EP3254015A1 - Procédé et un dispositif de remplissage de réservoir d'hydrogène - Google Patents

Procédé et un dispositif de remplissage de réservoir d'hydrogène

Info

Publication number
EP3254015A1
EP3254015A1 EP16707847.6A EP16707847A EP3254015A1 EP 3254015 A1 EP3254015 A1 EP 3254015A1 EP 16707847 A EP16707847 A EP 16707847A EP 3254015 A1 EP3254015 A1 EP 3254015A1
Authority
EP
European Patent Office
Prior art keywords
storage
gas
source
pressure
reservoir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP16707847.6A
Other languages
German (de)
English (en)
Inventor
Baptiste RAVINEL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Publication of EP3254015A1 publication Critical patent/EP3254015A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/002Automated filling apparatus
    • F17C5/007Automated filling apparatus for individual gas tanks or containers, e.g. in vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/02Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with liquefied gases
    • F17C5/04Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with liquefied gases requiring the use of refrigeration, e.g. filling with helium or hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/06Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with compressed gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C7/00Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • G05D23/2033Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature details of the sensing element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • F17C2205/0326Valves electrically actuated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/036Very high pressure (>80 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/036Very high pressure, i.e. above 80 bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0157Compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • F17C2227/0341Heat exchange with the fluid by cooling using another fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0369Localisation of heat exchange in or on a vessel
    • F17C2227/0372Localisation of heat exchange in or on a vessel in the gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0388Localisation of heat exchange separate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/03Control means
    • F17C2250/032Control means using computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/043Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/043Pressure
    • F17C2250/0434Pressure difference
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0486Indicating or measuring characterised by the location
    • F17C2250/0491Parameters measured at or inside the vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0626Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0631Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0636Flow or movement of content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/07Actions triggered by measured parameters
    • F17C2250/072Action when predefined value is reached
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/02Improving properties related to fluid or fluid transfer
    • F17C2260/025Reducing transfer time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/06Fluid distribution
    • F17C2265/065Fluid distribution for refueling vehicle fuel tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0134Applications for fluid transport or storage placed above the ground
    • F17C2270/0139Fuel stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/45Hydrogen technologies in production processes

Definitions

  • the present invention relates to a method and a device for filling a hydrogen tank.
  • the invention relates more particularly to a method of filling a hydrogen gas tank under pressure from at least one source storage containing hydrogen gas under pressure at a first predetermined temperature and at a predetermined pressure greater than pressure in the tank to be filled, wherein hydrogen is transferred from the source storage to the tank by pressure equalization via a filling circuit having an upstream end connected to the source storage and a downstream end connected to the tank, and wherein, the at least one source storage is in heat exchange with a gas heating member stored in the source storage.
  • the filling of fuel tanks with hydrogen gas is generally carried out via one and preferably several pressure balances between one or more source storages and the reservoir to be filled.
  • a well-known solution uses several source storages connected in parallel and which are used successively to maximize the pressure differences between the source and the reservoir to be filled (“cascading" filling).
  • a compressor may also be provided in addition to supplement or complete the filling if necessary.
  • EP2175187A2 describes a filling system in which the temperature of the gas is controlled (lowered) before entering the tank.
  • the document WO201 1026551 A1 describes a filling system in which the temperature of the source storage is maintained at a determined low level.
  • An object of the present invention is to improve the filling efficiency and / or to overcome all or part of the disadvantages of the prior art noted above.
  • the filling method according to the invention which moreover conforms to the generic definition given in the preamble above, is essentially characterized in that during at least a part of the hydrogen transfer of the source storage to the reservoir, the gas contained in the source storage is heated to a second predetermined temperature which is higher than the first temperature.
  • the at least one storage source is reheated to increase the pressure of the gas in the storage so as to increase the pressure differential compared to the tank to fill.
  • this reheating is carried out when the pressure in the source storage falls below a determined low threshold and / or when the pressure in the reservoir during filling reaches a determined high threshold.
  • embodiments of the invention may include one or more of the following features:
  • the heating of the gas contained in the source storage increases its temperature by a determined value of between 10 ° C. and 60 ° C. and preferably between 20 ° C. and 40 ° C.,
  • the gas contained in the source storage is heated via the reheating member
  • the gas contained in the source storage is reheated only when the pressure differential between the gas in the source storage and, on the one hand, on the other hand, the gas in the reservoir is less than said determined first differential,
  • the first differential determined is between 50 and 250 bar and preferably between 100 and 200 bar
  • the cooling of the gas contained in the source storage decreases its temperature from 10 ° C. to 60 ° C. and preferably from 20 ° C. to 40 ° C.
  • the gas in the source storage has an initial pressure before filling and before reheating of between 150 and 950 bar and in particular between 250 and 850 bar,
  • the invention also relates to a device for filling a pressurized hydrogen gas tank comprising at least one source storage containing hydrogen gas under pressure at a first predetermined temperature and at a predetermined pressure, a gas heating member. stored in the source storage, a filling circuit having an upstream end connected to the source storage and a downstream end removably connectable to the tank to be filled, at least one regulating member of the pressure and / or the flow of gas admitted to circulate in the circuit from the source storage to the tank, an electronic data acquisition, storage and processing member connected to the regulating member, also connected to the gas heating member stored in the source storage and to a pressure sensor in the tank, the electronic data acquisition, storage and processing element being configured for controlling the rate and / or pressure of the gas in the filling circuit, the electronic data acquisition, storage and processing member being configured to control the heating of the gas contained in the source storage at a second predetermined temperature which is greater than the first temperature during at least a portion of the hydrogen transfer from the source storage to the reservoir.
  • the source storage containing
  • the invention may also relate to any alternative device or method comprising any combination of the above or below features.
  • FIG. 1 represents a schematic and partial view illustrating an example of a filling device that can implement the invention
  • FIG. 2 represents comparative curves of variation of the pressure within source storages and reservoirs during refilling with and without the implementation of the invention.
  • Figure 1 shows schematically and partially an example of filling station 1 tanks of hydrogen gas under pressure (eg vehicle tanks).
  • the station conventionally comprises at least one source storage 2 containing hydrogen gas under pressure, for example at a pressure of between 150 bar and 1000 bar, in particular 700 to 900 bar.
  • the storage sources 2 are for example at room temperature or maintained at a predetermined temperature (for example at 15 ° C or 0 ° C).
  • the station further comprises a filling circuit 3 having an upstream end connected to the storage (s) 2 source and a downstream end removably connectable to the tank 1 to fill.
  • the filling circuit 3 comprises, for example, an isolation valve 4 and a device 5 for regulating the pressure and / or the flow of gas admitted to circulate in the circuit 3 from the source storage 2 to the tank 1.
  • the regulating member 5 comprises for example a valve, controlled or not, a pressure regulator or any other appropriate member for controlling the gas flow or the pressure rise in the tank 1 to be filled.
  • the station further comprises a pressure sensor 8 in the reservoir, located for example in the filling circuit 3 upstream of the tank 1.
  • this sensor 8 can be replaced or supplemented by a pressure sensor in the tank 1, around the tank and / or by software modeling calculating this pressure.
  • the filling circuit 3 may further comprise a heat exchanger 9 in heat exchange with the gas downstream of the member 5 to optionally regulate the temperature of the gas (to cool the gas in particular).
  • the station preferably further comprises an electronic data acquisition, storage and processing member 7, for example a PLC, a computer, a computer or any other microprocessor device or the like.
  • an electronic data acquisition, storage and processing member 7 for example a PLC, a computer, a computer or any other microprocessor device or the like.
  • the electronic device 7 for acquisition, storage and data processing is connected to the regulating member 5 and the gas reheating member 6 stored in the source storage 2 to control / control.
  • the electronic member 7 for storage acquisition and data processing is connected to the sensor 8 of the pressure in the tank 1 to collect the signal of the latter.
  • the electronic device 7 for acquiring, storing and processing data can also be connected to a sensor for measuring the pressure and / or the temperature in the source storage 2 or at its outlet.
  • the station further comprises a member 6 for heating the gas stored in the storage 2 source.
  • the electronic device 7 for acquiring, storing and processing data is configured to control the flow rate and / or the pressure of the gas in the filling circuit so as to optimize the filling (determined time, quantity transferred, without generate a temperature rise above a prescribed threshold, for example determined by the nature of the tank 1).
  • the electronic device 7 for acquiring, storing and processing data is also configured to control the heating of the gas contained in the source storage 2 at a determined temperature which is greater than the current temperature for at least part of the hydrogen transfer from the source storage 2 to the tank 1.
  • this heating is carried out at the end of the transfer of gas between the source storage 2 and the tank 1.
  • the gas contained in the source storage 2 is heated via the reheating member 6.
  • this reheating is performed only when the pressure differential between the gas in the source storage 2 on the one hand and the gas in the reservoir 1 on the other hand is lower than said determined first differential.
  • This first differential determined is for example between 50 and 250 bar and preferably between 100 and 200 bar.
  • the heating of the gas contained in the source storage 2 may be provided to increase its temperature by a determined value, for example between 10 ° C. and 60 ° C. and preferably between 20 ° C. and 40 ° C., in particular 30 ° C.
  • This reheating makes it possible to increase the pressure of the gas in the source storage 2 and thus makes it possible to maximize the pressure differential between the source 2 and the receiver tank 1.
  • the pressure differential can be increased, maintained or, failing that, its decrease can be minimized as long as possible to improve the filling efficiency.
  • the final pressure in the source storage 2 (when warmed up) will be lower than that obtained in the processes of the prior art (without warming). That is to say that the tank 1 will be better filled (better filling efficiency for a given time) and the source storage 2 will be better used (better emptied).
  • the gas can be cooled (for example via an exchanger 9 downstream of the regulating member 5 and / or via a heat exchange directly at the storage 2 source).
  • This well-known cooling helps to minimize heating in the tank 1, especially at the beginning of filling when the expansion of the hydrogen produces a heating surplus effect Joule Thomson in addition to the compression effect
  • the tank 1 At the end of filling the tank 1 can tolerate a relatively hotter gas.
  • the invention is particularly advantageous in the case where a compressor is used in the filling station because the need to use the compressor can be reduced.
  • heating of a coolant for cooling the gas can optionally be used to heat the storage 2 source.
  • the method is particularly advantageous for relatively long fills that is to say having durations of between ten minutes and sixty minutes.
  • the method can also be applied to fast fills (between two and ten minutes for example).
  • FIG. 2 schematically illustrates the effects of the invention with respect to the prior art.
  • the curves in long and short discontinuous lines represent the pressure variation in the filled tank respectively without and with the reheating according to the invention.
  • the source storage gas is cooled or no thermal action is performed on it. It may for example have been pre-cooled at a temperature of -30 ° C for example.
  • the filling is initiated, the pressure in the source storage 2 decreases and that in the target tank 1 increases.
  • the Gas heating in the storage 2 source can be realized.
  • the reheating may consist in achieving an increase of + 30 ° C with respect to the initial temperature, see with respect to the ambient temperature.
  • the gas can be heated up to 70 ° C for example.
  • the inventors are furthermore demonstrated that the solution described above can have advantages in terms of energy balance.
  • reheating can reduce the use of a compressor.
  • the economic balance is positive when the duration of use of a compressor reaches a certain value (for example 120 seconds).
  • the cooling block 9 can be recovered.
  • other heat sources can be used within the filling station (compressors ).
  • the invention makes it possible to insert 0.3 kg of hydrogen in addition to the previous solution without reheating. This corresponds to approximately 25 to 30 seconds of compressor operation saved.
  • the compressor could be started off-line (not from the beginning of filling).
  • the useful operating time of the compressor initially 1, 12 min could be reduced to 0.72 min for example.
  • the invention makes it possible, for example, to reduce the size and the power of the compressor required.
  • the energetic gains of the invention are more or less important.
  • the invention can be applied to any other type of gas than hydrogen.
  • the invention can be applied to an installation (station) using several storage sources 2 sources connected in parallel and used successively or simultaneously).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

Procédé de remplissage d'un réservoir (1 ) d'hydrogène gazeux sous pression à partir d'au moins un stockage (2) source contenant de l'hydrogène gazeux sous pression à une première température déterminée et à une pression déterminée supérieure à la pression dans le réservoir (1 ) à remplir, dans lequel de l'hydrogène est transféré du stockage (2) source vers le réservoir (1 ) par équilibrage de pression via un circuit (3) de remplissage ayant une extrémité amont reliée au stockage (2) source et une extrémité aval reliée au réservoir (1 ), et dans lequel, le au moins un stockage (2) source est en échange thermique avec un organe (6) de réchauffage du gaz stocké dans le stockage (2) source, pendant au moins une partie du transfert d'hydrogène du stockage (2) source vers le réservoir (1 ), le gaz contenu dans le stockage (2) source étant réchauffé à une seconde température déterminée qui est supérieure à la première température.

Description

Procédé et un dispositif de remplissage de réservoir d'hydrogène
La présente invention concerne un procédé et un dispositif de remplissage de réservoir d'hydrogène.
L'invention concerne plus particulièrement un procédé de remplissage d'un réservoir d'hydrogène gazeux sous pression à partir d'au moins un stockage source contenant de l'hydrogène gazeux sous pression à une première température déterminée et à une pression déterminée supérieure à la pression dans le réservoir à remplir, dans lequel de l'hydrogène est transféré du stockage source vers le réservoir par équilibrage de pression via un circuit de remplissage ayant une extrémité amont reliée au stockage source et une extrémité aval reliée au réservoir, et dans lequel, le au moins un stockage source est en échange thermique avec un organe de réchauffage du gaz stocké dans le stockage source.
Le remplissage de réservoirs de carburant avec de l'hydrogène gazeux est généralement réalisé via un et de préférence plusieurs équilibrages de pression entre un ou des stockages sources et le réservoir à remplir. Une solution bien connue utilise plusieurs stockages sources raccordés en parallèle et qui sont utilisés successivement pour maximiser les écarts de pression entre la source et de réservoir à remplir (remplissage dit « en cascade »).
Un compresseur peut être également prévu en appoint pour suppléer ou compléter le cas échéant le remplissage.
Plusieurs techniques sont connues pour optimiser la quantité de gaz transférée dans le temps de remplissage imparti.
Ainsi, il est connu de contrôler le débit de gaz transféré pour minimiser échauffement produit dans le réservoir rempli. En réduisant le débit de transfert de gaz on limite les risques d'échauffement trop important dans le réservoir mais on augmente le temps de remplissage.
Une autre solution connue consiste à refroidir le gaz avant son entrée dans le réservoir pour minimiser/contrôler l'élévation de la température dans le réservoir. Cette solution peut cependant nécessiter une forte ressource énergétique. Le document EP2175187A2 décrit un système de remplissage dans lequel la température du gaz est contrôlée (abaissée) avant son entrée dans le réservoir. Le document WO201 1026551 A1 décrit quant à lui un système de remplissage dans lequel la température des stockages source est maintenue à un niveau bas déterminé.
Un but de la présente invention est d'améliorer l'efficacité du remplissage et/ou de pallier tout ou partie des inconvénients de l'art antérieur relevés ci- dessus.
A cette fin, le procédé de remplissage selon l'invention, par ailleurs conforme à la définition générique qu'en donne le préambule ci-dessus, est essentiellement caractérisé en ce que, pendant au moins une partie du transfert d'hydrogène du stockage source vers le réservoir, le gaz contenu dans le stockage source est réchauffé à une seconde température déterminée qui est supérieure à la première température.
C'est-à-dire que, pendant le remplissage et/ou préalablement à au moins une partie du remplissage, la au moins une source de stockage est réchauffée pour augmenter la pression du gaz dans le stockage de façon à augmenter le différentiel de pression par rapport au réservoir à remplir.
De préférence, ce réchauffage est réalisé lorsque la pression dans le stockage source descend en dessous d'un seuil bas déterminé et/ou lorsque la pression au sein du réservoir en cours de remplissage atteint un seuil haut déterminé.
Par ailleurs, des modes de réalisation de l'invention peuvent comporter l'une ou plusieurs des caractéristiques suivantes :
- le réchauffage du gaz contenu dans le stockage source augmente sa température d'une valeur déterminée comprise entre 10°C à 60°C et de préférence entre 20°C à 40°C,
- pendant le transfert de l'hydrogène du stockage source vers le réservoir, lorsque le différentiel de pression entre d'une part le gaz dans le stockage source et, d'autre part, le gaz dans le réservoir, est inférieur à un premier différentiel déterminé, le gaz contenu dans le stockage source est réchauffé via l'organe de réchauffage,
- le gaz contenu dans le stockage source est réchauffé uniquement lorsque le différentiel de pression entre d'une part le gaz dans le stockage source et, d'autre part, le gaz dans le réservoir, est inférieur audit premier différentiel déterminé,
- le premier différentiel déterminé est compris entre 50 et 250 bar et de préférence compris entre 100 et 200 bar,
- pendant le transfert de l'hydrogène du stockage source vers le réservoir, lorsque le différentiel de pression entre d'une part le gaz dans le stockage source et, d'autre part, le gaz dans le réservoir, est supérieur à un second différentiel déterminé, le gaz contenu ou soutiré du stockage source est refroidi,
- le refroidissement du gaz contenu dans le stockage source diminue sa température de 10°C à 60°C et de préférence de 20°C à 40°C,
- le gaz dans le stockage source a une pression initiale avant remplissage et avant réchauffage comprise entre 150 et 950 bar et notamment entre 250 et 850bar,
L'invention concerne également un dispositif de remplissage d'un réservoir d'hydrogène gazeux sous pression comprenant au moins un stockage source contenant de l'hydrogène gazeux sous pression à une première température déterminée et à une pression déterminée, un organe de réchauffage du gaz stocké dans le stockage source, un circuit de remplissage ayant une extrémité amont reliée au stockage source et une extrémité aval raccordable de façon amovible au réservoir à remplir, au moins un organe de régulation de la pression et/ou du débit de gaz admis à circuler dans le circuit depuis le stockage source vers le réservoir, un organe électronique d'acquisition, de stockage et de traitement de données relié à l'organe de régulation, relié également à l'organe de réchauffage du gaz stocké dans le stockage source et à un capteur de la pression dans le réservoir, l'organe électronique d'acquisition, de stockage et de traitement de données étant configuré pour contrôler le débit et/ou la pression du gaz dans le circuit de remplissage, l'organe électronique d'acquisition, de stockage et de traitement de données étant configuré pour commander le réchauffage du gaz contenu dans le stockage source à une seconde température déterminée qui est supérieure à la première température pendant au moins une partie du transfert d'hydrogène du stockage source vers le réservoir. Selon une particularité possible, l'organe de réchauffage comprend un échangeur de chaleur et/ou un circuit de fluide caloporteur en échange thermique avec le réservoir source.
L'invention peut concerner également tout dispositif ou procédé alternatif comprenant toute combinaison des caractéristiques ci-dessus ou ci-dessous.
D'autres particularités et avantages apparaîtront à la lecture de la description ci-après, faite en référence aux figures dans lesquelles :
- la figure 1 représente une vue schématique et partielle illustrant un exemple de dispositif de remplissage pouvant mettre en œuvre l'invention,
- la figure 2 représente des courbes comparatives de variation de la pression au sein de stockages sources et de réservoirs lors de remplissages avec et sans la mise en œuvre de l'invention.
La figure 1 représente schématiquement et partiellement un exemple de station de remplissage de réservoirs 1 d'hydrogène gazeux sous pression (par exemple des réservoirs de véhicules).
La station comprend classiquement au moins un stockage 2 source contenant de l'hydrogène gazeux sous pression, par exemple à une pression comprise entre 150bar et 1000bar, notamment 700 à 900 bar. Les stockages 2 sources sont par exemple à la température ambiante ou maintenus à une température déterminée (par exemple à 15°C ou 0°C).
La station comprend en outre un circuit 3 de remplissage ayant une extrémité amont reliée au(x) stockage(s) 2 source et une extrémité aval raccordable de façon amovible au réservoir 1 à remplir. Le circuit 3 de remplissage comprend par exemple une vanne 4 d'isolation et un organe 5 de régulation de la pression et/ou du débit de gaz admis à circuler dans le circuit 3 depuis le stockage 2 source vers le réservoir 1 . L'organe 5 de régulation comprend par exemple une vanne, pilotée ou non, un détendeur de pression ou tout autre organe approprié pour contrôler le débit de gaz ou la montée en pression dans le réservoir 1 à remplir.
La station comprend en outre un capteur 8 de pression dans le réservoir, situé par exemple dans le circuit 3 de remplissage en amont du réservoir 1 . Bien entendu ce capteur 8 peut être remplacé ou complété par un capteur de pression dans le réservoir 1 , autour du réservoir et/ou par une modélisation logicielle calculant cette pression.
Comme illustré schématiquement, le circuit 3 de remplissage peut comporter en outre un échangeur 9 de chaleur en échange thermique avec le gaz en aval de l'organe 5 pour le cas échéant réguler la température du gaz (pour refroidir le gaz notamment).
La station comprend en outre de préférence un organe 7 électronique d'acquisition, de stockage et de traitement de données, par exemple un automate, un calculateur, un ordinateur ou tout autre dispositif à microprocesseur ou analogue.
L'organe 7 électronique d'acquisition, de stockage et de traitement de données est relié à l'organe 5 de régulation et à l'organe 6 de réchauffage du gaz stocké dans le stockage 2 source pour les commander/piloter. De plus, l'organe 7 électronique d'acquisition de stockage et de traitement de données est relié au capteur 8 de la pression dans le réservoir 1 pour recueillir le signal de ce dernier. L'organe 7 électronique d'acquisition, de stockage et de traitement de données peut être relié également à un capteur de mesure de la pression et/ou de la température dans le stockage 2 source ou à sa sortie.
La station comprend en outre un organe 6 de réchauffage du gaz stocké dans le stockage 2 source.
Classiquement, l'organe 7 électronique d'acquisition, de stockage et de traitement de données est configuré pour contrôler le débit et/ou la pression du gaz dans le circuit de remplissage de façon à optimiser le remplissage (durée déterminée, quantité transférée, sans générer un échauffement au-delà d'un seuil prescrit, par exemple déterminé par la nature du réservoir 1 ).
Selon une caractéristique avantageuse, l'organe 7 électronique d'acquisition, de stockage et de traitement de données est configuré également pour commander le réchauffage du gaz contenu dans le stockage 2 source à une température déterminée qui est supérieure à la température courante pendant au moins une partie du transfert d'hydrogène du stockage 2 source vers le réservoir 1 .
De préférence, ce réchauffement est réalisé en fin de transfert de gaz entre le stockage 2 source et le réservoir 1 . Par exemple, pendant un remplissage, lorsque (ou juste avant) que le différentiel de pression entre d'une part le gaz dans le stockage 2 source et, d'autre part, le gaz dans le réservoir 1 , n'atteigne une valeur inférieure à un premier différentiel déterminé, le gaz contenu dans le stockage 2 source est réchauffé via l'organe 6 de réchauffage.
De préférence, ce réchauffage est réalisé uniquement lorsque le différentiel de pression entre d'une part le gaz dans le stockage 2 source et, d'autre part, le gaz dans le réservoir 1 , est inférieur audit premier différentiel déterminé.
Ce premier différentiel déterminé est compris par exemple entre 50 et 250 bar et de préférence compris entre 100 et 200bar.
Le réchauffage du gaz contenu dans le stockage 2 source peut être prévu pour augmenter sa température d'une valeur déterminée par exemple comprise entre 10°C à 60°C et de préférence entre 20°C à 40°C, notamment 30°C.
Ce réchauffage permet d'augmenter la pression du gaz dans le stockage 2 source et permet ainsi de maximiser le différentiel de pression entre la source 2 et le réservoir 1 receveur.
En effet, à mesure que la différence de pression entre le stockage 2 source et le réservoir 1 se réduit (la pression dans le réservoir source diminue au profit du réservoir 1 ), les inventeurs ont déterminé qu'il était avantageux de réchauffer le gaz dans le stockage 2 source.
Ainsi, le différentiel de pression peut-être augmenté, maintenue ou, à défaut sa diminution peut être minimisée aussi longtemps que possible pour améliorer l'efficacité du remplissage.
La pression finale dans le stockage 2 source (à son échauffement près) sera inférieure à celle obtenue dans les procédés de l'art antérieur (sans réchauffement). C'est-à-dire que le réservoir 1 sera mieux rempli (meilleur efficacité de remplissage pour un temps donné) et le stockage source 2 sera mieux utilisé (mieux vidé).
Bien entendu, en début de remplissage, notamment lorsque le différentiel de pression est important (supérieur 200 bar par exemple), le gaz peut être refroidi (par exemple via un échangeur 9 en aval de l'organe 5 de régulation et/ou via un échange thermique directement au niveau du stockage 2 source). Ce refroidissement bien connu permet de minimiser échauffement dans le réservoir 1 , notamment en début de remplissage lorsque la détente de l'hydrogène produit un surplus d'échauffement par effet en Joule Thomson en plus de l'effet de compression
En fin de remplissage le réservoir 1 peut tolérer un gaz relativement plus chaud.
Dans le cas par exemple d'un stockage 2 source contenant de l'hydrogène gazeux à une pression de 700bar et une température de 15°C. Réchauffer ce gaz à jusqu'à 45°C (par exemple à densité constante) permet d'atteindre une pression de 775 bar environ dans le stockage 2.
L'invention est particulièrement avantageuse dans le cas où un compresseur est utilisé dans la station de remplissage car le besoin d'utiliser le compresseur peut être réduit.
De plus, le réchauffement d'un fluide caloporteur de refroidissement du gaz peut le cas échéant être utilisé pour réchauffer le stockage 2 source.
Le procédé est particulièrement avantageux pour des remplissages relativement longs c'est-à-dire ayant des durées compris entre dix minutes et soixante minutes. Le procédé peut s'appliquer également à des remplissages rapides (entre deux et dix minutes par exemple).
La figure 2 illustre schématiquement les effets de l'invention par rapport à l'art antérieur.
Les courbes en trait continu et avec des croix représentent la variation de pression dans le stockage 2 source respectivement sans et avec le réchauffage selon l'invention.
Les courbes en traits discontinus longs et courts représentent la variation de pression dans le réservoir rempli respectivement sans et avec le réchauffage selon l'invention.
Ainsi, en début de remplissage le gaz du stockage source est refroidi ou aucune action thermique n'est réalisée sur lui. Il peut par exemple avoir été prérefroidi à une température de -30°C par exemple.
Le remplissage est amorcé, la pression dans le stockage 2 source décroît et celle dans le réservoir 1 cible croît.
Lorsque par exemple le différentiel de pression entre les deux contenants est inférieur à un différentiel seuil, par exemple de l'ordre de 100 à 200bar, le réchauffage du gaz dans le stockage 2 source peut être réalisé. Le réchauffage peut consister à atteindre une augmentation de +30°C par rapport à la température initiale, voir par rapport à la température ambiante. Par exemple, dans le cas d'une température ambiante comprise entre -20°c et +40°C, le gaz peut être réchauffé jusqu'à 70°C par exemple.
Les inventeurs sont par ailleurs mis en évidence que la solution décrit ci- dessus peut présenter des avantages en terme de bilan énergétique.
En effet, pour un stockage de 0,5m3 de volume ou plus, le réchauffage permet de réduire l'utilisation d'un compresseur. Selon les conditions de l'installation, le bilan économique est positif lorsque la durée d'utilisation d'un compresseur atteint une certaine valeur (par exemple 120 secondes).
Considérons une station de remplissage qui délivre du gaz en sortie de compresseur à une température de 30°C et qui est refroidi en aval à une température de -40°C. Si le gaz dans le stockage 2 source est à 15°C et est réchauffé à une température de 45°C, cela signifie qu'il faut refroidir le gaz de la température de 45°C jusqu'à la température de -40°C. La consommation énergétique du groupe froid est augmentée dans ce cas de 1265kJ.
Selon l'invention il est possible de réutiliser les calories dissipée au niveau du bloc froid (échangeur 9) pour réchauffer le stockage 2 source.
On peut récupérer par exemple entre 50% et 100% de l'énergie dissipée dans le bloc 9 de refroidissement. De plus d'autres sources de chaleur peuvent être utilisées au sein de la station de remplissage (compresseurs...).
Dans des conditions particulières d'un véhicule ayant un réservoir à une pression de 100 bar et un stockage 2 source stockant de l'hydrogène dans un volume de 0,75m3 à une pression de 855 bar, le réchauffage du gaz du stockage 2 source à une température de 55°C permettrait de remplir complètement le réservoir par équilibrage de pression sans utiliser le compresseur, contrairement une solution sans réchauffage.
De manière générale, l'invention permet d'insérer 0,3 kg d'hydrogène en plus par rapport à la solution antérieure sans réchauffage. Ceci correspond à environ 25 à 30 secondes de fonctionnement compresseur économisé.
Pour augmenter l'économie d'utilisation d'un compresseur, le compresseur pourrait être démarré de façon décalée (pas dès le début du remplissage). Dans des conditions particulières par exemple, le temps utile de fonctionnement du compresseur initialement de 1 ,12 min pourrait être réduit à 0,72 min par exemple.
L'invention permet par exemple de réduire la taille et la puissance du compresseur nécessaire.
Ainsi, selon les conditions d'utilisation, les gains énergétiques de l'invention sont plus ou moins importants.
Bien entendu, l'invention peut s'appliquer à tout autre type de gaz que l'hydrogène. De plus, l'invention peut s'appliquer à une installation (station) utilisant plusieurs stockages 2 sources raccordés en parallèle et utilisés successivement ou simultanément).

Claims

REVENDICATIONS
1 . Procédé de remplissage d'un réservoir (1 ) d'hydrogène gazeux sous pression à partir d'au moins un stockage (2) source contenant de l'hydrogène gazeux sous pression à une première température déterminée et à une pression déterminée supérieure à la pression dans le réservoir (1 ) à remplir, dans lequel de l'hydrogène est transféré du stockage (2) source vers le réservoir (1 ) par équilibrage de pression via un circuit (3) de remplissage ayant une extrémité amont reliée au stockage (2) source et une extrémité aval reliée au réservoir (1 ), et dans lequel, le au moins un stockage (2) source est en échange thermique avec un organe (6) de réchauffage du gaz stocké dans le stockage (2) source, dans lequel, pendant au moins une partie du transfert d'hydrogène du stockage (2) source vers le réservoir (1 ), le gaz contenu dans le stockage (2) source est réchauffé à une seconde température déterminée qui est supérieure à la première température, caractérisé en ce que, pendant le transfert de l'hydrogène du stockage source (2) vers le réservoir (1 ), lorsque le différentiel de pression entre d'une part le gaz dans le stockage (2) source et, d'autre part, le gaz dans le réservoir (1 ), est inférieur à un premier différentiel déterminé, le gaz contenu dans le stockage (2) source est réchauffé via l'organe (6) de réchauffage.
2. Procédé selon la revendication 1 , caractérisé en ce que le réchauffage du gaz contenu dans le stockage (2) source augmente sa température d'une valeur déterminée comprise entre 10°C à 60°C et de préférence entre 20°C à 40°C.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que le gaz contenu dans le stockage (2) source est réchauffé uniquement lorsque le différentiel de pression entre d'une part le gaz dans le stockage (2) source et, d'autre part, le gaz dans le réservoir (1 ), est inférieur audit premier différentiel déterminé.
4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le premier différentiel déterminé est compris entre 50 et 250 bar et de préférence compris entre 100 et 200 bar.
5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que, pendant le transfert de l'hydrogène du stockage source (2) vers le réservoir (1 ), lorsque le différentiel de pression entre d'une part le gaz dans le stockage (2) source et, d'autre part, le gaz dans le réservoir (1 ), est supérieur à un second différentiel déterminé, le gaz contenu ou soutiré du stockage (2) source est refroidi.
6. Procédé selon la revendication 5, caractérisé en ce que le refroidissement du gaz contenu dans le stockage (2) source diminue sa température de 10°C à 60°C et de préférence de 20°C à 40°C.
7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le gaz dans le stockage (2) source a une pression initiale avant remplissage et avant réchauffage comprise entre 150 et 950 bar et notamment entre 250 et 850bar.
8. Dispositif de remplissage d'un réservoir (1 ) d'hydrogène gazeux sous pression comprenant au moins un stockage (2) source contenant de l'hydrogène gazeux sous pression à une première température déterminée et à une pression déterminée, un organe (6) de réchauffage du gaz stocké dans le stockage (2) source, un circuit (3) de remplissage ayant une extrémité amont reliée au stockage (2) source et une extrémité aval raccordable de façon amovible au réservoir (1 ) à remplir, au moins un organe (5) de régulation de la pression et/ou du débit de gaz admis à circuler dans le circuit (3) depuis le stockage (2) source vers le réservoir (1 ), un organe (7) électronique d'acquisition, de stockage et de traitement de données relié à l'organe (5) de régulation, relié également à l'organe (6) de réchauffage du gaz stocké dans le stockage (2) source et à un capteur (8) de la pression dans le réservoir (1 ), l'organe (7) électronique d'acquisition, de stockage et de traitement de données étant configuré pour contrôler le débit et/ou la pression du gaz dans le circuit de remplissage, caractérisé en ce que l'organe (7) électronique d'acquisition, de stockage et de traitement de données est configuré pour commander le réchauffage du gaz contenu dans le stockage (2) source à une seconde température déterminée qui est supérieure à la première température pendant au moins une partie du transfert d'hydrogène du stockage (2) source vers le réservoir (1 ) lorsque le différentiel de pression entre d'une part le gaz dans le stockage (2) source et, d'autre part, le gaz dans le réservoir (1 ), est inférieur à un premier différentiel déterminé, le gaz contenu dans le stockage (2) source est réchauffé via l'organe (6) de réchauffage.
9. Dispositif de remplissage selon la revendication 8, caractérisé en ce que l'organe (6) de réchauffage comprend un échangeur de chaleur et/ou un circuit de fluide caloporteur en échange thermique avec le réservoir (2) source.
EP16707847.6A 2015-02-04 2016-01-28 Procédé et un dispositif de remplissage de réservoir d'hydrogène Withdrawn EP3254015A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1550847A FR3032257B1 (fr) 2015-02-04 2015-02-04 Procede et un dispositif de remplissage de reservoir d'hydrogene
PCT/FR2016/050178 WO2016124838A1 (fr) 2015-02-04 2016-01-28 Procédé et un dispositif de remplissage de réservoir d'hydrogène

Publications (1)

Publication Number Publication Date
EP3254015A1 true EP3254015A1 (fr) 2017-12-13

Family

ID=52779925

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16707847.6A Withdrawn EP3254015A1 (fr) 2015-02-04 2016-01-28 Procédé et un dispositif de remplissage de réservoir d'hydrogène

Country Status (7)

Country Link
US (1) US10451219B2 (fr)
EP (1) EP3254015A1 (fr)
JP (1) JP6692824B2 (fr)
CN (1) CN107208840B (fr)
CA (1) CA2975581A1 (fr)
FR (1) FR3032257B1 (fr)
WO (1) WO2016124838A1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108700259B (zh) * 2016-02-23 2020-12-29 东奇柯系统解决方案株式会社 高压氢的膨胀涡轮压缩机式充填系统
FR3086993B1 (fr) * 2018-10-09 2021-11-26 Air Liquide Procede et installation de stockage et de distribution d'hydrogene liquefie
FR3088701B1 (fr) * 2018-11-15 2020-10-23 Air Liquide Installation et procede de remplissage de reservoirs de gaz sous pression
CN109458549A (zh) * 2018-12-27 2019-03-12 浙江海畅气体有限公司 一种高压瓶充装系统温度控制装置
FR3098274B1 (fr) * 2019-07-03 2022-01-28 Air Liquide Dispositif et procédé de remplissage de réservoirs.
CN110375194B (zh) * 2019-07-05 2023-12-22 北京国家新能源汽车技术创新中心有限公司 一种液氢加氢站热管理系统
FR3106393B1 (fr) * 2020-01-20 2021-12-10 Air Liquide Station et un procédé de remplissage de réservoir(s).
CN112283577A (zh) * 2020-11-04 2021-01-29 太原理工大学 一种车载高压氢气分级充注系统
CN114046442B (zh) * 2021-08-02 2023-06-06 有研工程技术研究院有限公司 一种多平台压型储氢装置及其制造方法
DE102021125688A1 (de) * 2021-10-04 2023-04-06 Schmöle GmbH Wärmetauscher und Verfahren zum Betanken eines Fahrzeuges

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4050019B2 (ja) * 2001-08-09 2008-02-20 本田技研工業株式会社 ボイルオフガス処理装置
JP5055883B2 (ja) * 2005-09-07 2012-10-24 トヨタ自動車株式会社 水素供給装置
JP4753696B2 (ja) * 2005-11-29 2011-08-24 本田技研工業株式会社 水素充填装置
JP4760353B2 (ja) * 2005-12-14 2011-08-31 トヨタ自動車株式会社 液体水素タンク残量検知システム
JP4803602B2 (ja) * 2007-02-06 2011-10-26 株式会社日本製鋼所 水素充填装置
FR2919375B1 (fr) * 2007-07-23 2009-10-09 Air Liquide Procede de remplissage d'un gaz sous pression dans un reservoir.
DE102009019275A1 (de) 2008-10-09 2010-04-15 Linde Aktiengesellschaft Betanken von Fahrzeugen mit unter Druck stehenden, gasförmigen Medien
NO330021B1 (no) * 2009-02-11 2011-02-07 Statoil Asa Anlegg for lagring og tilforsel av komprimert gass
JP5525188B2 (ja) * 2009-06-09 2014-06-18 本田技研工業株式会社 水素充填装置及び水素充填方法
DE102009039645A1 (de) 2009-09-01 2011-03-10 Linde Aktiengesellschaft Befüllen von Speicherbehältern mit verdichteten Medien
US20130305744A1 (en) * 2012-05-21 2013-11-21 General Electric Company Cng delivery system with cryocooler and method of supplying purified cng
FR3006742B1 (fr) * 2013-06-05 2016-08-05 Air Liquide Dispositif et procede de remplissage d'un reservoir

Also Published As

Publication number Publication date
CN107208840A (zh) 2017-09-26
FR3032257A1 (fr) 2016-08-05
US10451219B2 (en) 2019-10-22
WO2016124838A1 (fr) 2016-08-11
JP2018505360A (ja) 2018-02-22
CN107208840B (zh) 2019-05-31
CA2975581A1 (fr) 2016-08-11
FR3032257B1 (fr) 2017-07-14
JP6692824B2 (ja) 2020-05-13
US20180023763A1 (en) 2018-01-25

Similar Documents

Publication Publication Date Title
EP3254015A1 (fr) Procédé et un dispositif de remplissage de réservoir d'hydrogène
EP2191190B1 (fr) Procede de remplissage de conteneur de gaz sous pression
EP3653922B1 (fr) Installation et procédé de remplissage de réservoirs de gaz sous pression
FR2928716A1 (fr) Dispositif et procede de remplissage d'un gaz sous pression dans un reservoir
EP3400321B1 (fr) Système de production de dihydrogène, et procédé associé
EP3271637B1 (fr) Procédé de remplissage de réservoirs avec du gaz sous pression
EP3763990A1 (fr) Dispositif et procédé de remplissage de réservoirs
EP3851731B1 (fr) Station et un procédé de remplissage de réservoir(s)
WO2013014346A1 (fr) Procédé de remplissage d'un réservoir avec du gaz sous pression
FR2963167A1 (fr) Dispositif et procede pour le refroidissement d'un moyen de stockage d'energie electrique
FR3020090A1 (fr) Dispositif de controle d'un circuit ferme fonctionnant selon un cycle de rankine et procede utilisant un tel dispositif
EP3764047B1 (fr) Procédé et installation de production d hydrogène liquide
EP3559426A1 (fr) Procédé de pilotage d'un système de refroidissement pour un véhicule hybride comportant un circuit de transfert de liquide de refroidissement
FR2960041A1 (fr) Dispositif et procede de remplissage d'un gaz sous pression dans un reservoir
EP3631280B1 (fr) Station et procede de remplissage de reservoir(s) de gaz sous pression
US20170009607A1 (en) Cryogenic power extraction
FR2993640A1 (fr) Systeme de sous-refroidissement d'un systeme de refrigeration a compression
US11649156B2 (en) System and method for pre-cooling fuel dispenser
EP3026246A1 (fr) Dispositif de récupération d'énergie à cycle rankine ayant une source froide régulée et véhicule équipé d'un tel dispositif, procédé de récupération d'énergie correspondant
FR3077235A1 (fr) Procede de traitement thermique d'un habitacle et d'un dispositif de stockage electrique d'un vehicule automobile
US20090199926A1 (en) Hydrogen fueling
EP3601056B1 (fr) Procédé de pilotage d'une baie multimoteurs, système de commande pour baie multimoteurs et baie multimoteurs
FR3057644A1 (fr) Procede et dispositif de remplissage d'un reservoir de gaz sous pression
WO2020109607A1 (fr) Dispositif de generation de gaz sous forme gazeuse a partir de gaz liquefie
WO2015173491A2 (fr) Procédé et dispositif de liquéfaction du méthane

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20170904

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20200619

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: L'AIR LIQUIDE, SOCIETE ANOMYME POUR L'ETUDE ET L'EXPLOITATION DES PROCEDES GEORGES CLAUDE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20200807