EP2798297B1 - Method for manufacturing at least two different heat exchangers - Google Patents
Method for manufacturing at least two different heat exchangers Download PDFInfo
- Publication number
- EP2798297B1 EP2798297B1 EP12812272.8A EP12812272A EP2798297B1 EP 2798297 B1 EP2798297 B1 EP 2798297B1 EP 12812272 A EP12812272 A EP 12812272A EP 2798297 B1 EP2798297 B1 EP 2798297B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- heat exchanger
- plate
- flow
- type
- pairs
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/03—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
- F28D1/0308—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
- F28D1/0325—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another
- F28D1/0333—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/053—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
- F28D1/0535—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
- F28D1/05366—Assemblies of conduits connected to common headers, e.g. core type radiators
- F28D1/05391—Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/0408—Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/0408—Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
- F28D1/0426—Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/0408—Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
- F28D1/0426—Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
- F28D1/0435—Combination of units extending one behind the other
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/53—Means to assemble or disassemble
- Y10T29/53113—Heat exchanger
Definitions
- the invention relates to a method for producing more than two different heat exchangers by means of a modular system.
- Heat exchangers for motor vehicles are known in the art. Thus, heat exchangers are already used in a variety of configurations and uses in vehicles, for example as an evaporator, storage evaporator, oil cooler, condenser, intercooler or coolant radiator. All these heat exchangers have different configurations and designs, so that for each type often a different design is applied.
- the DE 102006028117 A1 discloses an evaporator with cold storage, a so-called storage evaporator, in which an evaporator part is formed with double-row flat tubes, wherein adjacent to this evaporator part of the Heat exchanger, a memory part is provided, which is formed einreihig and can flow through an array of double tubes on the one hand, a refrigerant through an inner flat tube and on the other hand, a cold storage medium in a space between the inner flat tube and the outer flat tube arranged or can flow through this space area.
- the production of this storage evaporator is a highly complex process, since a large number of tubes and a large number of parts have to be assembled and interconnected.
- the evaporator part is typically a modification of a standard refrigerant evaporator, so that this component is not used by default, but at least with regard to some components requires a modification.
- This storage evaporator is thus a separate solution that can not rely on mass-produced components.
- the EP 1817534 B1 also discloses a storage evaporator, wherein in a first embodiment, in turn, flat tubes are inserted into each other, which can be connected by means of Anschlußelerrienten to different refrigerant or cold storage media-medium cycles.
- the production of such a storage evaporator in turn shows a high parts cost, which leads to significant additional costs.
- the US 2008/0121381 discloses a combined heat exchanger comprising two different plate-type heat exchangers.
- the heat exchangers in the prior art are thus very specifically adapted to the needs of the respective medium in the circuit, so that a broad application is rather excluded for different applications.
- a heat transfer core of the first type can be used with a heat transfer core of the second type, in which case the refrigerant can flow in parallel or in series through flow paths of the first core and the second core, wherein the cold storage medium through further flow paths of the second heat transfer core can flow.
- two heat exchangers of the second type can be interconnected, so that, for example, an increased cooling capacity can be realized with simultaneous cold storage effect.
- the second type of heat exchanger core can be used alone, for example as a double-row evaporator or as a single-row evaporator with cold storage. As a result, for example, a storage evaporator with lower cooling capacity can be realized.
- the heat exchanger cores of the first and / or second type are provided with connecting devices and / or connecting devices for introducing and / or discharging and / or passing fluid in or between or from the heat exchanger cores or between flow channels of the heat exchanger cores.
- At least individual disks have openings and / or cups as connecting and connecting areas and have channel-forming structures, such as embossings, for forming flow paths between connecting areas.
- first disk and the second disk of the disk pair each have a connection region at two opposite end regions as the inlet or outlet of the first flow path and in each case a channel-forming structure between the two connection regions for forming the first flow path.
- first disk and / or the second disk of the disk pair prefferably have two connection regions at one end region Inlet or outlet of the first flow path and in each case a channel-forming structure between the two connection areas for forming the first flow path.
- first disk, the second and the third disk of the disk group to have two connection regions at two opposite end regions as the inlet or outlet of the third flow path or the fourth flow path, the first and the second disk each between an opposite connection region a channel-forming structure between one of the two connection regions for forming the third and the fourth flow path, wherein the third disc is provided between the first and the second disc as a partition wall between the third and the fourth flow path.
- the spacing of the pairs of disks or the groups of disks of a heat transfer core for forming the second and / or fifth flow paths is selected such that it is the same for different heat exchanger cores of a heat exchanger or different, as smaller or larger than in the adjacent heat transfer core.
- disk pairs are formed from a paired arrangement of disks and with a partition wall between adjacent disks, which form pairs of flow channels, characterized in that the flow channels of a disk pair are flowed through in countercurrent.
- the FIG. 1 shows the arrangement of two heat transfer cores 1,2, which are connectable to a heat exchanger together.
- the heat transfer core 1 has a plurality of disk pairs 3, which are arranged adjacent to each other, wherein in free spaces between the respective adjacent pairs of disks corrugated fins 4 are arranged, for better heat transfer in the flow of air between the respective adjacent disk pairs 3.
- Zu- and Outlet the disks 3 at their opposite ends connections or openings formed as such as cups 5.6, which also serve to connect the pairs of disks 3 with each other.
- the heat transfer core 2 is formed with a plurality of disc groups 7, in turn, adjacent disc groups leave 7 clearances 8 to Throughflow of air, wherein a recording of corrugated fins for the improved heat exchange in the flow of air may be provided.
- Figure 1 shows an arrangement of two heat exchanger cores 1, 2, wherein the first heat exchanger core 1 is a first type of heat transfer core formed with a plurality of pairs of disks for generating a plurality of parallel flow paths between the pairs of disks. Within the disk pairs, a flow path is created for flowing the disk through a fluid, allowing entry and exit of the fluid into and from the disk through a port formed through a cup in the disk.
- the first heat exchanger core 1 is a first type of heat transfer core formed with a plurality of pairs of disks for generating a plurality of parallel flow paths between the pairs of disks.
- a flow path is created for flowing the disk through a fluid, allowing entry and exit of the fluid into and from the disk through a port formed through a cup in the disk.
- the second heat transfer core 2 represents a heat transfer core of the second type formed with a plurality of groups of three disks for generating a plurality of two parallel flow paths, each forming a flow path between two of the three disks.
- the disk group at its two opposite ends in each case two connection openings for inlet and outlet of a first and / or a second fluid, so that either two different fluids can flow through this heat transfer core 2 in each case different flow channels or in another application a fluid in different flow paths can flow in two columns through the heat exchanger core, wherein at one of the two heat exchanger core ends then a deflection of the fluid is provided by the one flow path in the other flow path.
- This diversion is however in the FIG. 1 not shown.
- FIGS. 15 and 16 show a disc 200, in which an overflow channel is provided as a deflection between the wells 201.
- the plurality of adjacent disk groups form over the wells formed as wells 10,11 as port areas, an inlet or outlet manifold, so that a fluid that flows through the opening 10, 11 and the respective bowl into the heat exchanger core can be distributed over the length of the heat exchanger core before flowing through the flow channels along the heat exchanger disk array can, before it is collected at the opposite end in the region of the connection of the wells again, before the fluid can be discharged from the heat transfer core.
- the opening 10 is adjacent to the opening 11 and of a smaller cross section, so that quite different flow rates for the different media can be realized. In another embodiment, however, it may also be expedient if the openings 10, 11 of the flow paths are of the same order of magnitude.
- FIG. 2 shows the arrangement of the two heat transfer cores 1,2 in an arrangement in which the heat transfer cores are interconnected, thereby producing a heat exchanger having a first core having a plurality of parallel flow paths, and having a second core having a plurality of two adjacent flow paths.
- Such a heat exchanger according to FIG. 2 can be used, for example, as a storage evaporator, wherein a first flow path 12 between the opening 5 and the opening 6 is used as a refrigerant flow path and then a deflection takes place to the opening 11 as an inlet, so that the refrigerant through the flow path between the two openings 11,11a as Connections can flow and then escape from the evaporator.
- the flow path 13 between the openings as ports 10, 10a can be used as a storage medium flow path, so that during normal operation of the evaporator, the storage medium is cooled in this flow path and in the event that the refrigerant circuit of the air conditioner For example, is in a start-stop situation, the air flowing through, which is indicated by the arrow 14 can be further cooled by heat exchange between the storage medium in the flow path 13, so that even during a temporary stoppage phase of the refrigerant circuit of the air conditioning in the start-stop Operation still some cooling power can be provided.
- a heat transfer core of the FIG. 1 is also usable as a stand-alone heat exchanger, see FIG. 5 , wherein such a heat exchanger 20 can be used for example as a disk evaporator in an air conditioner with little available space.
- this heat exchanger 20 as an evaporator would only provide a reduced cooling capacity available, this may well be sufficient for small vehicles such as small electric vehicles.
- the heat exchanger 20 consists of a core 25 of a plurality of pairs of disks 26 which are spaced from each other, so that air can flow through the intermediate spaces 24, which is thereby cooled. The air flow direction is indicated by the arrow 27.
- the pairs of disks 26 have connections which are formed by cups, which serve to form the collecting space and which serve for mutual engagement with adjacent disk pairs.
- a fluid can flow into a connection region, see arrow 21, and the fluid can flow out from an opposite connection region, see arrow 22.
- the flow path 23 which is formed by the pair of discs and through which the fluid flows.
- FIG. 3 shows a heat exchanger 30, which consists of two Heat exchanger cores 31,32 of the first type is composed.
- Each of the two heat exchanger cores 31,32 consists of a plurality of pairs of discs 33,34 which are each spaced from each other in a row in the respective core are arranged so that through the gaps 35,36 between the pairs of discs 33,34, for example, air can flow through it is coolable.
- the air flow direction is indicated by the arrow 37.
- the pairs of disks 33 have connections 38, 39, which are formed by cups, which also serve to form the collecting spaces 40, 41 and which serve for mutual contact with adjacent pairs of disks.
- the pairs of disks 34 have connections 42,43, which are formed by wells, which also serve to form the collecting spaces 44,45 and which serve for mutual contact with adjacent disk pairs.
- a fluid can flow into the first core 31 into a connection region 38.
- the fluid flows through the flow channel 46 and can exit at 39 from the first core 31. It is diverted to enter the second core at 43. Subsequently, the fluid flows through the second flow channel 47 and flows out of an opposite connection region 42 out of the second core 32 again.
- the deflection is not shown, it can be done through a pipe or the like.
- FIG. 6 shows a heat exchanger 50, which consists of only one heat exchanger core 51 of the second type.
- the heat transfer core 51 consists of a plurality of disk groups 52 which are each spaced from one another in a row, so that, for example, air can flow through the intermediate spaces 53 between the disk groups 52, which can be cooled thereby.
- the air flow direction is indicated by the arrow 54 characterized.
- the pairs of disks 52 form two parallel flow channels 55, 56, which are each formed by two of the three disks of the disk group 52.
- connections of the two flow channels or flow paths 55,56 are formed by the connections 57,58,59,60, which are designed as wells, which also serve to form the respective collecting chambers 61,62,63,64 and the mutual investment Serve with adjacent pairs of discs or disc group.
- a fluid can flow into the first flow channel 55.
- the fluid then flows through the flow channel 55 and can exit at the cup 58 as an outlet from the first flow channel 55.
- the fluid is then deflected to enter the second flow channel 56 at the cup 59.
- the fluid flows through the second flow channel 56 from the cup 59 to the cup 60 and flows there at the inlet opposite outlet again from the second flow channel.
- the deflection is not shown, it can be done through a pipe or the like.
- FIG. 4 shows such a heat exchanger 70, which consists of only a first heat transfer core 71 of the second type and a second heat transfer core 72 of the second type.
- a fluid is flowed through by a first core 71 and then deflected to a second core 72 and then flows through this second core 72 before the fluid exits from this core 72 again.
- FIG. 7 shows two discs 80 and 81 of a disc pair 82, which are identically formed and reversed to each other.
- the two discs each have a cup 83 and an opposite cup 84 formed on the opposite end portions of the disc.
- the cups point from the base 85 of the disc in a direction perpendicular thereto so as to protrude from the base 85 of the disc.
- the disc has a peripheral edge 86 projecting in the direction perpendicular to the plane of the disc 85, the rim 86 projecting in the opposite direction than the cup 87 or 88 of the openings 83, 84. If now two disks are brought into contact with each other, then they abut against one another at the peripheral edges 86 and can be soldered together sealingly there. This causes between the two discs, a flow channel 89 is formed, which serves to flow through the disc and which is in fluid communication with the openings 83, 84.
- FIG. 8 shows a disc group with the discs 90, 91 and 92.
- the disc 90 has a ground plane 93 and a respective protruding peripheral edge 94, wherein at the two opposite ends openings 95 and 96 are respectively provided, which are formed with encircling cups, the cups being perpendicular to the base plane 93 and projecting in a different direction than the peripheral edge 94.
- the flow channel 97 is defined between and communicates with the openings 95 in fluid communication with the flow channel being defined from and not communicating with the opening 96.
- the disc 91 is flat and has at the two opposite ends in each case openings 98.99, which are formed without cups, wherein the disc 91 is flat and has no embossed structures. If now the disc 90 is placed on the disc 91, the two discs touch each other in the region of the peripheral edge 94 and can thus be fluid-tight with each other be connected, that on the one hand, the openings 98 are aligned with the openings 95 and between the disc 90 and the disc 91 of the fluid channel 97 is defined, the openings 96 are aligned with the openings 99, but are not in communication with the fluid channel 97.
- the disc 92 also has at its opposite ends openings 100, 101, wherein in the base portion 102 of the disc, a fluid channel 103 is formed, which communicates with the openings 101, wherein a peripheral edge 104 is formed in a direction perpendicular to the plane of Base surface 102 protrudes, wherein the openings 100 are embossed in the peripheral edge, and thus are not in fluid communication with the flow channel 103.
- the openings 100 and 101 are configured with wells projecting perpendicular to the direction of the ground plane 102, wherein these in the FIG. 8 protrude to the rear and thus protrude opposite to the peripheral edge 104.
- FIG. 9 shows an arrangement of a plurality of disc pairs according to the FIG. 7 in that the pairs of discs 110 are soldered together and then joined adjacent to each other, so that they touch each other in the area of the protruding cups 111, thereby defining a distance between the pairs of discs which is greater than the extent of the disc perpendicular to the base plane of the disc, so that between the two respective adjacent slices a space portion 112 remains undgespart, for the passage of, for example, air.
- FIG. 10 shows a similar arrangement example of disk groups 113 according to the FIG. 8 , wherein these disk groups are in turn connected to each other and adjacent disk groups come into contact with each other via the protruding cups 114,115. Hiss the disk groups is in turn a free space 116 flickges to flow through, for example, air.
- FIG. 11c shows a section of a disc 82 according to FIG. 7 , as well as the FIG. 11b , wherein the disc 82 has a flat base portion 85 opposite to the peripheral edge 86 protrudes, at the same time the opening 83 has a cup 87 which protrudes from the base 85 in a different direction. This is also in the FIG. 11b good to see, so that the cup 87 in the FIG. 11b protrudes forward relative to the base 85, wherein the peripheral edge 86 in the FIG. 11b protrudes to the rear.
- the discs 92 and 90 each have at their opposite ends two openings 95 and 100 and 101 and 96, these openings being surrounded by cups projecting from the base portions 97 and 102 of the discs, respectively.
- the flow channel 103 or the flow channel 97 is in each case fluid-connected to another opening, so that the flow channel 97 is connected to the opening 95, while the flow channel 103 is connected to the opening 101.
- the small openings 95, 100 are connectable to each other, while the large openings 96 and 101 are connected to each other.
- the fluid channels 97 and 103 are in communication with the respective openings configured through-flow, wherein the two flow channels 97 and 103 are separated by the interposition of the disc 91, not shown, but from each other.
- FIG. 12 shows the arrangement of disk pairs and disk groups in adjacent arrangement, wherein the pairs of disks of the discs 82 are arranged in the air flow direction before the arrangement of the disk groups of the disks 90, 91,92.
- the flow channel 85 of the air flow is first exposed before the flow channel 97 and the flow channel 103, not shown, is flowed around.
- the FIG. 13 shows this from the other side, so that it can be seen that first the flow channel 85 is surrounded by air before the flow channel 103 is flowed around.
- the FIG. 14 shows this again in section, wherein it can be seen that the flow channel 85 is formed by two discs 82, wherein the flow channels 97 and 103 are formed by the discs 90, 91 and 92, wherein the two flow channels 90 and 103 in a direction perpendicular to the air direction take in sum only the space area which is occupied by the air channel 85 of the two discs 82.
- the FIG. 13 shows this from the other side, so that it can be seen that first the flow channel 85 is surrounded by air before the flow channel 103 is flowed around.
- the FIG. 14 shows this again in section, wherein it can be seen that the flow channel 85 is formed by two discs 82, wherein the
- FIG. 17 shows a heat exchanger 300 with a heat transfer core, wherein the heat transfer core 301 is formed by a plurality of parallel pairs of disks consisting of two discs, which form two flow paths between each disc and the partition wall with the interposition of a partition wall.
- the heat exchanger 300 has a plurality of disk pairs 302, which are arranged adjacent to one another, wherein corrugated fins 303 are preferably arranged between the disk pairs.
- Each pair of discs see also FIG. 18 , Has at a first end portion and at a second end region in each case two as wells designed inlet openings 304, 305, 306, 307.
- a cup of an end region 304 or 305 forms an input-side cup, wherein the output-side cup associated with the flow path 308 in the other end region is arranged.
- an inlet-side and an outlet-side cup are provided as inlet or outlet of the heat exchanger on each side in each end region.
- FIG. 18 shows three spaced-apart disc pairs, which consist of two discs and an intermediate wall, said pairs of discs are arranged to a disc package 310.
- FIG. 19 shows the arrangement of a disc pair consisting of the discs 311 and 312, the disc 311 forms a flow channel 313 and the disc 312 a flow channel 314. These flow channels are formed by embossments between two wells, with only two of the four shown cups with the flow channel are connected. Thus, the cup 315 and the cup 316 are connected to the flow channel 313, wherein the cups 317 and 318 are not connected to the flow channel 313. In the disc 312, the cup 319 and the cup 320 are connected to the flow channel 314, with the cup 321 and the cup 322 not connected to the flow channel.
- FIGS. 20 and 21 show the arrangements of the wells 319, 321 of FIG. 19 in an enlarged view, wherein the cups 319 and 321 in FIG. 20 are formed separately from each other and the cup 319 is fluidly connected to the flow channel 314, while the cup 321 is separated from the flow channel 314.
- two wells 330 and 331 are also shown in each case, wherein a transition 332 is provided between the two wells 330, which allows an overflow of a fluid from the bowl 330 to the bowl 331.
- the FIG. 22 shows a disk package with three pairs of disks in a perspective view, wherein only the uppermost portion of the disk package 340 is shown.
- the FIG. 23 represents a section according to section 1 of FIG. 22 and the FIG. 24 shows a section according to section 2 of FIG. 22 , It can be seen that in each case a pair of disks 350, 351 is provided with an intermediate layer 352, wherein between the disks 350 and 351 a flow channel 353 is arranged on one side of the partition 352, while a second flow channel 354 is arranged on the other side of the partition. This pattern is repeated for each disk pair of the three disk pairs shown, so that two flow channels 354, 353 are arranged on both sides of the partition wall 352 between the disk pairs.
- FIG. 24 FIG. 3 also shows the flow channels 353 and 354 respectively disposed on one side of the partition wall 352.
- the FIG. 25 shows the disc package 340, wherein the FIG. 26 a section according to section 3 of FIG. 25 represents and the FIG. 27 a section according to section 4 of FIG. 25 ,
- FIGS. 26 and 27 the disks 350 and 351 are shown with the partition wall 352 interposed, the flow channels 354 and 353 being visible in each case. It can be seen in section 3 that the flow channels do not extend over the full width of the disc, the flow channels in the FIG. 27 essentially run over the entire disc. This is due to the fact that the channel profile to the cup must be returned from the substantially full width to about half the width.
- the design of the pairs of disks makes it possible to form a heat exchanger consisting of a series of disk pairs, each of which forms both a first flow channel connected to an inlet header and an outlet header and a second flow channel likewise provided with an inlet header and an outlet header is.
- the cups which are connected in series with each other, the respective inlet collector and outlet collector.
- the respective disk pair consists of two opposing disks, wherein between the two disks, a partition wall or a partition plate is provided, which separates the flow channels of the respective disks from each other.
- the separating plate serves to separate the opposing fluid streams through the flow channels, wherein the wells of the individual pairs of disks, which are arranged in series with one another, form the fluid inlet collector or the fluid outlet collector.
- FIG. 28 shows the schematic arrangement of disk pairs 400, 401, which have an inlet-side cup 402 and an outflow-side cup 403.
- the fluid flow takes place from the inlet-side bowl 402 through the flow channel 401 to a passage 404, from where the fluid can flow into the second flow channel 400 in order to flow to the bowl 403.
- this is carried out in each case, the two flow channels 400 and 401 being operated in countercurrent to one another.
- FIG. 29 shows this in an enlarged view.
- the pair of discs 401, 400 is provided with ribs 405 on both sides for the flow around air.
- the heat exchanger consists of a series of disk pairs, each having in half both a first flow channel connected to the inlet header or bowl and a second flow channel connected to the outlet header or bowl.
- the pair of discs is in turn made of two facing discs and an intermediate therebetween separating plate composed.
- the separating plate is used to separate the opposing fluid streams, the interconnected cups of the arrayed pairs of discs form on the one hand the fluid inlet header for distributing the fluid to the individual first flow channels, and on the other hand the fluid outlet header for collecting the fluid from the individual second flow channels.
- the fluid inlet disc 311 is a flow connection between the flow channel 313 and the fluid inlet cup coined, wherein the fluid disc 312 is a connection between the flow channel 314 and the fluid outlet cup ,
- connection embossings can be carried out alternately in the disk tool and thus both disks are produced in one and the same tool with a replacement set. This reduces tool costs and increases the number of identical parts.
- the heat exchanger described above is flowed through such that a fluid, such as, for example, refrigerant or coolant, etc., is introduced via the first collector as an inlet collector, e.g. on the block top into which a first disc channel half 311 flows, then via a connecting element between the two opposite collectors, referred to as inlet collector and outlet collector on the block bottom, is transferred to the second disc channel half 312, flows through this and then from this second channel half via the second Collector, as exit collector then again referred to the block top, again flows out.
- a fluid such as, for example, refrigerant or coolant, etc.
- the advantage of this type of flow is in the homogenization of the temperature profile, for example as an evaporator, by equalizing the different temperatures of the countercurrent fluid flows due to the Heat transfer between the two channel halves on the one hand, and on the other hand by equalizing the temperature of the air flowing around the two channel halves.
- the connecting element between the two opposing collectors on the underside of the block may be a separate connecting part or else in a side part with integrated deflection channel or the like. be executed.
- the fluid is simultaneously distributed via the inlet header to all first disc channel halves 311 arranged in parallel and, according to the deflection, distributed on all second disc channel halves 312 by means of connecting element.
- a multi-block interconnection if the fluid is distributed only to a certain number of first disc channel halves 311 arranged in parallel at the same time, then the fluid transfer from one collector to the adjacent collector takes place directly in the discs, e.g. via impressed connection channels between the adjacent collecting cups of a disc, before then, after flowing through the second disc channel halves 312, the fluid is forwarded to the next block and there again the same distribution process as in the first block is continued.
- the heat exchanger in particular the disk evaporator, can alternatively also be designed in a single-tank design, that is to say with only one tank on one side of the heat exchanger
- the interconnection of the individual modules can be varied depending on the arrangement and / or embodiment.
- the temperature of the flowing refrigerant through the evaporator sets much faster at a lower average temperature level and the overheating zone can be reduced to a minimum in the evaporator. This results in a high driving average temperature gradient and an associated increase in performance.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Description
Die Erfindung betrifft ein Verfahren zur Herstellung von mehr als zwei unterschiedlichen Wärmeübertragern mittels eines Baukastens.The invention relates to a method for producing more than two different heat exchangers by means of a modular system.
Wärmeübertrager für Kraftfahrzeuge sind im Stand der Technik bekannt. So werden Wärmeübertrager in einer Vielzahl von Konfigurationen und Verwendungszwecken in Fahrzeugen bereits eingesetzt, beispielsweise als Verdampfer, Speicherverdampfer, Ölkühler, Kondensator, Ladeluftkühler oder Kühlmittelkühler. All diese Wärmeübertrager weisen unterschiedliche Konfigurationen und Bauformen auf, so dass für jeden Typ oft auch ein unterschiedliches Design angewendet wird.Heat exchangers for motor vehicles are known in the art. Thus, heat exchangers are already used in a variety of configurations and uses in vehicles, for example as an evaporator, storage evaporator, oil cooler, condenser, intercooler or coolant radiator. All these heat exchangers have different configurations and designs, so that for each type often a different design is applied.
Die
Die
Auch die Ausgestaltung eines Speicherverdampfers in Scheibenbauweise gemäß dem zweiten Ausführungsbeispiel der
Die
Die Wärmeübertrager im Stand der Technik sind somit sehr speziell auf die Bedürfnisse des jeweiligen Mediums im Kreislauf angepasst, so dass eine breite Anwendung auch für verschiedene Anwendungszwecke eher ausgeschlossen ist.The heat exchangers in the prior art are thus very specifically adapted to the needs of the respective medium in the circuit, so that a broad application is rather excluded for different applications.
Es ist die Aufgabe der Erfindung, ein Verfahren zur Herstellung von mehr als zwei unterschiedlichen Wärmeübertragern zu schaffen, die mittels eines Baukastens zur Herstellung von Wärmeübertragern mit zumindest zwei Typen von Wärmeübertragerkernen hergestellt sind.It is the object of the invention to provide a method for producing more than two different heat exchangers, which are produced by means of a modular system for the production of heat exchangers with at least two types of heat exchanger cores.
Dies wird für das Verfahren erreicht mit den Merkmalen des Anspruchs 1.This is achieved for the method with the features of
Dadurch kann im Falle der Verwendung eines Wärmeübertragerkerns des ersten Typs als einfacher schmaler Verdampfer dieser so bauraumsparend eingesetzt werden. Dies kann vorteilhaft in kleinen Fahrzeugen mit geringen benötigten Kälteleistungen erfolgen.As a result, in the case of using a heat exchanger core of the first type as a simple narrow evaporator this can be used as space-saving. This can be done advantageously in small vehicles with low cooling capacities required.
Bei höheren benötigten Kälteleistungen können im Falle der Verwendung zweier Wärmeübertragerkerne des ersten Typs diese in Reihenschaltung oder in Parallelschaltung zueinander angeordnet und verwendet werden, so dass eine erhöhte Kälteleistung bei doppeltem Platzbedarf realisiert werden kann.At higher required cooling capacities, in the case of using two heat exchanger cores of the first type, these can be arranged and used in series or in parallel with each other, so that an increased cooling capacity can be realized with twice the space required.
Bei einer Verwendung des Wärmeübertragers als Speicherverdampfer kann ein Wärmeübertragerkern des ersten Typs mit einem Wärmeübertragerkern des zweiten Typs verwendbar sein, wobei in diesem Falle das Kältemittel durch Strömungspfade des ersten Kerns und des zweiten Kerns parallel oder seriell strömen kann, wobei das Kältespeichermedium durch weitere Strömungspfade des zweiten Wärmeübertragerkerns strömen kann.When using the heat exchanger as a storage evaporator, a heat transfer core of the first type can be used with a heat transfer core of the second type, in which case the refrigerant can flow in parallel or in series through flow paths of the first core and the second core, wherein the cold storage medium through further flow paths of the second heat transfer core can flow.
Auch können zwei Wärmeübertrager des zweiten Typs miteinander verschaltet werden, so dass beispielsweise eine erhöhte Kälteleistung bei gleichzeitiger Kältespeicherwirkung realisiert werden kann.Also, two heat exchangers of the second type can be interconnected, so that, for example, an increased cooling capacity can be realized with simultaneous cold storage effect.
Weiterhin kann der zweite Typ des Wärmeübertragerkerns alleine verwendet werden, beispielsweise als zweireihiger Verdampfer oder als einreihiger Verdampfer mit Kältespeicher. Dadurch ist beispielsweise ein Speicherverdampfer mit geringerer Kälteleistung realisierbar.Furthermore, the second type of heat exchanger core can be used alone, for example as a double-row evaporator or as a single-row evaporator with cold storage. As a result, for example, a storage evaporator with lower cooling capacity can be realized.
Dabei ist es vorteilhaft, wenn die Wärmeübertragerkerne des ersten und/oder zweiten Typs mit Anschlussvorrichtungen und/oder Verbindungsvorrichtungen versehen sind zum Einleiten und/oder Ausleiten und/oder Überleiten von Fluid in oder zwischen oder aus den Wärmeübertragerkernen bzw. zwischen Strömungskanälen der Wärmeübertragerkerne.It is advantageous if the heat exchanger cores of the first and / or second type are provided with connecting devices and / or connecting devices for introducing and / or discharging and / or passing fluid in or between or from the heat exchanger cores or between flow channels of the heat exchanger cores.
Dabei ist es zweckmäßig, wenn zumindest einzelne Scheiben als Anschluss- und Verbindungsbereiche Öffnungen und/oder Näpfe aufweisen und zur Ausbildung von Strömungspfaden zwischen Anschlussbereichen kanalbildende Strukturen, wie Prägungen, aufweisen.It is expedient if at least individual disks have openings and / or cups as connecting and connecting areas and have channel-forming structures, such as embossings, for forming flow paths between connecting areas.
Auch ist es zweckmäßig, wenn die erste Scheibe und die zweite Scheibe des Scheibenpaares an zwei gegenüberliegenden Endbereichen jeweils einen Anschlussbereich aufweist als Einlass oder Auslass des ersten Strömungspfads und jeweils eine kanalbildende Struktur zwischen den beiden Anschlussbereichen zur Ausbildung des ersten Strömungspfads.It is also expedient if the first disk and the second disk of the disk pair each have a connection region at two opposite end regions as the inlet or outlet of the first flow path and in each case a channel-forming structure between the two connection regions for forming the first flow path.
Weiterhin ist es zweckmäßig, wenn die erste Scheibe und/oder die zweite Scheibe des Scheibenpaares an einem Endbereich zwei Anschlussbereiche aufweist als Einlass oder Auslass des ersten Strömungspfads und jeweils eine kanalbildende Struktur zwischen den beiden Anschlussbereichen zur Ausbildung des ersten Strömungspfads.Furthermore, it is expedient for the first disk and / or the second disk of the disk pair to have two connection regions at one end region Inlet or outlet of the first flow path and in each case a channel-forming structure between the two connection areas for forming the first flow path.
Auch ist es zweckmäßig, wenn die erste Scheibe, die zweite und die dritte Scheibe der Scheibengruppe an zwei gegenüberliegenden Endbereichen jeweils zwei Anschlussbereiche aufweist als Einlass oder Auslass des dritten Strömungspfads oder des vierten Strömungspfads, wobei die erste und die zweite Scheibe jeweils zwischen einem gegenüberliegenden Anschlussbereich eine kanalbildende Struktur zwischen einem der beiden Anschlussbereiche zur Ausbildung des dritten und des vierten Strömungspfads aufweist, wobei die dritte Scheibe zwischen der ersten und der zweiten Scheibe als Trennwand zwischen dem dritten und dem vierten Strömungspfad vorgesehen ist. Auch ist es zweckmäßig, dass der Abstand der Scheibenpaare oder der Scheibengruppen eines Wärmeübertragerkerns zur Bildung der zweiten und/oder fünften Strömungspfade, derart gewählt ist, dass er bei benachbarten Wärmeübertragerkernen eines Wärmeübertragers gleich ist oder unterschiedlich, wie kleiner oder größer ist als bei dem benachbarten Wärmeübertragerkern.It is also expedient for the first disk, the second and the third disk of the disk group to have two connection regions at two opposite end regions as the inlet or outlet of the third flow path or the fourth flow path, the first and the second disk each between an opposite connection region a channel-forming structure between one of the two connection regions for forming the third and the fourth flow path, wherein the third disc is provided between the first and the second disc as a partition wall between the third and the fourth flow path. It is also expedient that the spacing of the pairs of disks or the groups of disks of a heat transfer core for forming the second and / or fifth flow paths is selected such that it is the same for different heat exchanger cores of a heat exchanger or different, as smaller or larger than in the adjacent heat transfer core.
Auch ist es zweckmäßig, wenn die Tiefe der Strömungskanäle senkrecht zur Ebene, die durch die Scheibenpaare oder Scheibengruppen ausgespannt wird, für jeden Strömungskanal individuell wählbar ist.It is also expedient if the depth of the flow channels perpendicular to the plane, which is stretched out by the pairs of disks or groups of disks, is individually selectable for each flow channel.
Weiterhin ist es zweckmäßig, wenn Scheibenpaare gebildet sind aus paarweiser Anordnung von Scheiben und mit einer Trennwand zwischen benachbarten Scheiben, welche Paare von Strömungskanäle bilden, dadurch gekennzeichnet, dass die Strömungskanäle eines Scheibenpaares im Gegenstrom durchströmt werden.Furthermore, it is expedient if disk pairs are formed from a paired arrangement of disks and with a partition wall between adjacent disks, which form pairs of flow channels, characterized in that the flow channels of a disk pair are flowed through in countercurrent.
Weitere vorteilhafte Ausgestaltungen sind durch die nachfolgende Figurenbeschreibung und durch die Unteransprüche beschrieben.Further advantageous embodiments are described by the following description of the figures and by the subclaims.
Nachstehend wird das erfindungsgemäße Verfahren auf der Grundlage zumindest eines Ausführungsbeispiels anhand der Zeichnungen näher erläutert. Es zeigen:
Figur 1- zeigt eine Anordnung zweier Wärmetauscherkerne, ein Wärmetauscherkern eines ersten Typs und einen Wärmetauscherkern eines zweiten Typs,
Figur 2- zeigt eine Anordnung zweier Wärmetauscherkerne in Zusammenbau,
Figur 3- zeigt eine Anordnung zweier Wärmetauscherkerne eines ersten Typs,
Figur 4- zeigt eine Anordnung zweier Wärmetauscherkerne eines zweiten Typs,
- Figur 5
- zeigt einen Wärmetauscherkern eines ersten Typs,
Figur 6- zeigt einen Wärmetauscherkern eines zweiten Typs,
Figur 7- zeigt zwei Scheiben eines Scheibenpaares,
Figur 8- zeigt drei Scheiben einer Scheibengruppe,
Figur 9- zeigt eine Anzahl von Scheibenpaaren,
Figur 10- zeigt eine Anzahl von Scheiben und einen Ausschnitt einer Scheibe,
- Figur 11b
- zeigt eine Scheibe im Ausschnitt,
- Figur 11c
- zeigt ein Paar von Scheiben einer Scheibengruppe im Ausschnitt,
- Figur 11d
- zeigt ein Paar Scheiben einer Scheibengruppe im Ausschnitt,
Figur 12- zeigt eine Anordnung von Scheibenpaaren und Scheibengruppen in einer Ansicht,
Figur 13- zeigt eine Anordnung von Scheibenpaaren mit Scheibengruppen in einer Ansicht von der entgegengesetzten Seite,
Figur 14- zeigt eine Anordnung von Scheibenpaaren und Scheibengruppen in einem Schnitt durch die Scheibenpaare und die Scheibengruppen,
- Figur 15
- zeigt eine Scheibe mit einem Überströmkanal zwischen benachbarten Durchzügen,
- Figur 16
- zeigt die Scheibe der
Fig. 15 von der Rückseite, Figur 17- eine Ansicht eines Wärmeübertragers,
- Figur 18
- eine Ansicht von Scheibenpaaren,
- Figur 19
- eine Ansicht von Scheiben,
Figur 20- ein Abschnitt von Scheiben,
Figur 21- ein Abschnitt von Scheiben,
Figur 22- ein Abschnitt von Scheibenpaaren,
Figur 23- ein Schnitt durch Scheibenpaare gemäß
Figur 22 , Figur 24- ein Schnitt durch Scheibenpaare gemäß
Figur 22 , Figur 25- ein Abschnitt von Scheibenpaaren,
Figur 26- ein Schnitt durch Scheibenpaare gemäß
Figur 25 , Figur 27- ein Schnitt durch Scheibenpaare gemäß
Figur 25 , - Figur 28
- eine schematische Ansicht eines Wärmeübertragers, und
Figur 29- eine schematische Ansicht eines Scheibenpaares.
- FIG. 1
- shows an arrangement of two heat exchanger cores, a heat exchanger core of a first type and a heat exchanger core of a second type,
- FIG. 2
- shows an arrangement of two heat exchanger cores in assembly,
- FIG. 3
- shows an arrangement of two heat exchanger cores of a first type,
- FIG. 4
- shows an arrangement of two heat exchanger cores of a second type,
- FIG. 5
- shows a heat exchanger core of a first type,
- FIG. 6
- shows a heat exchanger core of a second type,
- FIG. 7
- shows two discs of a disc pair,
- FIG. 8
- shows three disks of a disk group,
- FIG. 9
- shows a number of pairs of discs,
- FIG. 10
- shows a number of slices and a section of a slice,
- FIG. 11b
- shows a slice in the neckline,
- FIG. 11c
- shows a pair of discs of a disc group in the neck,
- FIG. 11d
- shows a pair of slices of a group of slices in the cutout,
- FIG. 12
- shows an arrangement of disk pairs and disk groups in a view,
- FIG. 13
- shows an arrangement of disk pairs with disk groups in a view from the opposite side,
- FIG. 14
- shows an arrangement of disk pairs and disk groups in a section through the disk pairs and the disk groups,
- FIG. 15
- shows a disc with an overflow between adjacent passages,
- FIG. 16
- shows the disc the
Fig. 15 from the back, - FIG. 17
- a view of a heat exchanger,
- FIG. 18
- a view of disc pairs,
- FIG. 19
- a view of slices,
- FIG. 20
- a section of slices,
- FIG. 21
- a section of slices,
- FIG. 22
- a section of disc pairs,
- FIG. 23
- a section through pairs of discs according to
FIG. 22 . - FIG. 24
- a section through pairs of discs according to
FIG. 22 . - FIG. 25
- a section of disc pairs,
- FIG. 26
- a section through pairs of discs according to
FIG. 25 . - FIG. 27
- a section through pairs of discs according to
FIG. 25 . - FIG. 28
- a schematic view of a heat exchanger, and
- FIG. 29
- a schematic view of a pair of discs.
Die
Der Wärmeübertragerkern 2 ist mit einer Vielzahl von Scheibengruppen 7 gebildet, wobei wiederum benachbarte Scheibengruppen 7 Freiräume 8 belassen zur Durchströmung von Luft, wobei eine Aufnahme von Wellrippen für den verbesserten Wärmetausch bei der Durchströmung von Luft vorgesehen sein kann.The
Die
Der zweite Wärmeübertragerkern 2 stellt einen Wärmeübertragerkern des zweiten Typs dar, der gebildet ist mit einer Vielzahl von Gruppen von drei Scheiben zur Erzeugung von einer Vielzahl von zwei parallelen Strömungspfaden, wobei jeweils ein Strömungspfad zwischen zwei der drei Scheiben ausgebildet wird. Dazu weist die Scheibengruppe an ihren beiden gegenüberliegenden Enden jeweils zwei Anschlussöffnungen auf zum Ein- bzw. Auslass eines ersten und/oder eines zweiten Fluids, so dass durch diesen Wärmeübertragerkern 2 entweder zwei unterschiedliche Fluide in jeweils unterschiedlichen Strömungskanälen fließen können oder auch in einer anderen Anwendung ein Fluid in unterschiedlichen Strömungspfaden zweiflutig durch den Wärmeübertragerkern strömen kann, wobei an einem der beiden Wärmeübertragerkernenden dann eine Umlenkung des Fluids von dem einen Strömungspfad in den anderen Strömungspfad vorgesehen ist. Diese Umlenkung ist jedoch in der
Die
Ein solcher Wärmeübertrager gemäß
Vorteilhaft ist es, wenn ein Wärmeübertragerkern der
Weiterhin können auch zwei solche Wärmeübertragerkerne gemäß Bezugszeichen 1 der
Alternativ kann auch nur ein Wärmeübertragerkern gemäß Bezugszeichen 2 der
Die Anschlüsse der beiden Strömungskanäle bzw. Strömungspfade 55,56 werden durch die Anschlüsse 57,58,59,60 gebildet, die als Näpfe ausgebildet sind, die auch zur Ausbildung der jeweiligen Sammelräume 61,62,63,64 dienen und die zur gegenseitigen Anlage mit benachbarten Scheibenpaaren bzw. Scheibengruppe dienen. In einen Anschlussbereich 57 kann beispielsweise ein Fluid in den ersten Strömungskanal 55 einströmen. Das Fluid durchströmt dann den Strömungskanal 55 und kann bei dem Napf 58 als Auslass aus dem ersten Strömungskanal 55 austreten. Das Fluid wird dann umgelenkt um in den zweiten Strömungskanal 56 bei dem Napf 59 einzutreten. Anschließend durchströmt das Fluid den zweiten Strömungskanal 56 von dem Napf 59 zum Napf 60 und strömt dort an dem Einlass gegenüberliegenden Auslass wieder aus dem zweiten Strömungskanal aus. Die Umlenkung ist nicht gezeigt, sie kann durch ein Rohr oder ähnliches erfolgen.The connections of the two flow channels or flow
Weiterhin wäre es möglich, zwei Wärmeübertragerkerne gemäß Bezugszeichen 2 der
Die
Die
Wie zu erkennen ist, ist der Strömungskanal 97 zwischen den Öffnungen 95 ausgeprägt und steht mit diesen in Fluidverbindung, wobei der Strömungskanal von der Öffnung 96 abgegrenzt ist und mit dieser nicht in Verbindung steht.As can be seen, the
Die Scheibe 91 ist eben ausgebildet und weist an den beiden gegenüberliegenden Enden jeweils Öffnungen 98,99 auf, die ohne Näpfe ausgebildet sind, wobei auch die Scheibe 91 eben ausgebildet ist und keinerlei eingeprägte Strukturen aufweist. Wird nun die Scheibe 90 auf die Scheibe 91 gelegt, so berühren sich die beiden Scheiben im Bereich des umlaufenden Randes 94 und können so miteinander fluiddicht verbunden werden, dass zum einen die Öffnungen 98 mit den Öffnungen 95 fluchten und zwischen der Scheibe 90 und der Scheibe 91 der Fluidkanal 97 definiert wird, wobei die Öffnungen 96 mit den Öffnungen 99 fluchten, jedoch in keiner Verbindung zu dem Fluidkanal 97 stehen.The
Die Scheibe 92 weist ebenso an ihren gegenüberliegenden Enden Öffnungen 100, 101 auf, wobei im Grundbereich 102 der Scheibe ein Fluidkanal 103 gebildet ist, der mit den Öffnungen 101 kommuniziert, wobei ein umlaufender Rand 104 gebildet ist, der in einer Richtung senkrecht zur Ebene der Grundfläche 102 hervorsteht, wobei die Öffnungen 100 in den umlaufenden Rand eingeprägt sind, und somit nicht in Fluidverbindung mit dem Strömungskanal 103 stehen. Die Öffnungen 100 und 101 sind mit Näpfen ausgestaltet, die senkrecht der Richtung zur Grundebene 102 hervorstehen, wobei diese in der
Verbindet man die Scheibe 92 mit der Scheibe 91, so findet eine fluiddichte Verbindung im Randbereich 104 zwischen den beiden Scheiben statt, wobei die Öffnungen 99 und 101 jeweils fluchten und eine Fluidverbindung zu dem Fluidkanal 103 erzeugen und die Öffnungen 98 und 100 miteinander fluchten, diese Öffnungen jedoch keinerlei Fluidverbindung zu dem Fluidkanal 103 aufweisen. Werden nun die Scheiben 90,91 und 92 miteinander verbunden, so entstehen zwei Fluidkanäle 97 und 103, die durch die Zwischenlage der Scheibe 91 voneinander getrennt sind und die jeweils mit Öffnungen in Verbindung stehen zum Ein- und Auslass eines Fluids. So verbinden die Öffnungen 95,98 und 100 den Fluidkanal 97 und die Öffnungen 96, 99 und 101 den Fluidkanal 103.When connecting the
Die
Die
Die
Ähnliches ist in den
Die
Es ist zu erkennen, dass der Strömungskanal 85 der Luftströmung zuerst ausgesetzt ist bevor der Strömungskanal 97 bzw. der nicht dargestellte Strömungskanal 103 umströmt wird. Die
Die
The
Der Wärmeübertrager 300 weist dazu eine Vielzahl von Scheibenpaaren 302 auf, die benachbart zueinander angeordnet sind, wobei zwischen den Scheibenpaaren bevorzugt Wellrippen 303 angeordnet sind. Jedes Scheibenpaar, siehe auch
Die
Die
Die
Die
Die
In den
Durch die Gestaltung der Scheibenpaare kann ein Wärmeübertrager, bestehend aus einer Reihe von Scheibenpaaren gebildet werden, welche jeweils hälftig sowohl einen ersten mit einem Eintrittssammler bzw. mit einem Austrittssammler verbundenen Strömungskanal bildet und einen zweiten Strömungskanal, der ebenso mit einem Eintrittssammler und mit einem Austrittssammler versehen ist. Dabei bilden die Näpfe, die in Reihe miteinander verbunden werden, den jeweiligen Eintrittssammler bzw. Austrittssammler. Das jeweilige Scheibenpaar besteht dabei aus zwei sich gegenüberstehenden Scheiben, wobei zwischen den beiden Scheiben eine Trennwand bzw. ein Trennblech vorgesehen ist, welches die Strömungskanäle der jeweiligen Scheiben voneinander trennt. Werden die Strömungskanäle im Gegenstrom angeströmt, so dient das Trennblech der Trennung der gegenläufigen Fluidströme durch die Strömungskanäle, wobei die Näpfe der einzelnen Scheibenpaare, die in Reihe zueinander angeordnet sind, den Fluideintrittssammler bzw. den Fluidaustrittssammler bilden.The design of the pairs of disks makes it possible to form a heat exchanger consisting of a series of disk pairs, each of which forms both a first flow channel connected to an inlet header and an outlet header and a second flow channel likewise provided with an inlet header and an outlet header is. there The cups, which are connected in series with each other, the respective inlet collector and outlet collector. The respective disk pair consists of two opposing disks, wherein between the two disks, a partition wall or a partition plate is provided, which separates the flow channels of the respective disks from each other. If the flow channels are countercurrently flowed, the separating plate serves to separate the opposing fluid streams through the flow channels, wherein the wells of the individual pairs of disks, which are arranged in series with one another, form the fluid inlet collector or the fluid outlet collector.
Die
Die
Im Folgenden wird die Ausführung eines Wärmeübertragers in Scheibenbauweise beschrieben. Der Wärmeübertrager besteht aus einer Reihe von Scheibenpaaren, welche jeweils hälftig sowohl einen ersten mit dem Eintrittssammler bzw. -napf verbundenen Strömungskanal als auch einen zweiten mit dem Austrittssammler bzw. -napf verbundenen Strömungskanal aufweisen. Das Scheibenpaar ist wiederum aus zwei sich gegenüberstehenden Scheiben sowie einem sich dazwischen befindenden Trennblech zusammengesetzt. Das Trennblech dient zur Trennung der gegenläufigen Fluidströme, die miteinander verbundenen Näpfe der in Reihe angeordneten Scheibenpaare bilden dabei einerseits den Fluideintrittssammler zum Verteilen des Fluids auf die einzelnen ersten Strömungskanäle, und andererseits den Fluidaustrittssammler zum Sammeln des Fluids aus den einzelnen zweiten Strömungskanäle.The following describes the design of a disk-type heat exchanger. The heat exchanger consists of a series of disk pairs, each having in half both a first flow channel connected to the inlet header or bowl and a second flow channel connected to the outlet header or bowl. The pair of discs is in turn made of two facing discs and an intermediate therebetween separating plate composed. The separating plate is used to separate the opposing fluid streams, the interconnected cups of the arrayed pairs of discs form on the one hand the fluid inlet header for distributing the fluid to the individual first flow channels, and on the other hand the fluid outlet header for collecting the fluid from the individual second flow channels.
Dabei unterscheiden sich die beiden Scheiben 311, 312 und lediglich im Übergangsbereich zwischen dem Scheibenkanal und den -näpfen, bei der Fluideintrittsscheibe 311 ist eine Strömungsverbindung zwischen Strömungskanal 313 und dem Fluideintrittsnapf geprägt, wobei bei der Fluidscheibe 312 eine Verbindung zwischen Strömungskanal 314 und dem Fluidaustrittsnapf besteht.In this case, the two
Diese Verbindungsprägungen können wechselnd im Scheibenwerkzeug durchgeführt und somit beide Scheiben in ein und demselben Werkzeug mit Wechselsatz hergestellt werden. Dies reduziert die Werkzeugkosten und erhöht die Gleichteileanzahl.These connection embossings can be carried out alternately in the disk tool and thus both disks are produced in one and the same tool with a replacement set. This reduces tool costs and increases the number of identical parts.
Der oben beschriebene Wärmeübertrager wird so durchströmt, dass ein Fluid, wie beispielsweise Kältemittel oder Kühlmittel etc. über den ersten Sammler als Eintrittssammler z.B. an der Blockoberseite in die eine erste Scheibenkanalhälfte 311 einströmt, dann über ein Verbindungselement zwischen den beiden gegenüberliegenden Sammlern, als Eintrittssammler und Austrittssammler dann an der Blockunterseite bezeichnet, in die zweite Scheibenkanalhälfte 312 übergeleitet wird, diese durchströmt und danach aus dieser zweiten Kanalhälfte über den zweiten Sammler, als Austrittssammler dann wieder an der Blockoberseite bezeichnet, wieder ausströmt.The heat exchanger described above is flowed through such that a fluid, such as, for example, refrigerant or coolant, etc., is introduced via the first collector as an inlet collector, e.g. on the block top into which a first disc channel half 311 flows, then via a connecting element between the two opposite collectors, referred to as inlet collector and outlet collector on the block bottom, is transferred to the second
Der Vorteil dieser Durchströmungsart liegt in der Homogenisierung des Temperaturprofils z.B. als Verdampfer, durch eine Vergleichmäßigung der unterschiedlichen Temperaturen der gegenläufigen Fluidströme aufgrund des Wärmeübergangs zwischen den beiden Kanalhälften einerseits, sowie andererseits durch eine Vergleichmäßigung der Temperatur der die beiden Kanalhälften umströmenden Luft.The advantage of this type of flow is in the homogenization of the temperature profile, for example as an evaporator, by equalizing the different temperatures of the countercurrent fluid flows due to the Heat transfer between the two channel halves on the one hand, and on the other hand by equalizing the temperature of the air flowing around the two channel halves.
Bei dem Verbindungselement zwischen den beiden gegenüberliegenden Sammlern auf der Blockunterseite kann es sich um ein separates Verbindungsteil handeln oder auch in einem Seitenteil mit integriertem Umlenkkanal o.ä. ausgeführt sein.The connecting element between the two opposing collectors on the underside of the block may be a separate connecting part or else in a side part with integrated deflection channel or the like. be executed.
Bei einer Zwei-Blockverschaltung wird das Fluid über den Eintrittssammler auf alle parallel angeordneten ersten Scheibenkanalhälften 311 gleichzeitig verteilt und entsprechend nach der Umlenkung mittels Verbindungselement auf alle zweiten Scheibenkanalhälften 312 weiter verteilt.In the case of a two-block interconnection, the fluid is simultaneously distributed via the inlet header to all first disc channel halves 311 arranged in parallel and, according to the deflection, distributed on all second disc channel halves 312 by means of connecting element.
Bei einer Mehrblockverschaltung wir das Fluid nur auf eine bestimmte Anzahl parallel angeordneter erster Scheibenkanalhälften 311 gleichzeitig verteilt, dann erfolgt der Fluidübertritt von einem Sammler zum benachbarten Sammler direkt in den Scheiben, z.B. über eingeprägte Verbindungskanäle zwischen den benachbarten Sammlernäpfen einer Scheibe, bevor dann nach Durchströmen der zweiten Scheibenkanalhälften 312 das Fluid in den nächsten Block weitergeleitet wird und dort wieder der gleiche Verteilvorgang wie im ersten Block fortgesetzt wird.In a multi-block interconnection, if the fluid is distributed only to a certain number of first disc channel halves 311 arranged in parallel at the same time, then the fluid transfer from one collector to the adjacent collector takes place directly in the discs, e.g. via impressed connection channels between the adjacent collecting cups of a disc, before then, after flowing through the second disc channel halves 312, the fluid is forwarded to the next block and there again the same distribution process as in the first block is continued.
Der Wärmeübertrager wie insbesondere der Scheibenverdampfer, kann alternativ auch in Single-Tank-Bauweise, also mit nur einem Tank an einer Seite des Würmeübertragers, ausgeführt werdenThe heat exchanger, in particular the disk evaporator, can alternatively also be designed in a single-tank design, that is to say with only one tank on one side of the heat exchanger
Die Verschaltung der einzelnen Module kann dabei je nach Anordnung und/oder Ausführungsform variiert werden.The interconnection of the individual modules can be varied depending on the arrangement and / or embodiment.
Im Verdampfer wird in Abhängigkeit vom Massenstrom bzw. Betriebspunkt ein Druckabfall erzeugt.In the evaporator, a pressure drop is generated depending on the mass flow or operating point.
Je nach Druckabfall stellen sich unterschiedliche Absolutdrücke und damit unterschiedliche Verdampfungsdrücke zwischen Verdampferein- und -austritt ein.Depending on the pressure drop, different absolute pressures and thus different evaporation pressures occur between evaporator inlet and outlet.
Dies hat zur Folge, dass die Verdampfungstemperatur am Verdampfereintritt bei hohen Druckabfällen deutlich höher sein kann, als die dem Verdampfungsdruck zugehörige Temperatur am Austritt. Daraus resultiert ein Temperaturgang des verdampfenden Kältemittels in Abhängigkeit vom sich einstellenden Druckabfall über den Wärmeübertrager. Zusätzlich ist eine Überhitzung des Kältemittels am Ende der Verdampfung am Verdampferaustritt erwünscht um ein stabiles Überhitzungssignal am Einspritzventil zu erzeugen (z. B. 5K).This has the consequence that the evaporation temperature at the evaporator inlet at high pressure drops can be significantly higher than the evaporating pressure associated temperature at the outlet. This results in a temperature response of the evaporating refrigerant as a function of self-adjusting pressure drop across the heat exchanger. In addition, overheating of the refrigerant at the end of evaporation at the evaporator exit is desired to produce a stable overheat signal at the injector (eg, 5K).
Dadurch entstehen jedoch lokale Warmzonen am Verdampfer, die durch geeignete Maßnahmen, wie z.B. Mehrfachverschaltungen in Luftrichtung hintereinander, homogenisiert werden können.However, this creates local hot zones on the evaporator, which can be removed by suitable measures, such as e.g. Multiple connections in the direction of air one behind the other, can be homogenized.
Durch die Integration einer inneren Wärmeübertragungsfläche im Verdampfer über im Wesentlichen die gesamte Höhe können zwischen Verdampferein- und -austritt lokale Warmzonen minimiert werden.By integrating an internal heat transfer surface in the evaporator over substantially the entire height, local hot zones between evaporator inlet and outlet can be minimized.
Durch den Wärmeübergang an der integrierten inneren Wärmeübertragungsfläche kann zwischen dem eintretenden Kältemittel eine stabile Überhitzung im gegenströmenden Kältemittel am Austritt erzeugt werden. Durch den deutlich höheren Wärmeübergang geschieht das in einem sehr viel kleineren Teilabschnitt des Verdampfers als bei herkömmlichen Systemen mit Mehrfachverschaltung.Due to the heat transfer at the integrated inner heat transfer surface can be generated between the incoming refrigerant stable overheating in the countercurrent refrigerant at the outlet. Due to the significantly higher heat transfer, this happens in a much smaller section of the evaporator than in conventional systems with multiple interconnection.
Die Temperatur des strömenden Kältemittels durch den Verdampfer stellt sich deutlich schneller auf einem niedrigeren mittleren Temperaturniveau ein und die Überhitzungszone kann auf ein Minimum im Verdampfer reduziert werden. Daraus resultiert ein hohes treibendes mittleres Temperaturgefälle und eine damit einhergehende Leistungssteigerung.The temperature of the flowing refrigerant through the evaporator sets much faster at a lower average temperature level and the overheating zone can be reduced to a minimum in the evaporator. This results in a high driving average temperature gradient and an associated increase in performance.
Claims (11)
- A method for producing more than two different heat exchangers (30, 70) which are produced by means of a kit for producing heat exchangers (30, 70) with at least two types of heat exchanger cores (1, 2, 31, 32), wherein the kit comprises:a first type of heat exchanger core (1, 31) with a plurality of pairs of plates (3) to create a plurality of parallel flow paths between the pairs of plates (3); anda second type of heat exchanger core (2, 32) with a plurality of groups of three plates (7) to create a plurality of two parallel flow paths, one respective flow path between two of the three plates,wherein the more than two different heat exchangers are selected from:a second heat exchanger (30) with two heat exchanger cores (1, 31) of the first type, wherein the two heat exchanger cores (1, 31) of the first type are arranged adjacent to each other in the air flow direction,a third heat exchanger with a heat exchanger core of the first type (1) and with a heat exchanger core (2) of the second type, wherein the heat exchanger core (1) of the first type and the heat exchanger core (2) of the second type are arranged adjacent to each other in the air flow direction,a fourth heat exchanger (70) with two heat exchanger cores (32) of the second type, wherein the two heat exchanger cores (32) of the second type are arranged adjacent to each other in the air flow direction,wherein further the following is optionally also provided:a first heat exchanger with a heat exchanger core of the first type (1, 31), anda fifth heat exchanger with a heat exchanger core of the second type (2, 32).
- The method according to claim 1, characterised in that the heat exchanger cores (1, 31, 2, 32) of the first and/or second type are provided with connecting devices and/or interconnecting devices for introducing and/or discharging and/or transferring fluid into or between or out of the heat exchanger cores.
- The method according to one of the preceding claims, wherein the first type of heat exchanger core (1) is a heat exchanger core in plate design for forming a heat exchanger, wherein the heat exchanger core is designed with a plurality of plate pairs (3) for forming first flow paths (13, 23), wherein two plates each of a plate pair form the first flow path between them and a respective region for second flow paths is formed between adjacent plate groups.
- The method according to one of the preceding claims, wherein the second type of heat exchanger core (2) is a heat exchanger core in plate design for forming a heat exchanger, wherein the heat exchanger core is designed with a plurality of plate groups (7) for forming third and fourth flow paths, wherein the third flow path is formed between a respective first and second plate of a plate group and the fourth flow path is formed between a second plate and a third plate of the plate group, and a respective region for fifth flow paths is formed between adjacent plate groups.
- The method according to claim 3 or 4, characterised in that at least individual plates have openings and/or cups (5, 6) as connecting and interconnecting regions and have channel-forming structures, such as embossings, for forming flow paths between connecting regions.
- The method according to claim 3 or 5, characterised in that the first plate and the second plate of the plate pair (3) at two opposite end regions each have a connecting region as an inlet or outlet of the first flow path and a channel-forming structure between the two connecting regions for forming the first flow path.
- The method according to claim 3 or 5, characterised in that the first plate and/or the second plate of the plate pair (3) at an end region have two connecting regions as an inlet or outlet of the first flow path and a respective channel-forming structure between the two connecting regions for forming the first flow path.
- The method according to claim 4 or 5, characterised in that the first plate, the second and the third plate of the plate group (7) at two opposite end regions have two respective connecting regions as an inlet or outlet of the third flow path or of the fourth flow path, wherein the first and second plate between a respective opposite connecting region have a channel-forming structure between one of the two connecting regions for forming the third and fourth flow path, wherein the third plate is provided between the first and second plate as a partition wall between the third and fourth flow path.
- The method according to one of the preceding claims, characterised in that the distance of the plate pairs (3) or the plate groups (7) of a heat exchanger core for forming the second and/or fifth flow paths is selected such that in the case of adjacent heat exchanger cores of a heat exchanger, it is the same or different, such as smaller or larger than in the adjacent heat exchanger core.
- The method according to claim 9, characterised in that the depth of the flow channels perpendicular to the plane, defined by the plate pairs (3) or plate groups (7), is selected individually for each flow channel.
- The method according to at least one of the preceding claims 9 or 10, characterised in that plate pairs (3) are formed from the paired arrangement of plates and with a partition wall between adjacent plates, which form pairs of flow channels, characterised in that flow through the flow channels of a plate pair is a counterflow.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102011090182A DE102011090182A1 (en) | 2011-12-30 | 2011-12-30 | Kit for heat exchangers, a heat transfer core and a heat exchanger |
PCT/EP2012/076859 WO2013098277A1 (en) | 2011-12-30 | 2012-12-21 | Kit for heat exchanger, a heat exchanger core, and a heat exchanger |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2798297A1 EP2798297A1 (en) | 2014-11-05 |
EP2798297B1 true EP2798297B1 (en) | 2018-02-21 |
Family
ID=47520099
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12812272.8A Not-in-force EP2798297B1 (en) | 2011-12-30 | 2012-12-21 | Method for manufacturing at least two different heat exchangers |
Country Status (5)
Country | Link |
---|---|
US (1) | US20140374072A1 (en) |
EP (1) | EP2798297B1 (en) |
CN (1) | CN204188026U (en) |
DE (1) | DE102011090182A1 (en) |
WO (1) | WO2013098277A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5525726B2 (en) * | 2008-12-26 | 2014-06-18 | 株式会社ケーヒン・サーマル・テクノロジー | Evaporator with cool storage function |
DE112014000721T5 (en) * | 2013-02-08 | 2015-10-29 | Dana Canada Corporation | Heat exchanger with annular inlet / outlet fitting |
US10516191B2 (en) * | 2016-09-07 | 2019-12-24 | Thunder Power New Energy Vehicle Development Company Limited | Methods and systems for busbar cooling |
JP2019011941A (en) * | 2017-07-03 | 2019-01-24 | ダイキン工業株式会社 | Heat exchanger |
JP7227457B2 (en) * | 2018-11-07 | 2023-02-22 | ダイキン工業株式会社 | heat exchangers and air conditioners |
US11765864B2 (en) | 2019-08-26 | 2023-09-19 | Ovh | Cooling arrangement for a rack hosting electronic equipment and at least one fan |
US11731160B2 (en) * | 2020-07-20 | 2023-08-22 | Rivian Ip Holdings, Llc | Systems and methods for managing sharp transitions for powder coating |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1551514A1 (en) * | 1967-07-08 | 1970-05-27 | Sueddeutsche Kuehler Behr | Sheath cooler |
DE10138247A1 (en) * | 2001-08-03 | 2003-02-13 | Behr Gmbh & Co | Heat exchanger arrangement used in motor vehicles comprises a heat exchanger having adjacent pipe ends designed and joined together to form a collector |
DE10223712C1 (en) * | 2002-05-28 | 2003-10-30 | Thermo King Deutschland Gmbh | Climate-control device for automobile with modular heat exchanger in heat exchanger fluid circuit adaptable for different automobile types |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2124291A (en) * | 1935-04-01 | 1938-07-19 | Walter L Fleisher | Method of air conditioning |
US2314966A (en) * | 1937-03-29 | 1943-03-30 | Astle William | Plate heat exchanger |
US4002201A (en) * | 1974-05-24 | 1977-01-11 | Borg-Warner Corporation | Multiple fluid stacked plate heat exchanger |
US4349440A (en) * | 1977-11-21 | 1982-09-14 | Esmond William G | Capillary tube exchange device |
US4327802A (en) * | 1979-06-18 | 1982-05-04 | Borg-Warner Corporation | Multiple fluid heat exchanger |
US4621685A (en) * | 1983-09-12 | 1986-11-11 | Diesel Kiki Co., Ltd. | Heat exchanger comprising condensed moisture drainage means |
JPH0645155Y2 (en) * | 1988-10-24 | 1994-11-16 | サンデン株式会社 | Heat exchanger |
DE3938842A1 (en) * | 1989-06-06 | 1991-05-29 | Thermal Waerme Kaelte Klima | CONDENSER FOR A VEHICLE AIR CONDITIONING REFRIGERANT |
US5009262A (en) * | 1990-06-19 | 1991-04-23 | General Motors Corporation | Combination radiator and condenser apparatus for motor vehicle |
JP3125117B2 (en) * | 1992-07-30 | 2001-01-15 | 東洋ラジエーター株式会社 | Heat exchanger |
US5348081A (en) * | 1993-10-12 | 1994-09-20 | General Motors Corporation | High capacity automotive condenser |
EP0677716B1 (en) * | 1994-04-12 | 1999-01-07 | Showa Aluminum Corporation | Stacked-type duplex heat exchanger |
US5562157A (en) * | 1994-09-30 | 1996-10-08 | Nippondenso Co., Ltd. | Heat exchanger |
US6170565B1 (en) * | 1996-12-04 | 2001-01-09 | Zexel Corporation | Heat exchanger |
DE69815616T2 (en) * | 1997-09-24 | 2004-05-13 | Showa Denko K.K. | Evaporator |
DE69908888T2 (en) * | 1998-11-09 | 2003-12-18 | Calsonic Kansei Corp., Tokio/Tokyo | plate evaporator |
JP4379967B2 (en) * | 1999-03-30 | 2009-12-09 | 株式会社デンソー | Double heat exchanger |
JP4056663B2 (en) * | 1999-10-01 | 2008-03-05 | 昭和電工株式会社 | Laminate heat exchanger |
DE10156882A1 (en) * | 2001-01-05 | 2002-08-29 | Behr Gmbh & Co | Air conditioning system for motor vehicle with compressor arranged in refrigeration circuit and evaporator of air to be conditioned for the interior of the vehicle |
DE10220533B4 (en) * | 2001-05-11 | 2016-06-02 | Mahle International Gmbh | heat exchangers |
FR2861166B1 (en) * | 2003-10-21 | 2006-11-24 | Valeo Climatisation | HEAT EXCHANGER USING ACCUMULATION FLUID |
US7178579B2 (en) * | 2003-11-26 | 2007-02-20 | Proliance International Inc. | Heat exchanger package with split charge air cooler |
FR2866947B1 (en) * | 2004-02-27 | 2006-04-28 | Valeo Climatisation | COMBINED HEAT EXCHANGER DEVICE |
ATE450768T1 (en) | 2004-11-30 | 2009-12-15 | Valeo Systemes Thermiques Sas | HEAT EXCHANGER WITH HEAT STORAGE |
US7178585B1 (en) * | 2005-08-04 | 2007-02-20 | Delphi Technologies, Inc. | Hybrid evaporator |
DE102006028017A1 (en) * | 2006-02-10 | 2007-08-16 | Behr Gmbh & Co. Kg | Heat exchanger, in particular with cold storage |
DE102006028117A1 (en) | 2006-06-15 | 2007-12-20 | Götz, Anja, Dipl.-Des. | Structure for use as image carrier or information carrier, comprises one or multiple information-carrying foil and one or multiple silicone coating, where information-carrying foil consists of optional material |
US8191615B2 (en) * | 2006-11-24 | 2012-06-05 | Dana Canada Corporation | Linked heat exchangers having three fluids |
WO2010150774A1 (en) * | 2009-06-23 | 2010-12-29 | 昭和電工株式会社 | Evaporator with cold storage function |
-
2011
- 2011-12-30 DE DE102011090182A patent/DE102011090182A1/en not_active Withdrawn
-
2012
- 2012-12-21 EP EP12812272.8A patent/EP2798297B1/en not_active Not-in-force
- 2012-12-21 CN CN201290001096.8U patent/CN204188026U/en not_active Expired - Fee Related
- 2012-12-21 WO PCT/EP2012/076859 patent/WO2013098277A1/en active Application Filing
-
2014
- 2014-06-30 US US14/319,047 patent/US20140374072A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1551514A1 (en) * | 1967-07-08 | 1970-05-27 | Sueddeutsche Kuehler Behr | Sheath cooler |
DE10138247A1 (en) * | 2001-08-03 | 2003-02-13 | Behr Gmbh & Co | Heat exchanger arrangement used in motor vehicles comprises a heat exchanger having adjacent pipe ends designed and joined together to form a collector |
DE10223712C1 (en) * | 2002-05-28 | 2003-10-30 | Thermo King Deutschland Gmbh | Climate-control device for automobile with modular heat exchanger in heat exchanger fluid circuit adaptable for different automobile types |
Also Published As
Publication number | Publication date |
---|---|
US20140374072A1 (en) | 2014-12-25 |
CN204188026U (en) | 2015-03-04 |
WO2013098277A1 (en) | 2013-07-04 |
DE102011090182A1 (en) | 2013-07-04 |
EP2798297A1 (en) | 2014-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2798297B1 (en) | Method for manufacturing at least two different heat exchangers | |
DE60130274T2 (en) | Heat exchanger with parallel fluid flow | |
DE3856032T3 (en) | Heat exchanger with improved condensate collection | |
EP3119623B1 (en) | Heating and cooling module | |
DE69428219T2 (en) | Plate heat exchanger | |
DE69010230T2 (en) | Plate heat exchangers with versions. | |
DE60319986T2 (en) | Plate heat exchanger | |
DE102008052875A1 (en) | Soldered aluminum plate-type heat exchanger for exchanging between two fluid streams, has heat exchange section comprising non-flow layer that is arranged between two passages, where reinforcement element is provided in non-flow layer | |
DD239655A5 (en) | GAS / LIQUID OR GAS / GAS CHAMBER EXCHANGER | |
DE112018004787T5 (en) | MULTI-FLUID HEAT EXCHANGER | |
DE112007002824T5 (en) | Two-dimensional multi-fluid heat exchanger | |
DE19528117A1 (en) | Heat exchanger with stacked plates | |
WO2005038375A1 (en) | Heat exchanger in particular for motor vehicles | |
DE102012109346A1 (en) | Internal heat exchanger with external manifolds | |
DE112014005907T5 (en) | Conical heat exchanger | |
EP1792135A1 (en) | Heat exchanger for motor vehicles | |
WO2007025766A1 (en) | Heat exchanger device for the rapid heating or cooling of fluids | |
EP2825832A2 (en) | Heat exchanger | |
EP2187157B1 (en) | Heat exchanger for heating a motor vehicle | |
EP2317265A2 (en) | Heat exchanger, in particular cooler for vehicle, with two exchanging portions, in particular low temperature and high temperature portion | |
EP1477761B1 (en) | Plate heat exchanger | |
EP2798298B1 (en) | Heat exchanger | |
DE69903350T2 (en) | RING-SHAPED HEAT EXCHANGER WITH RADIAL FLOW | |
DE10049890B4 (en) | Stacked-plate heat exchanger | |
DE60024723T2 (en) | Plate with beads for heat exchangers and their manufacture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140730 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: MAHLE BEHR GMBH & CO. KG |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20151218 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20170719 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
GRAL | Information related to payment of fee for publishing/printing deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR3 |
|
GRAR | Information related to intention to grant a patent recorded |
Free format text: ORIGINAL CODE: EPIDOSNIGR71 |
|
INTG | Intention to grant announced |
Effective date: 20171115 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502012012223 Country of ref document: DE Ref country code: AT Ref legal event code: REF Ref document number: 972217 Country of ref document: AT Kind code of ref document: T Effective date: 20180315 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20180221 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180221 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180221 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180221 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180221 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180221 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180221 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180521 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180521 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180522 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180221 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180221 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180221 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180221 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180221 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180221 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180221 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502012012223 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180221 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180221 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180221 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180221 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20181122 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180221 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20181221 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20190109 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20181221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180221 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181221 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20181231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181221 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181231 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181231 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 972217 Country of ref document: AT Kind code of ref document: T Effective date: 20181221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20121221 Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180221 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502012012223 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180621 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191231 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200701 |