EP3227215B1 - Method and system for determining the position of an elevator car - Google Patents

Method and system for determining the position of an elevator car Download PDF

Info

Publication number
EP3227215B1
EP3227215B1 EP15804120.2A EP15804120A EP3227215B1 EP 3227215 B1 EP3227215 B1 EP 3227215B1 EP 15804120 A EP15804120 A EP 15804120A EP 3227215 B1 EP3227215 B1 EP 3227215B1
Authority
EP
European Patent Office
Prior art keywords
image
current position
images
elevator
computing unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15804120.2A
Other languages
German (de)
French (fr)
Other versions
EP3227215A1 (en
Inventor
Astrid Sonnenmoser
Christian Studer
Klaus Zahn
Johannes Gassner
André Rüegg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inventio AG
Original Assignee
Inventio AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inventio AG filed Critical Inventio AG
Publication of EP3227215A1 publication Critical patent/EP3227215A1/en
Application granted granted Critical
Publication of EP3227215B1 publication Critical patent/EP3227215B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/34Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
    • B66B1/3492Position or motion detectors or driving means for the detector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/34Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
    • B66B1/3415Control system configuration and the data transmission or communication within the control system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/34Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
    • B66B1/36Means for stopping the cars, cages, or skips at predetermined levels
    • B66B1/40Means for stopping the cars, cages, or skips at predetermined levels and for correct levelling at landings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B3/00Applications of devices for indicating or signalling operating conditions of elevators
    • B66B3/02Position or depth indicators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/0006Monitoring devices or performance analysers
    • B66B5/0018Devices monitoring the operating condition of the elevator system
    • B66B5/0031Devices monitoring the operating condition of the elevator system for safety reasons

Definitions

  • the invention relates to a method and a system for determining the position of an elevator car arranged in a lift cage arranged elevator car of an elevator system according to the preamble of the independent claims.
  • JP 2009 220 904 discloses an elevator installation according to the preamble of claim 8. It is therefore an object of the invention to provide a method and a system of the type mentioned, which avoid the disadvantages of the known and in particular allow a reliable determination of the position of the elevator car. In addition, the inventive system should be inexpensive to produce and operable.
  • the method according to the invention for determining the position of an elevator car of an elevator system which can be moved in an elevator shaft, wherein the elevator car is equipped with an acceleration sensor comprises the following steps.
  • the acceleration data from the acceleration sensor are detected by a computing unit. This is followed by a calculation by the arithmetic unit of the current position and / or speed of the elevator car starting from an initial position and the acquired acceleration data.
  • the position or speed of the elevator car is thus determined in accordance with an inertial navigation system.
  • inertial navigation system it will be appreciated that, due to the characteristics of such a system, delays and errors may occur which affect the reliability of position determination.
  • vibrations of the elevator car from the acceleration sensor can not be clearly assigned to a movement or a fault, so that in the end result the calculated position will deviate from the actual position. This is referred to as a "drifting" of the calculated position data with respect to the real position of the elevator car.
  • the acceleration sensor is preferably designed as a 3-axis sensor. Other sensor configurations are conceivable. However, it is important that the accelerations occurring in the direction of travel of the elevator car can be detected.
  • the elevator system is equipped with an image acquisition unit.
  • the image acquisition unit is attached to the elevator car and arranged to be movable together with the elevator car.
  • the arithmetic unit compares the recorded images with mapping images of the elevator shaft in order to determine an image-based current position. Further, the arithmetic unit recalibrates the current position using the image-based current position. In this case, a second possibility of position determination and thus redundancy of the method according to the invention is created by comparing the recorded images with the mapping images.
  • Mapping images are images that, in their entirety, represent an image of the elevator shaft.
  • the mapping images are preferably taken during a learning drive during the commissioning of the elevator and clearly assigned to a position of the elevator car in the elevator shaft, so that the subsequent determination of the image-based position is possible.
  • the mapping images stored with the assigned position values in a database.
  • the determination of the current position thus takes place initially by means of the calculated current position by the acceleration data obtained by the acceleration sensor until an image-based current position is again determined and the current position is recalibrated.
  • a so-called “drift" of the calculated current position is counteracted by the image-based current position. It is advantageous in such an embodiment that for recalibration does not need to be approached as in the processes and systems of the prior art, a top and / or bottom floor but the calibration over the entire hoistway at any time, for example during a journey, can take place.
  • image recordings of the elevator shaft are taken by the image acquisition unit.
  • Two successively recorded images are compared by the arithmetic unit to determine a spatial displacement of both images, wherein the acceleration data are used to determine the position and / or speed of the elevator car only when a spatial displacement of the arithmetic unit based on the recorded images determined has been.
  • the images compared by the arithmetic unit need not necessarily be recorded immediately one after the other.
  • the images are preferably recorded only when the acceleration sensor measures acceleration data of the elevator cars. This ensures that the arithmetic unit does not constantly have to compare images from the image acquisition unit but a comparison only in case of detection of acceleration (and therefore possible movement) by the acceleration sensor.
  • Acceleration data with a frequency of 100 Hz are preferably recorded.
  • Images are preferably recorded at a frequency of 60 Hz.
  • the image recordings are preferably recorded only if the acceleration data lie above a predefined or predefinable threshold value.
  • accelerations generated by the acceleration sensor e.g. during the loading and unloading of the elevator car, do not trigger the image acquisition unit. It is thus possible to use a relatively inexpensive and simple arithmetic unit, as they do not process continuously image recordings and may need to save.
  • Acceleration data which are above a predefined or predefinable second threshold value are preferably rejected by the arithmetic unit.
  • This preferred embodiment is also based on the idea of limiting the computing capacity of the arithmetic unit to a minimum.
  • acceleration data which are above the second threshold, and which experience has caused by disturbances are not taken into account. For example, accelerations greater than 1 g, which occur during emergency braking of the elevator car, can be excluded, since in this case it is ensured by an emergency brake arrangement that the elevator car comes to a standstill.
  • the current position is recalibrated if a deviation between the image-based current position and the calculated current position is above a predefined or predefinable threshold value.
  • the image-based current position which has been directly and uniquely determined, is set instead of the calculated current position (which has been determined indirectly via the acceleration data).
  • the recalibration of the current position with the image-based current position may occur at a second interval.
  • the image-based current position is therefore preferably determined with images recorded in a predefined or predefinable second time interval, the second time interval being greater than or equal to the first time interval. Also in this case, a relief of the arithmetic unit is achieved. Not all images taken by the image acquisition unit are used for the determination of the image-based current position, and thus the computational complexity of the arithmetic unit is reduced.
  • the second time interval is particularly preferably in the range between 500 and 100 ms, which corresponds to a frequency of 2 to 10 Hz.
  • mapping images are preferably stored in a database during the learning run of the elevator car.
  • This database is connected to the arithmetic unit.
  • a memory address of a mapping image in the database is defined as a function of the position along the hoistway.
  • the arithmetic unit uses the calculated current position to narrow a search of a mapping image in the database.
  • mapping image associated with the captured image can be found more quickly in the database.
  • the advantage of this is even twofold, because a mapping image can not only be found faster, but the computing capacity of the arithmetic unit can also be further reduced.
  • the invention furthermore relates to a system for determining the position of an elevator car of an elevator system which can be moved in an elevator shaft.
  • a system may preferably be operated by a method mentioned above. It can therefore be seen that the advantages mentioned above with regard to the method according to the invention also apply correspondingly to the system according to the invention.
  • the elevator car is equipped with an acceleration sensor.
  • the system further comprises a computing unit, which is designed to detect acceleration data from the acceleration sensor and to calculate a current position and / or speed of the elevator car based on an initial position and the acquired acceleration data.
  • the system further comprises an image acquisition unit, which is designed to record image recordings of the elevator shaft and to transmit them to the arithmetic unit.
  • the arithmetic unit is configured to compare captured images with mapping images of the elevator shaft to determine an image-based current position and to recalibrate the current position using the image-based current position.
  • the image acquisition unit is further configured to record image recordings of the elevator shaft at a predefined or predefinable first time interval and to transmit them to the arithmetic unit.
  • the arithmetic unit is designed to compare two consecutively recorded images with one another in order to determine a spatial displacement of both images and to use the acceleration data for determining the position and the speed of the elevator car only if a spatial displacement is determined by the arithmetic unit becomes.
  • the arithmetic unit is designed to control and / or regulate the image acquisition unit for image acquisition when acceleration data of the elevator car are detected.
  • the arithmetic unit is designed to detect acceleration data only if they are above a predetermined or specifiable threshold value. More preferably, the arithmetic unit is designed to discard acceleration data which are above a predetermined or predefinable second threshold value.
  • the arithmetic unit is designed to, if a deviation between the current image-based position and the current position is above a predetermined or predeterminable threshold, the current calculated position with to recalibrate the current image-based position.
  • the arithmetic unit is adapted to recalibrate the current position at a second time interval with the image-based current position.
  • the arithmetic unit is configured to determine the image-based current position with images recorded in a predefined or predefinable second time interval, wherein the second time interval is greater than or equal to the first time interval.
  • a database which is designed to store mapping images that were generated during a learning trip of the elevator car.
  • a memory address of a mapping image in the database is defined as a function of the position along the elevator shaft.
  • the arithmetic unit is designed to limit a search of a mapping image in the database using the calculated current position.
  • the invention further relates to an elevator installation which is equipped with an abovementioned system for determining the position of the elevator car.
  • an elevator system 3 is shown, which is equipped with a system 7 according to the invention for determining the position.
  • the elevator system 3 comprises an elevator car 2, which is arranged to be movable in an elevator shaft 1 along an axis z.
  • any carrying and traction means are used for carrying and moving the elevator car 2 application.
  • the elevator car 2 is further provided with an acceleration sensor 4, which is connected to a computing unit 5.
  • the connection between the acceleration sensor 4 and the arithmetic unit 5 is shown schematically with a dashed line. This can be a direct connection via cable, for example with a bus system, or even a wireless connection.
  • the computing unit 5 is arranged on the elevator car 2. However, the arithmetic unit 5 does not necessarily have to be arranged in the elevator shaft 1.
  • the acceleration sensor 4 measures the accelerations Dg occurring in the elevator car 2 and transmits them to the arithmetic unit 5. Particularly important are the accelerations occurring in the Z direction, which can represent a movement of the elevator car 2 and consequently must be detected reliably.
  • the elevator car is further equipped with a camera 6, here by way of example a CCD camera, which is attached to the elevator car 2 by means of a boom 9.
  • the boom 9 allows adjustment of the orientation of the camera 6 and also allows retrofitting in existing elevator systems.
  • the camera 6 is also connected to the arithmetic unit 5, as shown schematically by the dashed line.
  • a Headlight 8 for example, an LED headlight, arranged on the boom 9.
  • the camera 6 can thus record a sufficiently illuminated area of the elevator shaft 1, which improves the quality of the image recordings and consequently increases the reliability of the image comparison.
  • FIG. 2 an exemplary embodiment of the boom 9 is shown.
  • the camera 6 can be pivoted for adjustment about a pivot axis, as indicated by the double arrow 10.
  • the headlight 8 can be both pivoted about a pivot axis 11 and displaced along the boom 9, as indicated by the double arrows 11 and 12 respectively.
  • the camera 6 is operated at a recording rate of 60 Hz.
  • a shift ⁇ z of the images in the z direction has taken place.
  • FIG. 3 such a shift ⁇ z is shown between two consecutively taken pictures B1 and B2.
  • the shows FIG. 3 by way of example a displacement ⁇ z based on a fastener 19.1, 19.2.
  • the fastening element 19.1 appears in the lower area of the first image B1.
  • the fastening element 19.2 appears higher by the displacement ⁇ z.
  • the displacement ⁇ z determined in the images B1 and B2 thus corresponds to a downward travel of the elevator car 2 by ⁇ z.
  • This comparison is preferably carried out on the basis of a gray value comparison of the two images B1 and B2. It can therefore be determined whether the elevator car has been moved in the z direction.
  • These optically determined data are used to supplement the data from the acceleration sensor 4.
  • a position zt of the elevator car 2 can be derived.
  • a movement at a constant speed is not detected by the acceleration sensor 4, since in this case the measured acceleration of the elevator car is zero. Due to the optical motion detection, however, a distinction can be made between standstill and movement of the elevator car 2.
  • the (inertia-based) position determination based on the data from the acceleration sensor 4 is used only when a movement of the elevator car 2 is optically detected.
  • FIG. 4 the data acquired by the acceleration sensor 4 are shown.
  • Dg a curve of the acceleration of the elevator car 2 measured by the acceleration sensor 4 is shown.
  • the acceleration measured by the acceleration sensor 4 is 9.81 m / s 2.
  • mapping images from a database have been taken during a learning journey, for example during the startup of the elevator system 3, and clearly assigned to a position of the elevator car 2 in the elevator shaft 1. It is thus possible to determine the position eg of the elevator car 2 on the basis of a direct, image-based measurement and not as usual by means of indirect methods.
  • the arithmetic unit searches the database for a matching mapping image with the aid of a calculated current position.
  • the search on the database can be greatly restricted since the memory addresses of the mapping images are formed as a function of the position along the elevator shaft 1.
  • the accuracy of indirect methods such as, for example, an incremental disk or a magnetic tape coding decreases.
  • the system 7 is not affected by such a decrease in accuracy because the visually determined, image-based position zBt is independent of the above confounding factors.
  • the current image-based position eg, which has been optically determined as described above, is further used to correct the position zt calculated by means of acceleration data from the acceleration sensor 4.
  • the optically ascertained, image-based position is compared, for example, with the inertia-based position zt calculated from the acceleration data of the acceleration sensor 4, which is subject to "drifting". If the deviation between the optically determined, image-based position, eg, and the calculated, inertia-based position, is too great, the position is recalibrated. During recalibration, the optically determined, image-based position is set, for example, as the current position. Based on this, the acceleration data from the acceleration sensor 4 are then used as described above in order to further determine the position zt of the elevator car 2. It may thus be based on the use of other positioning systems such as e.g. an incremental disk or a magnetic coding are dispensed with. In addition, such a recalibration is possible at any time and not as usual only at the top or bottom stop of an elevator car 2.
  • the recalibration of the current position zt at intervals t2 between 100 to 200 ms at each comparison of a recorded image with mapping images, in which an image-based current position is determined can take place.
  • FIG. 5 the sequence of such a recalibration is shown, wherein the right diagram represents an enlargement of the framed area of the left diagram. It can be seen that the calculated, inertia-based position deviates zt over time from the optically determined, image-based position z. If the deviation is above a threshold value, the calculated inertia-based position zt is recalibrated zt by the optically determined, image-based position zBt is set as the current position of the inertia-based positioning system, as indicated by the arrow 14.
  • the position is then determined as described above until the deviation between the optically determined, image-based position zBt and the calculated, inertia-based position zt again reaches the threshold and a new recalibration takes place, as indicated by the arrow 14 '.
  • the FIG. 6 shows a schematic representation of a section of the elevator system 3 at a floor 17, wherein the FIG. 6 shows a situation in which an elevator car 2 in the shaft 1 in vertical travel in the direction z is about to approach the floor 17.
  • the shaft 1 is opposite the floor 17 by a shaft door 16 lockable.
  • a car door 15 is provided at the shaft door 16 side facing the elevator car 2.
  • the floor 17 is marked with a floor marking 18, here exemplarily designed as a QR code, which lies in the field of view of the camera 6 and can be detected by it.
  • the camera 6 is mounted on the boom 9, which is fastened, for example, to the cabin floor 2.1 of the elevator car 2.
  • the floor marking 18 is preferably characteristic for each floor 17, so that an automatic recognition of the floor positions of all floors 17 along the shaft 1 is possible due to the detectable by the camera 6 floor markings 18.
  • the floor markings 18 detected imagewise by the camera 6 can also be recorded in a learning run as mapping pictures KB and are stored accordingly in the database.
  • the images taken in the area of the floor markings 18 are particularly easily assignable to a mapping image KB, so that a calibration of the calculated current position zt in the area of the floor markings 18 is particularly robust.
  • the floor marking 18 can thus also serve as a catchment point or initial position z0 for the recalculation of the current position zt.
  • the QR code 18 is important for flawless detection of floor positions.
  • the QR code 18 has a dimension of at least 3cm x 3cm with an optimum range of dimension between 4cm x 4cm and 6cm x 6cm. In the case of even larger QR codes, recognition is likewise ensured, but only with a correspondingly large field of view of the camera 6.
  • Such a system 7 allows a very accurate position determination with errors less than 0.5 mm at elevator speeds up to 5 m / s.

Description

Die Erfindung betrifft ein Verfahren und ein System zur Bestimmung der Position einer in einem Aufzugsschacht verfahrbar angeordneten Aufzugskabine eines Aufzugssystems gemäss dem Oberbegriff der unabhängigen Ansprüche.The invention relates to a method and a system for determining the position of an elevator car arranged in a lift cage arranged elevator car of an elevator system according to the preamble of the independent claims.

Es ist aus dem Stand der Technik bekannt, beispielsweise aus der EP 1 232 988 A1 , Aufzugssysteme mit einer Kamera zu versehen, welche an der Aufzugskabine befestigt ist und dazu verwendet wird, Bilder des Aufzugsschachtes aufzunehmen und daraus Informationen über eine Position der Aufzugskabine herzuleiten. Dabei werden Schachtbauteile als Markierungen gesetzt, welche von der Kamera aufgenommen werden und von einem damit verbundenen Rechner verarbeitet werden.It is known from the prior art, for example from the EP 1 232 988 A1 To provide elevator systems with a camera, which is attached to the elevator car and is used to take pictures of the elevator shaft and derive information about a position of the elevator car therefrom. In this case, shaft components are set as markings, which are recorded by the camera and processed by a computer connected thereto.

Nachteilig dabei ist, dass eine Lernfahrt notwendig ist, um die Schachtbauteile einer absoluten Position der Aufzugskabine zuordnen zu können. Zudem ist eine absolute Positionsbestimmung mit einem solchen System mit einem hohen Rechenaufwand verbunden,The disadvantage here is that a learning journey is necessary in order to be able to assign the manhole components to an absolute position of the elevator car. In addition, an absolute positioning is associated with such a system with a high computational effort,

JP 2009 220 904 offenbart eine Aufzugsanlage gemäß dem Oberbegriff des Anspruchs 8.
Es ist daher Aufgabe der Erfindung, ein Verfahren und ein System der eingangs genannten Art anzugeben, welche die Nachteile des Bekannten vermeiden und insbesondere eine zuverlässige Bestimmung der Position der Aufzugskabine ermöglichen. Zudem sollte das erfindungsgemässe System kostengünstig herstellbar und betreibbar sein.
JP 2009 220 904 discloses an elevator installation according to the preamble of claim 8.
It is therefore an object of the invention to provide a method and a system of the type mentioned, which avoid the disadvantages of the known and in particular allow a reliable determination of the position of the elevator car. In addition, the inventive system should be inexpensive to produce and operable.

Diese Aufgabe wird bei einem erfindungsgemässen Verfahren und System mit den Merkmalen der unabhängigen Ansprüche gelöst.This object is achieved in a method and system according to the invention with the features of the independent claims.

Das erfindungsgemässe Verfahren zur Bestimmung der Position einer in einem Aufzugsschacht verfahrbar angeordneten Aufzugskabine eines Aufzugsystems, wobei die Aufzugskabine mit einem Beschleunigungssensor ausgestattet ist, umfasst die folgenden Schritte.The method according to the invention for determining the position of an elevator car of an elevator system which can be moved in an elevator shaft, wherein the elevator car is equipped with an acceleration sensor, comprises the following steps.

In einem ersten Schritt erfolgt die Erfassung der Beschleunigungsdaten aus dem Beschleunigungssensor durch eine Recheneinheit. Anschliessend erfolgt eine Berechnung durch die Recheneinheit der aktuellen Position und/oder Geschwindigkeit der Aufzugskabine ausgehend von einer Anfangsposition und den erfassten Beschleunigungsdaten. Die Position bzw. Geschwindigkeit der Aufzugskabine wird somit entsprechend einem Trägheitsnavigationssystem ermittelt. Es ist jedoch ersichtlich, dass aufgrund der Eigenschaften eines solchen Systems Verzögerungen und Fehler auftreten können, welche die Zuverlässigkeit der Positionsbestimmung beeinträchtigen. So können zum Beispiel Vibrationen der Aufzugskabine vom Beschleunigungssensor nicht eindeutig einer Bewegung oder einer Störung zugeordnet werden, so dass im Endergebnis die berechnete Position von der tatsächlichen Position abweichen wird. Man spricht dabei von einem "driften" der berechneten Positionsdaten bezüglich der reellen Position der Aufzugskabine.In a first step, the acceleration data from the acceleration sensor are detected by a computing unit. This is followed by a calculation by the arithmetic unit of the current position and / or speed of the elevator car starting from an initial position and the acquired acceleration data. The position or speed of the elevator car is thus determined in accordance with an inertial navigation system. However, it will be appreciated that, due to the characteristics of such a system, delays and errors may occur which affect the reliability of position determination. Thus, for example, vibrations of the elevator car from the acceleration sensor can not be clearly assigned to a movement or a fault, so that in the end result the calculated position will deviate from the actual position. This is referred to as a "drifting" of the calculated position data with respect to the real position of the elevator car.

Der Beschleunigungssensor ist bevorzugt als 3-Achsen-Sensor ausgebildet. Auch andere Sensorausgestaltungen sind dabei denkbar. Wichtig ist jedoch, dass die in Verfahrrichtung der Aufzugskabine auftretenden Beschleunigungen erfasst werden können.The acceleration sensor is preferably designed as a 3-axis sensor. Other sensor configurations are conceivable. However, it is important that the accelerations occurring in the direction of travel of the elevator car can be detected.

Erfindungsgemäss ist das Aufzugssystem mit einer Bilderfassungseinheit ausgestattet. Die Bilderfassungseinheit ist an der Aufzugskabine befestigt und mit der Aufzugskabine zusammen beweglich angeordnet.According to the invention, the elevator system is equipped with an image acquisition unit. The image acquisition unit is attached to the elevator car and arranged to be movable together with the elevator car.

Zur Lösung des Problems vergleicht die Recheneinheit erfindungsgemäss die aufgenommenen Bilder mit Kartierungsbildern des Aufzugsschachtes, um eine bildbasierte aktuelle Position zu ermitteln. Ferner nimmt die Recheneinheit eine Neukalibrierung der aktuellen Position unter Verwendung der bildbasierten aktuellen Position vor. Dabei wird durch den Vergleich der aufgenommenen Bilder mit den Kartierungsbildern eine zweite Möglichkeit der Positionsbestimmung und somit eine Redundanz des erfindungsgemässen Verfahrens geschaffen.In order to solve the problem, the arithmetic unit compares the recorded images with mapping images of the elevator shaft in order to determine an image-based current position. Further, the arithmetic unit recalibrates the current position using the image-based current position. In this case, a second possibility of position determination and thus redundancy of the method according to the invention is created by comparing the recorded images with the mapping images.

Unter Kartierungsbildern werden Bilder verstanden, die in Ihrer Gesamtheit ein Abbild des Aufzugschachts darstellen. Die Kartierungsbilder werden bevorzugt während einer Lernfahrt bei der Inbetriebnahme des Aufzuges aufgenommen und eindeutig einer Position der Aufzugskabine im Aufzugsschacht zugeordnet, so dass die spätere Ermittlung der bildbasierten Position möglich wird. Hierbei werden die Kartierungsbilder mit den zugeordneten Positionswerten in einer Datenbank abgespeichert.Mapping images are images that, in their entirety, represent an image of the elevator shaft. The mapping images are preferably taken during a learning drive during the commissioning of the elevator and clearly assigned to a position of the elevator car in the elevator shaft, so that the subsequent determination of the image-based position is possible. Here are the mapping images stored with the assigned position values in a database.

Die Bestimmung der aktuellen Position erfolgt also zunächst mittels der berechneten aktuell Position durch die vom Beschleunigungssensor erhobenen Beschleunigungsdaten, bis erneut eine bildbasierte aktuelle Position ermittelt wird und die aktuelle Position neu kalibriert wird. Somit wird einem sogenannten "Driften" der berechneten aktuellen Position von der bildbasierten aktuellen Position entgegengewirkt. Vorteilhaft ist bei einer solchen Ausführungsform, dass zur Neukalibrierung nicht wie bei Verfahren und Systemen aus dem Stand der Technik eine oberste und/oder unterste Etage angefahren werden muss sondern die Kalibrierung über den gesamten Aufzugsschacht jederzeit, beispielsweise während einer Fahrt, stattfinden kann.The determination of the current position thus takes place initially by means of the calculated current position by the acceleration data obtained by the acceleration sensor until an image-based current position is again determined and the current position is recalibrated. Thus, a so-called "drift" of the calculated current position is counteracted by the image-based current position. It is advantageous in such an embodiment that for recalibration does not need to be approached as in the processes and systems of the prior art, a top and / or bottom floor but the calibration over the entire hoistway at any time, for example during a journey, can take place.

Bevorzugt werden in einem vorgegebenen oder vorgebbaren ersten Zeitabstand Bildaufnahmen des Aufzugsschachts von der Bilderfassungseinheit aufgenommen. Zwei aufeinanderfolgend aufgenommene Bilder werden von der Recheneinheit miteinander verglichen, um eine räumliche Verschiebung beider Bilder zu ermitteln, wobei zur Bestimmung der Position und/oder Geschwindigkeit der Aufzugskabine die Beschleunigungsdaten nur dann herangezogen werden, wenn eine räumliche Verschiebung von der Recheneinheit anhand der aufgenommenen Bildern ermittelt worden ist. Die von der Recheneinheit verglichenen Bilder müssen dabei nicht zwingend unmittelbar nacheinander aufgenommen werden.Preferably, in a predetermined or predefinable first time interval, image recordings of the elevator shaft are taken by the image acquisition unit. Two successively recorded images are compared by the arithmetic unit to determine a spatial displacement of both images, wherein the acceleration data are used to determine the position and / or speed of the elevator car only when a spatial displacement of the arithmetic unit based on the recorded images determined has been. The images compared by the arithmetic unit need not necessarily be recorded immediately one after the other.

Es ist ersichtlich, dass um die Zuverlässigkeit des Verfahrens zu erhöhen, mit Hilfe der Bilderfassungseinheit optisch ermittelt wird, ob die Aufzugskabine sich bewegt hat, d.h. eine Strecke im Aufzugsschacht zurückgelegt hat. Nur in diesem Fall werden dann die Beschleunigungsdaten zur Berechnung der aktuellen Position herangezogen. Somit können Störungen durch Vibrationen, welche beispielsweise beim Be- und Entladen einer Aufzugskabine entstehen und vom Beschleunigungssensor erfasst werden, ausgeschlossen werden.It can be seen that in order to increase the reliability of the method, it is optically determined with the aid of the image acquisition unit whether the elevator car has moved, i. has traveled a distance in the elevator shaft. Only then will the acceleration data be used to calculate the current position. Thus, disturbances due to vibrations, which occur for example during loading and unloading of an elevator car and are detected by the acceleration sensor, can be excluded.

Bevorzugt werden die Bilder nur aufgenommen, wenn der Beschleunigungssensor Beschleunigungsdaten der Aufzugskabinen misst. Dabei wird sichergestellt, dass die Recheneinheit nicht ständig Bilder aus der Bilderfassungseinheit vergleichen muss sondern ein Vergleich lediglich im Falle einer Erkennung einer Beschleunigung (und daher einer möglichen Bewegung) durch den Beschleunigungssensor erfolgt.The images are preferably recorded only when the acceleration sensor measures acceleration data of the elevator cars. This ensures that the arithmetic unit does not constantly have to compare images from the image acquisition unit but a comparison only in case of detection of acceleration (and therefore possible movement) by the acceleration sensor.

Bevorzugt werden Beschleunigungsdaten mit einer Frequenz von 100 Hz aufgenommen.Acceleration data with a frequency of 100 Hz are preferably recorded.

Bilder werden bevorzugt mit einer Frequenz von 60 Hz aufgenommen.Images are preferably recorded at a frequency of 60 Hz.

Bevorzugt werden die Bildaufnahmen nur aufgenommen, wenn die Beschleunigungsdaten über einem vorgegebenen oder vorgebbaren Schwellenwert liegen.The image recordings are preferably recorded only if the acceleration data lie above a predefined or predefinable threshold value.

Damit soll sichergestellt werden, dass Beschleunigungen, welche vom Beschleunigungssensor z.B. während des Be- und Entladens der Aufzugskabine gemessen werden, nicht die Bilderfassungseinheit auslösen. Es ist damit möglich, eine verhältnismässig kostengünstige und einfache Recheneinheit zu verwenden, da diese nicht kontinuierlich Bildaufnahmen verarbeiten und gegebenenfalls speichern muss.This is to ensure that accelerations generated by the acceleration sensor, e.g. during the loading and unloading of the elevator car, do not trigger the image acquisition unit. It is thus possible to use a relatively inexpensive and simple arithmetic unit, as they do not process continuously image recordings and may need to save.

Bevorzugt werden Beschleunigungsdaten, welche über einem vorgegebenen oder vorgebbaren, zweiten Schwellenwert liegen, von der Recheneinheit verworfen.Acceleration data which are above a predefined or predefinable second threshold value are preferably rejected by the arithmetic unit.

Auch dieser bevorzugten Ausführungsform liegt der Gedanke zugrunde, die Rechenkapazität der Recheneinheit auf ein Minimum zu beschränken. Zudem sollen somit Beschleunigungsdaten, welche über dem zweiten Schwellenwert liegen, und welche erfahrungsgemäss durch Störungen verursacht werden, nicht berücksichtigt werden. Beispielsweise können Beschleunigungen grösser als 1g, welche bei einer Notbremsung der Aufzugskabine auftreten, ausgeschlossen werden, da in diesem Fall durch eine Notbremsanordnung sichergestellt wird, dass die Aufzugskabine zum Stillstand kommt.This preferred embodiment is also based on the idea of limiting the computing capacity of the arithmetic unit to a minimum. In addition, thus acceleration data which are above the second threshold, and which experience has caused by disturbances are not taken into account. For example, accelerations greater than 1 g, which occur during emergency braking of the elevator car, can be excluded, since in this case it is ensured by an emergency brake arrangement that the elevator car comes to a standstill.

Besonders bevorzugt erfolgt eine Neukalibrierung der aktuellen Position, wenn eine Abweichung zwischen der bildbasierten aktuellen Position und der berechneten aktuellen Position über einem vorgegebenen oder vorgebbaren Schwellenwert liegt. Dabei wird die bildbasierte aktuelle Position, welche direkt und eindeutig ermittelt worden ist, an Stelle der berechneten aktuellen Position (welche indirekt über die Beschleunigungsdaten ermittelt worden ist) gesetzt.Particularly preferably, the current position is recalibrated if a deviation between the image-based current position and the calculated current position is above a predefined or predefinable threshold value. In this case, the image-based current position, which has been directly and uniquely determined, is set instead of the calculated current position (which has been determined indirectly via the acceleration data).

Alternativ dazu kann die Neukalibrierung der aktuellen Position mit der bildbasierten aktuellen Position in einem zweiten Zeitabstand erfolgen. Bei dieser Alternative wird bei jedem Vergleich der aufgenommenen Bilder mit den Kartierungsbildern, bei dem eine bildbasierte aktuelle Position ermittelt wird, die aktuelle Position neu kalibriert. Diese Neukalibrierung erfolgt also fortlaufend in zweiten Zeitabständen.Alternatively, the recalibration of the current position with the image-based current position may occur at a second interval. In this alternative, each time the captured images are compared with the mapping images, where an image-based current position is determined, the current position is recalibrated. This recalibration thus takes place continuously at second intervals.

Bevorzugt wird also die bildbasierte aktuelle Position mit in einem vorgegebenen oder vorgebbaren, zweiten Zeitabstand aufgenommenen Bildern ermittelt, wobei der zweite Zeitabstand grösser oder gleich als der erste Zeitabstand ist. Auch in diesem Fall wird eine Entlastung der Recheneinheit erzielt. Dabei werden nicht alle von der Bilderfassungseinheit aufgenommenen Bilder für die Bestimmung der bildbasierten aktuellen Position verwendet und somit der Rechenaufwand der Recheneinheit herabgesetzt. Der zweite Zeitabstand liegt besonders bevorzugt im Bereich zwischen 500 und 100 ms, was einer Frequenz von 2 bis 10 Hz entspricht.The image-based current position is therefore preferably determined with images recorded in a predefined or predefinable second time interval, the second time interval being greater than or equal to the first time interval. Also in this case, a relief of the arithmetic unit is achieved. Not all images taken by the image acquisition unit are used for the determination of the image-based current position, and thus the computational complexity of the arithmetic unit is reduced. The second time interval is particularly preferably in the range between 500 and 100 ms, which corresponds to a frequency of 2 to 10 Hz.

Bevorzugt werden die Kartierungsbilder bei der Lernfahrt der Aufzugskabine in einer Datenbank abgelegt. Diese Datenbank ist mit der Recheneinheit verbunden. Eine Speicheradresse eines Kartierungsbilds in der Datenbank ist in Abhängigkeit der Position entlang des Aufzugschachts definiert. Die Recheneinheit verwendet die berechnete aktuelle Position, um eine Suche eines Kartierungsbilds in der Datenbank einzugrenzen.The mapping images are preferably stored in a database during the learning run of the elevator car. This database is connected to the arithmetic unit. A memory address of a mapping image in the database is defined as a function of the position along the hoistway. The arithmetic unit uses the calculated current position to narrow a search of a mapping image in the database.

Hierbei kann bei dem Vergleich der aufgenommenen Bilder mit den Kartierungsbildern zur Ermittlung einer bildbasierten aktuellen Position das dem aufgenommenen Bild zugeordnete Kartierungsbild schneller in der Datenbank gefunden werden. Der Vorteil der sich daraus ergibt ist sogar zweifach, denn ein Kartierungsbild kann nicht nur schneller gefunden werden, sondern die Rechenkapazität der Recheneinheit kann zudem weiter reduziert werden.In this case, when comparing the recorded images with the mapping images to determine an image-based current position, the mapping image associated with the captured image can be found more quickly in the database. The advantage of this is even twofold, because a mapping image can not only be found faster, but the computing capacity of the arithmetic unit can also be further reduced.

Die Erfindung betrifft ferner ein System zur Bestimmung der Position einer in einem Aufzugsschacht verfahrbar angeordneten Aufzugskabine eines Aufzugsystems. Ein solches System kann bevorzugt mit einem oben erwähnten Verfahren betrieben werden. Es ist daher ersichtlich, dass die oben bezüglich des erfindungsgemässen Verfahrens erwähnten Vorteile auch für das erfindungsgemässe System entsprechend gelten.The invention furthermore relates to a system for determining the position of an elevator car of an elevator system which can be moved in an elevator shaft. Such a system may preferably be operated by a method mentioned above. It can therefore be seen that the advantages mentioned above with regard to the method according to the invention also apply correspondingly to the system according to the invention.

Die Aufzugskabine ist mit einem Beschleunigungssensor ausgestattet. Das System umfasst ferner eine Recheneinheit, welche dazu ausgebildet ist, Beschleunigungsdaten aus dem Beschleunigungssensor zu erfassen und eine aktuelle Position und/oder Geschwindigkeit der Aufzugskabine ausgehend von einer Anfangsposition und den erfassten Beschleunigungsdaten zu berechnen.The elevator car is equipped with an acceleration sensor. The system further comprises a computing unit, which is designed to detect acceleration data from the acceleration sensor and to calculate a current position and / or speed of the elevator car based on an initial position and the acquired acceleration data.

Erfindungsgemäss umfasst das System ferner eine Bilderfassungseinheit, welche dazu ausgebildet ist, Bildaufnahmen des Aufzugsschachts aufzunehmen und der Recheneinheit zu übermitteln. Ferner ist die Recheneinheit dazu ausgebildet, aufgenommene Bilder mit Kartierungsbildern des Aufzugsschachtes zu vergleichen, um eine bildbasierte aktuelle Position zu ermitteln und eine Neukalibrierung der aktuellen Position unter Verwendung der bildbasierten aktuellen Position vorzunehmen.According to the invention, the system further comprises an image acquisition unit, which is designed to record image recordings of the elevator shaft and to transmit them to the arithmetic unit. Further, the arithmetic unit is configured to compare captured images with mapping images of the elevator shaft to determine an image-based current position and to recalibrate the current position using the image-based current position.

Bevorzugt ist die Bilderfassungseinheit ferner dazu ausgebildet, in einem vorgegebenen oder vorgebbaren ersten Zeitabstand Bildaufnahmen des Aufzugsschachts aufzunehmen und der Recheneinheit zu übermitteln. Ferner ist die Recheneinheit dazu ausgebildet, zwei aufeinander folgend aufgenommene Bilder miteinander zu vergleichen, um eine räumliche Verschiebung beider Bilder zu ermitteln und zur Bestimmung der Position und der Geschwindigkeit der Aufzugskabine die Beschleunigungsdaten nur dann heran zu ziehen, wenn eine räumliche Verschiebung von der Recheneinheit ermittelt wird.Preferably, the image acquisition unit is further configured to record image recordings of the elevator shaft at a predefined or predefinable first time interval and to transmit them to the arithmetic unit. Furthermore, the arithmetic unit is designed to compare two consecutively recorded images with one another in order to determine a spatial displacement of both images and to use the acceleration data for determining the position and the speed of the elevator car only if a spatial displacement is determined by the arithmetic unit becomes.

Bevorzugt ist die Recheneinheit dazu ausgebildet, die Bilderfassungseinheit zur Bildaufnahme zu steuern und/oder zu regeln, wenn Beschleunigungsdaten der Aufzugskabine erfasst werden.Preferably, the arithmetic unit is designed to control and / or regulate the image acquisition unit for image acquisition when acceleration data of the elevator car are detected.

Bevorzugt ist die Recheneinheit dazu ausgebildet, Beschleunigungsdaten nur dann zu erfassen, wenn diese über einem vorgegebenen oder vorgebbaren Schwellenwert liegen. Weiter bevorzugt ist die Recheneinheit dazu ausgebildet, Beschleunigungsdaten, welche über einem vorgegebenen oder vorgebbaren, zweiten Schwellenwert liegen, zu verwerfen.Preferably, the arithmetic unit is designed to detect acceleration data only if they are above a predetermined or specifiable threshold value. More preferably, the arithmetic unit is designed to discard acceleration data which are above a predetermined or predefinable second threshold value.

Weiter bevorzugt ist die Recheneinheit dazu ausgebildet, wenn eine Abweichung zwischen der aktuellen bildbasierten Position und der aktuellen Position über einem vorgegebenen oder vorgebbaren Schwellenwert liegt, die aktuelle berechnete Position mit der aktuellen bildbasierten Position neu zu kalibrieren. Alternativ dazu ist die Recheneinheit dazu ausgebildet, die aktuelle Position in einem zweiten Zeitabstand mit der bildbasierten aktuellen Position neu zu kalibrieren.More preferably, the arithmetic unit is designed to, if a deviation between the current image-based position and the current position is above a predetermined or predeterminable threshold, the current calculated position with to recalibrate the current image-based position. Alternatively, the arithmetic unit is adapted to recalibrate the current position at a second time interval with the image-based current position.

Weiter bevorzugt ist die Recheneinheit dazu ausgebildet, die bildbasierte aktuelle Position mit in einem vorgegebenen oder vorgebbaren, zweiten Zeitabstand aufgenommenen Bildern zu ermitteln, wobei der zweite Zeitabstand grösser oder gleich als der erste Zeitabstand ist.More preferably, the arithmetic unit is configured to determine the image-based current position with images recorded in a predefined or predefinable second time interval, wherein the second time interval is greater than or equal to the first time interval.

Bevorzugt ist eine Datenbank vorgesehen, die dazu ausgebildet ist, Kartierungsbilder, die in einer lernfahrt der Aufzugskabine erzeugt wurden, abzuspeichern. Dabei ist eine Speicheradresse eines Kartierungsbilds in der Datenbank in Abhängigkeit der Position entlang des Aufzugsschachts definiert. Ferner ist die Recheneinheit dazu ausgebildet, unter Verwendung der berechneten aktuellen Position eine Suche eines Kartierungsbilds in der Datenbank einzugrenzen.Preferably, a database is provided, which is designed to store mapping images that were generated during a learning trip of the elevator car. In this case, a memory address of a mapping image in the database is defined as a function of the position along the elevator shaft. Furthermore, the arithmetic unit is designed to limit a search of a mapping image in the database using the calculated current position.

Die Erfindung betrifft ferner eine Aufzugsanlage, welche mit einem oben erwähnten System zur Bestimmung der Position der Aufzugskabine ausgestattet ist.The invention further relates to an elevator installation which is equipped with an abovementioned system for determining the position of the elevator car.

Die Vorteile ergeben sich aus der obigen Beschreibung betreffend das Verfahren bzw. System.The advantages will be apparent from the description above regarding the method or system.

Die Erfindung wird nachfolgend anhand von einem Ausführungsbeispiel in Verbindung mit den Figuren beispielhaft erläutert. Es zeigen:

  • Fig. 1. eine schematische Schnittansicht einer exemplarischen Ausführungsform einer Aufzugsanlage mit einem erfindungsgemässen System zur Bestimmung der Position;
  • Fig. 2 eine Detailansicht einer exemplarischen Ausgestaltung des Auslegers der Figur 1;
  • Fig. 3 einen exemplarischer Bildvergleich von zwei aufeinanderfolgend aufgenommenen Bildern in einem ersten vorgebbaren Zeitabstand.
  • Fig. 4 eine graphische Darstellung von exemplarischen Beschleunigungsdaten sowie daraus berechneten Position und Geschwindigkeit der Aufzugskabine;
  • Fig. 5 eine graphische Darstellung der berechneten und bildbasierten Position; und
  • Fig. 6 einen exemplarischen QR-Code, der zur Anzeige einer Stockwerksposition dient.
The invention will be explained by way of example with reference to an embodiment in conjunction with the figures. Show it:
  • Fig. 1 , a schematic sectional view of an exemplary embodiment of an elevator installation with a system according to the invention for determining the position;
  • Fig. 2 a detailed view of an exemplary embodiment of the boom of FIG. 1 ;
  • Fig. 3 an exemplary image comparison of two successive recorded images in a first predetermined interval.
  • Fig. 4 a graphical representation of exemplary acceleration data and from this calculated position and speed of the elevator car;
  • Fig. 5 a graphical representation of the calculated and image-based position; and
  • Fig. 6 an exemplary QR code that is used to display a floor position.

In der Figur 1 ist ein Aufzugssystem 3 dargestellt, welches mit einem erfindungsgemässen System 7 zur Bestimmung der Position ausgerüstet ist. Das Aufzugssystem 3 umfasst eine Aufzugskabine 2, welche in einem Aufzugsschacht 1 entlang einer Achse z verfahrbar angeordnet ist. Nicht dargestellt sind etwaige Trag- und Traktionsmittel, welche zum Tragen und Bewegen der Aufzugskabine 2 Anwendung finden.In the FIG. 1 an elevator system 3 is shown, which is equipped with a system 7 according to the invention for determining the position. The elevator system 3 comprises an elevator car 2, which is arranged to be movable in an elevator shaft 1 along an axis z. Not shown are any carrying and traction means, which are used for carrying and moving the elevator car 2 application.

Die Aufzugskabine 2 ist ferner mit einem Beschleunigungssensor 4 versehen, welcher mit einer Recheneinheit 5 verbunden ist. Die Verbindung zwischen dem Beschleunigungssensor 4 und der Recheneinheit 5 ist schematisch mit einer gestrichelten Linie dargestellt. Dabei kann es sich um eine direkte Verbindung über Kabel, beispielsweise mit einem BUS-System, oder auch um eine kabellose Verbindung handeln. Bei dem in der Figur 1 dargestellten Ausführungsbeispiel ist die Recheneinheit 5 an der Aufzugskabine 2 angeordnet. Die Recheneinheit 5 muss jedoch nicht zwangsläufig im Aufzugsschacht 1 angeordnet sein.The elevator car 2 is further provided with an acceleration sensor 4, which is connected to a computing unit 5. The connection between the acceleration sensor 4 and the arithmetic unit 5 is shown schematically with a dashed line. This can be a direct connection via cable, for example with a bus system, or even a wireless connection. In the in the FIG. 1 illustrated embodiment, the computing unit 5 is arranged on the elevator car 2. However, the arithmetic unit 5 does not necessarily have to be arranged in the elevator shaft 1.

Der Beschleunigungssensor 4 misst die in der Aufzugskabine 2 auftretenden Beschleunigungen Dg und übermittelt diese an die Recheneinheit 5. Besonders wichtig sind die in Z-Richtung auftretenden Beschleunigungen, welche eine Bewegung der Aufzugskabine 2 darstellen können und demzufolge zuverlässig erfasst werden müssen.The acceleration sensor 4 measures the accelerations Dg occurring in the elevator car 2 and transmits them to the arithmetic unit 5. Particularly important are the accelerations occurring in the Z direction, which can represent a movement of the elevator car 2 and consequently must be detected reliably.

Die Aufzugskabine ist ferner mit einer Kamera 6, hier exemplarisch einer CCD-Kamera, ausgestattet, welche an der Aufzugskabine 2 mittels eines Auslegers 9 angebracht ist. Der Ausleger 9 erlaubt eine Justierung der Ausrichtung der Kamera 6 und erlaubt zudem eine Nachrüstung bei bereits bestehenden Aufzugssystemen.The elevator car is further equipped with a camera 6, here by way of example a CCD camera, which is attached to the elevator car 2 by means of a boom 9. The boom 9 allows adjustment of the orientation of the camera 6 and also allows retrofitting in existing elevator systems.

Die Kamera 6 ist ebenfalls, wie schematisch durch die gestrichelte Linie dargestellt, mit der Recheneinheit 5 verbunden. Zur Beleuchtung des Aufzugsschachtes 1 ist ein Scheinwerfer 8, beispielsweise ein LED-Scheinwerfer, am Ausleger 9 angeordnet. Die Kamera 6 kann somit einen ausreichend beleuchteten Bereich des Aufzugsschachtes 1 aufnehmen, was die Qualität der Bildaufnahmen verbessert und folglich die Zuverlässigkeit des Bildvergleichs steigert.The camera 6 is also connected to the arithmetic unit 5, as shown schematically by the dashed line. To illuminate the elevator shaft 1 is a Headlight 8, for example, an LED headlight, arranged on the boom 9. The camera 6 can thus record a sufficiently illuminated area of the elevator shaft 1, which improves the quality of the image recordings and consequently increases the reliability of the image comparison.

In der Figur 2 ist eine exemplarische Ausgestaltung des Auslegers 9 dargestellt. Die Kamera 6 kann zur Justierung um eine Schwenkachse geschwenkt werden, wie durch den Doppelpfeil 10 angedeutet. Zudem kann der Scheinwerfer 8 sowohl um eine Schwenkachse 11 geschwenkt als auch entlang des Auslegers 9 verschoben werden, wie durch die Doppelpfeile 11 bzw. 12 angedeutet.In the FIG. 2 an exemplary embodiment of the boom 9 is shown. The camera 6 can be pivoted for adjustment about a pivot axis, as indicated by the double arrow 10. In addition, the headlight 8 can be both pivoted about a pivot axis 11 and displaced along the boom 9, as indicated by the double arrows 11 and 12 respectively.

Die Kamera 6 wird mit einer Aufnahmerate von 60 Hz betrieben. Durch einen Vergleich von zwei aufeinanderfolgend aufgenommenen Bildern B1 und B2 kann ermittelt werden, ob eine Verschiebung Δz der Bilder in z-Richtung stattgefunden hat. In Figur 3 ist eine solche Verschiebung Δz zwischen zwei aufeinanderfolgend aufgenommenen Bildern B1 und B2 dargestellt. Insbesondere zeigt die Figur 3 exemplarisch eine Verschiebung Δz anhand eines Befestigungselements 19.1, 19.2. Das Befestigungselement 19.1 erscheint im unteren Bereich des ersten Bildes B1. Im zweiten Bild B2 erscheint das Befestigungselement 19.2 um die Verschiebung Δz höher. Die in den Bildern B1 und B2 festgestellte Verschiebung Δz entspricht also einer Abwärtsfahrt der Aufzugskabine 2 um Δz. Dieser Vergleich erfolgt vorzugsweise aufgrund eines Grauwertvergleichs der beiden Bilder B1 und B2. Es kann demzufolge ermittelt werden, ob die Aufzugskabine in z-Richtung bewegt worden ist. Diese optisch ermittelten Daten werden dazu verwendet, um die Daten aus dem Beschleunigungssensor 4 zu ergänzen.The camera 6 is operated at a recording rate of 60 Hz. By comparing two consecutively recorded images B1 and B2, it can be determined whether a shift Δz of the images in the z direction has taken place. In FIG. 3 such a shift Δz is shown between two consecutively taken pictures B1 and B2. In particular, the shows FIG. 3 by way of example a displacement Δz based on a fastener 19.1, 19.2. The fastening element 19.1 appears in the lower area of the first image B1. In the second image B2, the fastening element 19.2 appears higher by the displacement Δz. The displacement Δz determined in the images B1 and B2 thus corresponds to a downward travel of the elevator car 2 by Δz. This comparison is preferably carried out on the basis of a gray value comparison of the two images B1 and B2. It can therefore be determined whether the elevator car has been moved in the z direction. These optically determined data are used to supplement the data from the acceleration sensor 4.

Anhand des Beschleunigungssensors 4 kann ermittelt werden, ob die Aufzugskabine 2 eine Beschleunigung Dg erfährt. Daraus kann eine Position zt der Aufzugskabine 2 hergeleitet werden. Eine Bewegung mit konstanter Geschwindigkeit wird jedoch vom Beschleunigungssensor 4 nicht erfasst, da in diesem Fall die gemessene Beschleunigung der Aufzugskabine null beträgt. Durch die optische Bewegungserkennung kann jedoch zwischen Stillstand und Bewegung der Aufzugskabine 2 unterschieden werden. Demzufolge wird die (trägheitsbasierte) Positionsbestimmung aufgrund der Daten aus dem Beschleunigungssensor 4 nur dann verwendet, wenn eine Bewegung der Aufzugskabine 2 optisch erkannt wird.Based on the acceleration sensor 4 can be determined whether the elevator car 2 experiences an acceleration Dg. From this, a position zt of the elevator car 2 can be derived. However, a movement at a constant speed is not detected by the acceleration sensor 4, since in this case the measured acceleration of the elevator car is zero. Due to the optical motion detection, however, a distinction can be made between standstill and movement of the elevator car 2. As a result, the (inertia-based) position determination based on the data from the acceleration sensor 4 is used only when a movement of the elevator car 2 is optically detected.

In der Figur 4 sind die vom Beschleunigungssensor 4 erfassten Daten dargestellt. Mit Dg ist ein Verlauf der vom Beschleunigungssensor 4 gemessenen Beschleunigung der Aufzugskabine 2 dargestellt. Beim Stillstand der Kabine beträgt die vom Beschleunigungssensor 4 gemessene Beschleunigung 9,81 m/s2. Durch Integration der Beschleunigung Dg können somit die Geschwindigkeit vt und die trägheitsbasierten Position zt berechnet werden, welche ebenfalls in der Figur 4 in m/s bzw. m dargestellt sind. In dem in der Figur 4 dargestellten Fall wurde die Aufzugskabine 2, wie durch die Pfeile EG angedeutet, regelmässig bei einer Haltestelle z = 0 m angehalten. Es ist jedoch ersichtlich, dass die aus den Beschleunigungsdaten Dg berechnete, trägheitsbasierte Position zt nach einer ersten Fahrt nie den Wert 0 m aufweist sondern stetig von diesem Wert divergiert. Bei einer Zeit von etwa 670 s beträgt diese als "Driften" bezeichnete Divergenz sogar etwa 1 m, wie durch den Pfeil 13 angedeutet.In the FIG. 4 the data acquired by the acceleration sensor 4 are shown. With Dg, a curve of the acceleration of the elevator car 2 measured by the acceleration sensor 4 is shown. When the car is stationary, the acceleration measured by the acceleration sensor 4 is 9.81 m / s 2. By integrating the acceleration Dg, it is thus possible to calculate the velocity vt and the inertia-based position zt, which are also shown in FIG FIG. 4 in m / s or m are shown. In the in the FIG. 4 As shown by the arrows EG, the elevator car 2 was regularly stopped at a stop z = 0 m. It can be seen, however, that the inertia-based position zt calculated from the acceleration data Dg never has the value 0 m after a first drive but steadily diverges from this value. At a time of about 670 s, this divergence, referred to as "drifting", is even about 1 m, as indicated by the arrow 13.

Zur Ermittlung der aktuellen Position der Aufzugskabine werden ferner Bilder, welche mit einem Zeitabstand von 100 bis 200 ms aufgenommen worden sind, mit Kartierungsbildern aus einer Datenbank verglichen. Die Kartierungsbilder aus der Datenbank sind während einer Lernfahrt, beispielsweise bei der Inbetriebnahme des Aufzugssystems 3, aufgenommen worden und eindeutig einer Position der Aufzugskabine 2 im Aufzugsschacht 1 zugeordnet worden. Es ist somit möglich, die Position zBt der Aufzugskabine 2 anhand einer direkten, bildbasierten Messung und nicht wie bis jetzt üblich mittels indirekter Methoden zu bestimmen.In order to determine the current position of the elevator car, images which have been recorded with a time interval of 100 to 200 ms are also compared with mapping images from a database. The mapping images from the database have been taken during a learning journey, for example during the startup of the elevator system 3, and clearly assigned to a position of the elevator car 2 in the elevator shaft 1. It is thus possible to determine the position eg of the elevator car 2 on the basis of a direct, image-based measurement and not as usual by means of indirect methods.

Besonders vorteilhaft durchsucht die Recheneinheit bei der Ermittlung einer bildbasierten aktuellen Position zBt, bei der ein aufgenommenes Bild mit Kartierungsbildern verglichen wird, die Datenbank nach einem übereinstimmenden Kartierungsbild unter Zuhilfenahme einer berechneten aktuellen Position zt. Hierbei kann die Suche auf der Datenbank stark eingeschränkt werden, da die Speicheradressen der Kartierungsbilder in Abhängigkeit der Position entlang des Aufzugsschachts 1 gebildet sind.Particularly advantageously, when determining an image-based current position, eg, in which a captured image is compared with mapping images, the arithmetic unit searches the database for a matching mapping image with the aid of a calculated current position. In this case, the search on the database can be greatly restricted since the memory addresses of the mapping images are formed as a function of the position along the elevator shaft 1.

Insbesondere durch eine thermisch bedingte Ausdehnung oder Schrumpfung oder durch ein schwerkraftbedingtes Setzen eines Gebäudes nimmt die Genauigkeit von indirekten Methoden wie beispielsweise einer Inkrementalscheibe oder einer Magnetbandkodierung ab. Das System 7 ist von einer solchen Abnahme der Genauigkeit nicht betroffen, da die optisch ermittelte, bildbasierte Position zBt unabhängig von den oben genannten Störfaktoren ist.
Die aktuelle bildbasierte Position zBt, welche wie oben beschrieben optisch ermittelt worden ist, wird ferner dazu verwendet, um die mittels Beschleunigungsdaten aus dem Beschleunigungssensor 4 berechnete Position zt zu korrigieren.
In particular, due to a thermally induced expansion or shrinkage or due to a gravity-induced setting of a building, the accuracy of indirect methods such as, for example, an incremental disk or a magnetic tape coding decreases. The system 7 is not affected by such a decrease in accuracy because the visually determined, image-based position zBt is independent of the above confounding factors.
The current image-based position, eg, which has been optically determined as described above, is further used to correct the position zt calculated by means of acceleration data from the acceleration sensor 4.

Dabei wird die optisch ermittelte, bildbasierte Position zBt mit der aus den Beschleunigungsdaten des Beschleunigungssensors 4 berechneten, trägheitsbasierten Position zt, welche einem "Driften" unterliegt, verglichen. Wird die Abweichung zwischen der optisch ermittelten, bildbasierten Position zBt und der berechneten, trägheitsbasierten Position zt zu gross, erfolgt eine Neukalibrierung der Position. Bei der Neukalibrierung wird die optisch ermittelte, bildbasierte Position zBt als aktuelle Position gesetzt. Davon ausgehend werden dann die Beschleunigungsdaten aus dem Beschleunigungssensor 4 wie oben beschrieben herangezogen, um die Position zt der Aufzugskabine 2 weiter zu bestimmen. Es kann somit auf die Verwendung von weiteren Systemen zur Positionsbestimmung wie z.B. eine Inkrementalscheibe oder einer Magnetkodierung verzichtet werden. Zudem ist eine solche Neukalibrierung jederzeit und nicht wie bisher üblich nur bei der obersten bzw. untersten Haltestelle einer Aufzugskabine 2 möglich.In this case, the optically ascertained, image-based position is compared, for example, with the inertia-based position zt calculated from the acceleration data of the acceleration sensor 4, which is subject to "drifting". If the deviation between the optically determined, image-based position, eg, and the calculated, inertia-based position, is too great, the position is recalibrated. During recalibration, the optically determined, image-based position is set, for example, as the current position. Based on this, the acceleration data from the acceleration sensor 4 are then used as described above in order to further determine the position zt of the elevator car 2. It may thus be based on the use of other positioning systems such as e.g. an incremental disk or a magnetic coding are dispensed with. In addition, such a recalibration is possible at any time and not as usual only at the top or bottom stop of an elevator car 2.

Wie eingangs erwähnt, kann alternativ die Neukalibrierung der aktuellen Position zt in Zeitabständen t2 zwischen 100 bis 200 ms bei jedem Vergleich eines aufgenommenen Bilds mit Kartierungsbildern, bei welchem eine bildbasierte aktuelle Position ermittelt wird, erfolgen.As mentioned above, alternatively, the recalibration of the current position zt at intervals t2 between 100 to 200 ms at each comparison of a recorded image with mapping images, in which an image-based current position is determined, can take place.

In der Figur 5 ist der Ablauf einer solchen Neukalibrierung dargestellt, wobei das rechte Diagramm eine Vergrösserung des eingerahmten Bereichs des linken Diagramms darstellt. Dabei ist ersichtlich, dass die berechnete, trägheitsbasierte Position zt über die Zeit von der optisch ermittelten, bildbasierten Position zBt abweicht. Wenn die Abweichung über einem Schwellenwert liegt, wird die berechnete, trägheitsbasierte Position zt neu kalibriert indem die optisch ermittelte, bildbasierte Position zBt als aktuelle Position des trägheitsbasierten Positioniersystem gesetzt wird, wie durch den Pfeil 14 angedeutet. Die Positionsbestimmung erfolgt dann weiter wie oben beschrieben, bis die Abweichung zwischen der optisch ermittelten, bildbasierten Position zBt und der berechneten, trägheitsbasierten Position zt wieder den Schwellenwert erreicht und eine erneute Neukalibrierung stattfindet, wie durch den Pfeil 14' angedeutet.In the FIG. 5 the sequence of such a recalibration is shown, wherein the right diagram represents an enlargement of the framed area of the left diagram. It can be seen that the calculated, inertia-based position deviates zt over time from the optically determined, image-based position z. If the deviation is above a threshold value, the calculated inertia-based position zt is recalibrated zt by the optically determined, image-based position zBt is set as the current position of the inertia-based positioning system, as indicated by the arrow 14. The position is then determined as described above until the deviation between the optically determined, image-based position zBt and the calculated, inertia-based position zt again reaches the threshold and a new recalibration takes place, as indicated by the arrow 14 '.

Die Figur 6 zeigt in einer schematischen Darstellung einen Ausschnitt der Aufzugsanlage 3 bei einem Stockwerk 17, wobei die Figur 6 eine Situation zeigt, in der eine Aufzugskabine 2 im Schacht 1 in vertikaler Fahrt in Richtung z im Begriffe ist das Stockwerk 17 anzufahren. Der Schacht 1 ist gegenüber dem Stockwerk 17 durch eine Schachttüre 16 abschliessbar. An der der Schachttüre 16 zugewandten Seite der Aufzugskabine 2 ist eine Kabinentüre 15 vorgesehen. Das Stockwerk 17 ist mit einer Stockwerkmarkierung 18 markiert, hier exemplarisch als QR-Code ausgelegt, die im Sichtbereich der Kamera 6 liegt und von dieser erfassbar ist. Die Kamera 6 ist am Ausleger 9, der beispielsweise am Kabinenboden 2.1 der Aufzugskabine 2 befestigt ist, montiert. Die Stockwerkmarkierung 18 ist vorzugsweise für jedes Stockwerk 17 charakteristisch, so dass aufgrund der durch die Kamera 6 erfassbaren Stockwerkmarkierungen 18 eine automatische Erkennung der Stockwerkpositionen aller Stockwerke 17 entlang des Schachts 1 möglich ist.The FIG. 6 shows a schematic representation of a section of the elevator system 3 at a floor 17, wherein the FIG. 6 shows a situation in which an elevator car 2 in the shaft 1 in vertical travel in the direction z is about to approach the floor 17. The shaft 1 is opposite the floor 17 by a shaft door 16 lockable. At the shaft door 16 side facing the elevator car 2, a car door 15 is provided. The floor 17 is marked with a floor marking 18, here exemplarily designed as a QR code, which lies in the field of view of the camera 6 and can be detected by it. The camera 6 is mounted on the boom 9, which is fastened, for example, to the cabin floor 2.1 of the elevator car 2. The floor marking 18 is preferably characteristic for each floor 17, so that an automatic recognition of the floor positions of all floors 17 along the shaft 1 is possible due to the detectable by the camera 6 floor markings 18.

Die bildweise von der Kamera 6 erkannten Stockwerkmarkierungen 18 sind ebenfalls in einer Lernfahrt als Kartierungsbilder KB aufnehmbar und werden in der Datenbank entsprechend hinterlegt. Die im Bereich der Stockwerkmarkierungen 18 aufgenommenen Bilder sind besonders einfach einem Kartierungsbild KB zuweisbar, so dass eine Kalibrierung der berechneten aktuellen Position zt im Bereich der Stockwerkmarkierungen 18 besonders robust ist. In einem zeitlich begrenzten Ausfall des Systems 7 kann somit die Stockwerkmarkierung 18 auch als Auffangpunkt bzw. Anfangsposition z0 für die Neuberechnung der aktuellen Position zt dienen.The floor markings 18 detected imagewise by the camera 6 can also be recorded in a learning run as mapping pictures KB and are stored accordingly in the database. The images taken in the area of the floor markings 18 are particularly easily assignable to a mapping image KB, so that a calibration of the calculated current position zt in the area of the floor markings 18 is particularly robust. In a time-limited failure of the system 7, the floor marking 18 can thus also serve as a catchment point or initial position z0 for the recalculation of the current position zt.

Hauseigene Tests haben gezeigt, dass die Dimensionierung des QR-Codes 18 wichtig ist für die fehlerlose Erkennung der Stockwerkpositionen. Vorzugsweise weist der QR-Code 18 eine Dimension von mindestens 3 cm x 3 cm auf, wobei ein optimaler Bereich der Dimension zwischen 4 cm x 4 cm und 6 cm x 6cm liegt. Bei noch grösseren QR-Codes ist eine Erkennung zwar ebenfalls sichergestellt, aber nur bei entsprechend grossem Sichtbereich der Kamera 6.In-house tests have shown that dimensioning the QR code 18 is important for flawless detection of floor positions. Preferably, the QR code 18 has a dimension of at least 3cm x 3cm with an optimum range of dimension between 4cm x 4cm and 6cm x 6cm. In the case of even larger QR codes, recognition is likewise ensured, but only with a correspondingly large field of view of the camera 6.

Es ist ersichtlich, dass ein solches System 7 zur Bestimmung der Position einer Aufzugskabine 2 bei bestehenden Aufzugssystemen 3 einfach nachgerüstet werden kann. Dabei muss nur die Kamera 6 und ggf. der Scheinwerfer 8 an der Aufzugskabine befestigt und mit der Recheneinheit 5 verbunden werden. Vorteilhaft ist, wenn es sich bei der Recheneinheit 5 um die bereits bestehende Regel- und/oder Steuereinheit des Aufzugssystems 3 handelt, welche durch Softwareupdate oder Hinzufügung eines Hardwaremoduls aufgerüstet wird. Optional können auch Stockwerkmarkierungen 18 im Schacht 1 bei den Stockwerken 17 angeordnet werden. Anschliessend erfolgt eine Lernfahrt, bei welcher die Kartierungsbilder des Aufzugsschachts 1 aufgenommen und einer Position der Aufzugskabine 2 zugeordnet werden.It can be seen that such a system 7 for determining the position of a Elevator car 2 in existing elevator systems 3 can be easily retrofitted. In this case, only the camera 6 and possibly the headlight 8 must be attached to the elevator car and connected to the arithmetic unit 5. It is advantageous if the computing unit 5 is the already existing control and / or control unit of the elevator system 3, which is upgraded by software update or addition of a hardware module. Optionally, floor markings 18 in the shaft 1 at the floors 17 can be arranged. This is followed by a learning run, in which the mapping images of the elevator shaft 1 are taken and assigned to a position of the elevator car 2.

Ein solches System 7 ermöglicht eine sehr genaue Positionsbestimmung mit Fehlern kleiner als 0,5 mm bei Aufzugsgeschwindigkeiten bis zu 5 m/s.Such a system 7 allows a very accurate position determination with errors less than 0.5 mm at elevator speeds up to 5 m / s.

Claims (15)

  1. A method for determining the position (zt) of an elevator cab (2) of an elevator system (3), movably arranged within an elevator shaft (1), the elevator cab (2) being equipped with an acceleration sensor (4), comprising the following steps:
    - determination of the acceleration data (Dg) from the acceleration sensor (4) via a computing unit (5),
    - calculation by the computing unit (5) of the current position (zt) and/or speed (vt) of the elevator cab (2) based on an initial position (z0) and on the recorded acceleration data (Dg),
    characterized in that the elevator system (3) is equipped with an image capture unit (6),
    - the image capture unit (6) recording images (Bn) of the elevator shaft (1),
    - the computing unit (5) comparing captured images (Bn) to mapped images (KB) of the elevator shaft (1) in order to derive an image-based current position (zBt) and
    - the computing unit (5) performing a recalibration of the current position (zt) using the current, image-based position (zBt).
  2. The method according to claim 1, characterized in that, within a specified or specifiable first time interval (Δt1), images (Bn) of the elevator shaft (1) are recorded by image the capture unit (6) and
    two successive captured images (B1, B2) are compared to each other by the computing unit (5) to determine a spatial shift (z) of both images (B1, B2), the acceleration data (Dg) only being to determine the position (zt) and/or speed (vt) of the elevator cab (2) if a spatial shift (z) has been detected by the computing unit (5).
  3. The method according to claim 2, characterized in that the images (B1, B2) are only recorded if the acceleration sensor (4) measures acceleration data (Dg) of the elevator cab (2).
  4. The method according to claim 2, characterized in that the images (B1, B2) are only recorded if the acceleration data (Dg) are above a specified or specifiable threshold value (Ds) and/or that acceleration data (Dg) that are above a specified or specifiable second threshold value (DS2) are discarded by the computing unit (5).
  5. The method according to claim 1, characterized in that the current position (zt) is recalibrated using the image-based current position (zBt) within a second time interval (Δt2), or that, if a discrepancy between the image-based current position (zBt) and the calculated position (zt) is above a specified or specifiable threshold value (ZS), the current position (zt) is recalibrated using the image-based current position (zBt).
  6. The method according to claim 1 or 5, characterized in that the image-based current position (zBt) is determined using images (Bn) captured within a specified or specifiable second time interval (Δt2), the second time interval being greater than or equal to the first time interval (Δt2 ≥ Δt1).
  7. The method according to claim 1, characterized in that the mapped images (KB) are stored during a learning run of the elevator cab (2), a memory address of a mapped image (KB) being defined in the database as a function of the position (zt) along the elevator shaft (1), and that the calculated current position (zt) is used by the computing unit (5) in order to narrow a search for a mapped image (KB) in the database.
  8. A system (7) for determining the position (zt) of an elevator cab (2) of an elevator system (3) movably arranged within an elevator shaft (1), in particular having a method according to any of the preceding claims, wherein the elevator cab (2) is equipped with an acceleration sensor (4), including a computing unit (5) that is designed to detect acceleration data (Dg) from the acceleration sensor (4) and to calculate a current position (zt) and/or speed (vt) of the elevator cab (2) based on an initial position (z0) and the detected acceleration data (Dg),
    characterized in that the system (7) also includes an image capture unit (6) that is designed to take images (Bn) of the elevator shaft (1) and to send them to the computing unit (5) and that the computing unit (5) is also designed to compare the captured images (Bn) to the mapped images (KB) of the elevator shaft (1) in order to determine an image-based current position (zBt) and to perform a recalibration of the current position (zt) using the image-based current position (zBt).
  9. The system (7) according to claim 8, characterized in that the image capture unit (6) is further designed to take images (Bn) of the elevator shaft (1) within a specified or specifiable first time interval (Δt1) and that the computing unit (5) is further designed to compare two successive captured images (B1, B2) to each other in order to determine a spatial shift (z) of both images (B1, B2) and only to use the acceleration data (Dg) for determination of the position (zt) and/or speed (vt) of the elevator cab (2) if a spatial shift (z) is detected by the computing unit (5).
  10. The system (7) according to claim 9, characterized in that the computing unit (5) is designed to control and/or regulate the image capture unit (6) for capturing images (B1, B2) only if the acceleration data (Dg) of elevator cab (2) are detected.
  11. The system (7) according to claim 10, characterized in that the computing unit (5) is designed to record acceleration data (Dg) only if these are above a specified or specifiable threshold value (DS) and/or that the computing unit (5) is designed to discard acceleration data (Dg) that are above a specified or specifiable threshold value (DS2).
  12. The system (7) according to claim 8, characterized in that the computing unit (5) is designed to recalibrate the current position (zt) within a second time interval (Δt2) using the image-based position (zBt), or that the computing unit (5) is designed to recalibrate the current position (zt) using the image-based current position (zBt) if a discrepancy between the image-based current position (Bt) and the calculated current position (zt) is above a specified or specifiable threshold value (ZS).
  13. The system (7) according to claim 8 or 12, characterized in that the computing unit (5) is designed to determine the image-based current position (zBt) using images (Bn) captured within a second specified or specifiable time interval (Δt2), the second time interval being greater than or equal to the first time interval (Δt2 ≥ Δt1).
  14. The system (7) according to claim 8, characterized in that a database is provided that is designed to store mapped images (KB) that were created in a learning run of the elevator cab (2), a memory address of a mapped image (KB) being defined in the database as a function of the position along the elevator shaft (1), and that the computing unit (5) is designed to narrow a search for a mapped image (KB) in the database using the calculated current position (zt).
  15. An elevator system having a system (7) for determining the position of the elevator cab (2) according to any of claims 8 to 14.
EP15804120.2A 2014-12-02 2015-12-02 Method and system for determining the position of an elevator car Active EP3227215B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP14195971 2014-12-02
PCT/EP2015/078385 WO2016087528A1 (en) 2014-12-02 2015-12-02 Method and system for determining the position of a lift car

Publications (2)

Publication Number Publication Date
EP3227215A1 EP3227215A1 (en) 2017-10-11
EP3227215B1 true EP3227215B1 (en) 2019-02-06

Family

ID=52002813

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15804120.2A Active EP3227215B1 (en) 2014-12-02 2015-12-02 Method and system for determining the position of an elevator car

Country Status (16)

Country Link
US (1) US10549947B2 (en)
EP (1) EP3227215B1 (en)
KR (2) KR20220154246A (en)
CN (1) CN107000964B (en)
AU (1) AU2015357119B2 (en)
BR (1) BR112017010539B1 (en)
CA (1) CA2968042C (en)
ES (1) ES2721534T3 (en)
MX (1) MX371434B (en)
MY (1) MY187871A (en)
PH (1) PH12017500990A1 (en)
RU (1) RU2699744C2 (en)
SG (1) SG11201704345TA (en)
TR (1) TR201906504T4 (en)
TW (1) TWI673229B (en)
WO (1) WO2016087528A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019204363A1 (en) * 2019-03-28 2020-10-01 Robert Bosch Gmbh Device for determining the position of an elevator car in an elevator shaft and a system with such a device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI673229B (en) * 2014-12-02 2019-10-01 瑞士商伊文修股份有限公司 Method and system for determining the position of an elevator car and elevator system
CN109071149A (en) * 2016-05-04 2018-12-21 通力股份公司 System and method for enhancing elevator positioning
ES2807823T3 (en) * 2016-10-04 2021-02-24 Otis Elevator Co Elevator system
TWI603272B (en) * 2017-03-08 2017-10-21 台灣新光保全股份有限公司 Elevator system having function of determination for carrying passengers
TWI763829B (en) 2017-05-18 2022-05-11 瑞士商伊文修股份有限公司 System and method for determining the position of an elevator cab of an elevator system
EP3814261B1 (en) * 2018-06-27 2022-10-26 Inventio Ag System and method for determining the position of an elevator car of a lift assembly
US11767194B2 (en) 2019-01-28 2023-09-26 Otis Elevator Company Elevator car and door motion monitoring
US11649136B2 (en) 2019-02-04 2023-05-16 Otis Elevator Company Conveyance apparatus location determination using probability
CN112340558B (en) * 2019-08-07 2023-09-01 奥的斯电梯公司 Leveling method, projection device and leveling system for elevator car
US20210094794A1 (en) * 2019-09-27 2021-04-01 Otis Elevator Company Air pressure and acceleration sensor floor correction by elevator status information
US20210221411A1 (en) * 2020-01-21 2021-07-22 Alstom Transport Technologies Method for controlling the vertical position of a vehicle and associated control assembly
WO2024068537A1 (en) 2022-09-27 2024-04-04 Inventio Ag Method of controlling an elevator system

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3891064A (en) * 1974-04-16 1975-06-24 Westinghouse Electric Corp Elevator system
US5485897A (en) * 1992-11-24 1996-01-23 Sanyo Electric Co., Ltd. Elevator display system using composite images to display car position
SG96681A1 (en) * 2001-02-20 2003-06-16 Inventio Ag Method of generating hoistway information to serve an elevator control
US7540357B2 (en) * 2003-05-15 2009-06-02 Otis Elevator Company Position reference system for elevators
JP2005126164A (en) * 2003-10-21 2005-05-19 Mitsubishi Electric Corp Position sensing device for elevator
US7143001B2 (en) * 2004-07-21 2006-11-28 Rockwell Automation Technologies, Inc. Method for monitoring operating characteristics of a single axis machine
SG120230A1 (en) * 2004-08-12 2006-03-28 Inventio Ag Lift installation with a cage and equipment for detecting a cage position as well as a method of operating such a lift installation
KR20080089673A (en) * 2005-01-04 2008-10-07 미쓰비시덴키 가부시키가이샤 Mover position/speed detecting device
FI120828B (en) * 2007-02-21 2010-03-31 Kone Corp Electronic motion limiter and procedure for controlling electronic motion limiter
WO2009013114A1 (en) * 2007-07-20 2009-01-29 Inventio Ag Method for ascertaining the speed of a lift cabin and a control unit for implementing this method
FI119982B (en) * 2007-10-18 2009-05-29 Kone Corp Elevator provided with a prisoner arrangement
JP2009220904A (en) * 2008-03-13 2009-10-01 Toshiba Elevator Co Ltd Elevator system
KR100976781B1 (en) * 2008-05-20 2010-08-18 노아테크놀로지(주) Apparatus for floor indication of elevator
FI120449B (en) * 2008-08-12 2009-10-30 Kone Corp Arrangement and method for determining the position of the elevator car
KR20110086426A (en) * 2010-01-22 2011-07-28 오티스 엘리베이터 컴파니 A position control apparatus of an elevator
KR101357096B1 (en) * 2010-05-26 2014-02-21 윤일식 Device for representing the arrival of an Elevator
EP2468671A1 (en) * 2010-12-23 2012-06-27 Inventio AG Determining elevator car position
KR101502264B1 (en) * 2011-03-16 2015-03-12 미쓰비시덴키 가부시키가이샤 Elevator control device
EP2540651B1 (en) * 2011-06-28 2013-12-18 Cedes AG Lift device, building and positioning device
TWI673229B (en) * 2014-12-02 2019-10-01 瑞士商伊文修股份有限公司 Method and system for determining the position of an elevator car and elevator system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019204363A1 (en) * 2019-03-28 2020-10-01 Robert Bosch Gmbh Device for determining the position of an elevator car in an elevator shaft and a system with such a device

Also Published As

Publication number Publication date
US10549947B2 (en) 2020-02-04
TWI673229B (en) 2019-10-01
PH12017500990A1 (en) 2017-12-18
AU2015357119B2 (en) 2019-04-04
KR20170089870A (en) 2017-08-04
AU2015357119A1 (en) 2017-06-29
CA2968042A1 (en) 2016-06-09
TR201906504T4 (en) 2019-05-21
BR112017010539B1 (en) 2022-09-13
ES2721534T3 (en) 2019-08-01
US20170349399A1 (en) 2017-12-07
CN107000964A (en) 2017-08-01
TW201632445A (en) 2016-09-16
RU2699744C2 (en) 2019-09-09
RU2017122787A (en) 2019-01-09
CA2968042C (en) 2023-05-23
WO2016087528A1 (en) 2016-06-09
EP3227215A1 (en) 2017-10-11
CN107000964B (en) 2019-12-10
BR112017010539A2 (en) 2017-12-26
KR102547453B1 (en) 2023-06-23
MX371434B (en) 2020-01-30
SG11201704345TA (en) 2017-06-29
MX2017007030A (en) 2017-09-05
RU2017122787A3 (en) 2019-07-17
KR20220154246A (en) 2022-11-21
MY187871A (en) 2021-10-26

Similar Documents

Publication Publication Date Title
EP3227215B1 (en) Method and system for determining the position of an elevator car
EP3036185B1 (en) Coding device as well as position determination device and method
EP2037224B1 (en) Method and device for determining the position of a vehicle, computer program and computer program product
DE112017006397B4 (en) system for a vehicle
DE102009015142B4 (en) Vehicle surroundings recognition device and control system for tracking a preceding vehicle
DE102019008316A1 (en) Method for object recognition and distance determination
DE102015208058A1 (en) Automated parking system
DE102009054698A1 (en) Method for positioning at least one component, in particular a seat, in or on an aircraft or spacecraft, and aircraft or spacecraft
DE102017222017A1 (en) Method and system for determining and providing a soil profile
EP3775783A1 (en) Method for calibrating a position sensor in a vehicle, computer program, storage means, control device and calibration route
EP3160820A1 (en) Device and method for determining at least one property of a track for a rail vehicle and rail vehicle
WO2019030094A1 (en) Method for monitoring surroundings of a motor vehicle, sensor controller, driver assistance system, and motor vehicle
WO2009013114A1 (en) Method for ascertaining the speed of a lift cabin and a control unit for implementing this method
EP2947035A1 (en) Method for determining the load on a working machine and working machine, in particular a crane
DE102018004057A1 (en) Method and system for determining the offset of a steering wheel angle sensor
DE19630187A1 (en) Automatic positioning method and positioning system for crane systems
DE102018216395A1 (en) Method and device for monitoring an arrangement of at least one stationary or variably arranged calibration marker using at least one stationary or variably arranged vehicle-external reference sensor for the calibration of environment sensors of a vehicle
WO2016096824A1 (en) Method and system for determining the position and the orientation of a lift car
EP3032517A1 (en) Device and method for supporting a driver of a vehicle, in particular a commercial vehicle
DE102004058471A1 (en) Safety device for an automated system with at least one automatically movable part of the system
DE102016003116B4 (en) Method for operating a chassis of a motor vehicle
DE102016121565A1 (en) Sensor device for a vehicle
DE102011001248A1 (en) Method for assisting driver of motor car, involves detecting motion information of object by radar measuring device so as to perform the object tracking
EP4015430A1 (en) Method for operating an elevator equipped with a positioning system and corresponding devices
WO2020193278A1 (en) Device for determining the position of an elevator car in an elevator shaft, and system having a device of this type

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170524

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ZAHN, KLAUS

Inventor name: SONNENMOSER, ASTRID

Inventor name: RUEEGG, ANDRE

Inventor name: GASSNER, JOHANNES

Inventor name: STUDER, CHRISTIAN

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180726

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1094763

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015007901

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190506

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190606

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2721534

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20190801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190507

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190606

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015007901

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20191107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191202

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20201218

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20201229

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20151202

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20211119

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20220101

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1094763

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211202

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230118

Year of fee payment: 8

Ref country code: CH

Payment date: 20221228

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20221227

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231219

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231221

Year of fee payment: 9

Ref country code: FR

Payment date: 20231226

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240118

Year of fee payment: 9