EP3239641A1 - Flat tube for a heat exchanger - Google Patents
Flat tube for a heat exchanger Download PDFInfo
- Publication number
- EP3239641A1 EP3239641A1 EP17166363.6A EP17166363A EP3239641A1 EP 3239641 A1 EP3239641 A1 EP 3239641A1 EP 17166363 A EP17166363 A EP 17166363A EP 3239641 A1 EP3239641 A1 EP 3239641A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- flat tube
- inlet
- outlet
- fluid
- longitudinal direction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/08—Tubular elements crimped or corrugated in longitudinal section
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/02—Tubular elements of cross-section which is non-circular
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/053—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
- F28D1/0535—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/053—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
- F28D1/0535—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
- F28D1/05366—Assemblies of conduits connected to common headers, e.g. core type radiators
- F28D1/05375—Assemblies of conduits connected to common headers, e.g. core type radiators with particular pattern of flow, e.g. change of flow direction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/02—Tubular elements of cross-section which is non-circular
- F28F1/022—Tubular elements of cross-section which is non-circular with multiple channels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/02—Tubular elements of cross-section which is non-circular
- F28F1/06—Tubular elements of cross-section which is non-circular crimped or corrugated in cross-section
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/06—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
- F28F13/08—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by varying the cross-section of the flow channels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/06—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
- F28F13/12—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F21/00—Constructions of heat-exchange apparatus characterised by the selection of particular materials
- F28F21/08—Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
- F28F21/081—Heat exchange elements made from metals or metal alloys
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F3/00—Plate-like or laminated elements; Assemblies of plate-like or laminated elements
- F28F3/02—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
- F28F3/04—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
- F28F3/042—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
- F28F3/044—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being pontual, e.g. dimples
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/02—Tubular elements of cross-section which is non-circular
- F28F2001/027—Tubular elements of cross-section which is non-circular with dimples
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2250/00—Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
- F28F2250/10—Particular pattern of flow of the heat exchange media
- F28F2250/102—Particular pattern of flow of the heat exchange media with change of flow direction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2250/00—Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
- F28F2250/10—Particular pattern of flow of the heat exchange media
- F28F2250/106—Particular pattern of flow of the heat exchange media with cross flow
Definitions
- the present invention is based on the general idea of designing a flat tube for a heat exchanger in such a way that the flat tube can be flowed through by an associated fluid both in the longitudinal direction and at least partially perpendicularly or transversely to the longitudinal direction and thus has a flow direction component perpendicular to the longitudinal direction.
- This makes it possible, in a designed according to the cross-flow principle heat exchanger in which the heat-exchanging fluids, fluidly separated, cross, increase the degree of heat exchange.
- the flat tube has an inlet for introducing the first fluid into the flat tube and an outlet for discharging the first fluid from the flat tube, which are arranged at longitudinally opposite ends of the flat tube or along the end side of the flat tube.
- the outlet and the inlet are each limited only to a partial cross-sectional area of the flat tube and arranged diagonally opposite one another.
- flow elements are also provided in the flat tube, wherein the flow elements can be flowed around by the first fluid such that the first fluid has the flow direction component perpendicular or transverse to the longitudinal direction.
- the amplification of the flow direction component perpendicular to the longitudinal direction may in this case be conditioned both by the design and by the arrangement of the flow elements.
- the flow elements are preferably designed such that they build a pressure gradient in the transverse direction, such that the first fluid flows in the transverse direction and thus has the flow direction component perpendicular to the longitudinal direction.
- the flow elements are preferably arranged in the flat tube or within the flat tube.
- the flat tube has larger dimensions in the transverse direction than a thickness running transversely to the transverse direction and transversely to the longitudinal direction.
- the extent of the flat tube in the transverse direction can be at least twice as large as the thickness.
- the flat tube has a transversely extending inlet section, a transversely extending, in particular spaced from the inlet section, outlet section and a transversely disposed between the inlet section and the outlet section heat exchange section.
- the inlet section includes the inlet
- the outlet section includes the outlet.
- the flow elements are arranged in the heat exchange section.
- inlet section and outlet section are free of flow elements. This advantageously combines the advantages of the diagonal arrangement of the inlet and outlet as well as the flow elements.
- the inlet section and / or the outlet section can run wedge-shaped in the longitudinal direction.
- the heat exchange section runs uniformly in the longitudinal direction.
- the heat exchange section extends obliquely in the longitudinal direction.
- At least two longitudinally spaced rows of such flow elements are provided, the respective row having at least two transversely spaced flow elements.
- the respective flow element extends in its longitudinal direction in the transverse direction of the flat tube. That is, the flow elements extend in their longitudinal direction in the transverse direction and are spaced apart in the respective row.
- embodiments in which the flow elements are arranged by rows spaced apart in the longitudinal direction in the rotor assembly relative to one another are particularly preferred. That means that the Flow elements of longitudinally adjacent lines, in particular of lines adjacent to each other in the longitudinal direction, are arranged transversely offset.
- the flat tube with at least two columns of such flow elements, wherein the respective column has at least two longitudinally spaced flow elements and wherein the columns are spaced from each other in the transverse direction.
- the flow elements extend in their longitudinal extent along the longitudinal direction. It is furthermore preferred if the flow elements are arranged offset in the longitudinal direction by columns which are adjacent in the transverse direction, in particular by gaps lying next to one another in the transverse direction, in particular in the form of a rotor bandage.
- the flow elements are arranged such that a diagonal meandering flow of the fluid results in the flat tube. This is achieved in particular by such columns of flow elements.
- the respective flow element can be configured as desired, provided that, at least with further flow elements, it leads to a flow direction component of the first fluid perpendicularly or transversely to the longitudinal direction.
- the design of the respective flow element as a turbulator, a dimple, an inner rib, an embossment and the like is to be considered. It is also conceivable to design at least one such flow element as a porous structure. Also to be considered is variants in which at least one such flow element is a porous one Material, in particular a metal foam, or is formed as such a material, in particular metal foam.
- the flow elements of the flat tube may have different shapes and / or sizes. It is also conceivable that the flow elements of the flat tube have a same shape and / or size.
- the flow elements are formed as integral parts of the flat tubes, which significantly simplifies the production.
- the flow elements are designed as inwardly directed deformations of the flat tube, in particular as embossing, for example as a dimple.
- embossing for example as a dimple.
- the flat tube can thus be provided in a simple manner with the flow elements.
- the flat tube according to the invention is preferably used in a heat exchanger which additionally has two opposing collectors for collecting and / or distributing the first fluid into the flat tube or from the flat tube.
- One of the collectors may be formed as an inlet header for introducing the first fluid into the downcomer and the other header as an outlet header for discharging the first fluid from the flat tube.
- the respective collector distributes the fluid between different flat tubes, ie both as an inlet collector and as Outlet collector acts or designed as a deflector. In the collectors and the flat tube thus flows the first fluid.
- the flat tube is in this case flows around the second fluid.
- the second fluid flows through the heat exchanger against the transverse direction or against the flow direction portion of the first fluid perpendicular to the longitudinal direction of the flat tube, such that the flat tube is flowed against the transverse direction of the second fluid.
- This cross counterflow allows particularly high heat exchange rates between the first fluid and the second fluid and thus a particularly high efficiency of the heat exchanger.
- the respective collector may have a bottom with passages in which the flat tubes are accommodated along the end.
- the inlet and the outlet of the flat tube are each in fluid communication with the associated collector.
- two or more such flat tubes can also run between the respective inlet header and the respective outlet header, wherein at least one such flat tube is designed according to the invention.
- the heat exchanger can be used in any application for heat exchange between two fluids.
- the heat exchanger can be used in particular in a motor vehicle. It is conceivable, for example, the use of the heat exchanger for cooling a coolant as the first fluid flowing through the flat tubes.
- the second fluid for cooling the coolant may be air, in particular wind, of the motor vehicle, which flows around the compartment pipes.
- the coolant can be used for cooling a drive device of the motor vehicle, in particular an internal combustion engine of the motor vehicle.
- the flat tube 1 has two longitudinal end sides 8 along a longitudinal direction 2, wherein an inlet 3 is arranged on one of the longitudinal end sides 8 and an outlet 4 is arranged on the opposite longitudinal end side 8.
- Inlet 3 and outlet 4 are used to admit a first fluid into the flat tube 1 or the outlet of the first fluid from the flat tube 1.
- Inlet 3 and outlet 4 are limited to a partial cross-sectional area of the flat tube 1 and in a direction transverse to the longitudinal direction 2 transverse direction 5 offset from each other.
- the inlet 3 is arranged at a first transverse end 6 running counter to the transverse direction 5, while the outlet 4 is arranged at a second transverse end 7 of the flat tube 1 in the transverse direction 5.
- Inlet 3 and outlet 4 are thus arranged diagonally opposite one another. Incidentally, the longitudinal end sides 8 of the flat tube 1 are closed and thus can not be flowed through by the first fluid.
- a plurality of flow elements 9 are provided, which are flowed around by the first fluid such that the flowing first fluid has a flow direction component perpendicular to the longitudinal direction 2 and in the transverse direction 5.
- the inlet section 11 and the outlet section 13 as well as the inlet 3 and the outlet 4 are essentially the same size, while the heat exchange section 12 in the transverse direction 5 is many times larger than the inlet section 11 and the outlet section 13, in the example shown five times larger than the inlet section 11 or The outlet section 13 is.
- first fluid as indicated by first dashed arrows 14 flows through the inlet 3 into the flat tube 1, it first enters the flat tube 1 in the inlet section.
- the staggered arrangement of the outlet 4 and the flow elements 9 have the first fluid in the flat tube 1 the flow direction component perpendicular to the longitudinal direction 2 and thus becomes in the transverse direction 5 in the direction of the Auslassabitess13 and passes in this case the heat exchange portion 12.
- the first fluid exchanges heat with a second fluid, the second fluid, as with a second fluid Arrow 15 indicated opposite to the transverse direction 5 flows through the heat exchanger 10 and the flat tube 1 flows around.
- the first fluid flows through the flow in the longitudinal direction 2 in cross flow to the second fluid and through the flow in the transverse direction 5 against the flow direction of the second fluid or in the counterflow direction.
- the flat tube 1 By means of the flat tube 1, therefore, a cross counter flow of the first fluid to the second fluid is realized.
- the first fluid and the second fluid flow fluidly separated through the heat exchanger 10.
- the flow elements 9 are offset from each other in the longitudinal direction 2 adjacent rows 16 in the transverse direction 5, wherein in the example shown, the respective flow element 9 in the transverse direction 5 substantially centrally between the adjacent in the transverse direction 5 flow elements 9 of the longitudinal direction 2 adjacent rows 16 is arranged.
- the flow elements 9 are each as an inwardly directed deformation 17, in particular as a Embossing 17 ', of the flat tube 1 or a dimple 17 "is formed.
- the flow elements 9 are thus an integral part of the flat tube 1.
- the flow elements 9 can also, as in Fig. 1 shown, be summarized in a separately formed to the flat tube 1 turbulence insert 18.
- the turbulence system 18 is arranged in the flat tube 1 and connected to the flat tube 1.
- the flow elements 9 are designed as such inwardly directed deformations 17, in particular as embossings 17 'or dimples 17 ", of the flat tube 1 Fig. 3
- the respective deformation 17 extends over at least part of a thickness 20 of the flat tube 1 running transversely to the longitudinal direction 2 and transversely to the transverse direction 5.
- the walls 21 of the flat tube 1 which are opposite to one another along the thickness 20 are in contact and thus touch each other. This is a particularly effective redirect the first fluid in the transverse direction 5 and thus a large flow direction component of the first fluid perpendicular to the longitudinal direction 2 and in the transverse direction 5 possible.
- the heat exchanger 10 may of course also have a plurality of such flat tubes 1, which are each surrounded by the second fluid.
- Fig. 4 shows a longitudinal section through the heat exchanger 10 of another embodiment. It can be seen here that the heat exchange section 12 extends obliquely in the longitudinal direction 2, while the cross section of the inlet section 11 decreases in the longitudinal direction 5 towards the outlet and disappears at the longitudinal end 8 of the outlet 4 or drops to zero.
- the outlet section 13 decreases in the longitudinal direction 2 towards the inlet and is reduced to zero at the longitudinal end 8 of the inlet 3.
- the heat exchanger 10 also has two in the longitudinal direction 2 opposite collector 22, 23, namely an inlet header 22 for introducing the first fluid into the at least one flat tube 1 and an outlet header 23 for discharging the first fluid from the at least one flat tube 1, which in Longitudinally 2 are arranged spaced.
- the fluidic connection between the flat tube 1 and the respective collector 22, 23 may be realized, for example, by means of non-visible passages, which are formed in a bottom, not shown, of the respective collector 22, 23.
- FIG Fig. 6 Another embodiment of the heat exchanger 10 is shown in FIG Fig. 6 shown.
- This embodiment differs from that in FIG Fig. 5
- the first flat tube 1 'and the second flat tube 1 "extend obliquely, in particular transversely, to one another.
- the longitudinal directions 2 of FIG first flat tube 1 'and the second flat tube 1 "inclined, in particular transversely, to each other.
- the outlet header 23 has a different shape than the outlet header 23 in the 4 and 5 ,
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Die vorliegende Erfindung betrifft ein Flachrohr (1) für einen Wärmeübertrager (10), das einen längsendseitigen Einlass (3) und einen in einer Längsrichtung (2) beabstandeten längsendseitigen Auslass (4) aufweist. Erfindungswesentlich ist hierbei, dass Auslass (4) und Einlass (3) jeweils lediglich auf eine Teilquerschnittsfläche des Flachrohrs (1) begrenzt und diagonal gegenüberliegend angeordnet sind und dass das Flachrohr (1) Strömungselemente (9) aufweist, die derart vom durch das Flachrohr (1) strömenden Fluid umströmbar sind, dass das Fluid einen Strömungsanteil senkrecht zur Längsrichtung (2) aufweist.The present invention relates to a flat tube (1) for a heat exchanger (10) having a longitudinal end inlet (3) and a longitudinal end outlet (4) spaced in a longitudinal direction (2). It is essential to the invention that the outlet (4) and the inlet (3) are each limited to a partial cross-sectional area of the flat tube (1) and are arranged diagonally opposite one another and that the flat tube (1) has flow elements (9) which can be deflected by the flat tube. 1) flowing fluid can flow around, that the fluid has a flow component perpendicular to the longitudinal direction (2).
Die Erfindung betrifft desweiteren einen Wärmeübertrager (10) mit zumindest zwei solchen Flachrohren (1) sowie mit zwei Sammlern (22, 23), zwischen denen die Flachrohre (1) verlaufen. The invention further relates to a heat exchanger (10) with at least two such flat tubes (1) and with two collectors (22, 23), between which the flat tubes (1) extend.
Description
Die vorliegende Erfindung betrifft ein Flachrohr für einen Wärmeübertrager mit einem längsendseitigen Einlass und einem längsendseitigen Auslass, gemäß dem Oberbegriff des Anspruchs 1. Die Erfindung betrifft desweiteren einen Wärmeübertrager mit einem solchen Flachrohr.The present invention relates to a flat tube for a heat exchanger with a longitudinal end inlet and a longitudinal end outlet, according to the preamble of claim 1. The invention further relates to a heat exchanger with such a flat tube.
Wärmeübertrager dienen dem Wärmeaustausch zwischen zwei Fluiden. Hierzu weisen Wärmeübertrager in der Regel Rohre, insbesondere Flachrohre auf, die von einem dieser Fluide durchströmt und vom anderen Fluid umströmt sind. In so genannten Kreuzstromwärmeübertragern strömen das erste Fluid und das zweite Fluid dabei quer zueinander und erlauben somit einen Wärmeaustausch zwischen den Fluiden über das Flachrohr.Heat exchangers serve the heat exchange between two fluids. For this purpose, heat exchangers usually pipes, in particular flat tubes, which flows through one of these fluids and flows around the other fluid. In so-called cross-flow heat exchangers, the first fluid and the second fluid flow transversely to each other and thus allow a heat exchange between the fluids via the flat tube.
Zur Effizienzsteigerung derartiger Wärmeübertrager ist es wünschenswert, den Wärmeaustauschgrad zwischen dem vom ersten Fluid durchströmten Flachrohr und dem zweiten Fluid zu verbessern. Hierzu kommen bspw. zwischen den Flachrohren angeordnete Wärmeübertragungsstrukturen, insbesondere Rippen, zum Einsatz.In order to increase the efficiency of such heat exchangers, it is desirable to improve the degree of heat exchange between the flat tube through which the first fluid flows and the second fluid. For this purpose, for example, arranged between the flat tubes heat transfer structures, in particular ribs are used.
Zur Verbesserung des Wärmeaustauschgrads, insbesondere für einen homogeneren Wärmeaustausch zwischen den Fluiden, schlägt die
In der
Aus der
From the
Diese Maßnahmen lassen jedoch hinsichtlich der Effizienz der zugehörigen Wärmeübertrager, insbesondere hinsichtlich des Wärmeaustauschrades zwischen dem Flachrohr und dem vom Flachrohr umströmten zweiten Fluid, Wünsche offen.However, these measures leave nothing to be desired in terms of the efficiency of the associated heat exchangers, in particular with regard to the heat exchange wheel between the flat tube and the second fluid circulated by the flat tube.
Die vorliegende Erfindung beschäftigt sich daher mit dem Problem, für ein Flachrohr für einen Wärmeübertrager sowie für einen derartigen Wärmeübertrager verbesserte oder zumindest alternative Ausführungsformen anzugeben, die sich insbesondere durch einen verbesserten Wärmeaustauschgrad auszeichnen.The present invention therefore deals with the problem of providing for a flat tube for a heat exchanger and for such a heat exchanger improved or at least alternative embodiments, which are characterized in particular by an improved degree of heat exchange.
Dieses Problem wird erfindungsgemäß durch die Gegenstände der unabhängigen Ansprüche gelöst. Vorteilhafte Ausführungsformen sind Gegenstand der abhängigen Ansprüche.This problem is solved according to the invention by the subject matters of the independent claims. Advantageous embodiments are the subject of the dependent claims.
Die vorliegende Erfindung beruht auf dem allgemeinen Gedanken, ein Flachrohr für einen Wärmeübertrager derart auszugestalten, dass das Flachrohr von einem zugehörigen Fluid sowohl in Längsrichtung als auch zumindest teilweise senkrecht bzw. quer zur Längsrichtung durchströmbar ist und somit einen Strömungsrichtungsanteil senkrecht zur Längsrichtung aufweist. Hierdurch ist es möglich, bei einem gemäß dem Kreuzstromprinzip ausgestalteten Wärmeübertrager, bei dem die wärmeaustauschenden Fluide sich, fluidisch getrennt, kreuzen, den Wärmeaustauschgrad zu erhöhen. Insbesondere erfolgt der Wärmeaustausch zwischen dem durch das Flachrohr strömende Fluid, nachfolgend erstes Fluid genannt, und dem das Flachrohr umströmende Fluid, nachfolgend zweites Fluid genannt, sowohl in Längsrichtung des Flachrohrs als auch senkrecht bzw. quer dazu und somit in Querrichtung des Flachrohrs. Das Flachrohr bzw. der zugehörige Wärmeübertrager ist dabei vorteilhaft derart ausgestaltet, dass das in Querrichtung strömende erste Fluid entgegen der Strömungsrichtung des zweiten Fluids strömt und somit eine Gegenströmung zum zweiten Fluid realisiert wird, die zu besonders vorteilhaften Wärmeaustauschgraden zwischen den Fluiden führt. Mittels des erfindungsgemäßen Flachrohrs wird also sowohl eine Kreuzströmung als auch eine Gegenströmung des ersten Fluids relativ zum zweiten Fluid realisiert. Dem Erfindungsgedanken entsprechend weist das Flachrohr einen Einlass zum Einlassen des ersten Fluids in das Flachrohr und einen Auslass zum Auslassen des ersten Fluids aus dem Flachrohr auf, die an in Längsrichtung gegenüberliegenden Enden des Flachrohrs bzw. längsendseitig des Flachrohrs angeordnet sind. Erfindungsgemäß ist dabei vorgesehen, dass der Auslass und der Einlass jeweils lediglich auf eine Teilquerschnittsfläche des Flachrohrs begrenzt und diagonal gegenüberliegend angeordnet sind. Hierdurch kommt es bereits bedingt durch die diagonale Anordnung von Einlass und Auslass nicht nur zu einer entlang der Längsrichtung verlaufenden Strömung des ersten Fluids, also einer Kreuzströmung des ersten Fluids, sondern auch zu einem senkrecht bzw. quer zur Längsrichtung verlaufenden Strömungsanteil und somit auch zur in Querrichtung verlaufenden Strömung des ersten Fluids, also insbesondere zu einer Gegenströmung des ersten Fluids, relativ zum zweiten Fluid. Erfindungsgemäß sind im Flachrohr zudem Strömungselemente vorgesehen, wobei die Strömungselemente vom ersten Fluid derart umströmbar sind, dass das erste Fluid den Strömungsrichtungsanteil senkrecht bzw. quer zur Längsrichtung aufweist. Durch die Strömungselemente wird also die Strömung des ersten Fluids in Querrichtung verstärkt bzw. der Strömungsrichtungsanteil senkrecht zur Längsrichtung vergrößert.The present invention is based on the general idea of designing a flat tube for a heat exchanger in such a way that the flat tube can be flowed through by an associated fluid both in the longitudinal direction and at least partially perpendicularly or transversely to the longitudinal direction and thus has a flow direction component perpendicular to the longitudinal direction. This makes it possible, in a designed according to the cross-flow principle heat exchanger in which the heat-exchanging fluids, fluidly separated, cross, increase the degree of heat exchange. In particular, the heat exchange between the fluid flowing through the flat tube, hereinafter referred to as first fluid, and the fluid flowing around the flat tube, hereinafter referred to as second fluid, takes place both in the longitudinal direction of the flat tube and perpendicularly or transversely thereto and thus in the transverse direction of the flat tube. The flat tube or the associated heat exchanger is advantageously designed such that the first fluid flowing in the transverse direction flows counter to the flow direction of the second fluid and thus a counterflow to the second fluid is realized, which leads to particularly advantageous degrees of heat exchange between the fluids. By means of the flat tube according to the invention, therefore, both a cross flow and a counterflow of the first fluid relative to the second fluid are realized. According to the inventive concept, the flat tube has an inlet for introducing the first fluid into the flat tube and an outlet for discharging the first fluid from the flat tube, which are arranged at longitudinally opposite ends of the flat tube or along the end side of the flat tube. According to the invention, it is provided that the outlet and the inlet are each limited only to a partial cross-sectional area of the flat tube and arranged diagonally opposite one another. Due to the diagonal arrangement of the inlet and outlet, this results not only in a flow of the first fluid running along the longitudinal direction, ie in a crossflow of the first fluid, but also in a flow component running perpendicularly or transversely to the longitudinal direction and thus also in FIG Transverse flow of the first fluid, ie in particular to a counterflow of the first fluid, relative to the second fluid. According to the invention, flow elements are also provided in the flat tube, wherein the flow elements can be flowed around by the first fluid such that the first fluid has the flow direction component perpendicular or transverse to the longitudinal direction. By the flow elements so the flow of the first fluid reinforced in the transverse direction or the flow direction proportion increases perpendicular to the longitudinal direction.
Die Verstärkung des Strömungsrichtungsanteils senkrecht zur Längsrichtung kann hierbei sowohl durch die Ausbildung als auch durch die Anordnung der Strömungselemente bedingt sein.
Die Strömungselemente sind bevorzugt derart ausgestaltet, dass sie in Querrichtung ein Druckgefälle aufbauen, derart, dass das erste Fluid in Querrichtung strömt und somit den Strömungsrichtungsanteil senkrecht zur Längsrichtung aufweist. Dabei sind die Strömungselemente bevorzugt im Flachrohr bzw. innerhalb des Flachrohrs angeordnet.The amplification of the flow direction component perpendicular to the longitudinal direction may in this case be conditioned both by the design and by the arrangement of the flow elements.
The flow elements are preferably designed such that they build a pressure gradient in the transverse direction, such that the first fluid flows in the transverse direction and thus has the flow direction component perpendicular to the longitudinal direction. In this case, the flow elements are preferably arranged in the flat tube or within the flat tube.
Das Flachrohr weist in Querrichtung größere Dimensionen auf als eine quer zur Querrichtung und quer zur Längsrichtung verlaufende Dicke. Insbesondere kann die Erstreckung des Flachrohrs in Querrichtung zumindest doppelt so groß wie die Dicke sein.The flat tube has larger dimensions in the transverse direction than a thickness running transversely to the transverse direction and transversely to the longitudinal direction. In particular, the extent of the flat tube in the transverse direction can be at least twice as large as the thickness.
Gemäß einer vorteilhaften Ausführungsform weist das Flachrohr einen in Querrichtung verlaufenden Einlassabschnitt, einen in Querrichtung verlaufenden, insbesondere vom Einlassabschnitt beabstandeten, Auslassabschnitt sowie einen in Querrichtung zwischen Einlassabschnitt und Auslassabschnitt angeordneten Wärmeaustauschabschnitt auf. Dabei enthält der Einlassabschnitt den Einlass, während der Auslassabschnitt den Auslass enthält. Die Strömungselemente sind im Wärmeaustauschabschnitt angeordnet. Insbesondere ist vorgesehen, dass Einlassabschnitt und Auslassabschnitt frei von Strömungselementen sind. Hierdurch werden die Vorzüge der diagonalen Anordnung von Einlass und Auslass sowie der Strömungselemente vorteilhaft kombiniert.According to an advantageous embodiment, the flat tube has a transversely extending inlet section, a transversely extending, in particular spaced from the inlet section, outlet section and a transversely disposed between the inlet section and the outlet section heat exchange section. In this case, the inlet section includes the inlet, while the outlet section includes the outlet. The flow elements are arranged in the heat exchange section. In particular, it is provided that inlet section and outlet section are free of flow elements. This advantageously combines the advantages of the diagonal arrangement of the inlet and outlet as well as the flow elements.
Diese Vorteile können gesteigert werden, indem ein Querschnitt des Einlassabschnitts in Längsrichtung hin zum Auslass abnimmt und/oder ein Querschnitt des Auslassabschnitts in Längsrichtung hin zum Einlass abnimmt. Insbesondere können/kann der Einlassabschnitt und/oder der Auslassabschnitt in Längsrichtung keilförmig verlaufen.These advantages may be enhanced by decreasing a cross section of the inlet portion longitudinally toward the outlet and / or decreasing a cross section of the outlet portion longitudinally toward the inlet. In particular, the inlet section and / or the outlet section can run wedge-shaped in the longitudinal direction.
Vorstellbar ist es, dass der Wärmeaustauschabschnitt in Längsrichtung gleichmäßig verläuft. Bevorzugt verläuft der Wärmeaustauschabschnitt in Längsrichtung schräg. Hierdurch wird der Strömungsrichtungsanteil des ersten Fluids senkrecht zur Längsrichtung verstärkt.It is conceivable that the heat exchange section runs uniformly in the longitudinal direction. Preferably, the heat exchange section extends obliquely in the longitudinal direction. As a result, the flow direction component of the first fluid is amplified perpendicular to the longitudinal direction.
Bei bevorzugten Ausführungsformen sind zumindest zwei in Längsrichtung beabstandete Zeilen von solchen Strömungselementen vorgesehen, wobei die jeweilige Zeile zumindest zwei in Querrichtung beabstandete Strömungselemente aufweist. Hierdurch kommt es zu einem Umlenken des ersten Fluids von einem ersten Querende, an dem der Einlass angeordnet ist, in Richtung eines zweiten Querendes des Flachrohrs, an dem der Auslass angeordnet ist. Dementsprechend wird der Anteil der Strömung des ersten Fluids in Querrichtung bzw. der Strömungsrichtungsanteil senkrecht zur Längsrichtung erhöht und der Wärmeaustauschgrad somit verbessert.In preferred embodiments, at least two longitudinally spaced rows of such flow elements are provided, the respective row having at least two transversely spaced flow elements. This results in a deflection of the first fluid from a first transverse end, on which the inlet is arranged, in the direction of a second transverse end of the flat tube, on which the outlet is arranged. Accordingly, the proportion of the flow of the first fluid in the transverse direction and the flow direction component is increased perpendicular to the longitudinal direction and thus improves the heat exchange degree.
Bevorzugt erstreckt sich das jeweilige Strömungselement in seiner Längsrichtung dabei in Querrichtung des Flachrohres. Das heißt, dass die Strömungselemente sich in ihrer Längserstreckung in Querrichtung erstrecken und in der jeweiligen Zeile voneinander beabstandet sind.Preferably, the respective flow element extends in its longitudinal direction in the transverse direction of the flat tube. That is, the flow elements extend in their longitudinal direction in the transverse direction and are spaced apart in the respective row.
Besonders bevorzugt sind hierbei Ausführungsformen, bei denen die Strömungselemente von in Längsrichtung voneinander beabstandeten Zeilen im Läuferverband zueinander angeordnet sind. Das heißt, dass die Strömungselemente von in Längsrichtung benachbarten Zeilen, insbesondere von in Längsrichtung nächstbenachbarten Zeilen, in Querrichtung versetzt angeordnet sind.In this case, embodiments in which the flow elements are arranged by rows spaced apart in the longitudinal direction in the rotor assembly relative to one another are particularly preferred. That means that the Flow elements of longitudinally adjacent lines, in particular of lines adjacent to each other in the longitudinal direction, are arranged transversely offset.
Vorstellbar ist es auch, das Flachrohr mit zumindest zwei Spalten von solchen Strömungselementen zu versehen, wobei die jeweilige Spalte zumindest zwei in Längsrichtung beabstandete Strömungselemente aufweist und wobei die Spalten voneinander in Querrichtung beabstandet sind.It is also conceivable to provide the flat tube with at least two columns of such flow elements, wherein the respective column has at least two longitudinally spaced flow elements and wherein the columns are spaced from each other in the transverse direction.
Bevorzugt ist hierbei, wenn sich die Strömungselemente in ihrer Längserstreckung entlang der Längsrichtung erstrecken. Bevorzugt ist es ferner, wenn die Strömungselemente von in Querrichtung benachbarten Spalten, insbesondere von in Querrichtung nächstbenachbarten Spalten, in Längsrichtung versetzt angeordnet sind, insbesondere einen Läuferverband, ausbilden.In this case, it is preferable if the flow elements extend in their longitudinal extent along the longitudinal direction. It is furthermore preferred if the flow elements are arranged offset in the longitudinal direction by columns which are adjacent in the transverse direction, in particular by gaps lying next to one another in the transverse direction, in particular in the form of a rotor bandage.
Bei vorteilhaften Ausführungsformen sind die Strömungselemente derart angeordnet, dass sich im Flachrohr eine diagonale meanderförmige Strömung des Fluids ergibt. Dies wird insbesondere durch solche Spalten von Strömungselementen erreicht.In advantageous embodiments, the flow elements are arranged such that a diagonal meandering flow of the fluid results in the flat tube. This is achieved in particular by such columns of flow elements.
Das jeweilige Strömungselement kann prinzipiell beliebig ausgestaltet sein, sofern es, zumindest mit weiteren Strömungselementen, zu einem Strömungsrichtungsanteil des ersten Fluids senkrecht bzw. quer zur Längsrichtung führt. Zu denken ist bspw. an die Ausgestaltung des jeweiligen Strömungselements als ein Turbulator, ein Dimpel, eine Innenrippe, eine Prägung und dergleichen. Vorstellbar ist es auch, zumindest ein solches Strömungselement als eine poröse Struktur auszugestalten. Zu denken ist auch an Varianten, bei denen zumindest ein solches Strömungselement ein poröses Material, insbesondere einen Metallschaum, aufweist oder als ein solches Material, insbesondere Metallschaum, ausgebildet ist.In principle, the respective flow element can be configured as desired, provided that, at least with further flow elements, it leads to a flow direction component of the first fluid perpendicularly or transversely to the longitudinal direction. For example, the design of the respective flow element as a turbulator, a dimple, an inner rib, an embossment and the like is to be considered. It is also conceivable to design at least one such flow element as a porous structure. Also to be considered is variants in which at least one such flow element is a porous one Material, in particular a metal foam, or is formed as such a material, in particular metal foam.
Prinzipiell können die Strömungselemente des Flachrohrs unterschiedliche Formen und/oder Größen aufweisen. Vorstellbar ist es auch, dass die Strömungselemente des Flachrohrs eine gleiche Form und/oder Größe aufweisen.In principle, the flow elements of the flat tube may have different shapes and / or sizes. It is also conceivable that the flow elements of the flat tube have a same shape and / or size.
Zu denken ist an Ausführungsformen, bei denen die Strömungselemente in einer separat zum Flachrohr ausgebildeten Turbulenzeinlage zusammengefasst sind. Das heißt, dass die Strömungselemente separat vom Flachrohr ausgebildet sein können und in das Flachrohr eingebracht werden, insbesondere mit dem Flachrohr verbunden werden. Hierdurch ist es insbesondere möglich, Flachrohre aus dem Stand der Technik vereinfacht zu erfindungsgemäßen Flachrohren auszubilden.It is to be thought of embodiments in which the flow elements are combined in a separately formed to the flat tube turbulence insert. This means that the flow elements can be formed separately from the flat tube and are introduced into the flat tube, in particular connected to the flat tube. This makes it possible, in particular, to form flat tubes of the prior art in a simplified manner into flat tubes according to the invention.
Vorstellbar ist es auch, dass die Strömungselemente als integrale Bestandteile der Flachrohre ausgebildet sind, was die Herstellung deutlich vereinfacht.It is also conceivable that the flow elements are formed as integral parts of the flat tubes, which significantly simplifies the production.
Bevorzugt ist es dabei, wenn die Strömungselemente als nach innen gerichtete Verformungen des Flachrohrs, insbesondere als Prägungen, bspw. als Dimpel, ausgebildet sind. Hierdurch werden die Anzahl der Bestandteile des Flachrohrs und einhergehend damit ein Montageaufwand reduziert. Zudem lassen sich hierdurch eine erhöhte Anzahl von Strömungselementen und/oder eine größere Variabilität an Formen und Größen der Strömungselemente realisieren. Auch lässt sich das Flachrohr somit auf einfache Weise mit den Strömungselementen versehen.It is preferred if the flow elements are designed as inwardly directed deformations of the flat tube, in particular as embossing, for example as a dimple. As a result, the number of components of the flat tube and, consequently, an assembly effort is reduced. In addition, an increased number of flow elements and / or greater variability in shapes and sizes of the flow elements can thereby be realized. Also, the flat tube can thus be provided in a simple manner with the flow elements.
Die nach innen gerichteten Verformungen zum Ausbilden der Strömungselemente erstrecken sich dabei zumindest über einen Teil der Dicke des Flachrohrs, wobei die Dicke des Flachrohrs quer zur Längsrichtung und quer zur Querrichtung verläuft.The inwardly directed deformations for forming the flow elements thereby extend at least over a part of the thickness of the flat tube, wherein the thickness of the flat tube extends transversely to the longitudinal direction and transversely to the transverse direction.
Bevorzugt sind auch Ausführungsformen, bei denen die als nach innen gerichteten Verformungen ausgebildeten Strömungselemente eine gegenüberliegende Wand des Flachrohrs berühren. Das heißt insbesondere, dass die entlang der Dicke des Flachrohrs gegenüberliegenden Wände des Flachrohrs über derartige Strömungselemente miteinander in Kontakt stehen können. Hierdurch ist ein besonders effektives Erzielen des Strömungsrichtungsanteils des ersten Fluids senkrecht zur Längsrichtung möglich.Embodiments are also preferred in which the flow elements designed as inward deformations contact an opposite wall of the flat tube. This means, in particular, that the walls of the flat tube that are opposite the thickness of the flat tube can be in contact with one another via such flow elements. As a result, a particularly effective achievement of the flow direction portion of the first fluid perpendicular to the longitudinal direction is possible.
Vorstellbar ist es, die Strömungselemente gleichmäßig über das gesamte Flachrohr, insbesondere gleichmäßig im Wärmeaustauschabschnitt, zu verteilen. Zu denken ist auch an Ausführungsformen, bei denen das Flachrohr in Längsrichtung im Bereich des Einlasses und/oder im Bereich des Auslasses keine solche Strömungselemente aufweist, das heißt frei von solchen Strömungselementen ist.It is conceivable to distribute the flow elements uniformly over the entire flat tube, in particular evenly in the heat exchange section. It is also to be considered in embodiments in which the flat tube in the longitudinal direction in the region of the inlet and / or in the region of the outlet has no such flow elements, that is, is free of such flow elements.
Das erfindungsgemäße Flachrohr kommt bevorzugt in einem Wärmeübertrager zum Einsatz, der zusätzlich zwei gegenüberliegende Sammler zum Sammeln und/oder Verteilen des ersten Fluids in das Flachrohr bzw. vom Flachrohr aufweist. Einer der Sammler kann als ein Einlasssammler zum Einlassen des ersten Fluids in das Fallrohr und der andere Sammler als ein Auslasssammler zum Auslassen des ersten Fluids aus dem Flachrohr ausgebildet sein. Vorstellbar ist es auch, dass der jeweilige Sammler das Fluid zwischen verschiedenen Flachrohren verteilt, also sowohl als Einlasssammler als auch als Auslasssammler fungiert bzw. als Umlenker ausgestaltet ist. In den Sammlern und dem Flachrohr strömt also das erste Fluid. Das Flachrohr ist hierbei vom zweiten Fluid umströmt. Besonders bevorzugt ist es hierbei, wenn das zweite Fluid den Wärmeübertrager entgegen der Querrichtung bzw. entgegen des Strömungsrichtungsanteils des ersten Fluids senkrecht zur Längsrichtung des Flachrohrs durchströmt, derart, dass das Flachrohr entgegen der Querrichtung vom zweiten Fluid umströmt wird. Hierdurch kommt es zusätzlich zur Strömung des ersten Fluids in Längsrichtung zu einer quer zur Längsrichtung und entgegen der Querrichtung verlaufenden Umströmung des Flachrohrs, und somit zu einer Kreuzgegenströmung. Diese Kreuzgegenströmung erlaubt besonders hohe Wärmeaustauschgrade zwischen dem ersten Fluid und dem zweiten Fluid und somit eine besonders hohe Effizienz des Wärmeübertragers.The flat tube according to the invention is preferably used in a heat exchanger which additionally has two opposing collectors for collecting and / or distributing the first fluid into the flat tube or from the flat tube. One of the collectors may be formed as an inlet header for introducing the first fluid into the downcomer and the other header as an outlet header for discharging the first fluid from the flat tube. It is also conceivable that the respective collector distributes the fluid between different flat tubes, ie both as an inlet collector and as Outlet collector acts or designed as a deflector. In the collectors and the flat tube thus flows the first fluid. The flat tube is in this case flows around the second fluid. It is particularly preferred in this case if the second fluid flows through the heat exchanger against the transverse direction or against the flow direction portion of the first fluid perpendicular to the longitudinal direction of the flat tube, such that the flat tube is flowed against the transverse direction of the second fluid. This results in addition to the flow of the first fluid in the longitudinal direction to a transverse to the longitudinal direction and against the transverse direction flowing around the flat tube, and thus to a cross counter flow. This cross counterflow allows particularly high heat exchange rates between the first fluid and the second fluid and thus a particularly high efficiency of the heat exchanger.
Der jeweilige Sammler kann einen Boden mit Durchzügen aufweisen, in denen die Flachrohre längsendseitig aufgenommen sind. Somit stehen der Einlass und der Auslass des Flachrohrs jeweils mit dem zugehörigen Sammler in fluidischer Verbindung.The respective collector may have a bottom with passages in which the flat tubes are accommodated along the end. Thus, the inlet and the outlet of the flat tube are each in fluid communication with the associated collector.
Vorstellbar ist es auch, den Wärmeübertrager mit zwei solchen Einlasssammlern und einem gemeinsamen solchen Auslasssammler zu versehen, wobei zwischen dem Auslasssammler und dem jeweiligen Einlasssammler zumindest ein solches Flachrohr angeordnet ist. Das heißt, dass der Wärmeübertrager einen ersten Einlasssammler und einen zweiten Einlasssammler sowie einen solchen Auslasssammler aufweist, wobei zumindest ein erstes Flachrohr zwischen dem ersten Einlasssammler und dem Auslasssammler und zumindest ein zweites Flachrohr zwischen dem zweiten Einlasssammler und dem Auslasssammler verläuft.It is also conceivable to provide the heat exchanger with two such inlet headers and a common such outlet header, wherein between the outlet header and the respective inlet header at least one such flat tube is arranged. That is, the heat exchanger has a first inlet header and a second inlet header and an outlet header, wherein at least a first flat tube between the first inlet header and the outlet header and at least one second flat tube extends between the second inlet header and the outlet header.
Zu denken ist hierbei an Ausführungsformen, bei denen das erste Flachrohr und das zweite Flachrohr geneigt zueinander, insbesondere quer zueinander, verlaufen. Hierdurch ist insbesondere eine besonders bauraumsparende Ausbildung des Wärmeübertragers möglich.It is to be thought of embodiments in which the first flat tube and the second flat tube inclined to each other, in particular transverse to each other. As a result, in particular a particularly space-saving design of the heat exchanger is possible.
Selbstverständlich können zwischen dem jeweiligen Einlasssammler und dem jeweiligen Auslasssammler auch zwei oder mehrere solche Flachrohre verlaufen, wobei zumindest ein solches Flachrohr erfindungsgemäß ausgebildet ist.Of course, two or more such flat tubes can also run between the respective inlet header and the respective outlet header, wherein at least one such flat tube is designed according to the invention.
Der Wärmeübertrager kann in einer beliebigen Anwendung zum Wärmeaustausch zwischen zwei Fluiden zum Einsatz kommen. Der Wärmeübertrager kann insbesondere in einem Kraftfahrzeug eingesetzt werden. Denkbar ist etwa der Einsatz des Wärmeübertragers zum Kühlen eines Kühlmittels als erstes Fluid, das durch die Flachrohre strömt. Das zweite Fluid zum Kühlen des Kühlmittels kann dabei Luft, insbesondere Fahrtwind, des Kraftfahrzeugs sein, die die Fachrohre umströmt. Das Kühlmittel kann dabei zum Kühlen einer Antriebseinrichtung des Kraftfahrzeugs, insbesondere einer Brennkraftmaschine des Kraftfahrzeugs, eingesetzt werden.The heat exchanger can be used in any application for heat exchange between two fluids. The heat exchanger can be used in particular in a motor vehicle. It is conceivable, for example, the use of the heat exchanger for cooling a coolant as the first fluid flowing through the flat tubes. The second fluid for cooling the coolant may be air, in particular wind, of the motor vehicle, which flows around the compartment pipes. The coolant can be used for cooling a drive device of the motor vehicle, in particular an internal combustion engine of the motor vehicle.
Weitere wichtige Merkmale und Vorteile der Erfindung ergeben sich aus den Unteransprüchen, aus den Zeichnungen und aus der zugehörigen Figurenbeschreibung anhand der Zeichnungen.Other important features and advantages of the invention will become apparent from the dependent claims, from the drawings and from the associated figure description with reference to the drawings.
Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.It is understood that the features mentioned above and those yet to be explained below can be used not only in the particular combination given, but also in other combinations or in isolation, without departing from the scope of the present invention.
Bevorzugte Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert, wobei sich gleiche Bezugszeichen auf gleiche oder ähnliche oder funktional gleiche Komponenten beziehen.Preferred embodiments of the invention are illustrated in the drawings and will be described in more detail in the following description, wherein like reference numerals refer to the same or similar or functionally identical components.
Es zeigen, jeweils schematisch,
- Fig. 1
- eine räumliche Ansicht eines Flachrohrs,
- Fig. 2
- einen Schnitt durch einen Wärmeübertrager im Bereich des Flachrohrs bei einem anderen Ausführungsbeispiel des Flachrohrs, wobei das Flachrohr teilweise aufgeschnitten dargestellt ist,
- Fig. 3
- die Ansicht aus
Fig. 2 bei einem weiteren Ausführungsbeispiel des Flachrohrs, - Fig. 4 bis 6
- jeweils einen Längsschnitt durch den Wärmeübertrager, bei jeweils unterschiedlichen Ausführungsbeispielen.
- Fig. 1
- a spatial view of a flat tube,
- Fig. 2
- a section through a heat exchanger in the region of the flat tube in another embodiment of the flat tube, wherein the flat tube is shown partially cut away,
- Fig. 3
- the view
Fig. 2 in a further embodiment of the flat tube, - 4 to 6
- in each case a longitudinal section through the heat exchanger, in each case different embodiments.
Entsprechend
Das Flachrohr 1 kommt, wie in
in Querrichtung 5 in Richtung des Auslassabschnitts13 gelenkt und passiert hierbei den Wärmeaustauschabschnitt 12. Anschließend gelangt das erste Fluid durch den Auslass 4 im Auslassabschnitt 13 aus dem Flachrohr 1. Das erste Fluid strömt also sowohl in Längsrichtung 2 als auch in Querrichtung 5. Im Wärmeübertrager 10 tauscht das erste Fluid Wärme mit einem zweiten Fluid aus, wobei das zweite Fluid, wie mit einem zweiten Pfeil 15 angedeutet, entgegen der Querrichtung 5 durch den Wärmeübertrager 10 strömt und das Flachrohr 1 umströmt. Somit strömt das erste Fluid durch die Strömung in Längsrichtung 2 in Kreuzströmung zum zweiten Fluid und durch die Strömung in Querrichtung 5 entgegen der Strömungsrichtung des zweiten Fluids oder in Gegenströmungsrichtung. Mittels des Flachrohrs 1 ist also eine Kreuzgegenströmung des ersten Fluids zum zweiten Fluid realisiert. Das erste Fluid und das zweite Fluid strömen dabei fluidisch getrennt durch den Wärmeübertrager 10.The flat tube 1 comes as in
in the
Die Strömungselemente 9 sind bei den in den
In dem in
Alternativ können die Strömungselemente 9 auch, wie in
In
Aus
Der Wärmeübertrager 10 kann selbstverständlich auch mehrere solche Flachrohre 1 aufweisen, die jeweils vom zweiten Fluid umströmt sind.The
Ein weiteres Ausführungsbeispiel des Wärmeübertragers 10 ist in
Ein weiteres Ausführungsbeispiel des Wärmeübertragers 10 ist in
Claims (16)
gekennzeichnet durch
marked by
dadurch gekennzeichnet,
characterized,
dadurch gekennzeichnet,
dass der Einlassabschnitt (11) und/oder der Auslassabschnitt (13) in Längsrichtung (2) keilförmig verlaufen/verläuft.Flat tube according to claim 3,
characterized,
that the inlet portion (11) and / or the outlet (13) in the longitudinal direction (2) extends wedge-shaped run /.
dadurch gekennzeichnet,
dass der Wärmeaustauschabschnitt (12) in Längsrichtung (2) schräg verläuft.Flat tube according to one of claims 2 to 4,
characterized,
in that the heat exchange section (12) extends obliquely in the longitudinal direction (2).
dadurch gekennzeichnet,
dass zumindest zwei in Längsrichtung (2) beabstandete Zeilen (16) von Strömungselementen (9) vorgesehen sind, wobei die jeweilige Zeile (16) zumindest zwei in Querrichtung (5) beabstandete Strömungselemente (9) aufweist.Flat tube according to one of claims 1 to 5,
characterized,
in that at least two lines (16) spaced apart from one another in the longitudinal direction (2) are provided by flow elements (9), the respective line (16) having at least two flow elements (9) spaced transversely (5).
dadurch gekennzeichnet,
dass die Strömungselemente (9) von in Längsrichtung (2) voneinander beabstandeten Zeilen (16) im Läuferverband zueinander angeordnet sind.Flat tube according to claim 6,
characterized,
that the flow elements (9) in the longitudinal direction (2) spaced apart rows (16) are arranged in a running bond to each other.
dadurch gekennzeichnet,
dass die Strömungselemente (9) zumindest teilweise in einer separat zum Flachrohr (1) ausgebildeten Turbulenzeinlage (18) zusammengefasst sind.Flat tube according to one of claims 1 to 7,
characterized,
that the flow elements (9) at least partially formed in a separately to the flat tube (1) turbulence insert (18) are summarized.
dadurch gekennzeichnet,
dass zumindest ein solches Strömungselement (9) als nach innen gerichtete Verformung (17) des Flachrohrs (1), insbesondere als Prägung (17') oder Dimpel (17"), und damit integral mit dem Flachrohr (1) ausgebildet ist.Flat tube according to one of claims 1 to 8,
characterized,
in that at least one such flow element (9) is designed as an inwardly directed deformation (17) of the flat tube (1), in particular as embossing (17 ') or dimple (17 "), and thus integrally with the flat tube (1).
dadurch gekennzeichnet,
dass zumindest ein solches als nach innen gerichtete Verformung (17) ausgebildetes Strömungselement (9) eine gegenüberliegende Wand (21) des Flachrohres (1) berührt.Flat tube according to claim 9,
characterized,
that at least one such as inwardly directed deformation (17) formed flow element (9) contacts an opposite wall (21) of the flat tube (1).
dadurch gekennzeichnet,
dass zumindest ein solches Strömungselement (9) ein poröses Material, insbesondere einen Metallschaum, aufweist.Flat tube according to one of claims 1 to 10,
characterized,
in that at least one such flow element (9) comprises a porous material, in particular a metal foam.
dadurch gekennzeichnet,
dass die Strömungselemente (9) derart angeordnet sind, dass sich im Flachrohr (1) eine diagonale mäanderformige Strömung des Fluids ergibt.Flat tube according to one of claims 1 to 11,
characterized,
in that the flow elements (9) are arranged such that a diagonal meandering flow of the fluid results in the flat tube (1).
dadurch gekennzeichnet,
dass der Wärmeübertrager (10) im Kreuzgegenstrom durchströmt ist.Heat exchanger according to claim 13,
characterized,
that the heat exchanger (10) is flowed through in cross countercurrent.
dadurch gekennzeichnet,
dass ein erster Einlasssammler (22, 22') und ein zweiter Einlasssammler (22, 22") vorgesehen sind, wobei zwischen diesen Einlasssammlern (22) ein Auslasssammler (23) angeordnet ist und zwischen dem jeweiligen Einlasssammler (22) und dem Auslasssammler (23) zumindest ein solches Flachrohr (1) angeordnet ist.Heat exchanger according to claim 13 or 14,
characterized,
in that a first inlet header (22, 22 ') and a second inlet header (22, 22 ") are provided, between which inlet header (22) an outlet header (23) is arranged and between the respective inlet header (22) and the outlet header (23 ) At least one such flat tube (1) is arranged.
dadurch gekennzeichnet,
dass zumindest ein Flachrohr (1, 1') zwischen dem ersten Einlasssammler (22, 22') und dem Auslasssammler (23) und zumindest ein Flachrohr (1, 1") zwischen dem zweiten Einlasssammler (22, 22") und dem Auslasssammler (23) geneigt, insbesondere quer, zueinander verlaufen.Heat exchanger according to claim 15,
characterized,
in that at least one flat tube (1, 1 ') is arranged between the first inlet header (22, 22') and the outlet header (23) and at least one flat tube (1, 1 ") between the second inlet header (22, 22") and the outlet header ( 23) inclined, in particular transversely to each other.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102016207192.0A DE102016207192A1 (en) | 2016-04-27 | 2016-04-27 | Flat tube for a heat exchanger |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3239641A1 true EP3239641A1 (en) | 2017-11-01 |
Family
ID=58544873
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17166363.6A Withdrawn EP3239641A1 (en) | 2016-04-27 | 2017-04-12 | Flat tube for a heat exchanger |
Country Status (5)
Country | Link |
---|---|
US (1) | US10295275B2 (en) |
EP (1) | EP3239641A1 (en) |
JP (1) | JP2017198442A (en) |
KR (1) | KR20170122663A (en) |
DE (1) | DE102016207192A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE202019102998U1 (en) | 2019-05-28 | 2019-07-11 | Mahle International Gmbh | Flat tube for a heat exchanger |
DE102020112004A1 (en) | 2020-05-04 | 2021-11-04 | Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr | Exhaust gas heat exchanger and method for producing such an exhaust gas heat exchanger |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5271151A (en) * | 1990-04-23 | 1993-12-21 | Wallis Bernard J | Method of making a high pressure condenser |
US5771964A (en) * | 1996-04-19 | 1998-06-30 | Heatcraft Inc. | Heat exchanger with relatively flat fluid conduits |
DE19752139A1 (en) | 1997-11-25 | 1999-05-27 | Behr Gmbh & Co | Heat-exchanger block for road vehicle |
US6125926A (en) * | 1997-07-25 | 2000-10-03 | Denso Corporation | Heat exchanger having plural fluid passages |
US6286201B1 (en) * | 1998-12-17 | 2001-09-11 | Livernois Research & Development Co. | Apparatus for fin replacement in a heat exchanger tube |
DE102004056592A1 (en) | 2004-11-23 | 2006-05-24 | Behr Gmbh & Co. Kg | Low-temperature coolant radiator |
DE102007035581A1 (en) | 2006-08-02 | 2008-03-27 | Denso Corp., Kariya | heat exchangers |
DE19883002B4 (en) * | 1998-06-10 | 2008-04-10 | Heatcraft Inc., Grenada | Heat exchanger line and heat exchanger with such a heat exchanger line |
WO2016146294A1 (en) * | 2015-03-19 | 2016-09-22 | Mahle International Gmbh | Heat exchanger, in particular for a motor vehicle |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB182144A (en) * | 1920-12-21 | 1922-06-21 | Edward Lloyd Pease | Improvements in or relating to radiators for heating buildings and the like |
JPH08200977A (en) | 1995-01-27 | 1996-08-09 | Zexel Corp | Flat tube for heat exchanger and manufacture thereof |
US5941303A (en) * | 1997-11-04 | 1999-08-24 | Thermal Components | Extruded manifold with multiple passages and cross-counterflow heat exchanger incorporating same |
DE102004055341A1 (en) * | 2004-11-16 | 2006-05-18 | Behr Gmbh & Co. Kg | Heat exchanger with cold storage element |
DE102006057662A1 (en) * | 2006-12-07 | 2008-06-12 | Bayerische Motoren Werke Ag | Vehicle, has combustion engine and thermoelectric generator and heat exchanger has heating elements, which are arranged in exhaust gas channel of combustion engine and is pass or flow through exhaust gas |
US20110030932A1 (en) * | 2009-08-07 | 2011-02-10 | Johnson Controls Technology Company | Multichannel heat exchanger fins |
JP2014001867A (en) * | 2012-06-15 | 2014-01-09 | Sanden Corp | Heat exchanger |
-
2016
- 2016-04-27 DE DE102016207192.0A patent/DE102016207192A1/en not_active Withdrawn
-
2017
- 2017-04-12 EP EP17166363.6A patent/EP3239641A1/en not_active Withdrawn
- 2017-04-21 KR KR1020170051610A patent/KR20170122663A/en unknown
- 2017-04-26 US US15/498,446 patent/US10295275B2/en not_active Expired - Fee Related
- 2017-04-26 JP JP2017086805A patent/JP2017198442A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5271151A (en) * | 1990-04-23 | 1993-12-21 | Wallis Bernard J | Method of making a high pressure condenser |
US5771964A (en) * | 1996-04-19 | 1998-06-30 | Heatcraft Inc. | Heat exchanger with relatively flat fluid conduits |
US6125926A (en) * | 1997-07-25 | 2000-10-03 | Denso Corporation | Heat exchanger having plural fluid passages |
DE19752139A1 (en) | 1997-11-25 | 1999-05-27 | Behr Gmbh & Co | Heat-exchanger block for road vehicle |
DE19883002B4 (en) * | 1998-06-10 | 2008-04-10 | Heatcraft Inc., Grenada | Heat exchanger line and heat exchanger with such a heat exchanger line |
US6286201B1 (en) * | 1998-12-17 | 2001-09-11 | Livernois Research & Development Co. | Apparatus for fin replacement in a heat exchanger tube |
DE102004056592A1 (en) | 2004-11-23 | 2006-05-24 | Behr Gmbh & Co. Kg | Low-temperature coolant radiator |
DE102007035581A1 (en) | 2006-08-02 | 2008-03-27 | Denso Corp., Kariya | heat exchangers |
WO2016146294A1 (en) * | 2015-03-19 | 2016-09-22 | Mahle International Gmbh | Heat exchanger, in particular for a motor vehicle |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE202019102998U1 (en) | 2019-05-28 | 2019-07-11 | Mahle International Gmbh | Flat tube for a heat exchanger |
DE102020112004A1 (en) | 2020-05-04 | 2021-11-04 | Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr | Exhaust gas heat exchanger and method for producing such an exhaust gas heat exchanger |
Also Published As
Publication number | Publication date |
---|---|
KR20170122663A (en) | 2017-11-06 |
DE102016207192A1 (en) | 2017-11-02 |
US20170314875A1 (en) | 2017-11-02 |
US10295275B2 (en) | 2019-05-21 |
JP2017198442A (en) | 2017-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE60011616T2 (en) | HEAT EXCHANGER WITH MULTICHANNEL TUBES | |
DE102005052683B4 (en) | Multi-channel flat tube for heat exchangers | |
DE69423595T2 (en) | Plate heat exchanger | |
EP1400772B1 (en) | Plate heat exchanger | |
DE4432972B4 (en) | Heat exchanger with two rows of tubes, especially for motor vehicles | |
DE1277282B (en) | Heat exchanger with tubes that are inserted into a slot in the associated manifold | |
EP2798297B1 (en) | Method for manufacturing at least two different heat exchangers | |
DE3142028C2 (en) | ||
DE102017214822A1 (en) | HEAT EXCHANGERS | |
EP3957940A1 (en) | Counterflow plate heat exchanger module and counterflow plate heat exchanger | |
EP1411310B1 (en) | Heat exhanger with serpentine structure | |
DE102014226090A1 (en) | Heat exchanger | |
WO2012159958A1 (en) | Multiplate heat exchanger | |
DE202017104743U1 (en) | Heat exchanger with microchannel structure or wing tube structure | |
DE202017102436U1 (en) | Heat exchanger with microchannel structure or wing tube structure | |
EP3239641A1 (en) | Flat tube for a heat exchanger | |
EP2438384A2 (en) | Header for a condenser | |
DE102005048838A1 (en) | Heat exchanger for e.g. vehicle, with grid including parallel tubes and three connection headers, has single collection chamber with two groups of tubes connected to it | |
DE102019204640A1 (en) | Heat exchanger | |
DE10333463C5 (en) | Tube heat exchanger | |
EP2049859B1 (en) | Motor vehicle air conditioning system | |
EP2936030A1 (en) | Heat exchanger | |
EP2994712B1 (en) | Heat exchanger | |
WO2017097634A1 (en) | Heat exchanger, particularly for a motor vehicle, comprising flexible fluid lines and holding structure | |
EP3009780A1 (en) | Heat exchanger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180424 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20201103 |