EP3235080B1 - Zündkerze mit masseelektrode mit kleinem querschnitt - Google Patents

Zündkerze mit masseelektrode mit kleinem querschnitt Download PDF

Info

Publication number
EP3235080B1
EP3235080B1 EP15804156.6A EP15804156A EP3235080B1 EP 3235080 B1 EP3235080 B1 EP 3235080B1 EP 15804156 A EP15804156 A EP 15804156A EP 3235080 B1 EP3235080 B1 EP 3235080B1
Authority
EP
European Patent Office
Prior art keywords
cross
sectional area
ground electrode
core
earth electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15804156.6A
Other languages
English (en)
French (fr)
Other versions
EP3235080A1 (de
Inventor
Andreas Benz
Manfred Roeckelein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3235080A1 publication Critical patent/EP3235080A1/de
Application granted granted Critical
Publication of EP3235080B1 publication Critical patent/EP3235080B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/02Details
    • H01T13/16Means for dissipating heat
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/32Sparking plugs characterised by features of the electrodes or insulation characterised by features of the earthed electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/39Selection of materials for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T21/00Apparatus or processes specially adapted for the manufacture or maintenance of spark gaps or sparking plugs
    • H01T21/02Apparatus or processes specially adapted for the manufacture or maintenance of spark gaps or sparking plugs of sparking plugs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/02Details
    • H01T13/08Mounting, fixing or sealing of sparking plugs, e.g. in combustion chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/24Sparking plugs characterised by features of the electrodes or insulation having movable electrodes
    • H01T13/26Sparking plugs characterised by features of the electrodes or insulation having movable electrodes for adjusting spark gap otherwise than by bending of electrode

Definitions

  • the invention is based on a spark plug according to the preamble of the independent claim.
  • the housing Due to the downsizing, the housing also has to be changed. This has the result that the end face of the housing on which the ground electrode is arranged becomes narrower. This means that a smaller width of the end face is available for welding on for the ground electrode. The dimensions of the ground electrode must be adapted to this reduced space. At the same time, the ground electrode must also withstand the mechanical, thermal, chemical and electrical loads when a spark plug is operated in an internal combustion engine, so that the spark plug has a similarly good ignition reliability and service life as spark plugs that are not subject to downsizing.
  • the object of the present invention is to provide a spark plug which can meet the requirements mentioned at the beginning.
  • the ground electrode has a core which is surrounded by a jacket, wherein the cross-sectional area of the ground electrode is not greater than 2.76 mm 2 , and wherein the ground electrode has a first area in which the jacket has a wall thickness c of is no larger than 0.4 mm. This ensures that the core in this first area of the ground electrode takes up a sufficiently large volume in the ground electrode so that the ground electrode can withstand the thermal loads during spark plug operation.
  • the above limit for the cross-sectional area of the ground electrode relates to its largest cross-sectional area.
  • the ground electrode can have several areas with different cross-sectional areas.
  • the value of the cross-sectional area is constant over the entire length of the ground electrode, whereby, in the context of this application, constant means that the value does not change by more than 5%.
  • the cross-sectional area of the ground electrode is not greater than 2.64 mm 2 or, in a particularly preferred manner, not greater than 2.3 mm 2 .
  • the sheath is advantageously made of a more wear-resistant material than the core.
  • the core is made of a material with a higher thermal conductivity than the material of the jacket.
  • the material of the core preferably has a thermal conductivity of at least 350 W / mK at room temperature. Additionally or alternatively, it can be provided that at room temperature the thermal conductivity of the material of the core is at least 300 W / mK greater than the thermal conductivity of the material of the jacket.
  • the core is made of copper, silver or an alloy with copper and / or silver.
  • the jacket consists for example of an alloy containing nickel.
  • the Ni alloy can, for example, contain at least 20% by weight of chromium, in particular 25 % Chromium by weight. Additionally or alternatively, the nickel-containing alloy can also contain yttrium.
  • the jacket and the core each have a constant cross-sectional area in the first region of the ground electrode.
  • the cross-sectional area of the core preferably corresponds to at least 20% of the total cross-sectional area of the ground electrode in the first area.
  • the cross-sectional area of the ground electrode is the sum of the cross-sectional area of the jacket and the cross-sectional area of the core.
  • the casing of the ground electrode in particular along its entire length, has a wall thickness c of not less than 0.15 mm, so that the core of the ground electrode is sufficiently well protected against the combustion chamber gases occurring during operation of the spark plug.
  • the cross-sectional area of the core corresponds at most to 65% of the total cross-sectional area of the ground electrode.
  • the first region is preferably formed at an end of the ground electrode which corresponds to an end of the ground electrode arranged on the housing of the spark plug. As a result, a good thermal contact between the ground electrode and the housing is achieved.
  • an end of the ground electrode facing away from the housing is at a distance b from the core in the ground electrode.
  • the distance b is preferably not greater than 4 mm, and in particular not smaller is than 0.2mm.
  • the distance b is in the range from 0.2 mm to 2 mm so that the core, which conducts heat well, is not too far from the ignition surface.
  • the ignition surface typically contains a noble metal or a noble metal alloy and therefore has a higher wear resistance than the jacket material.
  • the distance b is at least 2 mm and a maximum of 4 mm. So that there is sufficient volume of the jacket material in the area of the ground electrode in which an ignition spark is formed so that the ground electrode can withstand the thermal and chemical loads during operation of a spark plug for a sufficiently long time. Sufficiently long means operating the spark plugs for at least 50,000 km.
  • a height and a width can be assigned to the cross-sectional area of the ground electrode.
  • the width x E and the height y E correspond to two dimensions of the cross-sectional area that are perpendicular to each other.
  • the width x E denotes the longer dimension and the height y E denotes a perpendicular dimension of the cross-sectional area.
  • the width x E and the height y E of the cross-sectional area correspond to the lengths of the sides of the rectangular cross-sectional area.
  • the height y E of the cross section is preferably not greater than 1.2 mm, and in particular not less than 0.8 mm, in particular not greater than 1 mm.
  • the width x E of the cross-sectional area of the ground electrode is, for example, no greater than 2.3 mm, in particular no greater than 2.2 mm or even no greater than 1.9 mm, and in particular no smaller than 1.6 mm.
  • a height y K and a width x K are also assigned to the core.
  • the first area is preferably cylindrical.
  • the first region preferably has a length perpendicular to the cross-sectional area, which is equal to or longer than the height y E of the cross-sectional area of the ground electrode.
  • the length of the first region is at least 1.5 times as long as the height y E of the cross-sectional area of the ground electrode.
  • the cross-sectional areas of the core and of the ground electrode advantageously have the same shape. This ensures that the ground electrode has a jacket with a constant thickness in this first region.
  • the ground electrode can be designed as a roof electrode, side electrode or bracket electrode.
  • FIG. 1 shows schematic representations of examples of a ground electrode 10.
  • the ground electrode 10 has a core 12 and a jacket 11 surrounding the core 12.
  • the core 12 consists of a material with a higher thermal conductivity than the material of the jacket 11.
  • the material of the jacket 11 has a higher wear resistance than the material of the core 12.
  • the core 12 consists of copper, silver or an alloy with copper and / or silver.
  • a Ni alloy is preferably used as the material for the jacket 11, and the alloy can contain chromium and / or yttrium.
  • the core 12 of the ground electrode 10 shown here in section has at least one first section 15a, in which the core 12 has relatively constant dimensions (x K , y K ) and, associated therewith, a relatively constant cross-sectional area Has.
  • the term “relatively constant” means that the dimensions or the cross-sectional area change their values by a maximum of 5%.
  • the at least one first section 15a is arranged on a side of the ground electrode 10 facing away from a combustion chamber, for example on the side with which the ground electrode is arranged on the spark plug housing 2.
  • a second section 14a of the core 12 adjoins the at least one first section 15a of the core 12.
  • the core 12 has a plurality of first sections 15a with a constant cross-sectional area, the dimensions (x K , y K ) and the cross-sectional areas of the individual first sections 15a being different. This is particularly the case when the ground electrode 10 itself has a plurality of regions with different dimensions (x E , y E ) or cross-sectional areas.
  • the section closest to the combustion chamber is the second section 14a with the continuously decreasing cross-sectional area of the core 12.
  • the ground electrode 10 shown has constant dimensions (x E , y E ) along its length and, associated therewith, a constant cross-sectional area. In the case of the ground electrode 10, at least three areas 13, 14, 15 can be distinguished. In a first region 15, the ground electrode 10 has a core 12 with a constant cross-sectional area and a jacket thickness c of not greater than 0.4 mm. In a second region 14a, the ground electrode 10 has a core 12 with a continuously reducing cross-sectional area. In a third area 13, the ground electrode 10 does not have a core.
  • the thickness c of the jacket of the ground electrode 10 results from half the difference between its dimensions (x E , y E ) and the core dimensions (x K , y K ). If the ground electrode 10 has a constant cross-sectional area in the first region 15, then the jacket thickness c in this first region 15 is constant. It is advantageously provided that in this first region 15 the jacket thickness c of the ground electrode 10 is not less than 0.15 mm, and in particular not greater than 0.4 mm, for example the jacket thickness c is 0.25 mm or less.
  • the ground electrode 10 can have constant dimensions (x E , y E ) and a constant cross-sectional area, in which case the jacket thickness c increases within the area 14 in the direction of the combustion chamber.
  • the jacket thickness c is at least 0.15 mm thick in the second region 14.
  • the dimensions (x E , y E ) or the cross-sectional area of the ground electrode 10 in the second region 14 can likewise be reduced.
  • the jacket thickness c it is preferably in the range from 0.15 mm to 0.4 mm. It can be provided that the dimensions (x E , y E ) or the cross-sectional area of the ground electrode 10 change at the same rate as the dimensions (x K , y K ) or the cross-sectional area of the core 12. This has the advantage that the jacket thickness c remains constant in the second region 14.
  • the third area 13 preferably has constant dimensions (x E , y E ) and a constant cross-sectional area which corresponds to the dimensions (x E , y E ) or the cross-sectional area of the second area 14 at the transition to the third area 13.
  • the third region 13 of the ground electrode 10 has a length b which extends from an end 17 of the core 12 on the combustion chamber side to an end face 16 of the ground electrode 10 facing away from the housing.
  • the length b is not greater than 4 mm. If the ground electrode 10 is designed with a noble metal-containing ignition surface 19, the length b can be made shorter than without a noble metal-containing ignition surface 19, as in FIG Figure 1b shown. For example, the length b is then in the range from 0.2 mm to 2 mm.
  • the length b should have a minimum length of 1 mm so that the jacket 11 at the end of the ground electrode 10 facing away from the housing has enough material for a sufficiently long service life of the ground electrode 10.
  • the dimension of the length b is adjusted to the desired length after the extrusion of the ground electrode 10.
  • the excess length of the jacket 11 is cut off by a cutting process, a shearing process, a punching process or by means of a laser beam.
  • the length b has an influence on the heat dissipation in the ground electrode 10.
  • FIG. 13 shows an example of a cross section of the ground electrode 10.
  • the ground electrode 10 and the core 13 have a rectangular cross section.
  • the area of the cross section of the ground electrode is not larger than 2.76 mm 2 .
  • the cross section has a width x E of not greater than 2.3 mm and a height y E of not greater than 1.2 mm.
  • the cross section of the core 12 is arranged in the center of the cross section of the ground electrode 10.
  • the thickness c of the jacket 11 results from half the difference between the height y and width x of the ground electrode 10 (y E , x E ) and of the core 12 (y K , x K ).
  • the cross-sections of the ground electrode 10 and of the core 12 advantageously have the same geometric shape.
  • the cross-sectional area of the core 12 is not less than 20%, and in particular not more than 65%, of the cross-sectional area of the ground electrode 10 in the first region 15 of the ground electrode 10.
  • the cross-sectional area of the ground electrode is composed of the area of the jacket 11 and the area of the Core 12 in cross section.
  • the shape of the cross section of the ground electrode 10 changes in the course of the length of the ground electrode 10.
  • the ground electrode 10 can have a rectangular cross section at its end 16 facing away from the housing and a cross section at its end arranged on the housing 2 which is adapted to the annular end face 21 of the housing 2.
  • the height y E of the cross section of the ground electrode 10 corresponds to a width of the annular end face 21 or is smaller than this.
  • the width x E at the end of the ground electrode 10 facing the housing 2 is longer than at the end 16 of the ground electrode 10 facing away from the housing.
  • the cross section of the ground electrode 10 at its end facing the housing 2 has a curvature, ie the cross section has a banana -shaped profile, corresponding to the curvature of the end face 21 of the housing.
  • the shape of the cross-section is typically changed by means of stamping, either a rectangular cross-section of the end of the ground electrode 10 facing the housing can be formed into a banana-shaped profile by stamping or the end 16 of a ground electrode with a banana-shaped profile facing away from the housing is shown in embossed a flat surface.
  • FIG 3 shows a section for a ground electrode 10 of the spark plug according to the invention, which differs from the in Figure 1 ground electrodes 10 shown differ only in that the ground electrode in Figure 3 is bent.
  • the ground electrode 10 is produced by an extrusion process such as, for example, the cup process.
  • the straight ground electrode 10 is welded to the end face 21 of the spark plug housing in a subsequent step.
  • the ground electrode 10 is bent into the desired position in a subsequent step, so that a top electrode or a side electrode or a bracket electrode is produced.
  • the ground electrode 10 can also have an ignition surface 19, which is typically welded to the ground electrode before bending.
  • the three areas 13, 14, 15 of the earth electrode 10 or the two sections 14a, 15a of the core 12 can also be identified in the case of the curved earth electrode 10.
  • the length of the respective areas results as a mean from the longest and shortest length of the area, which result along the surface of the ground electrode 10.
  • FIG. 4 shows a schematic representation of a spark plug 1 according to the invention with a ground electrode 10.
  • the spark plug 1 has a metallic housing 2 with a thread for mounting the spark plug 1 in a cylinder head.
  • the thread can have an outer diameter of at least 8 mm, 10 mm or larger.
  • the housing has a hexagon section 9, on which a tool for mounting the spark plug 1 in the cylinder head is attached.
  • An insulator 3 is arranged inside the housing 2.
  • a center electrode 5 and a connecting bolt 7 are arranged inside the insulator 3 and are electrically connected via a resistance element 6.
  • the center electrode 5 typically protrudes from the insulator 3 at the end of the spark plug 1 facing away from the housing.
  • the center electrode 5 rests with its electrode head 4 on a seat formed on the inside of the insulator 3.
  • the center electrode 5 and / or the ground electrode 10 have an arranged ignition surface 19.
  • the center electrode can also have a core surrounded by a jacket, the core being made of a material with a higher thermal conductivity than the material of the jacket.
  • At least one ground electrode 10 is arranged on the end of the housing 2 facing away from the housing. Which forms an ignition gap together with the center electrode 5.
  • the ground electrode 10 can be designed as a roof electrode, side electrode or bracket electrode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Spark Plugs (AREA)

Description

    Stand der Technik
  • Die Erfindung geht von einer Zündkerze nach dem Oberbegriff des unabhängigen Anspruchs aus.
  • Aufgrund der zunehmenden Reduzierung des Bauraums im Motorraum steht für die einzelnen Komponenten, wie beispielsweise die Zündkerze, im Motorraum weniger Platz zur Verfügung und die Komponenten im Motorraum müssen verkleinert werden. Durch diesen Trend des sogenannten Downsizings der Komponenten treten neue Herausforderungen bei der Konstruktion der Komponenten und der Zündkerze auf.
  • Durch das Downsizing der Zündkerze und ihrer Bauteile steigt die thermische, elektrische und mechanische Belastung an der Zündkerze und ihren einzelnen Bauteilen. Gleichzeitig soll die Zündkerze eine gleich gute Zuverlässigkeit und eine gleich lange Lebensdauer wie bisherige nicht dem Downsizing unterworfene Zündkerzen aufweisen.
  • Die US 2007/0216275 A1 offenbart eine Zündkerze gemäß dem Oberbegriff des Anspruchs 1.
  • Offenbarung der Erfindung
  • Aufgrund des Downsizings muss auch das Gehäuse verändert werden. Dies führt dazu, dass die Stirnseite des Gehäuses, an dem die Masseelektrode angeordnet ist, schmaler wird. Dies bedeutet, dass für die Masseelektrode eine geringere Breite der Stirnseite zum Anschweißen zur Verfügung steht. Die Abmessungen der Masseelektrode müssen diesem reduzierten Platz angepasst werden. Gleichzeitig muss die Masseelektrode auch den mechanischen, thermischen, chemischen und elektrischen Belastungen beim Betrieb einer Zündkerze in einem Brennkraftmaschine standhalten, damit die Zündkerze eine ähnlich gute Zündzuverlässigkeit und Lebenszeit wie nicht dem Downsizing unterworfene Zündkerzen zeigt.
  • Die Aufgabe der vorliegenden Erfindung ist es, eine Zündkerze bereit zu stellen, die die eingangs genannten Anforderungen erfüllen kann.
  • Diese Aufgabe wird von der erfindungsgemäßen Zündkerze durch den kennzeichnenden Teil des Anspruchs 1 gelöst.
  • Erfindungsgemäß ist vorgesehen, dass die Masseelektrode einen Kern aufweist, der von einem Mantel umgeben ist, wobei die Querschnittsfläche der Masseelektrode nicht größer als 2,76 mm2 ist, und wobei die Masseelektrode einem ersten Bereich aufweist, in dem der Mantel eine Wanddicke c von nicht größer als 0,4 mm hat. Dadurch wird sichergestellt, dass der Kern in diesem ersten Bereich der Masseelektrode ein ausreichend großes Volumen in der Masseelektrode einnimmt, so dass die Masseelektrode den thermischen Belastungen während des Zündkerzenbetriebs standhält.
  • Die oben genannte Grenze für die Querschnittsfläche der Masseelektrode bezieht sich auf ihre größte Querschnittsfläche. Beispielsweise kann die Masseelektrode mehrere Bereiche mit unterschiedlichen Querschnittsflächen aufweisen. In bevorzugter Weise ist der Wert der Querschnittsfläche über die gesamte Länge der Masseelektrode konstant, wobei im Sinne dieser Anmeldung mit konstant gemeint ist, dass sich der Wert nicht mehr als um 5% verändert.
  • Vorteilhafte Weiterbildungen der Erfindung sind Gegenstand der Unteransprüche.
  • Insbesondere kann vorgesehen sein, dass die Querschnittsfläche der Masseelektrode nicht größer als 2,64 mm2 oder in besonders bevorzugter Weise nicht größer als 2,3 mm2 ist.
  • Vorteilhafterweise ist der Mantel aus einem verschleißbeständigeren Materials als der Kern. Der Kern ist aus einem Material mit einer höheren Wärmeleitfähigkeit als das Material des Mantels. Das Material des Kerns weist vorzugsweise eine Wärmeleitfähigkeit von mindestens 350 W/mK bei Raumtemperatur auf. Zusätzlich oder alternativ kann vorgesehen sein, dass bei Raumtemperatur die Wärmeleitfähigkeit des Materials des Kerns mindestens 300 W/mK größer ist als die Wärmeleitfähigkeit des Materials des Mantels. Beispielsweise ist der Kern aus Kupfer, Silber oder einer Legierung mit Kupfer und/oder Silber. Der Mantel besteht beispielsweise aus einer Nickel-haltigen Legierung. Die Ni-Legierung kann beispielsweise mindestens 20 Gew.% Chrom, insbesondere 25 Gew.% Chrom, enthalten. Zusätzlich oder alternativ kann die Nickel-haltige Legierung auch Yttrium enthalten.
  • Es hat sich als vorteilhaft herausgestellt, dass der Mantel und der Kern jeweils eine konstante Querschnittsfläche in dem ersten Bereich der Masseelektrode aufweisen. Dabei entspricht vorzugsweise die Querschnittsfläche des Kerns mindestens 20% der gesamten Querschnittsfläche der Masseelektrode im ersten Bereich. Die Querschnittsfläche der Masseelektrode ist die Summe aus der Querschnittsfläche des Mantels und der Querschnittsfläche des Kerns. Durch das Einhalten einer unteren Grenze für die Querschnittsfläche des Kerns wird sichergestellt, dass die Wärmeableitung innerhalb der Masseelektrode von einem dem Gehäuse-abgewandten Ende der Masseelektrode bis zu einem an einem Zündkerzengehäuse angeordneten Ende der Masseelektrode ausreichend groß ist, damit die beim Betrieb der Zündkerze in einer Brennkraftmaschine aufgenommene Wärme am dem Gehäuse-abgewandten Ende der Masseelektrode ausreichend schnell an den mit einem Zylinderkopf im thermischen Kontakt stehenden Gehäuse abgeleitet wird, so dass die Masseelektrode eine ausreichend hohe Beständigkeit gegenüber den thermischen und mechanischen sowie chemischen Belastungen beim Betrieb der Zündkerze aufweist.
  • Vorzugsweise ist vorgesehen, dass der Mantel der Masseelektrode, insbesondere entlang ihrer gesamten Länge, eine Wanddicke c von nicht kleiner als 0,15 mm aufweist, damit der Kern der Masseelektrode ausreichend gut gegenüber den beim Betrieb der Zündkerze auftretende Brennraumgase geschützt wird.
  • Zusätzlich oder alternativ kann zum Erreichen des oben genannten Vorteils vorgesehen sein, dass im ersten Bereich die Querschnittsfläche des Kerns maximal 65% der gesamten Querschnittsfläche der Masseelektrode entspricht.
  • Es ist bevorzugt, dass der erste Bereich vorzugsweise an einem Ende der Masseelektrode ausgebildet ist, das einem am Gehäuse der Zündkerze angeordneten Ende der Masseelektrode entspricht. Dadurch wird ein guter thermischer Kontakt zwischen der Masseelektrode und dem Gehäuse erzielt.
  • Bei einer vorteilhaften Weiterbildung der Erfindung hat ein dem Gehäuse-abgewandtes Ende der Masseelektrode einen Abstand b zu dem Kern in der Masseelektrode. Vorzugsweise ist der Abstand b nicht größer ist als 4 mm, und insbesondere nicht kleiner ist als 0,2 mm. Bei der Verwendung einer Zündfläche am dem Gehäuse-abgewandten Ende der Masseelektrode ist es bevorzugt, dass der Abstand b im Bereich von 0,2 mm bis 2 mm liegt, damit der gut wärmeleitende Kern einen nicht zu großen Abstand zur Zündfläche hat. Die Zündfläche enthält typischerweise ein Edelmetall oder eine Edelmetall-Legierung und weist deshalb eine höhere Verschleißbeständigkeit als das Mantelmaterial auf.
  • Wenn auf eine Zündfläche verzichtet wird, hat es sich als vorteilhaft herausgestellt, dass der Abstand b mindestens 2 mm und maximal 4 mm beträgt. Damit es im dem Bereich der Masseelektrode, in dem ein Zündfunken sich ausbildet, genügend Volumen aus dem Mantelmaterial gibt, damit die Masseelektrode den thermischen und chemischen Belastungen im Betrieb einer Zündkerze ausreichend lange standhält. Ausreichend lange bedeutet einen Betrieb der Zündkerzen über mindestens 50 000 km.
  • Der Querschnittsfläche der Masseelektrode kann eine Höhe und eine Breite zugeordnet werden. Dabei entsprechen die Breite xE und die Höhe yE zwei Ausdehnungen der Querschnittsfläche, die senkrecht zu einander stehen. Mit Breite xE wird die längere Ausdehnung bezeichnet und mit Höhe yE eine senkrechte Ausdehnung der Querschnittsfläche dazu. Bei einem rechteckigen Querschnitt entsprechen die Breite xE und die Höhe yE der Querschnittsfläche den Längen der Seiten der rechteckigen Querschnittsfläche. Die Höhe yE des Querschnitts ist vorzugsweise nicht größer als 1,2 mm, und insbesondere nicht kleiner als 0,8 mm, insbesondere nicht größer als 1mm. Die Breite xE der Querschnittsfläche der Masseelektrode ist beispielsweise nicht größer als 2,3 mm, insbesondere nicht größer als 2,2 mm oder sogar nicht größer als 1,9 mm, und insbesondere nicht kleiner als 1,6 mm.
  • Analog zu der Höhe yE und der Breite xE der Querschnittsfläche der Masseelektrode wird auch dem Kern eine Höhe yK und eine Breite xK zugeordnet.
  • Vorzugsweise ist der erste Bereich zylinderförmig. Der erste Bereich weist vorzugsweise eine Länge senkrecht zur Querschnittsfläche auf, die gleich oder länger als die Höhe yE der Querschnittsfläche der Masseelektrode ist. Insbesondere ist die Länge des ersten Bereichs mindestens 1,5-fache so lang wie die Höhe yE der Querschnittsfläche der Masseelektrode.
  • Vorteilhafterweise haben die Querschnittsflächen des Kerns und der Masseelektrode die gleiche Form. Dadurch wird erreicht, dass die Masseelektrode in diesem ersten Bereich einen Mantel mit konstanter Dicke aufweist.
  • Die Masseelektrode kann als Dachelektrode, Seitenelektrode oder Bügelelektrode ausgebildet sein.
  • Zeichnung
    • Figur 1 zeigt ein Beispiel für eine Masseelektrode
    • Figur 2 zeigt einen Querschnitt der Masseelektrode
    • Figur 3 zeigt einen Schnitt einer gebogenen Masseelektrode
    • Figur 4 zeigt eine erfindungsgemäße Zündkerze mit einer gebogenen Masseelektrode
    Beschreibung
  • Figur 1 zeigt schematische Darstellungen für Beispiele einer Masseelektrode 10. Die Masseelektrode 10 weist einen Kern 12 und einen den Kern 12 umgebenden Mantel 11 auf. Der Kern 12 besteht aus einem Material mit einer höheren Wärmeleitfähigkeit als das Material des Mantels 11. Typischerweise hat das Material des Mantels 11 eine höhere Verschleißbeständigkeit als das Material des Kerns 12. Der Kern 12 besteht aus Kupfer, Silber oder einer Legierung mit Kupfer und/oder Silber. Als Material für den Mantel 11 wird vorzugsweise eine Ni-Legierung verwendet, dabei kann Chrom und/oder Yttrium in der Legierung enthalten sein.
  • Aufgrund des Herstellungsverfahrens, hier ein Fließpress-Verfahren, weist der Kern 12 der hier im Schnitt gezeigten Masseelektrode 10 mindestens einen ersten Abschnitt 15a auf, in dem der Kern 12 relativ konstante Abmessungen (xK, yK) und damit verbunden eine relativ konstante Querschnittsfläche hat. Mit dem Begriff "relativ konstant" ist im Sinne dieser Anmeldung gemeint, dass die Abmessungen bzw. die Querschnittsfläche ihre Werte maximal um 5% verändert.
  • Innerhalb eines zweiten Abschnitt 14a reduzieren sich die Abmessungen (xK, yK) und die Querschnittsfläche des Kerns 12. Der mindestens eine erste Abschnitt 15a ist an einer einem Brennraum abgewandten Seite der Masseelektrode 10 angeordnet, beispielsweise an der Seite, mit der die Masseelektrode am Zündkerzen-Gehäuse 2 angeordnet wird. In Richtung des Endes der Masseelektrode 10, das bei der Verwendung der Masseelektrode in einer Zündkerze in den Brennraum ragt, schließt sich eine zweiter Abschnitt 14a des Kerns 12 an den mindestens einen ersten Abschnitt 15a des Kerns 12 an. Grundsätzlich ist es denkbar, dass der Kern 12 mehrere erste Abschnitte 15a mit konstanter Querschnittsfläche aufweist, wobei die Abmessungen (xK, yK) und die Querschnittsflächen der einzelnen ersten Abschnitte 15a unterschiedlich sind. Dies ist insbesondere der Fall, wenn die Masseelektrode 10 selbst mehrere Bereiche mit unterschiedlichen Abmessungen (xE, yE) bzw. Querschnittsflächen aufweist. Im Fall von mehreren ersten Abschnitten 15a beim Kern 12 ist der dem Brennraum am nächsten gelegenen Abschnitt der zweite Abschnitt 14a mit der sich kontinuierlich verringern Querschnittsfläche des Kerns 12.
  • Die in Figur 1 dargestellte Masseelektrode 10 weist entlang ihrer Länge konstante Abmessungen (xE, yE) und damit verbunden eine konstante Querschnittsfläche auf. Beim der Masseelektrode 10 kann man mindestens drei Bereiche 13, 14, 15 unterscheiden. In einem ersten Bereich 15 weist die Masseelektrode 10 einen Kern 12 mit konstanter Querschnittsfläche und eine Manteldicke c von nicht größer als 0,4 mm auf. In einem zweiten Bereich 14a weist die Masseelektrode 10 einen Kern 12 mit einer sich kontinuierlich reduzierenden Querschnittsfläche auf. In einem dritten Bereich 13 weist die Masseelektrode 10 keinen Kern auf.
  • Die Dicke c des Mantels der Masseelektrode 10 ergibt sich aus der halben Differenz ihrer Abmessungen (xE, yE) zu den Kern-Abmessungen (xK, yK). Wenn die Masseelektrode 10 in dem ersten Bereich 15 eine konstante Querschnittsfläche aufweist, dann ist die Manteldicke c in diesem ersten Bereich 15 konstant. Vorteilhaft ist vorgesehen, dass in diesem ersten Bereich 15 die Manteldicke c der Masseelektrode 10 nicht kleiner als 0,15 mm, und insbesondere nicht größer ist als 0,4 mm, beispielsweise ist die Manteldicke c gleich 0,25 mm oder kleiner.
  • Im zweiten Bereich 14 kann die Masseelektrode 10 konstante Abmessungen (xE, yE) und eine konstante Querschnittsfläche aufweisen, wobei in diesem Fall die Manteldicke c innerhalb des Bereichs 14 in Richtung des Brennraums zunimmt. Die Manteldicke c ist im zweiten Bereich 14 mindestens 0,15 mm dick.
  • Bei einem alternativen, hier nicht gezeigten, und nicht beanspruchtem Beispiel können die Abmessungen (xE, yE) bzw. die Querschnittsfläche der Masseelektrode 10 im zweiten Bereich 14 sich ebenfalls reduzieren. In diesem Fall gilt für die Manteldicke c, dass diese vorzugsweise im Bereich von 0,15 mm bis 0,4 mm liegt. Es kann vorgesehen sein, dass die Abmessungen (xE, yE) bzw. die Querschnittsfläche der Masseelektrode 10 sich mit der gleichen Rate wie die Abmessungen (xK, yK) bzw. die Querschnittsfläche des Kerns 12 ändern. Dies hat den Vorteil, dass die Manteldicke c in dem zweiten Bereich 14 konstant bleibt.
  • Im dritten Bereich 13 der Masseelektrode 10 gibt es keinen Kern. Der dritte Bereich 13 weist vorzugsweise konstante Abmessungen (xE, yE) und eine konstante Querschnittsfläche auf, der den Abmessungen (xE, yE) bzw. der Querschnittsfläche des zweiten Bereichs 14 beim Übergang zum dritten Bereich 13 entspricht.
  • Der dritte Bereich 13 der Masseelektrode 10 weist eine Länge b auf, die sich von einem brennraumseitigen Ende 17 des Kerns 12 bis zu einer dem Gehäuse-abgewandten Stirnfläche 16 der Masseelektrode 10 erstreckt. Die Länge b ist nicht größer als 4 mm. Wenn die Masseelektrode 10 mit einer Edelmetall-haltigen Zündfläche 19 ausgebildet ist, kann die Länge b kürzer als ohne Edelmetall-haltige Zündfläche 19 ausgebildet sein, wie in Figur 1b gezeigt. Beispielsweise liegt die Länge b dann im Bereich von 0,2 mm bis 2 mm. Wenn auf eine Edelmetall-haltige Zündfläche 19 verzichtet wird, wie in Figur 1a gezeigt, dann sollte die Länge b eine Mindestlänge von 1 mm aufweisen, damit der Mantel 11 am dem Gehäuse-abgewandten Ende der Masseelektrode 10 genug Material für eine ausreichend lange Lebensdauer der Masseelektrode 10 aufweist.
  • Das Maß der Länge b wird nach dem Fließpressen der Masseelektrode 10 auf die gewünschte Länge eingestellt. Die überschüssige Länge des Mantels 11 wird durch ein Schneidverfahren, ein Scherverfahren, ein Stanzverfahren oder mittels eines Laserstrahls abgetrennt. Die Länge b hat einen Einfluss auf die Wärmeableitung in der Masseelektrode 10. Durch entsprechende Wahl der Länge b kann das Wärmeniveau der Masseelektrode 10 an ihrem dem Gehäuse-abgewandten Ende 16 auf einen gewünschten Wert eingestellt werden, so dass das dem Gehäuse-abgewandte Ende 16 der Masseelektrode 10 eine für die Entflammung des Gasgemisches in einem Brennraum vorteilhafte Temperatur nicht unterschreitet.
  • Figur 2 zeigt ein Beispiel für einen Querschnitt der Masseelektrode 10. In diesem Beispiel weisen die Masseelektrode 10 und der Kern 13 einen rechteckigen Querschnitt auf. Die Fläche des Querschnitts der Masseelektrode ist nicht größer als 2,76 mm2. Der Querschnitt weist eine Breite xE von nicht größer als 2,3 mm und eine Höhe yE von nicht größer als 1,2 mm auf.
  • Mittig im Querschnitt der Masseelektrode 10 ist der Querschnitt des Kerns 12 angeordnet. Die Dicke c des Mantels 11 ergibt sich aus der halben Differenz der Höhe y und Breite x der Masseelektrode 10 (yE, xE) und des Kerns 12 (yK, xK). Vorteilhafterweise haben die Querschnitte der Masseelektrode 10 und des Kerns 12 die gleiche geometrische Form.
  • Die Querschnittsfläche des Kerns 12 beträgt nicht weniger als 20%, und insbesondere nicht mehr als 65%, der Querschnittsfläche der Masseelektrode 10 im ersten Bereich 15 der Masseelektrode 10. Die Querschnittsfläche der Masseelektrode setzt sich zusammen aus der Fläche des Mantels 11 und der Fläche des Kerns 12 im Querschnitt.
  • In einem hier nicht gezeigten und nicht beanspruchtem Beispiel kann es vorgesehen sein, dass sich die Form des Querschnitts der Masseelektrode 10 im Verlauf der Länge der Masseelektrode 10 verändern. Beispielsweise kann die Masseelektrode 10 an ihrem dem Gehäuse-abgewandten Ende 16 einen rechteckigen Querschnitt und an ihrem an dem Gehäuse 2 angeordneten Ende eine Querschnitt aufweisen, der der ringförmigen Stirnseite 21 des Gehäuses 2 angepasst ist. Dies bedeutet, dass die Höhe yE des Querschnitts der Masseelektrode 10 einer Breite der ringförmigen Stirnseite 21 entspricht oder kleiner als diese ist. Entsprechend ist dann die Breite xE am Gehäuse 2 zugewandten Ende der Masseelektrode 10 länger als an dem Gehäuse-abgewandten Ende 16 der Masseelektrode 10. Der Querschnitt der Masseelektrode 10 an ihrem den Gehäuse 2 zugewandten Ende weist eine Krümmung, d.h. der Querschnitt hat ein Bananen-förmiges Profil, entsprechend der Krümmung der Stirnseite 21 des Gehäuses auf. Die Formänderung des Querschnitts erfolgt typischerweise mittels Prägen, dabei kann entweder eine rechteckiger Querschnitt des dem Gehäuse zugewandten Ende der Masseelektrode 10 durch Prägen in ein Bananen-förmiges Profil umgeformt werden oder das dem Gehäuse-abgewandte Ende 16 einer Masseelektrode mit Bananen-förmigen Profil wird in eine plane Fläche geprägt.
  • Figur 3 zeigt einen Schnitt für eine Masseelektrode 10 der erfindungsgemäßen Zündkerze, die sich von den in Figur 1 gezeigten Masseelektroden 10 nur dadurch unterscheidet, dass die Masseelektrode in Figur 3 gebogen ist. Die Masseelektrode 10 wird in einem ersten Schritt durch ein Fließpress-Verfahren wie beispielsweise das Napfverfahren hergestellt. Die gerade Masseelektrode 10 wird in einem folgenden Schritt an die Stirnseite 21 des Zündkerzen-Gehäuses angeschweißt. Je nach Verwendungszweck wird die Masseelektrode 10 in einem anschließenden Schritt in die gewünschte Position gebogen, so dass eine Dachelektrode oder eine Seitenelektrode oder eine Bügelelektrode entsteht. Zusätzlich kann die Masseelektrode 10 noch eine Zündfläche 19 aufweisen, diese wird typischerweise vor dem Biegen an die Masseelektrode angeschweißt.
  • Auch bei der gebogenen Masseelektrode 10 können die drei Bereiche 13, 14, 15 der Masseelektrode 10 bzw. die beiden Abschnitte 14a, 15a des Kerns 12 ausgemacht werden. Die Länge der jeweiligen Bereiche ergibt sich als Mittel aus der längsten und kürzesten Länge des Bereichs, die sich entlang der Oberfläche der Masseelektrode 10 ergeben.
  • Figur 4 zeigt eine schematische Darstellung einer erfindungsgemäßen Zündkerze 1 mit einer Masseelektrode 10. Die Zündkerze 1 weist ein metallisches Gehäuse 2 mit einem Gewinde für die Montage der Zündkerze 1 in einem Zylinderkopf auf. Das Gewinde kann einen Außendurchmesser von mindestens 8 mm, 10 mm oder größer aufweisen. Des Weiteren weist das Gehäuse eine Sechskant Abschnitt 9 auf, an dem ein Werkzeug für die Montage der Zündkerze 1 in den Zylinderkopf angesetzt wird. Innerhalb des Gehäuses 2 ist ein Isolator 3 angeordnet. Eine Mittelelektrode 5 und ein Anschlussbolzen 7 sind innerhalb des Isolators 3 angeordnet und über ein Widerstandselement 6 elektrisch verbunden.
  • Die Mittelelektrode 5 ragt typischerweise am dem Gehäuse-abgewandten Ende der Zündkerze 1 aus dem Isolator 3 raus. Mit ihrem Elektrodenkopf 4 liegt die Mittelelektrode 5 auf einem auf der Innenseite des Isolators 3 ausgebildeten Sitz auf. Die Mittelelektrode 5 und/oder die Masseelektrode 10 weisen eine angeordnete Zündfläche 19 auf. Die Mittelelektrode kann auch einen von einem Mantel umgebenen Kern aufweisen, wobei der Kern aus einem Material mit einer höheren Wärmeleitfähigkeit wie das Material des Mantels besteht.
  • Am dem Gehäuse-abgewandten Ende des Gehäuses 2 ist mindestens eine erfindungsgemäße Masseelektrode 10 angeordnet. Die gemeinsam mit der Mittelelektrode 5 einen Zündspalt bildet. Die Masseelektrode 10 kann als Dachelektrode, Seitenelektrode oder Bügelelektrode ausgebildet sein.

Claims (10)

  1. Zündkerze (1), aufweisend ein Gehäuse (2), einen im Gehäuse (2) angeordneten Isolator (3), eine im Isolator (3) angeordnete Mittelelektrode (5) und eine am Gehäuse (2) angeordnete Masseelektrode (10), wobei die Masseelektrode (10) und die Mittelelektrode (5) so zueinander angeordnet sind, dass die Masseelektrode (10) und die Mittelelektrode (5) einen Zündspalt ausbilden, und wobei die Masseelektrode (10) einen Kern (12) und einen den Kern (12) umgebenen Mantel (11) aufweist, wobei der Kern (12) aus einem Material besteht, das eine höhere Wärmeleitfähigkeit als das Material des Mantels (11) hat, und wobei eine Querschnittsfläche der Masseelektrode (10) nicht größer als 2,76 mm2 ist, wobei der Mantel (11) in einem ersten Bereich (15) der Masseelektrode (10) eine Wanddicke c von nicht größer als 0,4 mm aufweist, wobei der erste Bereich (15) einen dem Brennraum abgewandten Bereich der Masseelektrode (10) bildet, in dem der Kern (12) eine konstante Querschnittsfläche aufweist, wobei die Masseelektrode (10) einen zweiten Bereich (14) aufweist, in dem sich die Querschnittsfläche des Kerns (12) kontinuierlich reduziert, wobei die Masselelektrode einen dritten Bereich (13) aufweist, in den der Kern (12) nicht hinein reicht und der an dem dem Gehäuse abgewandten Ende (16) der Masseelektrode (10) angeordnet ist, wobei die Masseelektrode (10) gebogen ist, sodass sie als Dachelektrode, Seitenelektrode oder Bügelelektrode ausgebildet ist, dadurch gekennzeichnet, dass der zweite Bereich (14) entlang der Längserstreckung der Masseelektrode (10) zwischen dem ersten Bereich (15) und dem dritten Bereich (13) innerhalb eines gebogenen Abschnitts der Masseelektrode (10) ausgebildet ist.
  2. Zündkerze (1) nach Anspruch 1, dadurch gekennzeichnet, dass der Mantel (11) und der Kern (12) in dem ersten Bereich (15) der Masseelektrode (10) entlang ihrer Längserstreckung jeweils eine konstante Querschnittsfläche aufweisen.
  3. Zündkerze (1) nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass in dem ersten Bereich (15) die Querschnittsfläche des Kerns (12) mindestens 20% der gesamten Querschnittsfläche der Masseelektrode (10) entspricht.
  4. Zündkerze (1) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass in dem ersten Bereich (15) die Querschnittsfläche des Kerns (12) maximal 65% der gesamten Querschnittsfläche der Masseelektrode (10) entspricht.
  5. Zündkerze (1) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass an einem dem Gehäuse-abgewandten Ende (16) der Masseelektrode (10) der Abstand b zwischen dem Ende (16) der Masseelektrode (10) und einem Ende (17) des Kerns (12) nicht größer ist als 4 mm, und insbesondere nicht kleiner ist als 0,2 mm.
  6. Zündkerze (1) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Querschnittsfläche der Masseelektrode (10) eine Höhe yE und eine Breite xE aufweist.
  7. Zündkerze (1) nach Anspruch 6, dadurch gekennzeichnet, dass die Höhe yE der Querschnittsfläche der Masseelektrode (10) nicht größer als 1,2 mm und/oder die Breite xE der Querschnittsfläche der Masseelektrode (10) nicht größer als 2,3 mm ist.
  8. Zündkerze (1) nach einem der Ansprüche 6 oder 7, dadurch gekennzeichnet, dass der erste Bereich (15) länger als die Höhe yE der Querschnittsfläche der Masseelektrode (10) ist.
  9. Zündkerze (1) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Querschnittsfläche des Kern (12) und die Querschnittsfläche der Masseelektrode (10) die gleiche Form aufweisen.
  10. Zündkerze (1) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Material des Mantels (11) eine Nickel-haltigen Legierung aufweist, insbesondere das die Legierung mindestens 20 Gew.% Chrom aufweist.
EP15804156.6A 2014-12-16 2015-12-03 Zündkerze mit masseelektrode mit kleinem querschnitt Active EP3235080B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014226096.5A DE102014226096A1 (de) 2014-12-16 2014-12-16 Zündkerze mit Masseelektrode mit kleinem Querschnitt
PCT/EP2015/078574 WO2016096464A1 (de) 2014-12-16 2015-12-03 Zündkerze mit masseelektrode mit kleinem querschnitt

Publications (2)

Publication Number Publication Date
EP3235080A1 EP3235080A1 (de) 2017-10-25
EP3235080B1 true EP3235080B1 (de) 2021-02-24

Family

ID=54771138

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15804156.6A Active EP3235080B1 (de) 2014-12-16 2015-12-03 Zündkerze mit masseelektrode mit kleinem querschnitt

Country Status (5)

Country Link
US (1) US9991679B2 (de)
EP (1) EP3235080B1 (de)
CN (1) CN107210586A (de)
DE (1) DE102014226096A1 (de)
WO (1) WO2016096464A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI644494B (zh) * 2017-03-23 2018-12-11 合勤科技股份有限公司 電子裝置及其過壓保護結構

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070216275A1 (en) * 2006-03-20 2007-09-20 Ngk Spark Plug Co., Ltd. Spark plug for use in an internal-combustion engine

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3148931B2 (ja) 1991-06-27 2001-03-26 日本特殊陶業株式会社 スパークプラグの製造方法
JPH11111426A (ja) 1997-10-02 1999-04-23 Denso Corp スパークプラグおよびその製造方法
JP4419327B2 (ja) * 2000-04-03 2010-02-24 株式会社デンソー 内燃機関用スパークプラグ及びその製造方法
US20050168121A1 (en) * 2004-02-03 2005-08-04 Federal-Mogul Ignition (U.K.) Limited Spark plug configuration having a metal noble tip
DE102004016555A1 (de) * 2004-04-03 2005-10-27 Robert Bosch Gmbh Zündkerze
US7557495B2 (en) * 2005-11-08 2009-07-07 Paul Tinwell Spark plug having precious metal pad attached to ground electrode and method of making same
JP2007173116A (ja) 2005-12-22 2007-07-05 Ngk Spark Plug Co Ltd スパークプラグ
WO2010026940A1 (ja) 2008-09-02 2010-03-11 日本特殊陶業株式会社 スパークプラグ
JP4939642B2 (ja) 2010-11-04 2012-05-30 日本特殊陶業株式会社 スパークプラグ
JP5291789B2 (ja) 2011-12-26 2013-09-18 日本特殊陶業株式会社 点火プラグ
JP5260759B2 (ja) * 2012-01-05 2013-08-14 日本特殊陶業株式会社 スパークプラグ

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070216275A1 (en) * 2006-03-20 2007-09-20 Ngk Spark Plug Co., Ltd. Spark plug for use in an internal-combustion engine

Also Published As

Publication number Publication date
US20170358903A1 (en) 2017-12-14
WO2016096464A1 (de) 2016-06-23
EP3235080A1 (de) 2017-10-25
CN107210586A (zh) 2017-09-26
US9991679B2 (en) 2018-06-05
DE102014226096A1 (de) 2016-06-16

Similar Documents

Publication Publication Date Title
DE19961768B4 (de) Zündkerze für eine Brennkraftmaschine mit geschmolzenen Abschnitten aus einer Iridiumlegierung außerhalb eines Funkenabgabebereichs
DE60100323T2 (de) Zündkerze für Verbrennungsmotoren und ihr Herstellungsverfahren
EP1911134B1 (de) Funkenstrecke
DE102005006393A1 (de) Zündkerze mit hochgradig fester und hitzebeständiger Masseelektrode
EP0505368B1 (de) Verfahren zur herstellung von elektroden für zündkerzen sowie zündkerzen-elektroden
EP3235080B1 (de) Zündkerze mit masseelektrode mit kleinem querschnitt
DE212021000499U1 (de) Zusammengesetzte Funkenbildungskomponente für eine Zündkerze und Zündkerze
EP3649708A1 (de) Ableiter zum schutz vor überspannungen
EP1413028B1 (de) Zündkerze
DE202020101182U1 (de) Elektrische Heizvorrichtung
EP3235079B1 (de) Zündkerzen mit mittelelektrode
DE102012107771B4 (de) Zündkerze mit rondenförmigem Edelmetallbauteil
WO2016096487A1 (de) Verfahren zur herstellung einer zündkerzen-elektrode mit bis zur zündfläche reichenden kern
DE102009015536B4 (de) Keramischer Glühstift und Glühkerze
WO2001073907A1 (de) Zündkerze für eine brennkraftmaschine
WO2016026597A1 (de) Zündkerze mit mehrmasseelektrode
DE102019203431A1 (de) Zündkerzenelektrode mit einem in einem Körper eingebetteten Edelmetall-haltigen Element als Zündfläche sowie Zündkerze mit einer solchen Zündkerzenelektrode
DE102019127692A1 (de) Elektrischer Rohrheizkörper und Verfahren zu dessen Herstellung
EP1881573A2 (de) Zündeinrichtung, insbesondere Zündkerze für eine Verbrennungsmaschine und Verfahren zur Positionierung von wenigstens einer Masseelektrode in der Zündeinrichtung.
DE102014226222A1 (de) Zündkerzenelektrode mit durchgehenden Kern
DE10338518B4 (de) Zündkerze
DE10156949B4 (de) Zündkerze
DE102014226215A1 (de) Zündkerzenelektrode, Verfahren zu deren Herstellung und Zündkerze
EP1594200B1 (de) Zündkerze
DE112021002601T5 (de) Zündkerze

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170717

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20191104

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H01T 13/16 20060101AFI20200821BHEP

Ipc: H01T 13/39 20060101ALI20200821BHEP

Ipc: H01T 13/32 20060101ALI20200821BHEP

INTG Intention to grant announced

Effective date: 20200921

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1365678

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015014316

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210524

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210525

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210524

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210624

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015014316

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

26N No opposition filed

Effective date: 20211125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211203

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211203

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211203

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1365678

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20151203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240227

Year of fee payment: 9