulfate, such as, for example, ammonium persulfate, or a peroxide, such as, for example, hydrogen peroxide (H 2 O 2 ) or tert-butyl hydroperoxide (TBHP).
  • a desirable copolymer may be obtained, for example, when the polymerization mixture includes tert-butyl hydroperoxide in about 0.01 to about 0.06 mass percent of all monomers in the mixture.
  • the mixture may include tert-butyl hydroperoxide in about 0.01 to about 0.03 mass percent of the monomers in the mixture.
  • the mixture further comprises tert-butyl hydroperoxide in about 0.013 mass percent of the monomers in the mixture.
  • Useful initiators for the copolymers of the present disclosure include any conventional initiator, including any conventional redox initiator.
  • the reductant of the redox initiator system can be ascorbic acid or a salt thereof.
  • the polymerization mixture can include sodium ascorbate in about 0.04 to about 0.1 mass percent of the monomers in the mixture. In other examples, the sodium ascorbate may be present in about 0.08 to about 0.1 mass percent of the monomers in the mixture. In some embodiments, the polymerization mixture includes sodium ascorbate in about 0.098 mass percent of the monomers in the mixture.
  • the initiator system may also include a metal salt.
  • the metal may be any suitable transition metal, such as, for example, iron.
  • the metal salt of the initiator system can be ferrous sulfate (FeSO 4 ).
  • the metal salt is present in the polymerization mixture in about 0.0005 to about 0.1 mass percent of the monomers in the mixture. In some examples, the metal salt is added to the polymerization mixture as a solution.
  • the copolymer may also be under the form of a mixture further including a surfactant.
  • the surfactant may contain a sulfonate group.
  • the surfactant may include a dialkyl sulfosuccinate, such as, for example, dioctyl sulfosuccinate sodium salt.
  • the surfactant may be Aerosol® OT.
  • the copolymer can be a random copolymer, a block copolymer, or mixture thereof.
  • the copolymer is a substantially random copolymer ( e.g ., greater than 90, 95, 98, or 99 mass percent).
  • the copolymer is partially a random copolymer and partially a block copolymer.
  • the weight percent ratio of random copolymer to block copolymer is generally 90:10, 80:20, 70: 30, 60:40, 50:50, 40:60, 30:70, 20:80 or 10:90.
  • the copolymer may also be a substantially block copolymer ( e.g ., greater than 90, 95, 98, or 99 weight percent).
  • the copolymer can contain additional monomers in addition to the monomers (A) selected from C6-C10 alkyl methacrylate monomers, and monomers (B) selected from C10-C18 alkyl methacrylate monomers.
  • additional monomers can be present in an amount less than 25 weight percent, preferably less than 10 weight percent. In some embodiments, the additional monomers are present in an amount from about 0.5 to 10 weight percent, or about 1 to 10 weight percent or about 1 to 5 weight percent or about 5 to 10 weight percent. In other embodiments, the additional monomers are present in an amount less than about 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 or about 0.5 weight percent.
  • the additional monomers can include, for example, C1-C5 alkyl methacrylates and C16-C24 alkyl methacrylates, cross-linking monomers, C1-C24 alkyl acrylates, styrene, and other similar monomers.
  • the copolymer may also be crosslinked. That is, the copolymer can contain monomeric units that connect one or more of the backbone chains of the polymer. In some examples, the copolymer contains crosslinked monomeric units present in up to about 5% by weight of the copolymer.
  • the crosslinked copolymer may be obtained by the addition of a crosslinking agent.
  • the crosslinking agent is a diacrylate or dimethacrylate crosslinking agent, such as, for example, 1,6-hexanediol dimethacrylate.
  • the mixture includes a crosslinking agent in up to about 0.005 mass percent of the monomers in the mixture.
  • Example copolymers are shown in Table 1.
  • Table 1 shows the ratio of the mixture of methacrylate monomer (e.g. a mixture of monomers comprising C10 alkyl methacrylate, C12 alkyl methacrylate, C14 alkyl methacrylate, C16 alkyl methacrylate and C18 alkyl methacrylate) to C8 alkyl methacrylate monomer (e.g., 2-ethylhexyl methacrylate), the amount of acetone, the components of the redox initiator system, the surfactant used, the molecular weight, Rg and viscosity of each example copolymer.
  • methacrylate monomer e.g. a mixture of monomers comprising C10 alkyl methacrylate, C12 alkyl methacrylate, C14 alkyl methacrylate, C16 alkyl methacrylate and C18 alkyl methacrylate
  • C8 alkyl methacrylate monomer e.g
  • a method of making a copolymer as described above includes the polymerization of monomers (A) selected from C6-C10 alkyl methacrylate monomers, and monomers (B) selected from C10-C18 alkyl methacrylate monomers, advantageously polymerization of a mixture of monomers comprising C10 alkyl methacrylate, C12 alkyl methacrylate, C14 alkyl methacrylate, C16 alkyl methacrylate and C18 alkyl methacrylate, and a C8 alkyl methacrylate monomer, wherein the mass ratio of monomers (B) to monomers (A) in the copolymer is about 99:1 to about 10:90 by weight ( e.g ., 10:90, 15:85, 20:80, 25:75, 30:70, 35:65, 40:60, 45:55, 50:50, 55:45, 60:40, 65:35, 70:30, 75:25, 80:20,
  • the method includes: combining monomers (A) selected from C6-C10 alkyl methacrylate monomers, and monomers (B) selected from C10-C18 alkyl methacrylate monomers, advantageously combining a mixture of monomers comprising C10 alkyl methacrylate, C12 alkyl methacrylate, C14 alkyl methacrylate, C16 alkyl methacrylate and C18 alkyl methacrylate, and C8 alkyl methacrylate monomers in a ratio of about 10:90, 15:85, 20:80, 25:75, 30:70, 35:65, 40:60, 45:55, 50:50, 55:45, 60:40, 65:35, 70:30, 75:25, 80:20, 85:15, 90:10, 95:5, 99:1 and initiating the polymerization of the monomers to provide a copolymer.
  • monomers (A) selected from C6-C10 alkyl methacrylate monomers and monomers (B)
  • the ratio of monomers and the initiator, or initiator system can be selected as described above.
  • the method may include further components to provide a copolymer with desirable properties.
  • the method may also include a surfactant, such as, for example, Aerosol® OT, or a crosslinker, such as, for example, 1,6-hexanediol dimethacrylate.
  • Polymerization can occur in an aqueous mixture or a mixture that comprises both aqueous and organic solvents.
  • the polymerization mixture can include a mixture of water and acetone.
  • the polymerization mixture may require an organic solvent.
  • Organic solvents for use in such polymerization reactions are known and routinely selectable by those of ordinary skill in the field of polymer synthesis. Suitable organic solvents include, for example and without limitation, acetone, 2-butanone, methanol, ethanol, and isopropanol.
  • the quantity of copolymer in the lubricant composition of the invention is from 0.01% to 10% by weight relative to the total weight of the lubricant composition, preferably from 0.01% to 5%, more preferably from 0.01% to 4%, further preferably from 0.01% to 3%.
  • This quantity is to be construed as quantity of polymer dry matter.
  • the copolymer used in the present invention is sometimes contained in dilution in a synthetic or mineral oil (most often a Group 1 oil according to the API classification).
  • oils also called "base oils” used for formulating lubricant composition according to the present invention may be oils of mineral, synthetic or plant origin as well as their mixtures.
  • the mineral or synthetic oils generally used in the application belong to one of the classes defined in the API classification as summarized below: Saturated substance content (weight percent) Sulfur content (weight percent) Viscosity Index Group 1 Mineral oils ⁇ 90% >0.03% 80 ⁇ VI ⁇ 120 Group 2 Hydrocracked oils ⁇ 90% ⁇ 0.03% 80 ⁇ VI ⁇ 120 Group 3 Hydroisomerized oils ⁇ 90% ⁇ 0.03% ⁇ 120 Group 4 PAOs Group 5 Other bases not included in the base Groups 1 to 4
  • These mineral oils of Group 1 may be obtained by distillation of selected naphthenic or paraffinic crude oils followed by purification of these distillates by methods such as solvent extraction, solvent or catalytic dewaxing, hydrotreating or hydrogenation.
  • the oils of Groups 2 and 3 are obtained by more severe purification methods, for example a combination of hydrotreating, hydrocracking, hydrogenation and catalytic dewaxing.
  • Examples of synthetic bases of Groups 4 and 5 include poly-alpha olefins, polybutenes, polyisobutenes, alkylbenzenes.
  • base oils may be used alone or as a mixture.
  • a mineral oil may be combined with a synthetic oil.
  • the lubricant compositions of the invention have a viscosity grade of SAE-20, SAE-30, SAE-40, SAE-50 or SAE-60 according to the SAEJ300 classification.
  • Grade 20 oils have a kinematic viscosity at 100° C. of between 5.6 and 9.3 mm 2 /s.
  • Grade 30 oils have a kinematic viscosity at 100° C. of between 9.3 and 12.5 mm 2 /s.
  • Grade 40 oils have a kinematic viscosity at 100° C. of between 12.5 and 16.3 mm 2 /s.
  • Grade 50 oils have a kinematic viscosity at 100° C. of between 16.3 and 21.9 mm 2 /s.
  • Grade 60 oils have a kinematic viscosity at 100° C. of between 21.9 and 26.1 mm 2 /s.
  • the lubricant composition according to the first aspect and the second aspect is a cylinder lubricant.
  • the cylinder oils for two-stroke diesel marine engines have a viscosimetric grade SAE-40 to SAE-60, generally preferentially SAE-50 equivalent to a kinematic viscosity at 100° C comprised between 16.3 and 21.9 mm 2 /s.
  • a conventional formulation of cylinder lubricant for two-stroke marine diesel engines is of grade SAE 40 to SAE 60, preferentially SAE 50 (according to the SAE J300 classification) and comprises at least 50% by weight of a lubricating base oil of mineral and/or synthetic origin, adapted to the use in a marine engine, for example of the API Group 1 class.
  • Their viscosity index (VI) is comprised between 80 and 120; their sulfur content is greater than 0.03% and their saturated substance content is less than 90%.
  • the system oils for two-stroke diesel marine engines have a viscosimetric grade SAE-20 to SAE-40, generally preferentially SAE-30 equivalent to a kinematic viscosity at 100°C comprised between 9.3 and 12.5 mm 2 /s.
  • These viscosities may be obtained by mixing additives and base oils for example containing mineral bases of Group 1 such as Neutral Solvent (for example 150 NS, 500 NS or 600 NS) bases and brightstock. Any other combination of mineral, synthetic bases or bases of plant origin, having, as a mixture with the additives, a viscosity compatible with the chosen SAE grade, may be used.
  • mineral bases of Group 1 such as Neutral Solvent (for example 150 NS, 500 NS or 600 NS) bases and brightstock.
  • Neutral Solvent for example 150 NS, 500 NS or 600 NS
  • the quantity of base oil in the lubricant composition of the invention is from 30% to 90% by weight relative to the total weight of the lubricant composition, preferably from 40% to 90%, more preferably from 50% to 90%.
  • the lubricant composition has a Base Number (BN) determined according to the standard ASTM D-2896 of at most 50, preferably at most 40, advantageously at most 30 milligrams of potassium hydroxide per gram of the lubricating composition, in particular ranging from 10 to 40, preferably 15 to 40 milligrams of potassium hydroxide per gram of the lubricant composition.
  • BN Base Number
  • the lubricant composition has a BN determined according to the standard ASTM D-2896 of at least 50, preferably at least 60, more preferably at least 70, advantageously 70 to 100.
  • the lubricant composition of the invention may comprise at least one optional additive, chosen in particular from among those frequently used by persons skilled in the art.
  • the lubricant of the first aspect and the second aspect further comprises an optional additive chosen amongst a neutral detergent, an overbased detergent, an anti-wear additive, an oil soluble fatty amine, a polymer, a dispersing additive, an anti-foaming additive or a mixture thereof.
  • Detergents are typically anionic compounds containing a long lipophilic hydrocarbon chain and a hydrophilic head, wherein the associated cation is typically a metal cation of an alkali metal or alkaline earth metal.
  • the detergents are preferably selected from alkali metal salts or alkaline earth metal (particularly preferably calcium, magnesium, sodium or barium) salts of carboxylic acids, sulphonates, salicylates, naphthenates, as well as the salts of phenates. These metal salts may contain the metal in an approximately stoichiometric amount relative to the anion group(s) of the detergent. In this case, one refers to non-overbased or "neutral" detergents, although they also contribute to a certain basicity.
  • neutral detergents typically have a BN measured according to ASTM D2896, of less than 150 mg KOH/g, or less than 100 mg KOH/g, or less than 80 mg KOH/g of detergent.
  • This type of so-called neutral detergent may contribute in part to the BN of lubricating compositions.
  • neutral detergents are used such as carboxylates, sulphonates, salicylates, phenates, naphthenates of the alkali and alkaline earth metals, for example calcium, sodium, magnesium, barium.
  • the metal is in excess (amount greater than the stoichiometric amount relative to the anion groups(s) of the detergent), then these are so-called overbased detergents.
  • BN is high, higher than 150 mg KOH/g of detergent, typically from 200 to 700 mg KOH/g of detergent, preferably from 250 to 450 mg KOH/g of detergent.
  • the metal in excess providing the character of an overbased detergent is in the form of insoluble metal salts in oil, for example carbonate, hydroxide, oxalate, acetate, glutamate, preferably carbonate.
  • the metals of these insoluble salts may be the same as, or different from, those of the oil soluble detergents. They are preferably selected from calcium, magnesium, sodium or barium.
  • the overbased detergents are thus in the form of micelles composed of insoluble metal salts that are maintained in suspension in the lubricating composition by the detergents in the form of soluble metal salts in the oil.
  • These micelles may contain one or more types of insoluble metal salts, stabilised by one or more types of detergent.
  • the overbased detergents comprising a single type of detergent-soluble metal salt are generally named according to the nature of the hydrophobic chain of the latter detergent. Thus, they will be called a phenate, salicylate, sulphonate, naphthenate type when the detergent is respectively a phenate, salicylate, sulphonate or naphthenate.
  • the overbased detergents are called mixed type if the micelles comprise several types of detergents, which are different from one another by the nature of their hydrophobic chain.
  • the overbased detergent and the neutral detergent may be selected from carboxylates, sulphonates, salicylates, naphthenates, phenates and mixed detergents combining at least two of these types of detergents.
  • the overbased detergent and the neutral detergent include compounds based on metals selected from calcium, magnesium, sodium or barium, preferably calcium or magnesium.
  • the overbased detergent may be overbased by metal insoluble salts selected from the group of carbonates of alkali and alkaline earth metals, preferably calcium carbonate.
  • the lubricating composition may comprise at least one overbased detergent and at least a neutral detergent as defined above.
  • Polymers are typically polymers having a low molecular weight of from 2000 to 50 000 dalton (Mn).
  • the polymers are selected amongst PIB (of from 2000 Dalton), polyacrylates or polymetacrylates (of from 30 000 Dalton), distinct from the copolymer based on monomers A and B, olefin copolymers, olefin and alpha-olefin copolymers, EPDM, polybutenes, poly alpha-olefin having a high molecular weight (viscosity 100°C > 150), hydrogenated or non-hydrogenated styrene-olefin copolymers.
  • Anti-wear additives protect the surfaces from friction by forming a protective film adsorbed on these surfaces.
  • the most commonly used is zinc dithiophosphate or DTPZn.
  • DTPZn zinc dithiophosphate
  • anti-wear additives there are various phosphorus, sulphur, nitrogen, chlorine and boron compounds.
  • the most widely used category is that of the sulphur phospho additives such as metal alkylthiophosphates, especially zinc alkylthiophosphates, more specifically, zinc dialkyl dithiophosphates or DTPZn.
  • the preferred compounds are those of the formula Zn((SP(S)(OR 1 )(OR 2 )) 2 , wherein R 1 and R 2 are alkyl groups, preferably having 1 to 18 carbon atoms.
  • the DTPZn is typically present at levels of about 0.1 to 2% by weight relative to the total weight of the lubricating composition.
  • the amine phosphates, polysulphides, including sulphurised olefins are also widely used anti-wear additives.
  • nitrogen and sulphur type anti-wear and extreme pressure additives in lubricating compositions such as, for example, metal dithiocarbamates, particularly molybdenum dithiocarbamate.
  • Glycerol esters are also anti-wear additives.
  • the content of anti-wear additives ranges from 0.01 to 6%, preferably from 0.1 to 4% by weight relative to the total weight of the lubricating composition.
  • Dispersants are well known additives used in the formulation of lubricating compositions, in particular for application in the marine field. Their primary role is to maintain in suspension the particles that are initially present or appear in the lubricant during its use in the engine. They prevent their agglomeration by playing on steric hindrance. They may also have a synergistic effect on neutralisation. Dispersants used as lubricant additives typically contain a polar group, associated with a relatively long hydrocarbon chain, generally containing 50 to 400 carbon atoms. The polar group typically contains at least one nitrogen, oxygen, or phosphorus element. Compounds derived from succinic acid are particularly useful as dispersants in lubricating additives.
  • succinimides obtained by condensation of succinic anhydrides and amines
  • succinic esters obtained by condensation of succinic anhydrides and alcohols or polyols.
  • These compounds can then be treated with various compounds including sulphur, oxygen, formaldehyde, carboxylic acids and boron-containing compounds or zinc in order to produce, for example, borated succinimides or zinc-blocked succinimides.
  • Mannich bases obtained by polycondensation of phenols substituted with alkyl groups, formaldehyde and primary or secondary amines, are also compounds that are used as dispersants in lubricants.
  • the dispersant content may be greater than or equal to 0.1%, preferably 0.5 to 2%, advantageously from 1 to 1.5% by weight relative to the total weight of the lubricating composition. It is possible to use a dispersant from the PIB succinimide family, e.g. boronated or zinc-blocked.
  • additives may be chosen from defoamers, for example, polar polymers such as polydimethylsiloxanes, polyacrylates. They may also be chosen from antioxidant and/or anti-rust additives, for example organometallic detergents or thiadiazoles. These additives are known to persons skilled in the art. These additives are generally present in a weight content of 0.1 to 5% based on the total weight of the lubricating composition.
  • the lubricant composition according to the invention may further comprise an oil soluble fatty amine.
  • the fatty amine is of a general formula (I): R 1 -[(NR 2 )-R 3 ] n -NR 4 R 5 , (I) wherein,
  • the fatty amine is of a general formula (I), wherein:
  • the fatty amine of general formula (I) represents of from 0.5 to 10%, preferably of from 0.5 to 8% by weight with respect to the total weight of the lubricant composition.
  • the optional additives such as defined above contained in the lubricant compositions of the present invention can be incorporated in the lubricant composition as separate additives, in particular through separate addition thereof in the base oils. However, they may also be integrated in a concentrate of additives for marine lubricant compositions.
  • the lubricant composition comprises:
  • the lubricant composition comprises:
  • the present disclosure provides the use of a lubricant of the first aspect and the second aspect for increasing the self-spreading of the lubricant on the liner surface after its delivery.
  • the use of a lubricant of the first and the second aspects is for increasing the spreading and the self-spreading of the lubricant on the liner surface after its delivery.
  • the present disclosure provides a method for increasing the spreading of the lubricant on the surface liner after its delivery said method comprising formulating the marine lubricant according to the first and the second aspects.
  • the present disclosure provides a method for increasing the self-spreading of the lubricant on the surface liner after its delivery said method comprising formulating the marine lubricant according to the first and the second aspects.
  • the present disclosure provides a method for increasing the spreading and self-spreading of the lubricant on the surface liner after its delivery said method comprising formulating the lubricant according to the first and the second aspects.
  • the increasing of the spreading of the lubricant on the surface liner after its delivery results from the enhancement of the rheology properties of the lubricant, notably the spreading rheology properties of the lubricant.
  • the term "spreading rheology properties" of the lubricant means the rheological properties of the lubricant after its spreading on the cylinder liner surface.
  • the increasing of the self-spreading of the lubricant on the surface liner after its delivery results from the enhancement of the rheology properties of the lubricant, notably the self-spreading rheology properties of the lubricant.
  • self-spreading rheology properties of the lubricant means the rheological properties of the lubricant after its spreading on the cylinder liner surface.
  • the polymers have a molecular weight superior than 20000 D.
  • the polymers have a bimodal molecular weight distribution.
  • Copolymers having a molecular weight (Mw), average root mean square radius of gyration (Rg) and viscosity correlation in a certain range are particularly suitable as an oil additive to enhance the performance of oil as a lubricant while maintaining the ability to handle and pump the oil.
  • Mw molecular weight
  • Rg average root mean square radius of gyration
  • a performance X value between 500 and 900, more preferably between 550 and 800, and most preferably between 600 and 750 is indicative of a copolymer having properties that are particularly suitable to enhance the performance of oil as a lubricant, notably the spreading and/or the self-spreading of the lubricant.
  • C10-C18 alkyl methacrylate is a mixture of C10 alkyl methacrylate, C12 alkyl methacrylate (CAS 142-90-5), C14 alkyl methacrylate (CAS 2549-53-3), C16 alkyl methacrylate (CAS 2495-27-4) and C18 alkyl methacrylate.
  • this mixture comprises of about- 0.1 to 2% by weight of C10 alkyl methacrylate, 50 to 80% by weight of C12 alkyl methacrylate, 15 to 40% by weight of C14 alkyl methacrylate, 2 to 12% by weight of C16 alkyl methacrylate and 0.1 to 1% by weight of C18 alkyl methacrylate as compared to the total weight of the mixture, such as commercially available methacrylic ester 13.0 (Evonik trade name: VISIOMER® Terra C13,0-MA).
  • the term "about” refers to the given value ⁇ 10 % of the value.
  • C8 alkyl refers to a group comprised of eight saturated carbon atoms connected in a linear or branched configuration.
  • linear C8 alkyl groups include n-octyl.
  • branched C 8 alkyl groups include, but are not limited, to 2-ethylhexyl.
  • C10-C18 alkyl methacrylate as used in Examples 1 and 2 was provided as methacrylic ester 13.0, which is commercially available as VISIOMER Terra C13,0-MA from Evonik Industries.
  • reaction reached 43 °C, 0.04 g of t-butyl hydroperoxide in 7.5g of water was added. After 5 minutes, 0.29 g of sodium ascorbate dissolved in 7.5 g of water and 0.60 g of a 0.25% solution of iron sulfate hexahydrate was added. The nitrogen purge was then changed to a nitrogen blanket. The reaction was held an additional 5 hours, cooled to room temperature and isolated.
  • reaction reached 43 °C, 0.04 g of t-butyl hydroperoxide in 7.5g of water was added. After 5 minutes, 0.29 g of sodium ascorbate dissolved in 7.5 g of water and 0.60 g of a 0.25% solution of iron sulfate hexahydrate was added. The nitrogen purge was then changed to a nitrogen blanket. The reaction was held an additional 5 hours, cooled to room temperature and isolated.
  • test lubricant composition comprising 5% Solids Solution of Copolymer in Oil
  • test lubricant was submitted to the above disclosed finger pull test.
  • Sample Preparation The samples were prepared by gravimetrically diluting about 8.0 mg of sample with about 5.0 g of tetrahyrofuran. The actual concentration of polymer in mg/ml was calculated based on the density of tetrahydrofuran (0.889 g/ml) and the percentage solids in the sample solutions (5.0%).
  • the Astra software provides several choices of formalisms and exponent order to fit the data. All samples were fit with a 2 nd order Berry. The angles used were adjusted to give the best fit, using a minimum of 13 angles and up to the maximum of 17. The dn/dc was calculated from the refractive index data assuming 100% recovery. The software reported the average Molecular Weight as Mw and the average Root Mean Square Radius of Gyration as Rg. The results are shown in Table 1.
  • Lubricant compositions C1 and C2 have been prepared with the following compounds:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
EP16305740.9A 2016-06-17 2016-06-17 Polymères de lubrifiant Withdrawn EP3257920A1 (fr)

Priority Applications (13)

Application Number Priority Date Filing Date Title
EP16305740.9A EP3257920A1 (fr) 2016-06-17 2016-06-17 Polymères de lubrifiant
ARP170101642A AR108746A1 (es) 2016-06-17 2017-06-15 Polímeros lubricantes
TW106120270A TW201809241A (zh) 2016-06-17 2017-06-16 潤滑劑組合物的用途
KR1020197001301A KR20190018700A (ko) 2016-06-17 2017-06-16 윤활제 중합체
SG11201810869SA SG11201810869SA (en) 2016-06-17 2017-06-16 Lubricant polymers
JP2018565308A JP2019518122A (ja) 2016-06-17 2017-06-16 潤滑ポリマー
PCT/EP2017/064736 WO2017216327A1 (fr) 2016-06-17 2017-06-16 Polymères lubrifiants
CN201780037544.7A CN109328226A (zh) 2016-06-17 2017-06-16 润滑剂聚合物
BR112018076024-2A BR112018076024A2 (pt) 2016-06-17 2017-06-16 polímeros lubrificantes
EP17729882.5A EP3472275B1 (fr) 2016-06-17 2017-06-16 Polymères de lubrifiant
RU2018144257A RU2018144257A (ru) 2016-06-17 2017-06-16 Смазочные полимеры
US16/310,691 US20190177643A1 (en) 2016-06-17 2017-06-16 Lubricant polymers
JP2021128713A JP2021169633A (ja) 2016-06-17 2021-08-05 潤滑ポリマー

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP16305740.9A EP3257920A1 (fr) 2016-06-17 2016-06-17 Polymères de lubrifiant

Publications (1)

Publication Number Publication Date
EP3257920A1 true EP3257920A1 (fr) 2017-12-20

Family

ID=56263638

Family Applications (2)

Application Number Title Priority Date Filing Date
EP16305740.9A Withdrawn EP3257920A1 (fr) 2016-06-17 2016-06-17 Polymères de lubrifiant
EP17729882.5A Active EP3472275B1 (fr) 2016-06-17 2017-06-16 Polymères de lubrifiant

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP17729882.5A Active EP3472275B1 (fr) 2016-06-17 2017-06-16 Polymères de lubrifiant

Country Status (11)

Country Link
US (1) US20190177643A1 (fr)
EP (2) EP3257920A1 (fr)
JP (2) JP2019518122A (fr)
KR (1) KR20190018700A (fr)
CN (1) CN109328226A (fr)
AR (1) AR108746A1 (fr)
BR (1) BR112018076024A2 (fr)
RU (1) RU2018144257A (fr)
SG (1) SG11201810869SA (fr)
TW (1) TW201809241A (fr)
WO (1) WO2017216327A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020212562A1 (fr) * 2019-04-18 2020-10-22 Total Marketing Services Procede de reduction et/ou controle de la combustion anormale du gaz dans un moteur marin ou un moteur a allumage commande

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3108620B1 (fr) * 2020-03-25 2022-09-09 Total Marketing Services Utilisation de polymère styrène diène hydrogéné pour réduire les émissions de particules

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4438005A (en) * 1981-01-12 1984-03-20 Texaco Inc. Marine diesel engine lubricant of improved spreadability
EP0823472A1 (fr) * 1996-08-08 1998-02-11 Rohm And Haas Company Des additifs améliorant l'index de viscosité de fluides hydrauliques à base d'esters de phosphates
WO1999010454A2 (fr) * 1997-08-22 1999-03-04 Röhm RohMax Holding GmbH Amelioration de la fluidite a basse temperature d'huiles de graissage par utilisation de melanges additifs de polymeres de hautes et de faibles masses moleculaires
EP1418187A2 (fr) * 2002-11-11 2004-05-12 Ethyl Corporation Copolymères (meth)acrylates d'alkyl

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1009197A (en) * 1961-08-30 1965-11-10 Lubrizol Corp Stable water-in-oil emulsion
US6124249A (en) * 1998-12-22 2000-09-26 The Lubrizol Corporation Viscosity improvers for lubricating oil compositions
US6767871B2 (en) * 2002-08-21 2004-07-27 Ethyl Corporation Diesel engine lubricants
DE102004018094A1 (de) * 2004-04-08 2005-11-03 Rohmax Additives Gmbh Polymere mit H-Brücken bildenden Funktionalitäten zur Verbesserung des Verschleißschutzes
US7648950B2 (en) * 2005-04-22 2010-01-19 Rohmax Additives Gmbh Use of a polyalkylmethacrylate polymer
CN101100514A (zh) * 2006-07-07 2008-01-09 戈尔德施米特股份公司 具有良好的铺展性能的含硅氧烷的油品组合物
FR2932813B1 (fr) * 2008-06-18 2010-09-03 Total France Lubrifiant cylindre pour moteur marin deux temps
CN102272278A (zh) * 2008-11-05 2011-12-07 卢布里佐尔公司 含嵌段共聚物的组合物和润滑内燃机的方法
JP5528693B2 (ja) * 2008-12-17 2014-06-25 コスモ石油ルブリカンツ株式会社 エンジン油組成物
CN106010746A (zh) * 2009-11-24 2016-10-12 路博润公司 含有粘度改进剂组合的润滑组合物
DE102010001040A1 (de) * 2010-01-20 2011-07-21 Evonik RohMax Additives GmbH, 64293 (Meth)acrylat-Polymere zur Verbesserung des Viskositätsindexes
CN102295972B (zh) * 2010-06-24 2013-06-05 中国石油化工股份有限公司 聚甲基丙烯酸酯型粘度指数改进剂及制备方法
WO2012096864A1 (fr) * 2011-01-10 2012-07-19 The Lubrizol Corporation Compositions de lubrifiant ou de fluide fonctionnel contenant un améliorant d'indice de viscosité
CN103459569B (zh) * 2011-03-25 2018-01-19 巴斯夫欧洲公司 具有改进的非牛顿粘度特性的润滑剂组合物
CN102199469A (zh) * 2011-04-18 2011-09-28 巴鲁德(天津)石油化工有限公司 一种润滑油添加剂及其制备方法和含有该添加剂的润滑油
WO2013046484A1 (fr) * 2011-09-27 2013-04-04 Jx日鉱日石エネルギー株式会社 Composition d'huile pour système pour moteur diesel à crosse
EP2607465A1 (fr) * 2011-12-21 2013-06-26 Infineum International Limited Lubrification de moteur marin

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4438005A (en) * 1981-01-12 1984-03-20 Texaco Inc. Marine diesel engine lubricant of improved spreadability
EP0823472A1 (fr) * 1996-08-08 1998-02-11 Rohm And Haas Company Des additifs améliorant l'index de viscosité de fluides hydrauliques à base d'esters de phosphates
WO1999010454A2 (fr) * 1997-08-22 1999-03-04 Röhm RohMax Holding GmbH Amelioration de la fluidite a basse temperature d'huiles de graissage par utilisation de melanges additifs de polymeres de hautes et de faibles masses moleculaires
EP1418187A2 (fr) * 2002-11-11 2004-05-12 Ethyl Corporation Copolymères (meth)acrylates d'alkyl

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020212562A1 (fr) * 2019-04-18 2020-10-22 Total Marketing Services Procede de reduction et/ou controle de la combustion anormale du gaz dans un moteur marin ou un moteur a allumage commande
FR3095209A1 (fr) * 2019-04-18 2020-10-23 Total Marketing Services Procede de reduction et/ou controle de la combustion anormale du gaz dans un moteur marin ou un moteur a allumage commande

Also Published As

Publication number Publication date
US20190177643A1 (en) 2019-06-13
JP2019518122A (ja) 2019-06-27
TW201809241A (zh) 2018-03-16
AR108746A1 (es) 2018-09-19
WO2017216327A1 (fr) 2017-12-21
CN109328226A (zh) 2019-02-12
KR20190018700A (ko) 2019-02-25
EP3472275A1 (fr) 2019-04-24
JP2021169633A (ja) 2021-10-28
RU2018144257A3 (fr) 2020-08-12
SG11201810869SA (en) 2019-01-30
EP3472275B1 (fr) 2021-02-24
BR112018076024A2 (pt) 2019-04-02
RU2018144257A (ru) 2020-07-17

Similar Documents

Publication Publication Date Title
BR102018076009A2 (pt) Polímero de polialquil(met)acrilato, seu método de produção, uso e composição
US20080015131A1 (en) Lubricants Containing Olefin Copolymer and Acrylate Copolymer
JPH093131A (ja) 潤滑油組成物用の分散剤−粘度改良剤
US20210261879A1 (en) Lubricant polymers
JP2009120853A (ja) オレフィン共重合体およびアクリル酸エステル共重合体を含有する潤滑剤
JP2021169633A (ja) 潤滑ポリマー
KR20190042030A (ko) 증진된 탈유화성 성능을 갖는 관능성 폴리알킬 (메트)아크릴레이트
US11142720B2 (en) Lubricant spray polymers
CA3026812C (fr) Polymeres de pulverisation de lubrifiant
CN113710781B (zh) 减少和/或控制船用发动机或受控点火发动机中的异常气体燃烧的方法
JPH11279233A (ja) 潤滑油組成物用の粘度改良剤

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20180612

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20181206