EP3250849A1 - Installation de stockage et de transport d'un fluide cryogénique embarquée sur un navire - Google Patents

Installation de stockage et de transport d'un fluide cryogénique embarquée sur un navire

Info

Publication number
EP3250849A1
EP3250849A1 EP16703571.6A EP16703571A EP3250849A1 EP 3250849 A1 EP3250849 A1 EP 3250849A1 EP 16703571 A EP16703571 A EP 16703571A EP 3250849 A1 EP3250849 A1 EP 3250849A1
Authority
EP
European Patent Office
Prior art keywords
tank
ceiling wall
vessel
cryogenic fluid
installation according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP16703571.6A
Other languages
German (de)
English (en)
Other versions
EP3250849B1 (fr
Inventor
Pierre Jean
Karim Chapot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gaztransport et Technigaz SA
Original Assignee
Gaztransport et Technigaz SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaztransport et Technigaz SA filed Critical Gaztransport et Technigaz SA
Priority to PL16703571T priority Critical patent/PL3250849T3/pl
Publication of EP3250849A1 publication Critical patent/EP3250849A1/fr
Application granted granted Critical
Publication of EP3250849B1 publication Critical patent/EP3250849B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/004Details of vessels or of the filling or discharging of vessels for large storage vessels not under pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/14Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed pressurised
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0157Polygonal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/03Orientation
    • F17C2201/037Orientation with sloping main axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0358Thermal insulations by solid means in form of panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0626Multiple walls
    • F17C2203/0631Three or more walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • F17C2205/0332Safety valves or pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0341Filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0352Pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0352Pipes
    • F17C2205/0355Insulation thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/04Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by other properties of handled fluid before transfer
    • F17C2223/042Localisation of the removal point
    • F17C2223/043Localisation of the removal point in the gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/04Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by other properties of handled fluid after transfer
    • F17C2225/042Localisation of the filling point
    • F17C2225/046Localisation of the filling point in the liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/04Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by other properties of handled fluid after transfer
    • F17C2225/042Localisation of the filling point
    • F17C2225/046Localisation of the filling point in the liquid
    • F17C2225/047Localisation of the filling point in the liquid with a dip tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0157Compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/02Improving properties related to fluid or fluid transfer
    • F17C2260/021Avoiding over pressurising
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/03Dealing with losses
    • F17C2260/035Dealing with losses of fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/033Treating the boil-off by recovery with cooling
    • F17C2265/034Treating the boil-off by recovery with cooling with condensing the gas phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • F17C2270/0107Wall panels

Definitions

  • the invention relates to the field of storage and transport facilities for a cryogenic fluid on board ships and comprising one or more sealed tanks and thermally insulating membranes.
  • the vessel (s) may be for carrying cryogenic fluid or for receiving cryogenic fluid as a fuel for the propulsion of the vessel.
  • Liquefied natural gas transport vessels have a plurality of tanks for storing the cargo.
  • the liquefied natural gas is stored in these tanks, at atmospheric pressure, at about -162 ° C and is thus in a state of two-phase liquid-vapor equilibrium so that the heat flow exerted through the walls of the tanks tends to cause evaporation of liquefied natural gas.
  • each tank is associated with a sealed pipe for evacuation of the vapor produced by evaporation of the liquefied natural gas.
  • a sealed pipe for steam evacuation is described in particular in WO2013093261, for example.
  • the pipe passes through a wall of the tank and opens into the upper part of the internal space of the tank and thus defines a passage of steam between the interior of the tank and a steam collector arranged outside the tank.
  • the vapor thus collected can then be passed to a re-liquefaction plant to then reintroduce the fluid in the tank, to a power generation equipment or to a degassing mast provided on the deck of the vessel.
  • An idea underlying the invention is to propose a storage and transport facility for a cryogenic fluid on board a ship that makes it possible to reduce the risks that such isolated vapor phase gas pockets can not form at the same time. inside a tank without being able to be evacuated.
  • the invention provides an installation for storing and transporting a cryogenic fluid on board a ship, the installation comprising a sealed and thermally insulating tank for storing the cryogenic fluid in a two-phase equilibrium state. liquid-vapor, said tank having a horizontal ceiling wall having in the direction of thickness from the outside towards the inside of the tank at least one thermally insulating barrier and a sealing membrane intended to be in contact with the cryogenic fluid;
  • the installation comprising at least two leaktight pipes penetrating through the tank so as to define a passageway for evacuating the vapor phase of the cryogenic fluid from the inside to the outside of the tank, the two pipes each comprising one end of collection opening inside the tank at the sealing membrane of the ceiling wall;
  • such an installation may include one or more of the following features.
  • said two ends of the ceiling wall are opposite in a transverse direction perpendicular to the longitudinal direction of the ship.
  • the collecting ends of said two lines opening into the vessel at two areas of the ceiling wall are located at two opposite ends in a transverse direction perpendicular to the longitudinal direction of the vessel.
  • said two ends of the wall are opposite in the longitudinal direction of the ship.
  • at least one of the two lines opens into an elevated area of the ceiling wall and is thus able to evacuate the vapor phase. cryogenic fluid stored in the tank, at least as long as the tilt of the ship is not too high.
  • the collection ends of said two pipes open at two corner regions of the diagonally opposite ceiling wall.
  • at least one of the two sealed pipes opens into an elevated area of the ceiling wall and is thus able to evacuate the vapor phase of the fluid cryogenic.
  • the installation comprises four sealed pipes each having a collection end opening into the tank and each defining a vapor phase evacuation passage and the ceiling wall has a rectangular shape, the collecting ends of the four pipes opening at four corner regions of the ceiling wall so that when the ship is stationary in an inclined position in which it has a pitch inclination and / or at least one lodge one of the four pipes opens at the highest point of the ceiling wall and is able to evacuate the vapor phase of the cryogenic fluid.
  • each of the pipes is connected to a steam collector arranged outside the tank.
  • each steam manifold is connected to a steam injection pipe which penetrates through the tank and opens below a tank height corresponding to the maximum filling limit of the tank so that said injection line is adapted to reinject the vapor collected in the liquid phase of the cryogenic fluid stored in the tank when the tank is filled with liquefied natural gas at a height corresponding to said maximum filling limit.
  • the injection pipe opens into the tank at a height such that said injection pipe is able to reinject the collected vapor into the liquid phase of the cryogenic fluid.
  • the injection line can in particular lead to the lower part of the tank, that is to say below the mid-height of the tank.
  • each manifold or each injection pipe is equipped with a pump capable of discharging the vapor towards the liquid phase of the cryogenic fluid stored in the tank.
  • the steam injection pipe comprises an injection pipe extending inside the tank and having a plurality of bubbling orifices for reinjecting the vapor phase into the liquid phase of the cryogenic fluid stored in the tank .
  • Such an injection cane facilitates heat exchange between the reinjected vapor phase and the liquid phase.
  • the injection rod has a spiral shape, which also promotes heat exchanges.
  • the installation includes a relief well passing through the ceiling wall of the tank and allowing the descent of an emergency pump in the tank.
  • the injection rod is removably mounted in said relief well.
  • the relief well may itself form a portion of the steam injection pipe.
  • the installation comprises a loading / unloading tower extending over the entire height of the tank, suspended from the ceiling wall of the tank, the loading / unloading tower supporting one or more unloading lines which are each associated with a respective unloading pump supported by the loading / unloading tower, the loading / unloading tower further supporting the relief well.
  • the or each steam collector is connected to a degassing mast via a safety valve.
  • the safety valve may in particular be calibrated at a relative pressure value of between 200 and 400 millibars, for example of the order of 250 millibars.
  • the tank is bordered by two transverse cofferdams arranged on either side of the tank and each delimited by a pair of transverse walls and each of the pipes passes through one of the transverse walls of the cofferdam adjacent to the wall area ceiling at which said pipe opens and is connected to a steam collector at least partially housed in said cofferdam.
  • Each collector is connected to the two pipes that open at the corner areas adjacent to the cofferdam in which said collector is at least partially housed.
  • the installation comprises a plurality of tanks separated from one another by transverse cofferdams and each collector housed in a cofferdam separating two tanks is connected to the two pipes of each of the two adjacent tanks which open at the corner areas adjacent to the cofferdam in which said manifold is housed.
  • each of the pipes is equipped with a valve or a non-return valve so that the gaseous phases are not likely to pass freely from one tank to another.
  • each pipe comprises a horizontal portion passing through a transverse wall of a pair of partitions defining a cofferdam and a vertical portion connected to said horizontal portion by a bent portion, said vertical portion passing through an opening in the waterproofing membrane of the ceiling wall which is intended to be in contact with the cryogenic fluid.
  • each pipe comprises a portion equipped with a compensator ensuring the attachment of said pipe to the transverse wall of the cofferdam through which it passes and having corrugations to provide flexibility to the pipe so as to allow its contraction during the cold setting of the tank.
  • each pipe comprises a double wall tube having two concentric walls and an intermediate space between the two concentric walls evacuated and / or lined with an insulating material.
  • the or each tank is arranged in a supporting structure formed by the double hull of a ship and transverse bulkheads of cofferdam.
  • the or each tank comprises, in the direction of the thickness from the outside to the inside of the tank, a secondary heat-insulating barrier retained against the supporting structure, a secondary sealing membrane carried by the secondary heat-insulating barrier, a primary thermally insulating barrier resting against the secondary sealing membrane and a primary sealing membrane carried by the primary thermally insulating barrier and intended to be in contact with the cryogenic fluid contained in the tank.
  • the outer wall of the double-walled tube is sealingly welded to the primary sealing membrane and the inner wall of the double-walled tube is sealingly welded to the primary waterproofing membrane, which ensures the continuous presence of a double level of sealing.
  • the vessel has a general polyhedral shape defined by a horizontal ceiling wall, a bottom wall, transverse walls and side walls, the transverse walls and the side walls connecting the bottom wall and the ceiling wall; each wall having in the thickness direction from the outside to the inside of the vessel at least one thermally insulating barrier and a sealing membrane intended to be in contact with the cryogenic fluid.
  • the vessel has a longitudinal dimension extending in the longitudinal direction of the vessel.
  • the longitudinal dimension of the vessel extends along the longitudinal direction of the vessel. According to another embodiment, the longitudinal dimension of the vessel extends in a secant direction to the longitudinal direction of the vessel, for example perpendicular to the longitudinal direction of the vessel.
  • the invention also provides a vessel comprising a plant mentioned above.
  • the vessel is a ship intended for the transportation of cryogenic fluid, such as an LNG carrier for example.
  • cryogenic fluid such as an LNG carrier for example.
  • the vessel is a ship powered by motor means supplied with cryogenic fluid.
  • the invention also provides a method for loading or unloading such a vessel, in which a cryogenic fluid is conveyed through isolated pipes from or to a floating or land storage facility to or from the tank. of the ship.
  • the invention also provides a transfer system for a cryogenic fluid, the system comprising the aforementioned vessel, insulated pipes arranged to connect the vessel installed in the double hull of the vessel to a floating storage facility. or terrestrial and a pump to drive a flow of cryogenic fluid through the isolated pipelines from or to the floating or land storage facility to or from the vessel.
  • FIG. 1 is a schematic view, partially in section, of a liquefied natural gas transport vessel.
  • FIG. 2 is a schematic top view of a liquefied natural gas transport vessel equipped with steam evacuation pipes opening at the four corner areas of the ceiling wall of each tank.
  • FIG. 3 is a partial view, in perspective and in section of a tank of a liquefied natural gas transport vessel.
  • FIG. 4 is a longitudinal sectional view of a tank illustrating in detail the passage of a steam outlet pipe through walls of the tank and its connection to a collector disposed in a cofferdam.
  • FIG. 5 is a longitudinal sectional view of a tank illustrating in detail the passage of a steam outlet pipe through the walls of the tank and its connection to a manifold disposed in a cofferdam separating two tanks .
  • FIG. 6 is a cross-sectional view of a vessel illustrating the passage of a steam discharge pipe through the walls of the vessel.
  • FIG. 7 is a longitudinal sectional view of a tank illustrating in detail a steam collector disposed in a transverse cofferdam separating two adjacent tanks and its connection, on the one hand, with a degassing mast and, on the other hand, on the other hand, with a nozzle for injecting steam into the liquid phase of the liquefied natural gas stored in the tank.
  • - Figure 8 is a sectional view of a ceiling wall of a tank illustrating in detail a vapor collection device passing through said ceiling wall.
  • FIG. 9 is a schematic cutaway representation of a vessel comprising a liquefied natural gas storage tank and a loading / unloading terminal of this vessel.
  • FIG. 10 is a diagrammatic representation in perspective of a storage installation for a cryogenic fluid according to another embodiment.
  • FIG. 11 is a cross-sectional view of the storage facility for a cryogenic fluid of FIG. 10.
  • FIG. 12 is a partial sectional view illustrating in detail the passage of a steam outlet pipe through a ceiling wall of the tank.
  • FIG. 13 is a schematic perspective representation of a storage facility for a cryogenic fluid according to another embodiment.
  • FIGS 1 and 2 there is shown a vessel 1 equipped with a liquefied natural gas storage and transport facility which comprises four tanks 2, 3, 4, 5 sealed and thermally insulating. Each tank 2, 3, 4, 5 is associated with a degassing mast 7 which is provided on the deck of the vessel 1 and allowing the escape of the gas in the vapor phase during an overpressure inside the tank 2, 3, 4, 5 associated.
  • a machine compartment 6 which conventionally comprises a steam turbine with a mixed feed capable of operating either by combustion of diesel fuel or by combustion of evaporation gas from the tanks 2, 3, 4, 5 .
  • the tanks 2, 3, 4, 5 have a longitudinal dimension extending in the longitudinal direction of the vessel 1.
  • Each tank 2, 3, 4, 5 is bordered at each of its longitudinal ends by a pair of partitions transverse 8, 9 delimiting a sealed spacer space, known as the "cofferdam" 10.
  • the tanks 2, 3, 4, 5 are thus separated from each other by a transverse cofferdam. It is thus observed that the tanks 2, 3, 4, 5 are each formed inside a supporting structure which is constituted, on the one hand, by the double hull of the ship 11 and on the other hand by the one of the transverse partitions 8, 9 of each of the cofferdams 10 bordering the tank 2, 3, 4, 5.
  • each tank 2, 3, 4, 5 has a polyhedral shape defined by a horizontal bottom wall 12, a horizontal ceiling wall 13 and transverse lateral walls 14 and 15, 16, 17 connecting the bottom wall 12 and the ceiling wall 13.
  • each tank 2, 3, 4, 5 has a section of octagonal shape, seen in section along a transverse vertical plane.
  • the tank 2, 3, 4, 5 has vertical side walls 15 and inclined side walls 16, 17 each connecting one of the vertical side walls 15 to the ceiling wall 13 or to the bottom wall 12
  • the transverse walls 14 are vertical.
  • the bottom walls 12, ceiling 13 and the side walls have a rectangular shape.
  • the transverse walls 14 have an octagonal shape.
  • the tanks have a hexagonal section.
  • the vertical side walls 15 extend downwardly to the bottom wall 12 and the transverse walls 14 thus have a hexagonal shape.
  • the shape of a tank 2, 3, 4, 5 is described above as an example and that it can be made to it many modifications.
  • the other walls of the vessel may be partially or fully curved.
  • the tanks 2, 3, 4, 5 are membrane tanks.
  • Each tank wall comprises, from the outside to the inside of the tank, a secondary heat-insulating barrier 18 comprising heat-insulating elements juxtaposed on the support structure and anchored thereto by secondary retaining members, a membrane of secondary seal 19 carried by the secondary thermally insulating barrier 18, a primary thermally insulating barrier 20 comprising heat insulating elements juxtaposed and anchored to the secondary sealing membrane 19 by primary retaining members and a primary sealing membrane 21, carried by the primary thermally insulating barrier 20 and intended to be contact with the liquefied natural gas contained in the tank.
  • the liquefied natural gas is stored at pressures close to atmospheric pressure.
  • the cell membranes are made according to the technology N096 which is described in particular in the document FR2968284 A1.
  • the heat-insulating elements are for example formed by insulating boxes comprising a bottom panel and a cover panel parallel, spaced in the thickness direction of the insulating box, carrying elements extending in the direction of thickness, optionally, peripheral partitions, and an insulating lining housed inside the insulating boxes.
  • the bottom and lid panels, the peripheral partitions and the support elements are for example made of wood or composite thermoplastic material.
  • the heat-insulating lining may consist of glass wool, wadding or polymer foam, such as polyurethane foam, polyethylene foam or polyvinyl chloride foam or granular or powdery material - such as perlite, vermiculite or glass wool - or a nanoporous material of the airgel type.
  • the primary and secondary sealing membranes 21 comprise a continuous sheet of metal strakes with raised edges, said strakes being welded by their raised edges on parallel welding supports held on the insulating boxes.
  • the metal strakes are, for example, made of Invar ®: that is to say an alloy of iron and nickel whose expansion coefficient is typically between 1, 2.10 "6 and 2.10 " 6 K 1 , or in a high manganese iron alloy whose expansion coefficient is typically of the order of 7.10 "6 K " 1 .
  • the membrane vessels are made according to Mark III technology which is described in particular in the document FR2691520 A1.
  • the heat-insulating elements are, for example, constituted by a layer of insulating polymer foam sandwiched between two plywood boards adhered to said layer of foam.
  • the insulating polymer foam may in particular be a polyurethane-based foam.
  • the heat-insulating elements of the secondary heat-insulating barrier are covered with a secondary waterproofing membrane 19 made of a composite material comprising an aluminum foil sandwiched between two sheets of fiberglass fabric.
  • the primary waterproofing membrane 21 is itself obtained by assembling a plurality of metal plates, welded to each other along their edges, and having corrugations extending in two perpendicular directions.
  • the metal plates are, for example, made of stainless steel sheets or aluminum, shaped by folding or stamping.
  • the waterproofing membrane may be made with sheets whose thickness is greater or smaller, the thickness of the sealing membrane being capable of varying between a few tenths of millimeters and several centimeters.
  • the installation comprises, for each tank 2, 3, 4, 5, four steam evacuation pipes 22, 23, 24, 25 penetrating through the tank so as to define a evacuation passage of the vapor produced by the evaporation of the liquefied natural gas in the tank.
  • the steam discharge pipes 22, 23, 24, 25 open out at the four corner regions of the ceiling wall 13.
  • each steam discharge pipe 22, 23, 24, 25 is connected to a manifold 26 disposed at the cofferdam 10 adjacent to the corner area in which said pipe opens.
  • the two pipes 22 and 25, on the one hand, and 23 and 24, on the other hand, which open at the same longitudinal end of the ceiling wall 13 are connected to the same collector 26.
  • the collectors 26 which are arranged at the level of the cofferdams 10 separating two adjacent tanks 2, 3, 4, 5 are connected to the two pipes 22, 25 or 23, 24 of each of the two neighboring tanks. .
  • Such an arrangement thus makes it possible to optimize the number of collectors 26 required.
  • the valves for example solenoid valves, are able to be controlled at distances, for example, from the deck of the ship.
  • each of the valves can be opened or closed depending on the inclination of the plate and the slope of the cottage.
  • each manifold 26 is connected only to two steam discharge lines 22, 25 or 23, 24 of the same tank. Therefore, for each cofferdam zone 10 between two neighboring tanks, two collectors 26 respectively collect the steam from both of the two neighboring tanks. Such an arrangement prevents liquefied natural gas from passing from one tank to another when the collected steam is intended to be reinjected into the tanks.
  • Each manifold 26 is at the same time connected to a steam injection pipe 41 able to allow reinjection of the vapor collected in the liquid phase of the liquefied natural gas stored in the tank and to a degassing mast 7 via a safety valve. 42.
  • a tank angle is observed at an intersection between a transverse wall 14 and the ceiling wall 13.
  • the tank shown being of technology N096, it is equipped in this zone with a connecting ring 27 formed of an assembly of several welded sheets, made of invar® for example.
  • the connecting ring 27 is fixed to two flanges 28, 29 perpendicular to the transverse wall 14 and welded to the cross wall 9 of cofferdam and to two flanges 30, 31 perpendicular to the ceiling wall 13 and welded to the internal wall the double hull of the ship.
  • the connecting ring 27 comprises a set of primary plates 38, 39 carrying primary anchoring surfaces on which are welded metal strakes 32, 33 of the primary sealing membrane 21 and ensuring the continuity of the waterproofing membrane
  • the connecting ring 27 comprises a set of secondary plates 36, 37 carrying secondary anchoring surfaces on which are welded metal strakes 34, 35 of the secondary sealing membrane 19 and ensuring the continuity of the secondary waterproofing membrane 19.
  • the steam evacuation pipe 22 is bent and comprises a horizontal portion 22a connected by a bent portion 22b to a vertical portion 22c whose end opens into the internal space of the tank.
  • the horizontal portion 22a passes through an opening formed in the cross wall 9 of cofferdam and extends to the primary heat-insulating barrier 20 of the ceiling wall 13, passing through the secondary heat-insulating barrier 18 of the wall 14 and the sets of secondary plates 36, 37 and primary 38, 39 of the connecting ring 27.
  • the vertical portion 22c through an opening in the primary sealing membrane 21 of the ceiling wall 13 so that the collecting end of the pipe 22 opens into the tank.
  • the collecting end of the pipe 22 may be equipped with a filter 44.
  • the discharge pipe 22 is advantageously formed by a double-walled tube whose two concentric walls are made of stainless steel and whose intermediate space is under vacuum and / or lined with an insulating material.
  • the outer wall of the double wall tube stops at the set of secondary plates 36, 37 of the connecting ring 27 and is welded to it while the end of the inner wall of the double wall tube passes through the barrier thermally insulating primary 20 and then the primary sealing membrane 20 and is welded thereon so as to seal the primary waterproofing membrane 21.
  • the double wall tube comprises, at its passage through the transverse partition 9 of the cofferdam, a double compensator 40 to provide flexibility to the pipe 22 so as to allow its contraction during the cold setting of the tank .
  • the double compensator 40 comprises, at the level of the outer wall, an outer portion having a series of corrugations and, at the inner wall, an inner portion having a series of corrugations.
  • the double compensator 40 further ensures attachment of the steam discharge line 22 to the cross wall 9 of cofferdam.
  • the corrugated outer portion of the double compensator 40 is welded to a stainless steel insert 43 which is mounted inside an opening formed in the transverse wall 9 of cofferdam and which is welded to it.
  • the pipe 22 is connected here to a manifold 26 which comprises a tube which extends inside the cofferdam 10 in a transverse direction and which thus makes it possible to collect steam coming from two pipes 22, 25 opening at a level of two. corner areas of the ceiling wall disposed at the same longitudinal end of the tank.
  • FIG. 5 differs from that of FIG. 4 in that the manifold 26 is here connected to the two steam discharge pipes 22, 23 opening into the two corner zones facing the two
  • the collector 26 also comprises a tube, not shown in FIG. 5, which extends on the bridge, in the transverse direction of the vessel and thus makes it possible to collect steam coming from two other pipes. 24, 25 which open out at the two other zones of angles adjacent to said cofferdam 10.
  • each discharge pipe 22, 23 is equipped with a valve 54 able to allow or prohibit the passage of the gas phase of the exhaust pipe to the manifold 26 to allow isolation of the tanks relative to each other.
  • the manifold 26 is connected via a three-way connection 46, on the one hand, to a steam injection pipe 41 able to allow reinjection of the vapor phase collected in the liquid phase of the liquefied natural gas stored in a tank and, secondly, a degassing mast 7 via a safety valve 42.
  • a steam injection pipe 41 able to allow reinjection of the vapor phase collected in the liquid phase of the liquefied natural gas stored in a tank and, secondly, a degassing mast 7 via a safety valve 42.
  • Each manifold 26 or steam injection pipe 41 is equipped with a pump 55 allowing to repress the gaseous phase collected in the liquid phase.
  • the installation also comprises a loading / unloading tower 45, shown schematically in FIG. 7, for loading the cargo into the tank, before it is transported, and for unloading the cargo after it has been transported.
  • the loading / unloading tower 45 extends over substantially the entire height of the tank, in the vicinity of a transverse wall 9 of the cofferdam.
  • the loading / unloading tower 45 is suspended from the ceiling wall 13 and may in particular consist of a tripod type structure, that is to say having three vertical poles.
  • the loading / unloading tower 45 supports one or more unloading lines 47 and one or more loading lines, not shown. Each of the unloading lines 47 is associated with a respective unloading pump, not shown, which is itself It is also supported by the loading / unloading tower 45.
  • the installation comprises a relief well 48 passing through the ceiling wall 13 of the tank and extending over substantially the entire height of the tank and allowing the descent of an emergency pump and an unloading line in case of failure of the other unloading pumps.
  • the relief well 48 is used to allow the reinjection of the vapor collected in the liquid phase of the liquefied natural gas stored in the tank without having to provide an additional passage through the walls of the tank .
  • the steam injection pipe 41 comprises an injection rod 49 disposed inside the relief well.
  • the injection rod 49 extends over a substantial portion of the height of the tank so as to plunge inside the liquid phase of the liquefied natural gas.
  • the injection rod 49 comprises a spiral shape and a plurality of bubbling holes 50 distributed along the injection rod. Such a structure of the injection rod 49 makes it possible to promote the heat exchange between the reinjected vapor and the liquid phase of the liquefied natural gas.
  • the injection rod 49 is removably mounted inside the relief well 48 so as to allow its withdrawal from the relief well when the emergency pump has to be lowered into the relief well 48.
  • injection is connected to the three-way connection 46 via an isolation valve 51 so as to allow an interruption of the reinjection of steam into the tank, especially when the injection rod 49 must be removed and the emergency pump lowered into the relief well 48.
  • the safety valve makes it possible to direct the steam towards the degassing mast in order to evacuate the vapor in the atmosphere and to avoid the overpressures inside the tank when the pressure of the steam is greater than a threshold.
  • the safety valve may in particular be calibrated at a relative pressure value of between 200 and 400 millibars, for example of the order of 250 millibars.
  • Each tank 2, 3, 4, 5 can also be equipped with a steam collection device 56, as shown in FIG. 8, and passing through the ceiling wall 14 of the tank, here in a central area.
  • the carrying structure comprises a circular opening around which is welded a barrel 52 which extends outside the carrier structure.
  • a collector metal pipe 53 is anchored inside the drum 52 and is intended to extract the vapors produced by the evaporation of the liquefied natural gas in the tank.
  • the collecting duct 53 passes through the ceiling wall 13 at the center of the circular opening as well as the thermally insulating barriers 18, 20 and the sealing membranes 19, 21. This collecting duct 53 is connected in particular to a vapor collector at the outlet.
  • the diameter and the height of the collecting pipe 53 are likely to vary according to the dimensions of the vessel and those of the vessel; the diameter and the height of the collector pipe being important when the ship is a LNG carrier and more modest when the tank is intended to store liquefied natural gas for feeding the propulsion means of the ship.
  • the installation comprises a tank 102, which can in particular be used to store liquefied natural gas intended to serve as a fuel for the propulsion of a ship.
  • the tank 102 here has a rectangular parallelepipedal shape which is defined by a bottom wall 112, a ceiling wall 113, two vertical side walls 115 and two vertical transverse walls 114.
  • the longitudinal dimension of the tank 102 may for example be oriented according to the longitudinal direction of the ship or perpendicular to it.
  • the installation comprises four steam evacuation conduits 122, 123, 124, 125 which each open at one of the four corner regions of the ceiling wall 113.
  • the four exhaust pipes 122, 123, 124, 125 pass through the ceiling wall 113 so as to open into the internal space of the tank 102 at the level of the primary waterproofing membrane 121 of the ceiling wall 113.
  • the discharge pipe 122 is formed by a double-walled pipe the outer wall of which is sealingly connected to the secondary sealing membrane 119 while the outer wall is sealingly connected, for example by welding, to the primary sealing membrane 121.
  • the evacuation lines 122, 123, 124, 125 are connected to each other by a collector network.
  • the collection network comprises four ducts 157 defining a rectangle and each connecting one of the discharge ducts 122, 123, 124, 125 with another discharge duct disposed at a corner zone adjacent to the wall of the duct. Ceiling 113.
  • the collector network further comprises two other pipes 158 which each connect two parallel pipes 157 near their center. The two pipes 158 are connected to each other.
  • the intersection between the two lines 158 is connected to the degassing mast and / or to a circuit for using natural gas in the vapor phase by one or two pipes 159 which are each equipped with a safety valve 160.
  • Such an arrangement thus allows to mutualize the safety valves 160 for all the evacuation lines 122, 123, 124, 125 of the same tank and without risking causing an expulsion of liquid phase to the degassing mast and / or the gas utilization circuit in the vapor phase when the tank is inclined.
  • FIG. 13 the elements that are identical or similar to the elements of FIGS. 1 to 8, that is to say fulfilling the same function, bear the same reference numeral increased by 200.
  • the installation here comprises only two control ducts.
  • the two lines 222, 223 open, inside the tank 202, at two opposite ends in the transverse direction of the ship.
  • Such an arrangement makes it possible to limit the number of evacuation conduits 222, 223, so as to limit the size and cost of the installation, while ensuring efficient evacuation of the vapor phase of the liquefied natural gas when the vessel is immobilized in an inclined position in which it has a slope of cottage.
  • the slope of a ship's cottage being the slope likely to be the most important.
  • the installation comprises a collecting network comprising two pipes 263 which each allow to connect one of the two discharge lines 222, 223 to a pipe 264 collector.
  • Line 264 is equipped with a relief valve, not shown, and conducts vapor phase gas to a degassing mast and / or to a facility for using natural gas in the vapor phase.
  • the installation also comprises a pipe 265 passing through the ceiling wall 213 of the tank and through which pass one or more lines of loading and / or unloading, not shown to load and / or to unload the cargo.
  • FIG 9 there is a broken view of a LNG tank 70 equipped with such a storage facility and transport of liquefied natural gas.
  • Figure 9 shows a sealed and insulated tank 71 of generally prismatic shape mounted in the double hull 72 of the ship.
  • loading / unloading lines 73 arranged on the upper deck of the ship can be connected, by means of appropriate connectors, to a marine or port terminal to transfer a cargo of liquefied natural gas to or from the tank 71 .
  • FIG. 9 also represents an example of a marine terminal including a loading and unloading station 75, an underwater pipe 76 and an onshore installation 77.
  • the loading and unloading station 75 is a fixed offshore installation comprising a movable arm 74 and a tower 78 which supports the movable arm 74.
  • the movable arm 74 carries a bundle of insulated flexible pipes 79 which can be connected to the loading / unloading pipes 73.
  • the movable arm 74 can be adapted to all the jigs of LNG.
  • a connection pipe (not shown) extends inside the tower 78.
  • the loading and unloading station 75 enables the loading and unloading of the LNG tank 70 from or to the shore facility 77.
  • the underwater line 76 allows the transfer of the liquefied gas between the loading or unloading station 75 and the onshore installation 77 over a large distance, for example 5 km, which makes it possible to keep the tanker vessel 70 at great distance from the coast during the loading and unloading operations.
  • pumps on board the ship 70 and / or pumps equipping the shore installation 77 and / or pumps equipping the loading and unloading station 75 are used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

L'invention concerne une installation de stockage et de transport d'un fluide cryogénique embarquée sur un navire (1), l'installation comportant une cuve (2, 3, 4, 5, 102, 202) étanche et thermiquement isolante destinée au stockage du fluide cryogénique dans un état d'équilibre diphasique liquide-vapeur, l'installation comportant au moins deux conduites étanches (22, 23, 24, 25) pénétrant à travers la cuve de sorte à définir un passage d'évacuation de la phase vapeur du fluide cryogénique de l'intérieur vers l'extérieur de la cuve, les deux conduites étanches (22, 23, 24, 25) comportant chacune une extrémité de collecte débouchant à l'intérieur de la cuve au niveau de la membrane d'étanchéité (21) de la paroi de plafond (13); les extrémités de collecte desdites deux conduites étanches (22, 23, 24, 25) débouchant à l'intérieur de la cuve au niveau de deux zones de la paroi de plafond (13) situées à deux extrémités opposées de ladite paroi de plafond (13).

Description

INSTALLATION DE STOCKAGE ET DE TRANSPORT D'UN FLUIDE CRYOGENIQUE EMBARQUEE SUR UN NAVIRE
Domaine technique
L'invention se rapporte au domaine des installations de stockage et de transport d'un fluide cryogénique embarquées sur des navires et comportant une ou plusieurs cuves étanches et thermiquement isolantes à membranes.
La ou les cuves peuvent être destinées à transporter du fluide cryogénique ou à recevoir du fluide cryogénique servant de carburant pour la propulsion du navire.
Arrière-plan technologique
Les navires de transport de gaz naturel liquéfié présentent une pluralité de cuves pour le stockage de la cargaison. Le gaz naturel liquéfié est stocké dans ces cuves, à pression atmosphérique, à environ -162°C et se trouve ainsi dans un état d'équilibre diphasique liquide-vapeur de telle sorte que le flux thermique s'exerçant au travers des parois des cuves tend à entraîner une évaporation du gaz naturel liquéfié.
Afin d'éviter de générer des surpressions à l'intérieur des cuves, chaque cuve est associée à une conduite étanche d'évacuation de la vapeur produite par l'évaporation du gaz naturel liquéfié. Une telle conduite étanche d'évacuation de la vapeur est notamment décrite dans la demande WO2013093261 , par exemple. La conduite traverse une paroi de la cuve et débouche en partie supérieure de l'espace interne de la cuve et définit ainsi un passage de vapeur entre l'espace intérieur de la cuve et un collecteur de vapeur agencé à l'extérieur de la cuve. La vapeur ainsi collectée peut ensuite être transmise vers une installation de re-liquéfaction en vue de réintroduire ensuite le fluide dans la cuve, vers un équipement de production d'énergie ou vers un mât de dégazage prévu sur le pont du navire.
Toutefois, dans certaines conditions d'avarie, lorsque le niveau de remplissage de la cuve est maximum et que le navire est échoué dans une position dans laquelle il présente une inclinaison de gite et/ou une inclinaison d'assiette importante(s), il existe un risque que la conduite d'évacuation de la vapeur débouche dans la phase liquide et ne soit donc plus en contact avec la phase vapeur stocké dans la cuve. Dans de telles circonstances, des poches isolées de gaz en phase vapeur sont susceptibles de se former à l'intérieur des cuves. Or, de telles poches de gaz sont susceptibles d'induire des surpressions qui peuvent endommager les cuves et/ou entraîner une expulsion de la phase liquide vers l'extérieur de la cuve au travers de la conduite d'évacuation de la vapeur précitée.
Afin de limiter les probabilités que de telles poches de gaz isolées ne se forment, il est certes connu de limiter le niveau maximum de remplissage des cuves. Toutefois, une telle limitation du niveau de remplissage des cuves conduit à un manque à gagner pour les transporteurs et n'est donc pas pleinement satisfaisante.
Résumé
Une idée à la base de l'invention est de proposer une installation de stockage et de transport d'un fluide cryogénique embarquée sur un navire qui permette de diminuer les risques que de telles poches de gaz en phase vapeur isolées ne se forment à l'intérieur d'une cuve sans pouvoir en être évacuées.
Selon un mode de réalisation, l'invention fournit une installation de stockage et de transport d'un fluide cryogénique embarquée sur un navire, l'installation comportant une cuve étanche et thermiquement isolante destinée au stockage du fluide cryogénique dans un état d'équilibre diphasique liquide-vapeur, ladite cuve présentant une paroi de plafond horizontale comportant dans le sens de l'épaisseur depuis l'extérieur vers l'intérieur de la cuve au moins une barrière thermiquement isolante et une membrane d'étanchéité destinée à être en contact avec le fluide cryogénique ;
l'installation comportant au moins deux conduites étanches pénétrant à travers la cuve de sorte à définir un passage d'évacuation de la phase vapeur du fluide cryogénique de l'intérieur vers l'extérieur de la cuve, les deux conduites comportant chacune une extrémité de collecte débouchant à l'intérieur de la cuve au niveau de la membrane d'étanchéité de la paroi de plafond ;
les extrémités de collecte desdites deux conduites débouchant à l'intérieur de la cuve au niveau de deux zones de la paroi de plafond situées à deux extrémités opposées de ladite paroi de plafond.
Ainsi, lorsque le navire est immobilisé dans une position inclinée dans laquelle l'une des deux extrémités opposées est surélevée par rapport à l'autre, au moins l'une des deux conduites débouche dans une zone élevée de la paroi de plafond et est ainsi apte à évacuer la phase vapeur du fluide cryogénique stocké dans la cuve.
Dès lors, une telle disposition des conduites étanches d'évacuation de la phase vapeur permet d'augmenter le niveau maximum de remplissage de la cuve.
Selon des modes de réalisation, une telle installation peut comporter une ou plusieurs des caractéristiques suivantes.
- selon un mode de réalisation, lesdites deux extrémités de la paroi de plafond sont opposées selon une direction transversale perpendiculaire à la direction longitudinale du navire. En d'autres termes, les extrémités de collecte desdites deux conduites débouchant à l'intérieur de la cuve au niveau de deux zones de la paroi de plafond sont situées à deux extrémités opposées selon une direction transversale perpendiculaire à la direction longitudinale du navire. Ainsi, lorsque le navire est immobilisé dans une position inclinée dans laquelle il présente une inclinaison de gite, au moins l'une des deux conduites débouche dans une zone élevée de la paroi de plafond et est ainsi apte à évacuer la phase vapeur du fluide cryogénique stocké dans la cuve, du moins tant que l'inclinaison d'assiette de navire n'est pas trop élevée.
selon un autre mode de réalisation, lesdites deux extrémités de la paroi sont opposées selon la direction longitudinale du navire. Ainsi, lorsque le navire est immobilisé dans une position inclinée dans laquelle l'axe longitudinal de la cuve est incliné, au moins l'une des deux conduites débouche dans une zone élevée de la paroi de plafond et est ainsi apte à évacuer la phase vapeur du fluide cryogénique stocké dans la cuve, du moins tant que l'inclinaison de gite du navire n'est pas trop élevée.
- selon un mode de réalisation, les extrémités de collecte desdites deux conduites débouchent au niveau de deux zones d'angle de la paroi de plafond diagonalement opposées. Ainsi, lorsque le navire est immobilisé dans une position inclinée dans laquelle il présente une inclinaison de gite, au moins l'une des deux conduites étanches débouche dans une zone élevée de la paroi de plafond et est ainsi apte à évacuer la phase vapeur du fluide cryogénique. selon un mode de réalisation, l'installation comprend quatre conduites étanches comportant chacune une extrémité de collecte débouchant à l'intérieur de la cuve et définissant chacune un passage d'évacuation de la phase vapeur et la paroi de plafond présente une forme rectangulaire, les extrémités de collecte des quatre conduites débouchant au niveau de quatre zones d'angle de la paroi de plafond de telle sorte que lorsque le navire est immobilisé dans une position inclinée dans laquelle il présente une inclinaison d'assiette et/ou de gite au moins l'une des quatre conduites débouche au niveau du point le plus élevé de la paroi de plafond et soit apte à évacuer la phase vapeur du fluide cryogénique. chacune des conduites est raccordée à un collecteur de vapeur agencé à l'extérieur de la cuve. chaque collecteur de vapeur est relié à une conduite d'injection de vapeur qui pénètre à travers la cuve et débouche en dessous d'une hauteur de cuve correspondant à la limite maximale de remplissage de la cuve de telle sorte que ladite conduite d'injection soit apte à réinjecter la vapeur collectée dans la phase liquide du fluide cryogénique stocké dans la cuve lorsque la cuve est remplie de gaz naturel liquéfié à une hauteur correspondant à ladite limite maximale de remplissage. En d'autres termes, la conduite d'injection débouche à l'intérieur de la cuve à une hauteur telle que ladite conduite d'injection soit apte à réinjecter dans la phase liquide du fluide cryogénique la vapeur collectée. Selon un mode de réalisation, la conduite injection peut notamment déboucher en partie basse de la cuve, c'est-à-dire en dessous de la mi-hauteur de la cuve. Une telle reinjection de la phase vapeur dans la phase liquide de la cuve permet de limiter, voire d'éviter, la formation d'un nuage de vapeur potentiellement inflammable au voisinage du navire. De manière avantageuse, chaque collecteur ou chaque conduite d'injection est équipé d'une pompe apte à refouler le vapeur vers la phase liquide du fluide cryogénique stocké dans la cuve. la conduite d'injection de vapeur comporte une canne d'injection s'étendant à l'intérieur de la cuve et présentant une pluralité d'orifices de bullage pour la réinjection de la phase vapeur dans la phase liquide du fluide cryogénique stocké dans la cuve. Une telle canne d'injection permet de favoriser les échanges thermiques entre la phase vapeur réinjectée et la phase liquide. - la canne d'injection présente une forme de spirale, ce qui permet également de favoriser les échanges thermiques.
- l'installation comporte un puits de secours traversant la paroi de plafond de la cuve et permettant la descente d'une pompe de secours dans la cuve. - selon un mode de réalisation, la canne d'injection est montée de manière amovible dans ledit puits de secours. Selon un autre mode de réalisation, le puits de secours peut lui-même former une portion de la conduite d'injection de vapeur.
~ selon une réalisation, l'installation comporte une tour de chargement/déchargement s'étendant sur toute la hauteur de la cuve, suspendue à la paroi de plafond de la cuve, la tour de chargement/déchargement supportant une ou plusieurs lignes de déchargement qui sont chacune associées à une pompe de déchargement respective supportée par la tour de chargement/déchargement, la tour de chargement/déchargement supportant en outre le puits de secours.
- le ou chaque collecteur de vapeur est relié à un mât de dégazage par l'intermédiaire d'une soupape de sûreté.
- la soupape de sûreté peut notamment être tarée à une valeur de pression relative comprise entre 200 et 400 millibars, par exemple de l'ordre de 250 millibars.
- la cuve est bordée par deux cofferdams transversaux disposés de part et d'autre de la cuve et délimités chacun par une paire de cloisons transversales et chacune des conduites passe au travers de l'une des cloisons transversales du cofferdam jouxtant la zone de la paroi de plafond au niveau duquel ladite conduite débouche et est raccordée à un collecteur de vapeur au moins partiellement logé dans ledit cofferdam.
- chaque collecteur est raccordé aux deux conduites qui débouchent au niveau des zones d'angle jouxtant le cofferdam dans lequel ledit collecteur est au moins partiellement logé. - l'installation comporte une pluralité de cuves séparées les unes des autres par des cofferdams transversaux et chaque collecteur logé dans un cofferdam séparant deux cuves est raccordée aux deux conduites de chacune des deux cuves adjacentes qui débouchent au niveau des zones d'angle jouxtant le cofferdam dans lequel ledit collecteur est logé. De manière avantageuse, dans une telle installation, chacune des conduites est équipée d'une vanne ou d'un clapet anti-retour de telle sorte que les phases gazeuses ne soient pas susceptibles de librement passer d'une cuve à une autre. chaque conduite comporte une portion horizontale passant au travers d'une cloison transversale d'une paire de cloisons définissant un cofferdam et une portion verticale raccordée à ladite portion horizontale par une portion coudée, ladite portion verticale traversant une ouverture ménagée dans la membrane d'étanchéité de la paroi de plafond qui est destinée à être en contact avec le fluide cryogénique. chaque conduite comporte une portion équipée d'un compensateur assurant la fixation de ladite conduite à la cloison transversale du cofferdam au travers de laquelle elle passe et présentant des ondulations permettant d'apporter de la flexibilité à la conduite de manière à autoriser sa contraction lors de la mise à froid de la cuve. chaque conduite comporte un tube double paroi comportant deux parois concentriques et un espace intermédiaire entre les deux parois concentriques mis sous vide et/ou garni d'un matériau isolant. la ou chaque cuve est agencée dans une structure porteuse formée par la double coque d'un navire et des cloisons transversales de cofferdam. la ou chaque cuve comporte, dans le sens de l'épaisseur depuis l'extérieur vers l'intérieur de la cuve, une barrière thermiquement isolante secondaire retenue contre la structure porteuse, une membrane d'étanchéité secondaire portée par la barrière thermiquement isolante secondaire, une barrière thermiquement isolante primaire reposant contre la membrane d'étanchéité secondaire et une membrane d'étanchéité primaire portée par la barrière thermiquement isolante primaire et destinée à être en contact avec le fluide cryogénique contenu dans la cuve. la paroi externe du tube double paroi est soudée de manière étanche sur la membrane d'étanchéité primaire et la paroi interne du tube double paroi est soudée de manière étanche sur la membrane d'étanchéité primaire, ce qui permet d'assurer de manière continue la présence d'un double niveau d'étanchéité.
~ La cuve présente une forme générale polyédrique définie par une paroi de plafond horizontale, une paroi de fond, des parois transversales et des parois latérales, les parois transversales et les parois latérales reliant la paroi de fond et la paroi de plafond ; chaque paroi comportant dans le sens de l'épaisseur depuis l'extérieur vers l'intérieur de la cuve au moins une barrière thermiquement isolante et une membrane d'étanchéité destinée à être en contact avec le fluide cryogénique.
- La cuve présente une dimension longitudinale s'étendant selon la direction longitudinale du navire.
- Selon un mode de réalisation, la dimension longitudinale de la cuve s'étend selon la direction longitudinale du navire. Selon un autre mode de réalisation, la dimension longitudinale de la cuve s'étend selon une direction sécante à la direction longitudinale du navire, par exemple perpendiculairement à la direction longitudinale du navire.
Selon un mode de réalisation, l'invention fournit aussi un navire comportant une installation précitée.
Selon un mode de réalisation, le navire est un navire destiné au transport de fluide cryogénique, tel qu'un méthanier par exemple. Selon un autre mode de réalisation, le navire est un navire propulsé par des moyens moteurs alimentés en fluide cryogénique. Ces modes de réalisation peuvent être combinées
Selon un mode de réalisation, l'invention fournit aussi un procédé de chargement ou déchargement d'un tel navire, dans lequel on achemine un fluide cryogénique à travers des canalisations isolées depuis ou vers une installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.
Selon un mode de réalisation, l'invention fournit aussi un système de transfert pour un fluide cryogénique, le système comportant le navire précité, des canalisations isolées agencées de manière à relier la cuve installée dans la double coque du navire à une installation de stockage flottante ou terrestre et une pompe pour entraîner un flux de fluide cryogénique à travers les canalisations isolées depuis ou vers l'installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.
Brève description des figures
L'invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement au cours de la description suivante de plusieurs modes de réalisation particuliers de l'invention, donnés uniquement à titre illustratif et non limitatif, en référence aux dessins annexés.
- La figure 1 est une vue schématique, partiellement en coupe, d'un navire de transport de gaz naturel liquéfié.
- La figure 2 est une vue schématique de dessus d'un navire de transport de gaz naturel liquéfié équipé de conduites d'évacuation de la vapeur débouchant au niveau des quatre zones d'angles de la paroi de plafond de chaque cuve.
- La figure 3 est une vue partielle, en perspective et en coupe d'une cuve d'un navire de transport de gaz naturel liquéfié.
- La figure 4 est une vue en coupe longitudinale d'une cuve illustrant de manière détaillée le passage d'une conduite d'évacuation de la vapeur au travers de parois de la cuve et son raccordement à un collecteur disposé dans un cofferdam.
- La figure 5 est une vue en coupe longitudinale d'une cuve illustrant de manière détaillée le passage d'une conduite d'évacuation de la vapeur au travers des parois de la cuve et son raccordement à un collecteur disposé dans un cofferdam séparant deux cuves.
- La figure 6 est une vue en coupe transversale d'une cuve illustrant le passage d'une conduite d'évacuation de la vapeur au travers des parois de la cuve.
- La figure 7 est une vue en coupe longitudinale d'une cuve illustrant de manière détaillée un collecteur de vapeur disposé dans un cofferdam transversal séparant deux cuves adjacentes et son raccordement, d'une part, avec un mât de dégazage et, d'autre part, avec une canne d'injection de la vapeur dans la phase liquide du gaz naturel liquéfié stocké dans la cuve. - La figure 8 est une vue en coupe d'une paroi de plafond d'une cuve illustrant de manière détaillée un dispositif de collecte de vapeur traversant ladite paroi de plafond.
- La figure 9 est une représentation schématique écorchée d'un navire comportant une cuve de stockage de gaz naturel liquéfié et d'un terminal de chargement/déchargement de cette cuve.
- La figure 10 est une représentation schématique en perspective d'une installation de stockage d'un fluide cryogénique selon un autre mode de réalisation.
- La figure 11 est une vue en coupe transversale de l'installation de stockage d'un fluide cryogénique de la figure 10.
- La figure 12 est une vue partielle en coupe illustrant de manière détaillée le passage d'une conduite d'évacuation de la vapeur au travers d'une paroi de plafond de la cuve.
- La figure 13 est une représentation schématique en perspective d'une installation de stockage d'un fluide cryogénique selon un autre mode de réalisation.
Description détaillée de modes de réalisation
Sur les figures 1 et 2, on a représenté un navire 1 équipé d'une installation de stockage et de transport de gaz naturel liquéfié qui comporte quatre cuves 2, 3, 4, 5 étanches et thermiquement isolantes. Chaque cuve 2, 3, 4, 5 est associée à un mât de dégazage 7 qui est prévu sur le pont du navire 1 et permettant l'échappement du gaz en phase vapeur lors d'une surpression à l'intérieur de la cuve 2, 3, 4, 5 associée.
A l'arrière du navire 1 est prévu un compartiment machine 6 qui comporte classiquement une turbine à vapeur à alimentation mixte apte à fonctionner soit par combustion de gazole, soit par combustion de gaz d'évaporation provenant des cuves 2, 3, 4, 5.
Les cuves 2, 3, 4, 5 présentent une dimension longitudinale s'étendant selon la direction longitudinale du navire 1. Chaque cuve 2, 3, 4, 5 est bordée au niveau de chacune de ses extrémités longitudinales par une paire de cloisons transversales 8, 9 délimitant un espace intercalaire étanche, connu sous le terme de « cofferdam » 10.
Les cuves 2, 3, 4, 5 sont ainsi séparées les unes des autres par un cofferdam transversal. On observe ainsi que ies cuves 2, 3, 4, 5 sont chacune ménagées à l'intérieur d'une structure porteuse qui est constituée, d'une part, par la double coque du navire 11 et, d'autre part par l'une des cloisons transversales 8, 9 de chacun des cofferdams 10 bordant la cuve 2, 3, 4, 5.
Sur la figure 3, on observe que chaque cuve 2, 3, 4, 5 présente une forme polyédrique définie par une paroi de fond 12 horizontale, une paroi de plafond 13 horizontale et des parois transversales 14 et latérales 15, 16, 17 reliant la paroi de fond 12 et la paroi de plafond 13. Dans le mode de réalisation représenté, chaque cuve 2, 3, 4, 5 présente une section de forme octogonale, vue en coupe selon un plan vertical transversal. En d'autres termes, la cuve 2, 3, 4, 5 présente des parois latérales verticales 15 et des parois latérales inclinées 16, 17 reliant chacune une des parois latérales verticales 15 à la paroi de plafond 13 ou à la paroi de fond 12. Les parois transversales 14 sont verticales. Les parois de fond 12, de plafond 13 et les parois latérales présentent une forme rectangulaire. Les parois transversales 14 présentent quant à elles une forme octogonale. Dans un autre mode de réalisation non représenté, les cuves présentent une section hexagonale. Dans ce cas, les parois latérales verticales 15 s'étendent vers le bas jusqu'à la paroi de fond 12 et les parois transversales 14 présentent donc une forme hexagonale. Il sera toutefois observé que la forme d'une cuve 2, 3, 4, 5 est décrite ci-dessus à titre d'exemple et qu'il pourra être apportée à celle-ci de nombreuses modifications. En particulier, à l'exception de la paroi de plafond 13, ies autres parois de la cuve peuvent être partiellement ou intégralement courbées.
Les cuves 2, 3, 4, 5 sont des cuves à membranes. Chaque paroi de cuve comporte, depuis l'extérieur vers l'intérieur de la cuve, une barrière thermiquement isolante secondaire 18 comportant des éléments calorifuges juxtaposés sur la structure porteuse et ancrés à celle-ci par des organes de retenue secondaires, une membrane d'étanchéité secondaire 19 portée par la barrière thermiquement isolante secondaire 18, une barrière thermiquement isolante primaire 20 comportant des éléments calorifuges juxtaposés et ancrés à la membrane d'étanchéité secondaire 19 par des organes de retenue primaires et une membrane d'étanchéité primaire 21 , portée par la barrière thermiquement isolante primaire 20 et destinée à être en contact avec le gaz naturel liquéfié contenu dans la cuve. Dans de telles cuves à membranes, le gaz naturel liquéfié est stocké à des pressions voisines de la pression atmosphérique.
Selon un mode de réalisation, les cuves à membranes sont réalisées selon la technologie N096 qui est notamment décrite dans le document FR2968284 A1. Ainsi, les éléments calorifuges sont par exemple formés par des caisses isolantes comportant un panneau de fond et un panneau de couvercle parallèles, espacés selon la direction d'épaisseur de la caisse isolante, des éléments porteurs s'étendant selon la direction d'épaisseur, optionnellement des cloisons périphériques, et une garniture calorifuge logée à l'intérieur des caisses isolantes. Les panneaux de fond et de couvercle, les cloisons périphériques et les éléments porteurs sont par exemple réalisés en bois ou en matériau thermoplastique composite. La garniture calorifuge peut être constituée de laine de verre, d'ouate ou d'une mousse polymère, telle que de la mousse de polyuréthane, de la mousse de polyéthylène ou de la mousse de polychlorure de vinyle ou d'un matériau granulaire ou pulvérulent - tel que la perlite, la vermiculite ou la laine de verre - ou un matériau nanoporeux de type aérogel. Par ailleurs, les membranes d'étanchéité primaires 21 et secondaires 19 comportent une nappe continue de virures métalliques à bords relevés, lesdites virures étant soudées par leurs bords relevés sur des supports de soudure parallèles maintenus sur les caisses isolantes. Les virures métalliques sont, par exemple, réalisées en Invar ® : c'est-à-dire un alliage de fer et de nickel dont le coefficient de dilatation est typiquement compris entre 1 ,2.1ο"6 et 2.10"6 K 1, ou dans un alliage de fer à forte teneur en manganèse dont le coefficient de dilatation est typiquement de l'ordre de 7.10"6 K"1.
Selon un autre mode de réalisation, les cuves à membranes sont réalisées selon la technologie Mark III qui est notamment décrite dans le document FR2691520 A1. Dans une telle cuve, les éléments calorifuges sont, par exemple, constitués d'une couche de mousse polymère isolante prise en sandwich entre deux plaques de bois contreplaqué collées sur ladite couche de mousse. La mousse polymère isolante peut notamment être une mousse à base de polyuréthanne. Les éléments calorifuges de la barrière thermiquement isolante secondaire sont recouverts d'une membrane d'étanchéité secondaire 19 formée d'un matériau composite comportant une feuille d'aluminium prise en sandwich entre deux feuilles de tissu en fibres de verre. La membrane d'étanchéité primaire 21 est quant à elle obtenue par assemblage d'une pluralité de plaques métalliques, soudées les unes aux autres le long de leurs bords, et comportant des ondulations s'étendant selon deux directions perpendiculaires. Les plaques métalliques sont, par exemple, réalisées de tôles d'acier inoxydable ou d'aluminium, mises en forme par pliage ou par emboutissage.
La structure d'une cuve à membrane est décrite ci-dessus à titre d'exemple et il pourra y être apporté de nombreuses modifications. En particulier, la membrane d'étanchéité peut être réalisée avec des tôles dont l'épaisseur est plus ou moins importante, l'épaisseur de la membrane d'étanchéité étant susceptible de varier entre quelques dixièmes de millimètres et plusieurs centimètres.
En revenant à la figure 2, on observe que l'installation comporte, pour chaque cuve 2, 3, 4, 5 quatre conduites d'évacuation de la vapeur 22, 23, 24, 25 pénétrant à travers la cuve de manière à définir un passage d'évacuation de la vapeur produite par l'évaporation du gaz naturel liquéfié dans la cuve. Les conduites d'évacuation de la vapeur 22, 23, 24, 25 débouchent au niveau des quatre zones d'angle de la paroi de plafond 13. Ainsi, si un navire équipé d'une telle installation venait à se trouver immobilisé dans une position inclinée, au moins l'une des quatre conduites d'évacuation de la vapeur 22, 23, 24, 25 de chaque cuve serait en relation avec la phase vapeur et serait ainsi apte à l'évacuer de la cuve afin d'éviter des surpressions et cela, quelle que soit l'inclinaison d'assiette, c'est-à-dire l'inclinaison de l'axe longitudinal du navire par rapport à l'horizontal, et quelle que soit l'inclinaison de gite, c'est-à-dire l'inclinaison d'un axe transversal du navire par rapport à l'horizontal.
Par ailleurs, chaque conduite d'évacuation de la vapeur 22, 23, 24, 25 est raccordée à un collecteur 26 disposé au niveau du cofferdam 10 adjacent à la zone d'angle dans laquelle ladite conduite débouche. De manière avantageuse, pour chaque cuve, les deux conduites 22 et 25, d'une part, et 23 et 24, d'autre part, qui débouchent au niveau de la même extrémité longitudinale de la paroi de plafond 13 sont raccordées à un même collecteur 26.
En outre, dans le mode de réalisation représenté, les collecteurs 26 qui sont disposés au niveau des cofferdams 10 séparant deux cuves 2, 3, 4, 5 voisines sont raccordés aux deux conduites 22, 25 ou 23, 24 de chacune des deux cuves voisines. Un tel agencement permet ainsi d'optimiser le nombre de collecteurs 26 nécessaires. Toutefois, dans ce cas, il est avantageux d'équiper chacune des conduites avec un clapet anti-retour ou une vanne de manière à éviter une communication de gaz entre les cuves. Les vannes, par exemple des électrovannes, sont aptes à être commandées à distances, par exemple, depuis le pont du navire. Ainsi, chacune des vannes peut être ouverte ou fermée en fonction de l'inclinaison d'assiette et de l'inclinaison de gite.
Dans un autre mode de réalisation non représenté, chaque collecteur 26 n'est raccordé qu'aux deux conduites d'évacuation de la vapeur 22, 25 ou 23, 24 d'une même cuve. Dès lors, pour chaque zone de cofferdam 10 séparant deux cuves voisines, deux collecteurs 26 assurent respectivement la collecte de la vapeur provenant de l'une et l'autre des deux cuves voisines. Un tel agencement permet d'éviter que du gaz naturel liquéfié ne passe d'une cuve à l'autre lorsque la vapeur collectée est destinée à être réinjectée dans les cuves.
Chaque collecteur 26 est à la fois relié à une conduite d'injection de vapeur 41 apte à permettre la réinjection de la vapeur collectée dans la phase liquide du gaz naturel liquéfié stocké dans la cuve et à un mât de dégazage 7 via une soupape de sûreté 42.
En relation avec la figure 4, l'on observe un angle de cuve au niveau d'une intersection entre une paroi transversale 14 et la paroi de plafond 13. La cuve représentée étant de technologie N096, elle est équipée dans cette zone d'un anneau de raccordement 27 formé d'un assemblage de plusieurs tôles soudées, réalisées en invar® par exemple. L'anneau de raccordement 27 est fixé, à deux ailes 28, 29 perpendiculaires à la paroi transversale 14 et soudées sur la cloison transversale 9 de cofferdam et à deux ailes 30, 31 perpendiculaires à la paroi de plafond 13 et soudées sur la cloison interne de la double coque du navire. L'anneau de raccordement 27 comporte un jeu de tôles primaires 38, 39 portant des surfaces d'ancrage primaires sur lesquelles sont soudées des virures métalliques 32, 33 de la membrane d'étanchéité primaire 21 et assurant la continuité de la membrane d'étanchéité primaire 21. De même, l'anneau de raccordement 27 comporte un jeu de tôles secondaires 36, 37 portant des surfaces d'ancrage secondaires sur lesquelles sont soudées des virures métalliques 34, 35 de la membrane d'étanchéité secondaire 19 et assurant la continuité de la membrane d'étanchéité secondaire 19. La conduite d'évacuation de la vapeur 22 est coudée et comporte une portion horizontale 22a reliée par une portion coudée 22b à une portion verticale 22c dont l'extrémité débouche dans l'espace interne de la cuve. La portion horizontale 22a passe au travers d'une ouverture formée dans la cloison transversale 9 de cofferdam et s'étend jusqu'à la barrière thermiquement isolante primaire 20 de la paroi de plafond 13, en traversant la barrière thermiquement isolante secondaire 18 de la paroi transversale 14 et les jeux de tôles secondaires 36, 37 et primaires 38, 39 de l'anneau de raccordement 27. La portion verticale 22c traverse une ouverture ménagée dans la membrane d'étanchéité primaire 21 de la paroi de plafond 13 de telle sorte que l'extrémité de collecte de la conduite 22 débouche à l'intérieur de la cuve. L'extrémité de collecte de la conduite 22 peut être équipée d'un filtre 44.
Dans le mode de réalisation représenté, la conduite d'évacuation 22 est avantageusement formée par un tube double paroi dont les deux parois concentriques sont réalisées en acier inoxydable et dont l'espace intermédiaire est sous vide et/ou garni d'un matériau isolant. La paroi externe du tube double paroi s'arrête au niveau du jeu de tôles secondaires 36, 37 de l'anneau de raccordement 27 et est soudée sur celui-ci tandis que l'extrémité de la paroi interne du tube double paroi traverse la barrière thermiquement isolante primaire 20 puis la membrane d'étanchéité primaire 20 et est soudée sur celle-ci de manière à assurer l'étanchéité de la membrane d'étanchéité primaire 21.
Le tube double paroi comporte, au niveau de son passage à travers la cloison transversale 9 du cofferdam, un double compensateur 40 permettant d'apporter de la flexibilité à la conduite 22 de manière à autoriser sa contraction lors de la mise à froid de la cuve. Pour ce faire, le double compensateur 40 comporte, au niveau de la paroi externe, une portion externe présentant une série d'ondulations et, au niveau de la paroi interne, une portion interne présentant une série d'ondulations. Le double compensateur 40 assure en outre une fixation de la conduite d'évacuation de la vapeur 22 à la paroi transversale 9 de cofferdam. Pour ce faire, dans le mode de réalisation représenté, la portion externe ondulée du double compensateur 40 est soudée sur un insert en acier inoxydable 43 qui est monté à l'intérieur d'une ouverture formée dans la paroi transversale 9 de cofferdam et qui est soudé sur celle-ci. La conduite 22 est ici raccordée à un collecteur 26 qui comporte un tube qui s'étend à l'intérieur du cofferdam 10 selon une direction transversale et qui permet ainsi de collecter de la vapeur provenant de deux conduites 22, 25 débouchant au niveau de deux zones d'angles de la paroi de plafond disposés au niveau de la même extrémité longitudinale de la cuve.
La réalisation de la figure 5 diffère de celle de la figure 4 en ce que le collecteur 26 est ici raccordé aux deux conduites d'évacuation de la vapeur 22, 23 débouchant dans les deux zones d'angle en vis-à-vis des deux cuves voisines séparées par le cofferdam 10. Le collecteur 26 comporte également un tube, non représenté sur la figure 5, qui s'étend sur le pont, selon la direction transversale du navire et permet ainsi de collecter de la vapeur provenant de deux autres conduites 24, 25 qui débouchent au niveau des deux autres zones d'angles adjacentes audit cofferdam 10. Par ailleurs, chaque conduite d'évacuation 22, 23 est équipée d'une vanne 54 apte à autoriser ou interdire le passage de la phase gazeuse de la conduite d'évacuation vers le collecteur 26 afin de permettre un isolement des cuves les unes par rapport aux autres.
En relation avec la figure 7, l'on observe que le collecteur 26 est raccordé via un raccordement trois voies 46, d'une part, à une conduite d'injection de vapeur 41 apte à permettre la réinjection de la phase vapeur collectée dans la phase liquide du gaz naturel liquéfié stocké dans une cuve et, d'autre part, à un mât de dégazage 7 via une soupape de sûreté 42. Chaque collecteur 26 ou conduite d'injection de vapeur 41 est équipé d'une pompe 55 permettant de refouler la phase gazeuse collecté dans la phase liquide.
L'installation comporte par ailleurs une tour de chargement/déchargement 45, représentée de manière schématique sur la figure 7, pour charger la cargaison dans la cuve, avant son transport, et pour décharger la cargaison après son transport. La tour de chargement/déchargement 45 s'étend sur sensiblement toute la hauteur de la cuve, au voisinage d'une cloison transversale 9 du cofferdam. La tour de chargement/déchargement 45 est suspendue à la paroi de plafond 13 et peut notamment être constituée d'une structure de type tripode, c'est-à-dire comportant trois mâts verticaux. La tour de chargement/déchargement 45 supporte une ou plusieurs lignes de déchargement 47 et une ou plusieurs lignes de chargement, non représentées. Chacune des lignes de déchargement 47 est associée à une pompe de déchargement respective, non représentée, qui est elle- même supportée par la tour de chargement/déchargement 45. Par ailleurs, l'installation comporte un puits de secours 48 passant au travers de la paroi de plafond 13 de la cuve et s'étendant sur sensiblement toute la hauteur de la cuve et permettant la descente d'une pompe de secours et d'une ligne de déchargement en cas de défaillance des autres pompes de déchargement.
Dans le mode de réalisation représenté, le puits de secours 48 est mis à profit pour permettre la réinjection de la vapeur collectée dans la phase liquide du gaz naturel liquéfié stocké dans la cuve sans avoir à ménager un passage supplémentaire au travers des parois de la cuve.
Pour ce faire, dans le mode de réalisation représenté, la conduite d'injection de vapeur 41 comporte une canne d'injection 49 disposée à l'intérieur du puits de secours. La canne d'injection 49 s'étend sur une portion substantielle de la hauteur de la cuve de manière à plonger à l'intérieur de la phase liquide du gaz naturel liquéfié. Dans le mode de réalisation représenté, la canne d'injection 49 comporte une forme spiralée et une pluralité d'orifices de bullages 50 réparties le long de la canne d'injection. Une telle structure de la canne d'injection 49 permet de favoriser l'échange thermique entre la vapeur réinjectée et la phase liquide du gaz naturel liquéfié.
La canne d'injection 49 est montée de manière amovible à l'intérieur du puits de secours 48 de manière à permettre son retrait du puits de secours lorsque la pompe de secours doit être descendue dans le puits de secours 48. Par ailleurs, la canne d'injection est raccordée au raccordement trois voies 46 par l'intermédiaire d'une vanne d'isolement 51 de manière à permettre une interruption de la réinjection de vapeur dans la cuve, notamment lorsque la canne d'injection 49 doit être retirée et la pompe de secours descendue dans le puits de secours 48.
Par ailleurs, on note que la vanne de sûreté permet de diriger la vapeur vers le mât de dégazage afin d'évacuer la vapeur dans l'atmosphère et éviter les surpressions à l'intérieur de la cuve lorsque la pression de la vapeur est supérieure à un seuil. La soupape de sûreté peut notamment être tarée à une valeur de pression relative comprise entre 200 et 400 millibars, par exemple de l'ordre de 250 millibars.
Chaque cuve 2, 3, 4, 5 peut également être équipée d'un dispositif de collecte de vapeur 56, tel qu'illustré sur la figure 8, et traversant la paroi de plafond 14 de la cuve, ici dans une zone centrale. La structure porteuse comporte une ouverture circulaire autour de laquelle est soudé un fût 52 qui s'étend à l'extérieur de la structure porteuse. Une conduite métallique collectrice 53 est ancrée à l'intérieur du fût 52 et est destinée à extraire les vapeurs produites par l'évaporation du gaz naturel liquéfié dans la cuve. La conduite collectrice 53 traverse la paroi de plafond 13 au centre de l'ouverture circulaire ainsi que les barrières thermiquement isolantes 18, 20 et les membranes d'étanchéité 19, 21. Cette conduite collectrice 53 est notamment reliée à un collecteur de vapeur à l'extérieur de la cuve qui extrait cette vapeur et est apte à transmettre la vapeur sélectivement à un mât de dégazage 7, à la turbine à vapeur pour la propulsion du navire ou à un dispositif de liquéfaction pour réintroduire ensuite le fluide dans la cuve. Le diamètre ainsi que la hauteur de la conduite collectrice 53 sont susceptibles de varier en fonction des dimensions de la cuve et de celles du navire ; le diamètre et la hauteur de la conduite collectrice étant importants lorsque le navire est un méthanier et plus modestes lorsque la cuve est destinée à stocker du gaz naturel liquéfié servant à l'alimentation des moyens de propulsion du navire.
En relation avec les figures 10, 11 et 12, l'on observe une installation de stockage de gaz naturel liquéfié. Les éléments identiques ou analogues aux éléments des figures 1 à 8, c'est-à-dire remplissant la même fonction, portent le même chiffre de référence augmenté de 100.
L'installation comporte une cuve 102, qui peut notamment servir à stocker du gaz naturel liquéfié destiné à servir de carburant pour la propulsion d'un navire. La cuve 102 présente ici une forme parallélépipédique rectangle qui est définie par une paroi de fond 112, une paroi de plafond 113, deux parois latérales verticales 115 et deux parois transversales verticales 114. La dimension longitudinale de la cuve 102 peut par exemple être orientée selon la direction longitudinale du navire ou perpendiculairement à celle-ci.
L'installation comporte quatre conduites d'évacuation de la vapeur 122, 123, 124, 125 qui débouchent chacune au niveau de l'une des quatre zones d'angle de la paroi de plafond 113. Comme représenté sur les figures 11 et 12, les quatre conduites d'évacuation 122, 123, 124, 125 passent au travers de la paroi de plafond 113 de manière à déboucher dans l'espace interne de la cuve 102 au niveau de la membrane d'étanchéité primaire 121 de la paroi de plafond 113. Comme représenté sur la figure 12, la conduite d'évacuation 122 est formée par un tube double paroi dont la paroi externe est raccordée de manière étanche à la membrane d'étanchéité secondaire 119 tandis que la paroi externe est raccordée de manière étanche, par exemple par soudage, à la membrane d'étanchéité primaire 121.
Sur la figure 10, on observe que les conduites d'évacuation 122, 123, 124, 125 sont reliées les unes aux autres par un réseau collecteur. Le réseau collecteur comporte quatre canalisations 157 définissant un rectangle et reliant chacune l'une des conduites d'évacuation 122, 123, 124, 125 avec une autre conduite d'évacuation disposée au niveau d'une zone d'angle voisine de la paroi de plafond 113. Le réseau collecteur comporte en outre deux autres canalisations 158 qui raccordent chacune deux canalisations 157 parallèles à proximité de leur centre. Les deux canalisations 158 sont raccordées l'une à l'autre. L'intersection entre les deux canalisations 158 est raccordée au mât de dégazage et/ou à un circuit d'utilisation du gaz naturel en phase vapeur par une ou deux canalisations 159 qui sont chacune équipées d'une soupape de sûreté 160. Un tel agencement permet ainsi de mutualiser les soupapes de sûreté 160 pour l'ensemble des conduites d'évacuation 122, 123, 124, 125 d'une même cuve et cela sans risquer d'entraîner une expulsion de phase liquide vers le mât de dégazage et/ou le circuit d'utilisation du gaz en phase vapeur lorsque la cuve est inclinée.
Sur la figure 13, les éléments identiques ou analogues aux éléments des figures 1 à 8, c'est-à-dire remplissant la même fonction, portent le même chiffre de référence augmenté de 200. L'installation ne comporte ici que deux conduites d'évacuation de la vapeur 222, 223. Les deux conduites 222, 223 débouchent, à l'intérieur de la cuve 202, au niveau de deux extrémités opposées selon la direction transversale du navire. Un tel agencement permet de limiter le nombre de conduites d'évacuation 222, 223, de manière à limiter l'encombrement et le coût de l'installation, tout en assurant une évacuation efficace de la phase vapeur du gaz naturel liquéfié lorsque le navire est immobilisé dans une position inclinée dans laquelle il présente une inclinaison de gite. Or, l'inclinaison de gite d'un navire étant l'inclinaison susceptible d'être la plus importante.
Par ailleurs, l'installation comporte un réseau collecteur comprenant deux canalisations 263 qui permettent chacune de raccorder l'une des deux conduites d'évacuation 222, 223 à une canalisation 264 collectrice. La canalisation 264 est équipée d'une soupape de sûreté, non illustrée, et conduit le gaz en phase vapeur vers un mât de dégazage et/ou vers une installation d'utilisation du gaz naturel en phase vapeur.
On observe par ailleurs que l'installation comporte également une conduite 265 passant au travers de la paroi de plafond 213 de la cuve et au travers desquelles passent une ou plusieurs lignes de chargement et/ou de déchargement, non illustrés permettant de charger et/ ou de décharger la cargaison.
En référence à la figure 9, on observe une vue écorchée d'un navire méthanier 70 équipée d'une telle installation de stockage et de transport de gaz naturel liquéfié. La figure 9 montre une cuve étanche et isolée 71 de forme générale prismatique montée dans la double coque 72 du navire.
De manière connue en soi, des canalisations de chargement/déchargement 73 disposées sur le pont supérieur du navire peuvent être raccordées, au moyen de connecteurs appropriées, à un terminal maritime ou portuaire pour transférer une cargaison de gaz naturel liquéfié depuis ou vers la cuve 71.
La figure 9 représente également un exemple de terminal maritime comportant un poste de chargement et de déchargement 75, une conduite sous- marine 76 et une installation à terre 77. Le poste de chargement et de déchargement 75 est une installation fixe off-shore comportant un bras mobile 74 et une tour 78 qui supporte le bras mobile 74. Le bras mobile 74 porte un faisceau de tuyaux flexibles isolés 79 pouvant se connecter aux canalisations de chargement/déchargement 73. Le bras mobile 74 orientable s'adapte à tous les gabarits de méthaniers. Une conduite de liaison non représentée s'étend à l'intérieur de la tour 78. Le poste de chargement et de déchargement 75 permet le chargement et le déchargement du méthanier 70 depuis ou vers l'installation à terre 77. Celle-ci comporte des cuves de stockage de gaz liquéfié 80 et des conduites de liaison 81 reliées par la conduite sous-marine 76 au poste de chargement ou de déchargement 75. La conduite sous-marine 76 permet le transfert du gaz liquéfié entre le poste de chargement ou de déchargement 75 et l'installation à terre 77 sur une grande distance, par exemple 5 km, ce qui permet de garder le navire méthanier 70 à grande distance de la côte pendant les opérations de chargement et de déchargement. Pour engendrer la pression nécessaire au transfert du gaz liquéfié, on met en œuvre des pompes embarquées dans le navire 70 et/ou des pompes équipant l'installation à terre 77 et/ou des pompes équipant le poste de chargement et de déchargement 75.
Bien que l'invention ait été décrite en liaison avec plusieurs modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.
L'usage du verbe « comporter », « comprendre » ou « inclure » et de ses formes conjuguées n'exclut pas la présence d'autres éléments ou d'autres étapes que ceux énoncés dans une revendication. L'usage de l'article indéfini « un » ou « une » pour un élément ou une étape n'exclut pas, sauf mention contraire, la présence d'une pluralité de tels éléments ou étapes.
Dans les revendications, tout signe de référence entre parenthèses ne saurait être interprété comme une limitation de la revendication.

Claims

REVENDICATIONS
1. Installation de stockage et de transport d'un fluide cryogénique embarquée sur un navire (1), l'installation comportant une cuve (2, 3, 4, 5, 102, 202) étanche et thermiquement isolante destinée au stockage du fluide cryogénique dans un état d'équilibre diphasique liquide-vapeur, ladite cuve (2, 3, 4, 5, 102, 202) présentant une paroi de plafond (13, 113, 213) horizontale comportant dans le sens de l'épaisseur depuis l'extérieur vers l'intérieur de la cuve au moins une barrière thermiquement isolante (18, 20, 118, 120) et une membrane d'étanchéité (21 , 121) destinée à être en contact avec le fluide cryogénique ;
l'installation comportant au moins deux conduites (22, 23, 24, 25, 122, 123, 124, 125, 222, 223) étanches pénétrant à travers la cuve de sorte à définir un passage d'évacuation de la phase vapeur du fluide cryogénique de l'intérieur vers l'extérieur de la cuve, les deux conduites comportant chacune une extrémité de collecte débouchant à l'intérieur de la cuve au niveau de la membrane d'étanchéité (21 , 121) de la paroi de plafond (13, 113, 213) ;
les extrémités de collecte desdites deux conduites débouchant à l'intérieur de la cuve au niveau de deux zones de la paroi de plafond (13, 113, 2 3) situées à deux extrémités opposées de ladite paroi de plafond (13, 113, 213).
2. Installation selon la revendication 1 , dans laquelle lesdites deux extrémités de la paroi de plafond (13, 113, 213) sont opposées selon une direction transversale perpendiculaire à la direction longitudinale du navire (1 ).
3. Installation selon la revendication 1 , dans laquelle lesdites deux extrémités de la paroi de plafond (13, 113, 213) sont opposées selon la direction longitudinale du navire (1)
4. Installation selon l'une quelconque des revendications 1 à 3, dans laquelle les extrémités de collecte desdites deux conduites (22, 23, 24, 25, 122, 123, 124, 125,) débouchent au niveau de deux zones d'angle de la paroi de plafond (13) diagonalement opposées.
5. Installation selon la revendication 4, comportant quatre conduites étanches (22, 23, 24, 25, 122, 123, 124, 125) comportant chacune une extrémité de collecte débouchant à l'intérieur de la cuve au niveau de la membrane d'étanchéité (21 , 121) de la paroi de plafond (13, 113) et définissant chacune un passage d'évacuation de la phase vapeur et dans laquelle la paroi de plafond (13, 113) présente une forme rectangulaire, les extrémités de collecte des quatre conduites débouchant au niveau de quatre zones d'angle de la paroi de plafond (13, 1 13) de telle sorte que lorsque le navire est immobilisé dans une position inclinée dans laquelle il présente une inclinaison d'assiette et/ou de gite au moins l'une des quatre conduites débouche au niveau du point le plus élevé de la paroi de plafond et soit apte à évacuer la phase vapeur du fluide cryogénique.
6. Installation selon l'une quelconque des revendications 1 à 5, dans laquelle chacune des conduites (22, 23, 24, 25, 122, 123, 124, 125, 222, 223) est raccordée à un collecteur de vapeur (26, 159, 264) agencé à l'extérieur de la cuve (2, 3, 4, 5, 102, 202).
7. Installation selon la revendication 6, dans laquelle chaque collecteur de vapeur (26) est relié à une conduite d'injection de vapeur (41) qui pénètre à travers la cuve (2, 3, 4, 5) et débouche à l'intérieur de la cuve en dessous d'une hauteur de cuve correspondant à une limite maximale de remplissage de la cuve de telle sorte que ladite conduite d'injection soit apte à réinjecter la vapeur collectée via le collecteur de vapeur (26) dans la phase liquide du fluide cryogénique stocké dans la cuve lorsque la cuve est remplie de gaz naturel liquéfié à une hauteur correspondant à ladite limite maximale de remplissage, chaque collecteur de vapeur (26) ou chaque conduite d'injection de vapeur (41 ) étant équipé d'une pompe apte à refouler la vapeur collectée vers la phase liquide du fluide cryogénique.
8. Installation selon la revendication 7, dans laquelle la conduite d'injection de vapeur (41 ) comporte une canne d'injection (49) s'étendant à l'intérieur de la cuve (2, 3, 4, 5) et présentant une pluralité d'orifices de bullage (50) pour la réinjection de la phase vapeur dans la phase liquide du fluide cryogénique stocké dans la cuve.
9. Installation selon la revendication 8, comportant un puits de secours (48) traversant la paroi de plafond (13) de la cuve et permettant la descente d'une pompe de secours dans la cuve et dans laquelle la canne d'injection (49) est montée de manière amovible dans ledit puits de secours (48).
10. Installation selon la revendication 9, comportant une tour de chargement/déchargement (45) s'étendant sur toute la hauteur de la cuve (2, 3, 4, 5), suspendue à la paroi de plafond (13) de la cuve, la tour de chargement/déchargement (45) supportant un ou plusieurs lignes de déchargement (47) qui sont chacune associées à une pompe de déchargement respective supportée par la tour de chargement/déchargement, ladite tour de chargement/déchargement supportant en outre ledit puits de secours (48).
11. Installation selon l'une quelconque des revendications 4 à 10, dans laquelle le ou chaque collecteur de vapeur (26, 159, 264) est relié à un mât de dégazage (7) et/ou à un circuit d'utilisation de gaz en phase vapeur par l'intermédiaire d'une soupape de sûreté (42, 160).
12. Installation selon l'une quelconque des revendications 1 à 11 , dans laquelle la cuve est bordée par deux cofferdams transversaux (10) disposés de part et d'autre de la cuve (2, 3, 4, 5) et délimités chacun par une paire de cloisons transversales (8, 9) et dans laquelle chacune des conduites (22, 23, 24, 25) passe au travers de l'une des cloisons transversales (8, 9) du cofferdam (10) jouxtant la zone de la paroi de plafond (13) au niveau duquel ladite conduite débouche (22, 23, 24, 25) et est raccordée à un collecteur de vapeur (26) au moins partiellement logé dans ledit cofferdam (10).
13. Installation selon la revendication 12 lorsqu'elle dépend de la revendication 5, dans laquelle chaque collecteur (26) est raccordé aux deux conduites (22, 25 ou 23, 24) qui débouchent au niveau des zones d'angle jouxtant le cofferdam (10) dans lequel ledit collecteur (26) est au moins partiellement logé.
14. Installation selon la revendication 13, comportant une pluralité de cuves (2, 3, 4, 5) séparées les unes des autres par des cofferdams transversaux (10) et dans laquelle chaque collecteur (26) logé dans un cofferdam séparant deux cuves (2, 3, 4, 5) est raccordée aux deux conduites (22, 25 et 23, 24) de chacune des deux cuves adjacentes qui débouchent au niveau des zones d'angle jouxtant le cofferdam (10) dans lequel ledit collecteur (26) est logé.
15. Installation selon l'une quelconque des revendications 12 à 14 , dans laquelle chaque conduite (22, 23, 24, 25) comporte une portion équipée d'un compensateur (40) assurant la fixation de ladite conduite (22, 23, 24, 25) à la cloison transversale (9) du cofferdam au travers de laquelle elle passe et présentant des ondulations permettant d'apporter de la flexibilité à la conduite (22, 23, 24, 25) de manière à autoriser sa contraction lors de la mise à froid de la cuve.
16. Installation selon l'une quelconque des revendications 1 à 15, dans laquelle chaque conduite (22, 23, 24, 25, 122, 123, 124, 125, 222, 223) comporte un tube double paroi comportant deux parois concentriques et un espace intermédiaire entre les deux parois concentriques qui est sous vide et/ou garni d'un matériau isolant.
17. Installation selon l'une quelconque des revendications 1 à 16, dans laquelle la cuve (2, 3, 4, 5, 102, 202) présente une dimension longitudinale s'étendant selon la direction longitudinale du navire (1 ) et présente une forme générale polyédrique définie par la paroi de plafond (13, 113, 213) horizontale, une paroi de fond (12, 1 12, 212), des parois transversales et des parois latérales, les parois transversales et les parois latérales reliant la paroi de fond (12, 1 12, 212) et la paroi de plafond (13, 1 13, 213) ; chaque paroi (12, 13, 14, 15, 16, 17) comportant dans le sens de l'épaisseur depuis l'extérieur vers l'intérieur de la cuve au moins une barrière thermiquement isolante (18, 20, 1 18, 120) et une membrane d'étanchéité (21 , 121 ) destinée à être en contact avec le fluide cryogénique.
18. Navire (70) comportant une installation (1) selon l'une quelconque des revendications 1 à 17.
19. Procédé de chargement ou déchargement d'un navire (70) selon la revendication 18, dans lequel on achemine un fluide cryogénique à travers des canalisations isolées (73, 79, 76, 81 ) depuis ou vers une installation de stockage flottante ou terrestre (77) vers ou depuis une cuve du navire (71 ).
20. Système de transfert pour un fluide cryogénique, le système comportant un navire (70) selon la revendication 18, des canalisations isolées (73, 79, 76, 81 ) agencées de manière à relier la cuve (71) installée dans la double coque du navire à une installation de stockage flottante ou terrestre (77) et une pompe pour entraîner un flux de fluide cryogénique à travers les canalisations isolées depuis ou vers l'installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.
EP16703571.6A 2015-01-30 2016-01-14 Installation de stockage et de transport d'un fluide cryogénique embarquée sur un navire Active EP3250849B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL16703571T PL3250849T3 (pl) 2015-01-30 2016-01-14 Instalacja do przechowywania i do transportu cieczy kriogenicznej wbudowana w statek

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1550746A FR3032258B1 (fr) 2015-01-30 2015-01-30 Installation de stockage et de transport d'un fluide cryogenique embarquee sur un navire
PCT/FR2016/050067 WO2016120540A1 (fr) 2015-01-30 2016-01-14 Installation de stockage et de transport d'un fluide cryogénique embarquée sur un navire

Publications (2)

Publication Number Publication Date
EP3250849A1 true EP3250849A1 (fr) 2017-12-06
EP3250849B1 EP3250849B1 (fr) 2020-02-05

Family

ID=52684565

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16703571.6A Active EP3250849B1 (fr) 2015-01-30 2016-01-14 Installation de stockage et de transport d'un fluide cryogénique embarquée sur un navire

Country Status (11)

Country Link
US (1) US9915397B2 (fr)
EP (1) EP3250849B1 (fr)
JP (1) JP6349037B2 (fr)
KR (1) KR101879453B1 (fr)
CN (1) CN107429880B (fr)
AU (1) AU2016211087B2 (fr)
ES (1) ES2786277T3 (fr)
FR (1) FR3032258B1 (fr)
MY (1) MY186353A (fr)
PL (1) PL3250849T3 (fr)
WO (1) WO2016120540A1 (fr)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3062703B1 (fr) * 2017-02-09 2020-10-02 Gaztransport Et Technigaz Structure de dome gaz pour une cuve etanche et thermiquement isolante
FR3070673B1 (fr) * 2017-09-07 2019-09-13 Gaztransport Et Technigaz Ouvrage flottant comprenant une cuve apte a contenir du gaz combustible liquefie
FR3077617B1 (fr) * 2018-02-07 2022-08-19 Gaztransport Et Technigaz Installation pour le stockage et le transport d'un gaz liquefie
FR3078135B1 (fr) * 2018-02-20 2021-01-15 Gaztransport Et Technigaz Installation de stockage et de transport d'un fluide cryogenique embarquee sur un navire
FR3079301B1 (fr) * 2018-03-21 2020-10-30 Gaztransport Et Technigaz Procede de diffusion d'un gaz traceur et procede de test de l'etancheite d'une membrane
FR3080832B1 (fr) * 2018-05-02 2020-10-30 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante equipee d'une tour de chargement/dechargement
FR3089489B1 (fr) * 2018-12-11 2020-11-06 Gaztransport Et Technigaz Tour de chargement et/ou de déchargement d’une cuve d’un navire et cuve comportant une telle tour.
KR102460619B1 (ko) * 2019-01-18 2022-10-27 삼성중공업 주식회사 외장형 액화가스 저장부를 갖는 부유식 해상 구조물
FR3092561A1 (fr) * 2019-02-07 2020-08-14 Gaztransport Et Technigaz Dispositif de vérification du positionnement d’un patin contre un fond de logement pour le maintien d’une tour de pompage.
JP6574321B1 (ja) * 2019-02-15 2019-09-11 石油資源開発株式会社 浮体式低温液化ガス充填設備及びこれを用いた低温液化ガス配送方法
FR3093786B1 (fr) * 2019-03-15 2023-03-24 Gaztransport Et Technigaz Paroi de cuve comprenant une isolation améliorée autour d’une traversée
FR3096432B1 (fr) * 2019-05-24 2022-12-23 Gaztransport Et Technigaz Membrane étanche pour Cuve de Stockage
FR3099226B1 (fr) * 2019-07-23 2023-03-24 Gaztransport Et Technigaz Membrane d’étanchéité pour cuve étanche de stockage de fluide
FR3100055B1 (fr) * 2019-08-19 2021-07-23 Gaztransport Et Technigaz Système de traitement de gaz contenu dans une cuve de stockage et/ou de transport de gaz à l’état liquide et à l’état gazeux équipant un navire
FR3100860B1 (fr) * 2019-09-18 2022-03-25 Gaztransport Et Technigaz Cuve étanche et thermiquement isolante
FR3103534B1 (fr) * 2019-11-22 2022-03-25 Gaztransport Et Technigaz Installation pour le stockage d’un gaz liquéfié
FR3135126B1 (fr) 2022-04-27 2024-03-15 Gaztransport Et Technigaz Paroi de cuve traversée par une conduite étanche d’évacuation de fluide
CN116729545B (zh) * 2023-06-25 2024-05-14 南通中远海运船务工程有限公司 一种原油船的储油系统

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1469749A (en) * 1973-03-13 1977-04-06 Davies R Liquid handling
JPS5210912A (en) * 1975-07-16 1977-01-27 Ishikawajima Harima Heavy Ind Co Ltd Method of discharging gas from tank
BE847581A (fr) * 1975-11-03 1977-02-14 Citerne isolee pour liquides cryogeniques,
US4144829A (en) * 1977-09-01 1979-03-20 Conway Charles S Method and apparatus for venting hydrocarbon gases from the cargo compartments of a tanker vessel
JPS63132200A (ja) 1986-11-21 1988-06-04 株式会社東芝 ビ−ム電流測定装置
JPS63132200U (fr) * 1987-02-20 1988-08-30
DE4107184C1 (fr) 1991-03-06 1992-05-27 Mercedes-Benz Aktiengesellschaft, 7000 Stuttgart, De
FR2691520B1 (fr) 1992-05-20 1994-09-02 Technigaz Ste Nle Structure préfabriquée de formation de parois étanches et thermiquement isolantes pour enceinte de confinement d'un fluide à très basse température.
JPH09203500A (ja) * 1996-01-29 1997-08-05 Ishikawajima Harima Heavy Ind Co Ltd 貯槽内液の層状化解消装置
US6244053B1 (en) * 1999-03-08 2001-06-12 Mobil Oil Corporation System and method for transferring cryogenic fluids
NO315293B1 (no) 2001-10-31 2003-08-11 Procyss As Fremgangsmåte for absorbering av damper og gasser ved kontroll av overtrykki lagertanker for v¶sker samt anvendelse av fremgangsmåten
DE10211645B4 (de) * 2002-03-15 2015-06-03 Saacke Gmbh Verfahren zum Verbrennen von Boil-off-Gas auf einem Flüssiggas-Transportschiff und Verwendung einer Combustor-Einheit
KR100971895B1 (ko) * 2003-07-17 2010-07-23 사우디 아라비안 오일 컴퍼니 해양 선박 및 해양 선박용 가스 팽창 트렁크
US7004095B2 (en) 2003-12-23 2006-02-28 Single Buoy Moorings, Inc. Cargo venting system
KR100805022B1 (ko) * 2007-02-12 2008-02-20 대우조선해양 주식회사 Lng 운반선용 lng 저장탱크 및 이를 이용한 증발가스처리 방법
WO2008099977A1 (fr) * 2007-02-13 2008-08-21 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Réservoir de stockage de gnl de transporteur de gnl et procédé de traitement de gaz d'évaporation faisant intervenir ledit réservoir
FR2915729B1 (fr) 2007-05-04 2009-07-10 Jlmd Ecologic Group Sarl Engin flotant tel qu'un navire equipe de moyens de recuperation de fluide polluant en cas de sinistre, et procede de recuperation de ce fluide
CN102159451B (zh) * 2008-08-21 2014-08-06 大宇造船海洋株式会社 液化气储罐和包含液化气储罐的海运结构
FR2938498B1 (fr) * 2008-11-17 2012-02-03 Gaztransp Et Technigaz Navire ou support flottant equipe d'un dispositif d'attenuation des mouvements de carenes liquides
EP2228294A1 (fr) * 2009-03-09 2010-09-15 RAM LNG Holdings Limited Récipient pour le transport de gaz naturel liquéfié
KR20100133051A (ko) * 2009-06-11 2010-12-21 대우조선해양 주식회사 액화가스 저장탱크의 펌프 배치구조 및 상기 펌프 배치구조를 갖는 해양 구조물
JP2012032118A (ja) 2010-08-02 2012-02-16 Panasonic Electric Works Co Ltd 給湯管
FR2968284B1 (fr) 2010-12-01 2013-12-20 Gaztransp Et Technigaz Barriere d'etancheite pour une paroi de cuve
FR2984454B1 (fr) * 2011-12-20 2015-04-03 Gaztransp Et Technigaz Paroi de cuve comportant une conduite
FR2998256B1 (fr) * 2012-11-16 2019-12-20 Gaztransport Et Technigaz Procede de fabrication d'une paroi de cuve etanche et thermiquement isolee
FR3008765B1 (fr) * 2013-07-19 2017-05-19 Gaztransport Et Technigaz Structure d'angle pour cuve isolante et etanche

Also Published As

Publication number Publication date
JP6349037B2 (ja) 2018-06-27
KR20170104608A (ko) 2017-09-15
US20170363253A1 (en) 2017-12-21
MY186353A (en) 2021-07-15
WO2016120540A1 (fr) 2016-08-04
KR101879453B1 (ko) 2018-08-17
US9915397B2 (en) 2018-03-13
PL3250849T3 (pl) 2020-07-27
ES2786277T3 (es) 2020-10-09
AU2016211087B2 (en) 2017-10-26
EP3250849B1 (fr) 2020-02-05
AU2016211087A1 (en) 2017-08-17
FR3032258A1 (fr) 2016-08-05
JP2018506002A (ja) 2018-03-01
FR3032258B1 (fr) 2017-07-28
CN107429880B (zh) 2019-04-05
CN107429880A (zh) 2017-12-01

Similar Documents

Publication Publication Date Title
EP3250849B1 (fr) Installation de stockage et de transport d'un fluide cryogénique embarquée sur un navire
EP3164636B1 (fr) Cuve etanche et isolante disposee dans une double coque flottante
EP3749889A1 (fr) Installation pour le stockage et le transport d'un gaz liquefie
EP3114387B1 (fr) Cuve étanche et isolante comportant un élément de déflexion permettant l'écoulement de gaz au niveau d'un angle
WO2020193665A1 (fr) Cuve étanche et thermiquement isolante
WO2019030447A1 (fr) Cuve etanche et thermiquement isolante comportant une structure de dome gaz
WO2021140218A1 (fr) Installation de stockage pour gaz liquéfié
EP4031798A1 (fr) Cuve etanche et thermiquement isolante
WO2019162594A2 (fr) Installation de stockage et de transport d'un fluide cryogenique embarquee sur un navire
WO2021228751A1 (fr) Dôme liquide d'une cuve de stockage pour gaz liquéfié comportant une ouverture munie d'une trappe additionnelle
FR3110669A1 (fr) Installation de stockage pour gaz liquéfié
FR3084439A1 (fr) Paroi de cuve etanche autoporteuse
WO2021099424A1 (fr) Installation pour le stockage d'un gaz liquéfié
WO2023036769A1 (fr) Installation de stockage pour gaz liquéfié
WO2023025501A1 (fr) Installation de stockage pour gaz liquéfié
WO2023001678A1 (fr) Installation de stockage pour gaz liquéfié
EP4083494A1 (fr) Installation de stockage pour gaz liquefie
FR3135126A1 (fr) Paroi de cuve traversée par une conduite étanche d’évacuation de fluide
EP4198375A1 (fr) Installation de stockage d'un gaz liquefie comportant une cuve et une structure de dome
FR3118796A1 (fr) Installation de stockage pour gaz liquéfié

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170801

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GAZTRANSPORT ET TECHNIGAZ

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190820

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1230162

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016029095

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20200205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200628

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200205

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200205

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200205

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200605

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200505

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200205

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200205

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2786277

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20201009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200205

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200205

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200205

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200205

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200205

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200205

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016029095

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1230162

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200205

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20201106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200205

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200205

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602016029095

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200205

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210114

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20221228

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230125

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230110

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200205

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160114

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231229

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240207

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200205

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20240103

Year of fee payment: 9

Ref country code: GB

Payment date: 20240119

Year of fee payment: 9