EP3225331B1 - Verfahren zum giessen eines konturierten metallgegenstandes, insbesondere aus tial - Google Patents

Verfahren zum giessen eines konturierten metallgegenstandes, insbesondere aus tial Download PDF

Info

Publication number
EP3225331B1
EP3225331B1 EP17163412.4A EP17163412A EP3225331B1 EP 3225331 B1 EP3225331 B1 EP 3225331B1 EP 17163412 A EP17163412 A EP 17163412A EP 3225331 B1 EP3225331 B1 EP 3225331B1
Authority
EP
European Patent Office
Prior art keywords
mold
mould
parts
area
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP17163412.4A
Other languages
English (en)
French (fr)
Other versions
EP3225331A1 (de
Inventor
Andre Schievenbusch
Jan SCHIEVENBUSCH
Roland Salber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Access eV
Original Assignee
Access eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Access eV filed Critical Access eV
Publication of EP3225331A1 publication Critical patent/EP3225331A1/de
Application granted granted Critical
Publication of EP3225331B1 publication Critical patent/EP3225331B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D13/00Centrifugal casting; Casting by using centrifugal force
    • B22D13/10Accessories for centrifugal casting apparatus, e.g. moulds, linings therefor, means for feeding molten metal, cleansing moulds, removing castings
    • B22D13/101Moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/06Permanent moulds for shaped castings
    • B22C9/062Mechanisms for locking or opening moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/22Dies; Die plates; Die supports; Cooling equipment for dies; Accessories for loosening and ejecting castings from dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/22Dies; Die plates; Die supports; Cooling equipment for dies; Accessories for loosening and ejecting castings from dies
    • B22D17/2236Equipment for loosening or ejecting castings from dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/26Mechanisms or devices for locking or opening dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/005Castings of light metals with high melting point, e.g. Be 1280 degrees C, Ti 1725 degrees C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent

Definitions

  • the invention relates to a method of casting a contoured metal article using one or more molds.
  • Molds are typically used to cast a metal article from a melt. These define the contour of the finished, cast metal object via a cavity which is defined by the mold cavities of the detachably connectable mold parts.
  • the melt is poured into the mold, after which it solidifies.
  • titanium aluminides An example of such a poorly castable material group is that of titanium aluminides.
  • the material group of titanium aluminides due to their low density of about 4 g / cm 3 and the good high temperature properties, offers the potential to replace superalloys in their field of use as a material for highly stressed components in reciprocating engines and gas turbines, especially blades, while achieving a weight advantage. Due to the poor casting properties of these materials, it is not possible to produce complex contoured components via a chill casting. For this reason, such components are usually produced via a combined casting / forging route.
  • the casting is followed by a multi-stage forming and a final heat treatment and finishing to show the final component.
  • the forgings can achieve good properties of the components, but this is associated with a relatively high material consumption and process complexity.
  • EP 0 686 443 A1 discloses a method of making castings using a reusable casting mold which, at least at its melt-contacting surface, is comprised of at least one metal other than non-metallic impurities of tantalum, niobium, zirconium and / or their alloys.
  • the casting mold is a centrifugal casting mold, then it may also have a base body in which shells delimiting the mold cavity from the cited metals are arranged, while the base body itself consists of other metals or alloys.
  • preference is here given to titanium, titanium alloys or titanium aluminide as the base material.
  • US 2 367 727 A discloses a casting apparatus having a fixed mold part and a movable mold part which are fixedly connected to each other during the casting.
  • the movable mold half is actively movable relative to the immovable mold half by means of a movement device.
  • the movement device comprises a pressure-generating device and a corresponding valve device, via which a corresponding pressure can be applied to the mold halves, so that they are firmly joined together during casting.
  • the movable mold half is opened via the movement device.
  • DE 103 29 530 A1 discloses a casting and solidification process for components of intermetallic alloys.
  • a special feature of this method is the introduction of a holding time at a temperature above the brittle-ductile transition temperature immediately after the casting process. This procedure enables the avoidance of hot cracks and stress cracks even in larger components made of intermetallic alloys.
  • the invention is therefore based on the problem to provide a method which allows the casting of poor casting properties having materials, in particular titanium aluminide alloys for the production of complex contoured metal objects.
  • the mold used in the invention is characterized in that means are provided which make it possible to open the mold during the cooling of the metal, so as to reduce cooling and shrinkage due to adjusting stresses in the blank so that they do not adversely affect the properties of the cast metal object.
  • different opening mechanisms are provided, which may be provided individually or cumulatively.
  • the opening is obtained or induced by the cooling and thereby shrinking metal object itself.
  • at least one mold cavity or mold cavity outside the actual cavity is provided with at least one surface against which the cooling metal shrinking article presses, either directly by being directly adjacent to it, or indirectly by overlying the metal cavity
  • Metal object constructed pressure is transmitted by design to the surface. Upon cooling, the metal object changes size, in each spatial direction.
  • an alternative, but also cumulative on the mold predictable way to open the mold for stress relief provides as described the use of a controllable or actuatable actuator for quasi-active opening of the mold, this opening depending on the shrinkage behavior of the metal object or at least one directly takes place at the mold given physical parameters such as a given pressure or the mold temperature.
  • the mold parts are at least actively moved apart by means of at least one actuator element, respectively, so that they can move apart, so that stress relief is again possible by means of this mold part movement. It can be provided only one actuator, but also several distributed arranged actuator elements that can be controlled accordingly or work together.
  • the Actuation of the actuator or the elements takes place in dependence on the active shrinkage behavior via a corresponding control device, which will be discussed below. Even a quasi-passive operation alone on the physical parameters, in particular the mold temperature is conceivable. Also, by opening or releasing the mold in this way, a release of stress in the metal object can consequently be achieved.
  • the two different opening variants can be provided individually or cumulatively, that is complementary or supportive.
  • the first opening variant ie the opening of the mold by the solidifying metal object itself, will be explained in more detail below. This is done as described by the fact that the solidifying metal object "works" against a defined surface during solidification and thus shrinkage, either directly or indirectly.
  • This surface is designed according to an embodiment of the invention as an inclined surface which is at an angle> 0 ° and ⁇ 90 ° to the parting plane, the angle should be preferably ⁇ 15 °, in particular ⁇ 30 ° and ⁇ 75 °, in particular ⁇ 60 ° ,
  • This oblique surface which depending on the contour of the metal object or the cavity may just be slightly curved, so neither parallel nor perpendicular to the parting plane, but is at a corresponding angle, so that during solidification and the solid contraction of the metal object due to shrinkage a quasi vertical standing to the parting plane pressure component with which presses the metal object against the parting plane and thus against the mold part adjusts.
  • the surface can represent a boundary surface of a mold cavity and thus of the metal object itself. That is, the metal object is contoured to have a contoured surface that serves as a contact surface for the metal article.
  • the mold parts are coupled together as described so that they can be moved apart by sufficient pressure that the metal object exerts on one or both parts of the mold, so they are not immovably clamped together.
  • the Surface also be formed in the region of an additional mold cavity section.
  • the cavity thus has an additional area which is delimited by at least one such area over which the opening possibility is realized.
  • Such an additional mold cavity section can be formed, for example, by means of a so-called feeder, ie a volume region or mold cavity section which is filled with melt and which virtually provides a melt reservoir from which the melt can flow into the "main cavity” if required.
  • the metal object presses directly against the surface. It is also conceivable, however, that in the additional mold cavity portion at least one insert is arranged, which has a complementary surface, and against which the metal object presses during cooling, such that the insert presses against the surface.
  • the metal object works against the e.g. wedge-shaped insert and presses this against the kokillenteil workede surface, so that the mold parts are pressed apart.
  • the parting plane between the at least two mold parts preferably runs essentially parallel to the longitudinal axis of the metal object.
  • the surface or inclined surface is as described at an angle to this parting plane. Since the shrinkage or volume decrease in the longitudinal direction is usually greater than in one of the other spatial directions, thereby the required pressure can be realized and set a sufficient degree of opening.
  • only two mold parts are provided, each having a mold cavity, wherein at least one of the mold cavities has at least one surface or inclined surface, of course, may also be provided on a mold cavity a plurality of such surfaces, or at each mold cavity one or more such surfaces can be realized.
  • more than two mold parts which each have a mold cavity and which complement each other to form the cavity, wherein the at least one surface is arranged such that at least two mold parts Move away from each other due to shrinkage, of course, a plurality of such surfaces can be provided.
  • the specific position and number of surfaces, of which as described several can be provided on a mold cavity or on the complementary mold cavities ultimately depends on the geometry and the undercut position or undercut number of the volume defined over the cavity and the location of the parting planes.
  • the one or more surfaces are arranged virtually on the mold side or close to the mold.
  • the surface is an outer boundary surface of a mold part, wherein two mold parts with their surfaces abut each other in such a way that they are mutually displaceable due to pressure.
  • the mold parts are thus positioned adjacent to each other with complementary inclined surfaces. If the metal object contracted as a result of shrinkage, a pressure acting on the mold parts builds up, causing the two mold parts coupled over the inclined surfaces to slide against one another, so that one movable mold part is moved away from the other stationary mold part.
  • the metal object works here almost indirectly against the surfaces.
  • At least three mold parts may be provided, wherein a first mold part has two at an angle to each other extending surfaces on each of which a further mold part abuts with a corresponding surface, such that the two other mold parts are pressure apart and relative to the first mold part movable.
  • the first mold part is here provided with two surfaces, which run quasi-pointed towards one another, on the edge side, on each of which a further mold part rests with its oblique surface.
  • the first mold part preferably consists of two individual parts, which are firmly connected to each other, for example via connecting screws, so that the metal object can be removed from the mold. It is expedient if the mold parts are guided guided by guide means to each other.
  • the mold parts can be arranged and movable relative to one another such that the two further mold parts can be moved starting from an open position into a closed position during a rotation of the mold, from which they can be moved out again due to pressure.
  • a centrifugal force-induced self-closing mechanism is provided.
  • the movable mold parts move into the closed position and close the mold, so that the melt can be supplied.
  • the chill parts are pressed apart against the centrifugal force for stress reduction due to the contractions.
  • the further mold parts clamping means may be assigned, which build up a restoring force in a rotational movement in the closed position.
  • the clamping means for example corresponding spring components comprising coil springs or plate spring assemblies, work together with the metal object against the centrifugal force and support the pressing of the mold.
  • the mold parts are virtually forced apart over the solidifying metal object itself.
  • the mold parts are positively connected to each other via connecting sections or guides respectively engage form-fitting manner, wherein the mold parts are either held in the closed position, that the weight of the or the upper mold parts greater than the casting pressure and / or the buoyancy of the melt is, or via a restoring force generating clamping or clamping means, against which restoring force the Kokillenmaschine from the closed position to an open position are movable.
  • the Kokillenmaschine are thus defined via the connecting portions or guides arranged relative to each other, so that there is a defined closed mold with a closed cavity.
  • the mold parts can be kept in the closed position over their own weight.
  • the cavity does not have too complex geometry and does not rotate during casting or cooling.
  • the cooling Casting therefore only has to work against the dead weight of the one part of the mold to be lifted.
  • the mold parts are connected to each other via corresponding clamping or clamping means.
  • clamping or clamping means are designed such that they generate a restoring force, against which one or both mold parts are movable from the closed position.
  • the clamping or tensioning means comprise one or more spring elements, for example helical springs or disk springs or disc spring packets, etc., via which the chill parts are clamped together.
  • the second alternative of the invention provides for the use of at least one actuator element via which the mold parts can be actively moved apart.
  • an actuator element can be a variable in its length actuator element which is supported on two wegzube Anlagenden Kokillen kind or a mold part and a fixed support.
  • Such an actuator element is, for example, an actuating cylinder which operates electrically, hydraulically or pneumatically. If the actuator element or the actuating cylinder is activated, it lengthens and pushes apart the mold parts.
  • a plurality of actuator elements or actuating cylinders at distributed positions, in particular when the mold is of greater dimensions, in order to realize a uniform mold partial movement or to expose different component areas.
  • the actuator element which operates as described electrically, hydraulically or pneumatically, is preferably controllable via a control device for the preferably successive opening of the mold parts as a function of the shrinkage behavior.
  • a control device for the preferably successive opening of the mold parts as a function of the shrinkage behavior.
  • the opening time is chosen as a function of the solidification or shrinkage behavior, which is determined in advance in the course of a simulation, for example. If, after a certain time, the solidification process has progressed so far that a stable edge shell has formed, then this or that actuator elements can be controlled in order to open the mold and reduce possible stresses.
  • the mold is opened by a defined path in one step, so that the component can shrink free from stress.
  • such an opening can also take place intermittently, that is to say that relatively short actuator movements take place, so that the mold is opened quasi stepwise at defined times.
  • the actuator element (s) are / is actuated via the control device for the successive opening of the mold as a function of the shrinkage behavior, that is to say that a controlled tracking takes place as a function of the shrinkage behavior or of the stress relief.
  • the mold is thus slowly opened to make the discharge respectively the voltage reduction parallel to the volume change respectively to the shrinkage process, so that a regulated tracking with respect to developing tensions between casting and mold is established. Consequently, the control device associated with the mold or forming a part of the mold or the mold device controls the entire opening process in each case.
  • the actuator element which can be controlled via a control device, to actuate a clamping device, via which two mold parts are firmly clamped together, to release the clamping of the mold parts.
  • the tension of the mold parts is suddenly released, so that there is an opening of the mold on the high internal pressure That is, in this case, the mold is in turn opened over the shrinking metal object itself.
  • the initiation of this opening takes place exclusively via the actuator element or elements which release or open the tensioning means, for example tensioned springs or tension levers.
  • the actuator element does not serve to actively open the mold itself, but rather to actively release the clamping means and thus to initiate its own opening process itself.
  • the opening time is chosen such that it despite shrinkage-induced tension between the metal object and the mold does not lead to a negative influence on the metal object.
  • each clamping means is associated with a separately controllable actuator element. These are preferably controlled simultaneously to release the clamping means simultaneously.
  • the activation of the or each actuator element takes place as a function of the shrinkage behavior of the metal object.
  • the volume contraction or the strength of the edge layer of the casting is included in the control.
  • the mold parameters such as size of the cavity and thus the melt volume, the mold material and its thermal conductivity properties and the mold wall thickness, etc. are known, the solidification and shrinkage behavior can be estimated and the or each actuator element are controlled by the control device time-controlled. It is thus determined how the shrinkage process behaves with time in order to perform a time-based control based on the shrinkage curve.
  • the control of the opening operation is realized pressure-based by corresponding sensors in the mold.
  • a temperature-based control via a kokillen wornes thermocouple is conceivable.
  • the control device thus runs based on a number Boundary conditions and simulation parameters, a simulation of the shrinkage or solidification process of the molten metal from. This simulation is now the basis for the control of the or each actuator element, be it an actuator element, over which the mold parts are actively moved apart, be it an actuator element, via which a clamping means or the like is actuated.
  • the or each actuator element operates as described electrically, hydraulically or pneumatically. It is connected via one or more corresponding supply lines to a control device in the case of an electrically operating actuator element or a pump or conveyor in the case of a hydraulically or pneumatically operated actuator element.
  • the supply lines are to lead to the actuator or to the mold, that a possible Kokillenrotation is possible.
  • casting is usually done under vacuum, with a correspondingly high temperature and a rotation at several 100 rpm, e.g. ⁇ 400 rpm.
  • an actuator element which is variable in its length or a plurality of such actuator elements is preferably used.
  • a metal element which changes its length as a function of the temperature of the mold. Again, the opening is done in dependence on a given kokilleitigig parameter, namely the temperature.
  • a metal element consists of a material with the highest possible coefficient of thermal expansion, so that it changes its length correspondingly strongly with increasing temperature, and therefore lengthens, as a result of which the two mold parts on which the metal element is fixed are pressed apart.
  • the temperature is entered directly via the mold which heats up during solidification and cooling, in which the metal element, of which of course several can be provided distributed, is arranged.
  • the degree of heating of the mold is a measure of the degree of solidification of the metal object, so that opening of the mold for stress relief is also possible thereby.
  • the metal element is eg at both relative to each other moving Kokillenized arranged in corresponding preferably form-compatible receptacles or depressions, so that a good heat transfer from the mold to the metal element is possible.
  • the metal element has, for example, the shape of a pin or bolt.
  • a coolant channel leading a coolant can be provided in one or more mold parts.
  • This coolant channel targeted cooling of the mold and thus a targeted heat dissipation is possible. This can consequently influence the solidification and cooling. Targeted preheating or tempering of the mold is also possible.
  • the coolant used is usually a fluid, for example oil, water or compressed air. If a plurality of coolant channels are provided, they can be heated or operated at different temperatures in order to achieve different cooling conditions in different mold regions.
  • the coolant channel whereby, of course, a plurality of coolant channels can also be provided, can be guided in such a way that targeted specific die subregions are cooled in order, for example, to cool portions of the metal article with a high volume more than other regions or the like. If one or more such cooling channels are provided, the cooling effect is included in the determination of the control parameters for controlling the actuator element or elements, for example corresponding cooling parameters are taken into account in the simulation. For further control of the cooling and thus influencing the solidification and cooling, one or more of a higher or lower thermal conductivity than the mold material having metal insert, for example made of copper, and / or one or more mold parts to change the mold thickness outside on one or more Kokillen now locally thickened or worn away.
  • the attachment or integration of one or more metal inserts means that heat can be better dissipated from the inside of the mold to the outside than would be the case by the mold material. If, alternatively or additionally, the mold thickness is locally reduced, there is likewise an improvement since the heat can be dissipated more quickly.
  • the mold itself is preferably a metal permanent mold. It consists of one Metal material such as cast iron, steel, copper, niobium or molybdenum and any alloys formed therefrom. In principle, all metal materials can be used which can be used because of their physical properties and chemical resistance to the molten metal, preferably the TiAl melt.
  • the invention relates generally to a method for producing a high-strength component of ⁇ + ⁇ - TiAl alloy for reciprocating engines and gas turbines, in particular aircraft engines, in which a melt of a TiAl alloy is provided, which in a centrifugal centrifugal casting process in one or more Mold is cast to one or more precontoured semi-finished products for a forging and / or processing technology further processing to the finished part, wherein the or each mold has a cavity with at least one undercut and one or more flat or free-form parting lines and by a by the contraction of the cooling member generated internal pressure itself and / or open via a dependent on a kokillen impart given physical parameter controllable or actuatable actuator element during the solidification and cooling process.
  • the shrinking by cooling in particular over its longitudinal axis metal object presses according to the invention shrinkage or contraction condition directly or indirectly against a surface which is arranged such that the two mold parts are moved away from each other due to pressure.
  • the or each actuator element can be controlled by the control device time-controlled, pressure-controlled, temperature-controlled or depending on a simulation of the shrinking or solidification process.
  • the different opening mechanisms can be used either separately or cumulatively.
  • a metal article is cast from a titanium aluminide alloy, in particular ( ⁇ + ⁇ ) titanium aluminide alloy, ie from poor casting properties and extremely brittle behavior at room temperature.
  • a permanent metal mold is used, made of a metal or a metal alloy, which has physical and chemical properties that permit or are sufficiently resistant to TiAl casting.
  • a mold of the type described above is used.
  • Fig. 1 shows a mold 1 consisting of two Kokillen former 2a, 2b, each having a mold cavity 3a, 3b.
  • the two mold cavities 3a, 3b complement one another and define a cavity 4 to be filled with melt to cast a contoured metal article.
  • the two mold parts 2a, 2b are separable from one another along a plane of separation 5 which is flat in the example shown, in order to be able to remove the hardened metal object from the cavity 4.
  • the cavity 4 is designed to cast a metal object to make a low pressure turbine blade.
  • the cavity 4 has a volume varying over its longitudinal axis with two larger volume regions 6a, 6b on the edge side and a medium, narrower volume region 6c.
  • the volume regions 6a, 6b each have undercuts, resulting from the increase in diameter. They are delimited by inclined surfaces 7a, 7b and 8a, 8b, these surfaces running at an angle ⁇ or ⁇ to the parting plane 5.
  • the volume sections 6a, 6b can be rotationally symmetrical, ie round, but they can also be triangular, quadrangular or polygonal or free-formed, depending on the desired shape.
  • Fig. 2 shows an example of a metal article 9, which is provided with a mold 1 according to Fig. 1 can be poured.
  • this metal object 9 serves as an example for producing a low-pressure turbine blade. It is characterized by a shroud 10, which is imaged in the volume region 6b, a blade root 11, which is imaged in the volume region 6a, and an airfoil 12, which is imaged in the volume region 6c. Its shape corresponds to that of the cavity 4, it is merely due to shrinkage slightly smaller in volume, compared with the volume of the cavity 4. This will be discussed below.
  • Fig. 4 shows in a side view a) and a plan view b) a second embodiment of a metal article 9, which is equally suitable for producing a low-pressure turbine blade and in a mold 1 according to Fig. 3 can be poured.
  • This metal article 9 ' also has a shroud 10', a blade root 11 'and an airfoil 12' on.
  • a feeder 13 is formed, which allows a Materialnachhne in the actual space of the cavity 4.
  • This feeder 13 thus serves as a material reservoir.
  • the cavity 4 has for this purpose, see Fig. 3 , a corresponding laterally expanded mold cavity portion 6d.
  • this mold cavity section inevitably has corresponding oblique surfaces 15a, 15b so that the oblique surfaces 14a and 14b of the feeder 13 can be formed.
  • Fig. 3 shown.
  • Fig. 3 is in the upper part a by way of example a sectional view through the two mold parts 2a, 2b shown, while Fig. 3 in part b is a plan view of the mold part 2b, so the lower mold part shows.
  • Quasi starting from the basic form according to Fig. 1 is in the volume of the cavity 4, an additional volume region 6 d realized, which serves to form the feeder 13. This is defined by corresponding inclined surfaces 15a and 15b.
  • the surfaces 15a, 15b are also visible at an angle ⁇ to the parting plane 5 of the mold parts 2a, 2b.
  • the angle of the surfaces 15a, 15b is here by way of example the same, but it can also be different.
  • Fig. 5 shows a first embodiment of a mold according to the invention consisting of the two mold parts 2a, 2b. These are guided on guides 17 successive. In the region of the guides 17 clamping means 18 are provided, for example in the form of spring elements 26, via which the two mold parts 2a, 2b are clamped against each other.
  • the melt is first introduced into the cavity of the mold 1, which then slowly solidifies in the mold 1, so that the metal object 9 (likewise the metal object 9 'could be formed) forms.
  • the metal object 9 shrinks, as shown in the figure part b).
  • the two arrows 19 indicate that the volume is reduced in particular axially, that is to say that the metal object is quasi shortened.
  • the metal object 9 presses against the surfaces 7a, 7b and 8a, 8b. Since these surfaces are at an angle ⁇ or ⁇ , which is> 0 ° and ⁇ 90 ° and is preferably in the range between 20-70 °, in particular between 30-60 °, are the separation plane, results in a pressure component in the direction of arrow 20th , as shown in the figure part b). So it builds up an internal pressure.
  • the mold opens is the upper mold part 2 a already slightly spaced from the lower mold part 2 b.
  • the angles of the surfaces can be the same, but they can also be different in different component areas.
  • the metal object 9 presses or works more and more against the corresponding surfaces 7a, 7b, respectively 8a, 8b, so that the mold is always open.
  • the spring elements 26 are compressed further and further.
  • the shrinkage and opening degree is exaggerated in the figures (this applies to all figures) in order to represent the principle of operation.
  • the mold in this case is successively opened by the successive shrinking metal object, the voltage between the metal object and mold parts 2a, 2b is inevitably reduced. These degraded stresses can no longer be detrimental to the metal object.
  • the opening of the mold is done here solely by the shrinking metal object itself.
  • Fig. 6 shows an embodiment of a second embodiment of a mold 1 according to the invention, which consists in the example shown of four mold parts 2a, 2b, 2c and 2d, the respective mold cavities 3a, 3b, 3c and 3d have, which in turn form the cavity 4 in its entirety.
  • the mold parts 2a and 2c are separated from the lower mold parts 2b, 2d by a horizontal parting plane 5 in the example shown.
  • the mold parts 2a and 2b in turn are separated by a vertical parting plane 5 'from the mold parts 2c and 2d.
  • the chill parts 2a, 2b are again connected to one another via corresponding guides 17, wherein the guides 17 are again assigned corresponding clamping means 18 in the form of spring elements 26.
  • the shape of the cavity is supposedly the same as Fig. 5
  • the cavity 4 could also have the shape as shown by the metal object 9 '.
  • melt is first introduced into the cavity 4 of the mold 1, which solidifies to form the metal object 9.
  • a volume contraction occurs, as indicated by the arrows 19, which is primarily in the longitudinal direction of the metal article 9.
  • the metal object 9 also presses here against the surfaces 7a, 7b and 8a, 8b, which are realized here on the individual Kokillen constitution 2a - 2d.
  • a pressure component in the direction of the arrows 20.
  • the mold 1 is opened in sections, it in turn comes to stress relief, even if only a section-wise opening of the mold.
  • the cavity would have the in Fig. 3 shown shape.
  • the metal object 9 'in this case would not only press against the inclined surfaces 7a, 7b, 8a and 8b, but additionally against the inclined surfaces 15a, 15b, that is to say that the solidifying feeder 13 also serves to counteract the mold opening to obtain the restoring force of the spring elements 26.
  • Fig. 7 shows an embodiment of a mold 1 according to the invention, in turn, for example, consisting of the two mold parts 2a, 2b, in which mold 1, an actuator element 21 is provided, via which the mold 1 can be actively opened.
  • the actuator element 21 is supported on the two mold parts 2 a, 2 b at corresponding bearing areas 23 a, 23 b. It is, for example, a positioning cylinder 22, which is electrically, hydraulically or pneumatically actuated, for which corresponding, not shown in detail supply or control lines are guided to the actuator 21.
  • a metal object 9 is poured, that is, the cavity 4 has the respect Fig. 1 detailed geometry.
  • a metal object 9 'with a corresponding cavity geometry could also be cast here.
  • the actuator element 21 or the actuating cylinder 22 is actuated via a control device, not shown in more detail, so that it moves apart the chill parts 2a, 2b, as shown in the subfigures b, c by the arrows 20.
  • a control device not shown in more detail, so that it moves apart the chill parts 2a, 2b, as shown in the subfigures b, c by the arrows 20.
  • the die opening can either be made exclusively by the actuator element 21, or by the actuator element 21, assisted by the "work" of the metal object.
  • Fig. 8 shows a further embodiment of a mold 1 according to the invention, which - comparable to Fig. 6 - Also consists of four Kokillen former 2a, 2b, 2c and 2d. Comparable to Fig. 7 Here, too, the two mold parts 2a, 2b are coupled via an actuator element 21, preferably an actuating cylinder 22, which is mounted on corresponding bearing sections 23a, 23b.
  • Fig. 8 clearly shows, are here with increasing shrinkage of the metal article 9, which is exemplary cast here, the Kokillenmaschine 2a, 2b moved apart on the actuator 21 and the mold, see in particular part c, opened, so that it comes to stress reduction.
  • press here as shown by the arrows 19, the corresponding edges of the metal object 9 against the corresponding inclined surfaces 7a, 7b, 8a, 8b of the Kokillenmaschine 2a, 2d, but this pressure is not respectively not exclusively for the opening of the mold responsible.
  • the opening of the mold or the moving apart of the mold parts 2a, 2b is initiated solely by the actuator element 21, the pressure of the metal object against the corresponding inclined surfaces acts possibly supportive.
  • Fig. 9 shows an embodiment of a mold 1 according to the invention, which in turn consists only of two mold parts 2a, 2b, which are clamped together by means of corresponding guides 17 with associated clamping elements 18 comprising the spring elements 26.
  • a metal object 9 is poured with the appropriate geometry, that is, the cavity 4 has the respect Fig. 1 described form.
  • the control can be time-controlled, that is, after a certain time after introduction of the melt, the actuator element 21 - regardless of which Kokillenaus Installationsform is now considered - is operated continuously to successively the mold part 2a from the mold part 2b to separate.
  • time-based control pressure-based or temperature-based control is also conceivable.
  • a coolant channel 27 is shown, which is supplied via a coolant supply not shown in detail with coolant. Over this, the mold parts can be cooled accordingly.
  • the coolant used is, for example, oil or water or air, or a combination of at least two of these coolants. If the control device 25 works via a simulation, this cooling is included in the simulation.
  • material deposits can also be provided on the mold parts, which influence the heat dissipation, which therefore have a higher or lower thermal conductivity than the mold material.
  • Fig. 11 shows an embodiment of a mold 1 according to the invention, in which the metal article itself has no corresponding oblique surfaces, but nevertheless undercuts in the cavity 4 are provided.
  • the inclined surfaces are provided on the adjoining abutting sides of the mold parts, such that in the case of a length contraction of the solidifying metal object, the two movable mold parts slide on the inclined surfaces of the stationary mold part and it comes to the mold opening.
  • the stationary mold part 2a which consists of two individual parts which are detachably screwed together (not shown in greater detail) to enable demoulding of the metal object 9, has two inclined surfaces 7a, 7b which converge towards one another in a wedge shape.
  • Each of the movable mold parts 2b, 2c has an inclined surface 8a or 8b, wherein in the closed mold the mold parts 2b, 2c lie in a form-fitting manner against each other and over the inclined surfaces 8a, 8b on the surfaces 7a, 7b.
  • the subfigure 11b shows the mold 1 during the casting process, for example during the rotation of the mold 1.
  • the metal object 9 contracted due to shrinkage, in particular along its longitudinal axis.
  • the widened region 29 of the metal article 9 presses contractually within its partial cavity against the corresponding undercut flanks on the mold parts 2b, 2c.
  • the two mold parts 2b and 2c with their oblique surfaces 8a, 8b slide on the oblique surfaces 7a, 7b of the mold part 2a, and in this way successively forms a mold opening and thus a reduction in stress.
  • the mold opening is represented by the arrows 20.
  • the open mold is shown in part figure 2c, where it can be seen that the mold parts 2b and 2c, on the one hand, are displaced relative to the stationary mold part 2a, on the other hand, relative to one another.
  • the opening process can be realized substantially only by the tensioned spring elements 2b, which pull the mold parts 2b, 2c in the open position, virtually following the volume shrinkage.
  • Fig. 12 shows a comparable embodiment of such a mold 1, in which again three mold parts 2a, 2b and 2c are provided, wherein the mold parts 2b and 2c are movable relative to the stationary mold part 2a. They are guided relative to the mold part 2a via corresponding guides 30 movable.
  • the cavity 4 here also has no oblique surfaces as an example, again the cavity has a kind of bone shape.
  • Fig. 12a shows the initial state of the mold. In this initial state, the two mold parts 2b and 2c are virtually open. The mold 1 is therefore not closed.
  • the closing takes place only when in this embodiment, the mold 1 is set in rotation, wherein the centrifugal forces act cause the two mold parts 2b, 2c, guided over the guides 30, with their inclined surfaces 8a, 8b on the inclined surfaces 7a , 7b of the mold part 2a slide off and, as shown by the arrows 31, are moved to the closed position. In this position, the melt may be supplied to cast the metal article 9.
  • the metal object solidifies and contracts over its longitudinal axis, as shown by the arrows 19.
  • This length contraction and the force thus exerted on the mold parts 2b, 2c, acting in the direction of the longitudinal axis counteract the centrifugal force. Since the force due to contraction is significantly greater than the centrifugal force, with increasing solidification and thus shrinkage of the metal object 19, the mold parts 2b, 2c are moved apart as shown by the arrows 20, they slide with their inclined surfaces 8a, 8b on the inclined surfaces 7a, 7b of the stationary mold part. This also allows the voltage reduction to be achieved.
  • Fig. 13 shows a further embodiment of a mold 1 according to the invention, which the embodiment Fig. 12 comes close, as far as the basic structure of the mold 1 and the operating principle is concerned. In this regard, reference is made to the above statements.
  • each movable mold element 2b, 2c is a restoring element 32 comprising a spring element 33 provided, which is respectively fixed to a support 34 and is coupled to the other end with the Kokillenteil 2b and 2c.
  • the mold parts 2b, 2c are also opened and moved relative to the mold part 2a here.
  • the spring elements 33 are relaxed or contracted.
  • the closing of the mold 1 is also effected here by the centrifugal force during the rotation, as shown by the arrows 31.
  • the centrifugal force causes the mold parts 2b, 2c with their sloping surfaces 8a, 8b on the inclined surfaces 7a, 7b of the stationary mold part 2a, guided over the guides 30, slide.
  • This restoring force thus counteracts the centrifugal force. It supports the over the solidifying metal object 9 induced opening process, as shown in part of Figure 13c.
  • the shrinking along its longitudinal axis metal object see the arrows 19, presses, as already to Fig. 12 described against the Kokillenmaschine 2b, 2c, so that they in turn slide on the Kokillenteil 2a. This sliding movement is supported by the spring elements 33, which in this case contract again.
  • the opening process can be realized substantially only by the tensioned spring elements 2b, which pull the mold parts 2b, 2c in the open position, virtually following the volume shrinkage.
  • Fig. 14 1 shows an embodiment of a mold 1, by way of example consisting of two mold parts 2a, 2b, specifically in part-figure 14a in a side view and in part-figure 14b in a plan view of the lower mold half 2b.
  • the opening process is obtained here via a plurality of thermally activated actuators 35 in the form of metal pins 36.
  • the geometry of the cavity 4 from the Figures 1 - 9 corresponds, which therefore has corresponding inclined surfaces 7a, 7b and 8a, 8b, against which the metal object 9 presses.
  • the opening process can be additionally supported by means of this mechanism already described above, but it can also be achieved by means of the adjusting elements 35 alone.
  • the adjusting elements 35 and the metal elements 36 which have the form of bolts or pins, are metal elements with the highest possible thermal expansion coefficient.
  • Each metal element 36 is accommodated in corresponding receptacles 37 on the two mold parts 2a, 2b, wherein the geometry of the receptacles 37 preferably corresponds to the geometry of the metal element 36, so that a good heat transfer from mold to the metal element is given.
  • the heating of the metal elements 36 takes place exclusively via the mold 1. After pouring the melt inevitably heats up during the cooling of the metal object 9, the mold 1. This also leads to a heating of the metal objects 36.
  • These are designed such that they due to heating a Extension in the longitudinal direction, so they length themselves. Since they are supported on both sides of the mold parts 2a, 2b, an elongation inevitably causes the mold parts 2a, 2b are pressed apart, so that the mold 1 is opened.
  • Part Figure 15a shows the situation after the introduction of the melt to form the metal article 9. With increasing cooling and solidification it comes to the longitudinal contraction, as indicated by the arrows 19. At the same time, however, the metal elements 36, of which in Fig. 15 due to the fact that only one is shown. It comes to pushing apart the Kokillenmaschine 2 a, 2 b and thus to open the mold 1, as indicated by the arrow 20. This opening operation takes place in the example shown again against the restoring force of the clamping means 18, wherein also here the mold parts are defined via guides 17 are relatively movable. The opening process can essentially can be achieved solely by the metal elements 36, or in cooperation with the metal object. 9
  • Fig. 16 finally shows a mold 1, which is similar to the mold Fig. 3 is constructed. It consists of two mold parts 2a, 2b and has an additional lateral mold cavity section, which is delimited by inclined surfaces 15a, 15b. This mold cavity portion enables the formation of a feeder 13 on the metal object 9, as shown in part figure 16a.
  • an insert 37 is accommodated in the mold cavity section which is wedge-shaped and has corresponding oblique surfaces 38a, 38b, with which it rests against the inclined surfaces 15a, 15b.
  • the feeder 13 forms in direct connection to the insert 37.
  • the feeder 13 has an example of a rounded geometry, but may also be shaped differently.
  • the melt contracts again over its longitudinal axis, as the arrows 19 show.
  • the feeder 13 works against the insert 37, which, as shown by the arrow 39, is also displaced in the direction of the longitudinal axis. It pushes with its oblique surfaces 38a, 38b against the inclined surfaces 15a, 15b of the two Kokillenmaschine 2a, 2b, so that it comes to opening of the mold 1, as shown by the arrow 20.
  • Partial figure 16c shows the opened mold 1.
  • the metal object 9 presses indirectly via the insert 37 against the surfaces of the mold parts 2a, 2b.
  • the opening operation can either be done only via this applied via the insert 37 pressure, or in support of the also corresponding inclined surfaces having metal object 9, which presses against the corresponding inclined surfaces of the mold parts 2a, 2b.
  • the mold according to the invention regardless of which embodiment, is used in particular for producing a metal object or a semifinished product with a volume distribution varying over the longitudinal axis for further processing of the finished product for forging and / or processing.
  • the finished part may be used in particular, but not exclusively for use in a piston engine or a gas turbine, in particular in aircraft engines, be provided.
  • Ta, Si, V or C may be included. This applies to all the aforementioned compositions.
  • such an alloy is melted, for example, by VIM (Vacuum Induction Melting), VAR (Vacuum Arc Remelting) or PAM (Plasma Arc Melting) can be done and then poured into the mold, in which the melt solidifies in the manner described.
  • the casting takes place either statically, pressure-assisted or in a combination of both, wherein preferably the centrifugal centrifugal casting process is used.
  • the melt from the crucible / container is poured into a rotating casting system consisting of a melt distributor, running system and the mold or dies.
  • the melting of the alloy and the casting is preferably carried out under vacuum, optionally also in a chemically inert atmosphere under inert gas.

Description

  • Die Erfindung betrifft ein Verfahren zum Gießen eines konturierten Metallgegenstands unter Verwendung einer oder mehrerer Kokillen.
  • Zum Gießen eines Metallgegenstandes aus einer Schmelze werden üblicherweise Kokillen verwendet. Diese definieren über eine Kavität, die über die Formnester der lösbar miteinander verbindbaren Kokillenteile definiert wird, die Kontur des fertigen, gegossenen Metallgegenstands. Die Schmelze wird in die Kokille gegossen, wonach sie erstarrt. Zwar können eine Vielzahl unterschiedlicher Metalle oder Metalllegierungen durch einen Kokillenguss verarbeitet werden, jedoch gibt es Werkstoffgruppen, die schlechte Gießeigenschaften aufweisen, wobei sich insbesondere Probleme ergeben, wenn der konturierte Metallgegenstand eine über seine Längsachse variierende Volumenverteilung mit einer oder mehreren Hinterschneidungen aufweist.
  • Ein Beispiel für eine solche schlecht gießbare Werkstoffgruppe ist die der Titanaluminide. Die Werkstoffgruppe der Titanaluminide bietet aufgrund ihrer geringen Dichte von etwa 4 g/cm3 und der guten Hochtemperatureigenschaften das Potential, Superlegierungen in ihrem Einsatzgebiet als Werkstoff für hochbelastete Bauteile in Kolbenmaschinen und Gasturbinen, insbesondere Schaufeln, zu ersetzen und gleichzeitig einen Gewichtsvorteil zu erzielen. Aufgrund der schlechten Gießeigenschaften dieser Werkstoffe ist es nicht möglich, komplex konturierte Bauteile über einen Kokillenguss herzustellen. Aus diesem Grund werden solche Bauteile zumeist über eine kombinierte Guss-/Schmiederoute hergestellt. Diese umfasst den Guss eines Halbzeugs mit rotationssymmetrischer, meist zylindrischer oder konischer Geometrie in einer metallischen Dauerform, also die Herstellung eines geometrisch sehr einfach konzipierten, keine Hinterschneidungen oder dergleichen aufweisenden Halbzeugs. Dem Guss folgt eine mehrstufige Umformung und eine abschließende Wärmebehandlung und Endbearbeitung zur Darstellung des Endbauteils. Durch das Schmieden lassen sich gute Eigenschaften der Bauteile erzielen, allerdings ist hiermit ein relativ hoher Materialverbrauch und Prozessaufwand verbunden.
  • Dieser könnte reduziert werden, wenn eine Möglichkeit gegeben wäre, vorkonturierte Halbzeuge, die bereits von Haus aus eine über die Längsachse variierende Volumenverteilung mit einer oder mehreren Hinterschneidungen aufweisen, über einen Kokillenguss herstellen zu können. Der Einsatz eines solchen Rohlings im Schmiede- oder Bearbeitungsprozess würde gegenüber der bisher bekannten Vorgehensweise eine Reduzierung der Anzahl von Umformschritten mit anschließender Wärmebehandlung und Endbearbeitung ermöglichen oder sogar die Möglichkeit bieten, bei möglichst endkontur-nahem (net-shape) Guss direkt durch eine Kombination aus Wärmebehandlung und Endbearbeitung das Fertigbauteil herstellen zu können.
  • Aufgrund der schlechten Gießeigenschaften von Titanaluminid-Legierungen sowie deren duktil-spröd-Übergang beim Abkühlen sowie dem äußerst spröden Verhalten bei Raumtemperatur ist das Gießen von vorkonturierten Halbzeugprofilen in Dauerformen, insbesondere von Profilen, die in der Gießform definierte Hinterschneidungen aufweisen, nicht möglich. Dies resultiert insbesondere aus dem Schrumpfverhalten und der Festkörperkontraktion der erkaltenden TiAl Legierung, also der Volumenschwindung. Denn hierdurch kommt es insbesondere im Bereich der Hinterschneidungen zu einer hohen Belastung des Werkstoffs, die zu einer Schädigung des Gussteils bis hin zur Ausbildung von Rissen oder zum Bruch führen kann.
  • Aus EP 0 992 305 A1 ist ein Verfahren und eine Vorrichtung zum Herstellen von Präzisionsgussteilen durch Schleudergießen bekannt. Zum Herstellen dieser Gussteile dienen Gießformen mit ringförmigen Gießteilen, die durch mindestens eine Ebene unterteilt sind und mehrere, zumindest im Wesentlichen radial zu einer Schleuderachse angeordnete Formhohlräume bilden. Zur Herstellung wird ein Gießformteil in jeweils einer eigenen Rotationsführung zur Drehung gebracht, wobei zwei Gießformteile zusammen mit den zugehörigen Rotationsführungen relativ zueinander in eine Schließstellung für den Abguss und die Erstarrung und in eine Öffnungsstellung für die Entnahme der Präzisionsgussteile gebracht werden.
  • EP 0 686 443 A1 offenbart ein Verfahren zur Herstellung von Gussteilen, wobei eine wiederverwendbare Gießform verwendet wird, die mindestens an ihrer mit der Schmelze in Berührung kommenden Oberfläche aus mindestens einem von nicht metallischen Beimengungen freien Metall aus der Gruppe Tantal, Niob, Zirkonium und/oder deren Legierungen besteht. Sofern es sich bei der Gießform beispielsweise um eine Schleudergießform handelt, so kann diese auch einen Grundkörper aufweisen, in dem dem Formhohlraum begrenzende Schalen aus den angeführten Metallen angeordnet sind, während der Grundkörper selbst aus anderen Metallen oder Legierungen besteht. Im Falle einer Schleudergießform wird hier für als Grundkörpermaterial bevorzugt Titan, Titanlegierungen oder Titanaluminid verwendet.
  • Aus DE 693 27 195 T2 ist ein Verfahren zur Herstellung eines Legierungsgussproduktes auf Aluminium-Basis durch Gießen bekannt, wobei das Gießen unter Druck unter Verwendung einer Druckgussform erfolgt. Hierbei wird das Gießmaterial durch einen Einlauf in die Gussform eingebracht, wobei das Gießmaterial hierbei bestimmte Eigenschaftsparameter aufweist und das Gießen ebenfalls mit einer definierten Gießgeschwindigkeit und einem definierten Druck erfolgt.
  • US 2 367 727 A offenbart eine Gießvorrichtung mit einem feststehenden Formteil und einem beweglichen Formteil, die während des Gusses fest miteinander verbunden sind. Die bewegliche Formhälfte ist über eine Bewegungseinrichtung aktiv relativ zur unbeweglichen Formhälfte bewegbar. Die Bewegungseinrichtung umfasst eine Druckerzeugungseinrichtung und eine entsprechende Ventileinrichtung, über die ein entsprechender Druck auf die Formhälften aufgebracht werden kann, so dass diese beim Gießen fest miteinander verbunden sind. Während des Erkaltens wird die bewegliche Formhälfte über die Bewegungseinrichtung geöffnet.
  • DE 103 29 530 A1 offenbart ein Gieß- und Erstarrungsverfahren für Bauteile aus intermetallischen Legierungen. Eine besondere Eigenschaft dieses Verfahrens ist die Einführung einer Haltezeit bei einer Temperatur oberhalb der Spröd-Duktil-Übergangstemperatur unmittelbar im Anschluss an den Gießvorgang. Diese Vorgehensweise ermöglicht die Vermeidung von Warmrissen und Spannungsrissen auch in größeren Bauteilen aus intermetallischen Legierungen.
  • Der Erfindung liegt damit das Problem zugrunde, ein Verfahren anzugeben, das den Guss von schlechten Gießeigenschaften aufweisenden Werkstoffen, insbesondere Titanaluminid-Legierungen zur Herstellung auch komplex konturierter Metallgegenstände ermöglicht.
  • Zur Lösung dieses Problems ist ein Verfahren gemäß Patentanspruch 1 vorgesehen. Weitere zweckmäßige Ausgestaltungen sind den Unteransprüchen zu entnehmen.
  • Die erfindungsgemäß verwendete Kokille zeichnet sich dadurch aus, dass Mittel vorgesehen sind, die es ermöglichen, die Kokille während des Abkühlens des Metalls zu öffnen, um so sich abkühlungs- und schrumpfungsbedingt einstellende Spannungen im Rohling abzubauen, so dass sich diese nicht negativ auf die Eigenschaften des gegossenen Metallgegenstandes auswirken. Zu diesem Zweck sind unterschiedliche Öffnungsmechanismen vorgesehen, die einzeln oder kumulativ vorgesehen sein können.
  • Gemäß einer ersten Erfindungsalternative wird das Öffnen durch den sich abkühlenden und dabei schrumpfenden Metallgegenstand selbst erwirkt respektive induziert. Um dies zu ermöglichen, ist wenigstens ein Formnest oder ein zusätzlicher Formnestabschnitt außerhalb der eigentlichen Kavität mit wenigstens einer Fläche versehen, gegen die der durch Abkühlen schrumpfende Metallgegenstand kontraktionsbedingt drückt, entweder direkt, indem er an ihr direkt anliegt, oder indirekt, indem der über den Metallgegenstand aufgebaute Druck konstruktionsbedingt auf die Fläche übertragen wird. Beim Abkühlen ändert der Metallgegenstand seine Größe, und zwar in jeder Raumrichtung. Die formnestseitige Fläche ist nun derart angeordnet, dass der schrumpfende Metallgegenstand schrumpfungsbedingt gegen diese Fläche direkt drückt bzw. ein aufgebauter Druck gegen diese Fläche wirkt, wobei dieser Druck eine Richtungskomponente oder einen Anteil aufweist, die bzw. der quasi senkrecht zur Trennebene zwischen den beiden Kokillenteilen steht. Über diesen Druck werden die beiden Kokillenteile, die zwar für den eigentlichen Guss fest aufeinander oder aneinander liegen, jedoch druckbedingt auseinander bewegbar sind, voneinander wegbewegt, mithin also geöffnet. Je größer der schrumpfungsbedingte Volumenschwund des Metallgegenstands, mithin also seine Größenänderung, desto weiter werden die Kokillenteile auseinander bewegt. Auf die Formgebung des konturierten Metallgegenstandes hat dieses Öffnen der Kokillenteile keinen Einfluss mehr, da der Metallgegenstand zumindest randseitig und mit zunehmender Abkühlung auch im Volumen bereits erstarrt ist.
  • Durch dieses in einem Schritt oder sukzessive, durch den Metallgegenstand selbst erwirkte Öffnen der Kokille werden folglich die zwischen dem Metallgegenstand und der Kokille schrumpfungsbedingt entstehenden Spannungen reduziert respektive abgebaut, so dass der Metallgegenstand weitgehend spannungsfrei abkühlen und erstarren kann.
  • Eine alternative, jedoch auch kumulativ an der Kokille vorsehbare Möglichkeit zum Öffnen der Kokille für einen Spannungsabbau sieht wie beschrieben die Verwendung eines ansteuerbaren bzw. betätigbaren Aktuatorelements zum quasi aktiven Öffnen der Kokille vor, wobei dieses Öffnen in Abhängigkeit des Schrumpfungsverhaltens des Metallgegenstands oder wenigstens eines unmittelbar an der Kokille gegebenen physikalischen Parameters wie einem gegebenen Druck oder der Kokillentemperatur erfolgt. Gemäß dieser Erfindungsalternative werden die Kokillenteile über wenigstens ein Aktuatorelement quasi aktiv auseinander bewegt respektive ein Auseinanderbewegen ermöglicht, so dass durch diese Kokillenteilbewegung wiederum ein Spannungsabbau möglich ist. Es kann nur ein Aktuatorelement vorgesehen sein, aber auch mehrere verteilt angeordnete Aktuatorelemente, die entsprechend angesteuert werden können bzw. gemeinsam arbeiten. Die Ansteuerung des oder der Aktuatorelemente erfolgt in Abhängigkeit des aktiven Schrumpfungsverhaltens über eine entsprechende Steuerungseinrichtung, worauf nachfolgend noch eingegangen wird. Auch eine quasi passive Betätigung allein über den physikalischen Parameter, insbesondere die Kokillentemperatur ist denkbar. Auch durch ein auf diese Weise erwirktes Öffnen oder Entlasten der Kokille ist folglich ein Spannungsabbau im Metallgegenstand erreichbar.
  • Wie beschrieben können die beiden verschiedenen Öffnungsvarianten einzeln oder kumulativ, also einander ergänzend oder unterstützend, vorgesehen sein.
  • Nachfolgend wird die erste Öffnungsvariante, also die Öffnung der Kokille durch den erstarrenden Metallgegenstand selbst, näher erläutert. Dies geschieht wie beschrieben dadurch, dass der erstarrende Metallgegenstand gegen eine definierte Fläche beim Erstarren und damit Schrumpfen "arbeitet", entweder direkt oder indirekt. Diese Fläche ist gemäß einer Weiterbildung der Erfindung als Schrägfläche ausgeführt, die unter einem Winkel >0° und <90° zur Trennebene steht, wobei der Winkel bevorzugt ≥15°, insbesondere ≥30° und ≤75°, insbesondere ≤60° sein sollte. Diese Schrägfläche, die je nach Kontur des Metallgegenstands respektive der Kavität eben aber auch etwas gewölbt sein kann, verläuft also weder parallel noch senkrecht zur Trennebene, sondern steht unter einem entsprechenden Winkel, so dass sich beim Erstarren und der Festkörperkontraktion des Metallgegenstandes schrumpfungsbedingt eine quasi vertikal zur Trennebene stehende Druckkomponente, mit der der Metallgegenstand gegen die Trennebene und damit gegen das Kokillenteil drückt, einstellt.
  • Dabei kann die Fläche eine Begrenzungsfläche eines Formnests und damit des Metallgegenstands selbst darstellen. Das heißt, dass der Metallgegenstand so konturiert ist, dass er eine konturbedingte Fläche aufweist, die als Anlauffläche für den Metallgegenstand dient. Die Kokillenteile sind wie beschrieben so miteinander gekoppelt, dass sie durch hinreichenden Druck, den der Metallgegenstand auf eine oder beide Kokillenteile ausübt, auseinander bewegt werden können, sie sind also nicht unbeweglich miteinander verspannt. Alternativ oder zusätzlich kann die Fläche auch im Bereich eines zusätzlichen Formnestabschnitts ausgebildet sein. Die Kavität weist also einen zusätzlichen Bereich auf, der über wenigstens eine derartige Fläche begrenzt ist, über die die Öffnungsmöglichkeit realisiert wird. Ein solcher zusätzlicher Formnestabschnitt kann beispielsweise über einen sogenannten Speiser gebildet werden, also einen Volumenbereich oder Formnestabschnitt, der mit Schmelze gefüllt ist und der quasi ein Schmelzreservoir bietet, aus dem Schmelze bei Bedarf in die "Hauptkavität" nachfließen kann.
  • In den zuvor beschriebenen Fällen drückt der Metallgegenstand direkt gegen die Fläche. Denkbar ist es aber auch, dass in dem zusätzlichen Formnestabschnitt wenigstens ein Einlegeteil angeordnet ist, das eine komplementäre Fläche aufweist, und gegen das der Metallgegenstand beim Abkühlen drückt, derart, dass das Einlegeteil gegen die Fläche drückt. Hier arbeitet der Metallgegenstand gegen das z.B. keilförmige Einlegeteil und drückt dieses gegen die kokillenteilseitige Fläche, so dass die Kokillenteile auseinander gedrückt werden.
  • Die Trennebene zwischen den wenigstens zwei Kokillenteilen verläuft bevorzugt im Wesentlichen parallel zur Längsachse des Metallgegenstandes. Die Fläche respektive Schrägfläche steht wie beschrieben unter einem Winkel zu dieser Trennebene. Da die Schrumpfung respektive Volumenabnahme in Längsrichtung üblicherweise größer als in einer der anderen Raumrichtungen ist, kann hierdurch der benötigte Druck realisiert werden und sich ein hinreichender Öffnungsgrad einstellen.
  • In einer einfachsten Ausgestaltung sind nur zwei Kokillenteile vorgesehen, die jeweils ein Formnest aufweisen, wobei wenigstens eines der Formnester wenigstens eine Fläche respektive Schrägfläche aufweist, wobei natürlich auch an einem Formnest mehrere solcher Flächen vorgesehen sein können, oder an jedem Formnest eine oder mehrere solcher Flächen realisiert sein können. Denkbar ist es aber auch mehr als zwei Kokillenteile vorzusehen, die jeweils ein Formnest aufweisen und die sich zu der Kavität ergänzen, wobei die wenigstens eine Fläche derart angeordnet ist, dass sich zumindest zwei Kokillenteile schrumpfungsbedingt voneinander wegbewegen, wobei natürlich auch mehrere derartige Flächen vorgesehen sein können. Die konkrete Lage und Anzahl der Flächen, von denen wie beschrieben auch mehrere an einem Formnest oder an den einander ergänzenden Formnestern vorgesehen sein können, richtet sich letztlich nach der Geometrie und der Hinterschneidungslage respektive Hinterschneidungsanzahl des über die Kavität definierten Volumens sowie der Lage der Trennebenen.
  • Bei den zuvor beschriebenen Ausführungsformen der Kokille befindet sich die oder sind die mehreren Flächen quasi formnestseitig oder formnestnah angeordnet. Alternativ, aber auch zusätzlich dazu, ist es denkbar, dass die Fläche eine äußere Begrenzungsfläche eines Kokillenteils ist, wobei zwei Kokillenteile mit ihren Flächen derart aneinander anliegen, dass sie druckbedingt gegeneinander verschiebbar sind. Die Kokillenteile sind also mit komplementären Schrägflächen aneinander anliegend positioniert. Kontrahiert der Metallgegenstand schrumpfungsbedingt, so baut sich ein auf die Kokillenteile wirkender Druck auf, der erwirkt, dass die beiden über die Schrägflächen gekoppelten Kokillenteile aneinander abgleiten, so dass das eine bewegliche Kokillenteil vom anderen feststehenden Kokillenteil wegbewegt wird. Der Metallgegenstand arbeitet hier quasi indirekt gegen die Flächen.
  • Dabei können wenigstens drei Kokillenteile vorgesehen sein, wobei ein erstes Kokillenteil zwei unter einem Winkel zueinander verlaufende Flächen aufweist, an denen jeweils ein weiteres Kokillenteil mit einer entsprechenden Fläche anliegt, derart, dass die beiden weiteren Kokillenteile druckbedingt auseinander und relativ zum ersten Kokillenteil bewegbar sind. Das erste Kokillenteil ist hier mit zwei Flächen, die quasi spitz aufeinander zu laufen, randseitig versehen, an denen jeweils ein weiteres Kokillenteil mit seiner Schrägfläche anliegt. Diese beiden weiteren Kokillenteile gleiten druckbedingt auf dem ersten Kokillenteil ab, sie bewegen sich in entgegengesetzte Richtungen voneinander weg und auch relativ zum ersten Kokillenteil. Das erste Kokillenteil besteht bevorzugt aus zwei Einzelteilen, die zum Beispiel über Verbindungsschrauben fest miteinander verbunden sind, damit der Metallgegenstand entformt werden kann. Zweckmäßig ist es, wenn die Kokillenteile über Führungsmittel aneinander geführt bewegbar sind. Die Kokillenteile können derart angeordnet und relativ zueinander bewegbar sein, dass die beiden weiteren Kokillenteile bei einer Rotation der Kokille ausgehend von einer Offenstellung in eine Schließstellung bewegbar sind, aus der sie druckbedingt wieder herausbewegbar sind. Es ist also ein zentrifugalkraftbedingter Selbstschließmechanismus vorgesehen. Bei einer Rotation bewegen sich die bewegbaren Kokillenteile in die Schließstellung und schließen die Kokille, so dass die Schmelze zugeführt werden kann. Gegen diesen Selbstschließmechanismus arbeitet zum Entlasten der Metallgegenstand, kontraktionsbedingt werden die Kokillenteile gegen die Zentrifugalkraft zum Spannungsabbau auseinander gedrückt. Dabei können den weiteren Kokillenteilen Spannmittel zugeordnet sein, die bei einer rotationsbedingten Bewegung in die Schließstellung eine Rückstellkraft aufbauen. Die Spannmittel, z.B. entsprechende Federbauteile umfassend Schraubenfedern oder Tellerfederpakete, arbeiten quasi zusammen mit dem Metallgegenstand gegen die Zentrifugalkraft und unterstützen das Aufdrücken der Kokille.
  • Wie beschrieben werden bei der ersten Erfindungsalternative die Kokillenteile quasi über den erstarrenden Metallgegenstand selbst auseinander gedrückt. Um dies zu ermöglichen, sind die Kokillenteile über Verbindungsabschnitte oder Führungen formschlüssig miteinander verbunden respektive greifen formschlüssig ineinander, wobei die Kokillenteile entweder dadurch in der Schließstellung gehalten werden, dass das Eigengewicht des oder der oberen Kokillenteile größer als der Gießdruck und/oder die Auftriebskraft der Schmelze ist, oder über eine Rückstellkraft erzeugende Klemm- oder Spannmittel, gegen welche Rückstellkraft die Kokillenteile aus der Schließstellung in eine geöffnete Stellung bewegbar sind. Die Kokillenteile sind also über die Verbindungsabschnitte oder Führungen definiert relativ zueinander angeordnet, so dass sich eine definiert geschlossene Kokille mit einer geschlossenen Kavität ergibt. In der einfachsten Ausgestaltung können die Kokillenteile über ihr Eigengewicht in der Schließstellung gehalten werden. Dies ist dann möglich, wenn die Kavität keine allzu komplexe Geometrie aufweist und während des Gießens bzw. Erkaltens nicht rotiert. Das erkaltende Gussteil muss folglich lediglich gegen das Eigengewicht des einen, quasi anzuhebenden Kokillenteils arbeiten. Üblicherweise jedoch sind die Kokillenteile über entsprechende Klemm- oder Spannmittel miteinander verbunden. Diese sind bei der erfindungsgemäßen Kokille nun derart ausgelegt, dass sie einerseits die Kokillenteile hinreichend fest miteinander verbinden, so dass die Kokille auch mit entsprechender Umdrehungszahl, üblicherweise mehreren 100 U/min, z.B. bis zu 400 U/min rotieren kann. Andererseits sind die Klemm- oder Spannmittel derart ausgelegt, dass sie eine Rückstellkraft erzeugen, gegen die eines oder beide Kokillenteile aus der Schließstellung bewegbar sind. Der Metallgegenstand "arbeitet" also auch gegen diese Rückstellkraft, um die Kokillenteile voneinander zu trennen. Um diese Rückstellkraft zu erzeugen umfassen die Klemm- oder Spannmittel ein oder mehrere Federelemente, beispielsweise Schraubenfedern oder Tellerfedern oder Tellerfederpakete etc., über die die Kokillenteile miteinander verspannt sind.
  • Die zweite Erfindungsalternative sieht wie eingangs beschrieben den Einsatz wenigstens eines Aktuatorelements vor, über das die Kokillenteile aktive auseinander bewegt werden können. Gemäß einer Weiterbildung der Erfindung kann ein solches Aktuatorelement ein in seiner Länge veränderbares Aktuatorelement sein, das an zwei voneinander wegzubewegenden Kokillenteilen oder einem Kokillenteil und einem festen Auflager abgestützt ist. Ein solches Aktuatorelement ist beispielsweise ein Stellzylinder, der elektrisch, hydraulisch oder pneumatisch arbeitet. Wird das Aktuatorelement bzw. der Stellzylinder angesteuert, so längt er sich und drückt dabei die Kokillenteile auseinander. Selbstverständlich ist es möglich, auch mehrere Aktuatorelemente bzw. Stellzylinder an verteilten Positionen anzuordnen, insbesondere wenn die Kokille größeren Ausmaßes ist, um eine gleichmäßige Kokillenteilbewegung zu realisieren oder verschiedene Bauteilbereiche freizulegen.
  • Das Aktuatorelement, das wie beschrieben elektrisch, hydraulisch oder pneumatisch arbeitet, ist bevorzugt über eine Steuerungseinrichtung zur vorzugsweise sukzessiven Öffnung der Kokillenteile in Abhängigkeit des Schrumpfungsverhaltens steuerbar. Alternativ zum sukzessiven Öffnen besteht die Möglichkeit, das oder die Aktuatorelemente während des Erstarrungs- und Schrumpfungsprozesses nur einmal anzusteuern, um die Kokillenteile durch einen einmaligen, kurzen Bewegungsvorgang von der Schließstellung in die Offenstellung zu bewegen und um den Spannungsabbau zu realisieren. Der Öffnungszeitpunkt wird in Abhängigkeit des Erstarrungs- oder Schrumpfungsverhaltens gewählt, das beispielsweise im Rahmen einer Simulation vorab bestimmt wird. Ist nach Ablauf einer bestimmten Zeit der Erstarrungsablauf soweit fortgeschritten, dass sich eine stabile Randschale ausgebildet hat, so kann das oder können die Aktuatorelemente angesteuert werden, um die Kokille zu öffnen und mögliche Spannungen abzubauen. Bevorzugt wird die Kokille um einen definierten Weg in einem Schritt geöffnet, so dass das Bauteil frei von Spannungen schrumpfen kann. Ein solches Öffnen kann aber auch intermittierend erfolgen, das heißt dass relativ kurze Aktuatorbewegungen erfolgen, so dass zu definierten Zeitpunkten die Kokille quasi schrittweise geöffnet wird. Bevorzugt jedoch wird das oder werden die Aktuatorelemente über die Steuerungseinrichtung zur sukzessiven Öffnung der Kokille in Abhängigkeit des Schrumpfungsverhaltens angesteuert, das heißt, dass ein geregeltes Nachführen in Abhängigkeit des Schrumpfungsverhaltens respektive des Spannungsabbaus erfolgt. Die Kokille wird also langsam geöffnet, um die Entlastung respektive den Spannungsabbau parallel zur Volumenänderung respektive zum Schrumpfungsvorgang vorzunehmen, so dass sich ein geregeltes Nachführen im Hinblick auf sich aufbauende Verspannungen zwischen Gussteil und Kokille einstellt. Die der Kokille zugeordnete oder einen Teil der Kokille respektive der Kokilleneinrichtung bildende Steuerungseinrichtung steuert folglich in jedem Fall den gesamten Öffnungsvorgang.
  • Alternativ zum aktiven Auseinanderbewegen der Kokillenteile über ein oder mehrere an beiden Kokillenteilen abgestützte Aktuatorelemente ist es denkbar, dass das über eine Steuerungseinrichtung ansteuerbare Aktuatorelement ein Spannmittel, über das zwei Kokillenteile fest miteinander verspannt sind, zum Lösen der Verspannung der Kokillenteile betätigt. Gemäß dieser Erfindungsalternative wird also die Verspannung der Kokillenteile schlagartig gelöst, so dass es zu einem Öffnen der Kokille über den hohen Innendruck kommt, das heißt, dass in diesem Fall die Kokille wiederum über den schrumpfenden Metallgegenstand selbst geöffnet wird. Die Initiierung dieses Öffnens erfolgt jedoch ausschließlich über das oder die Aktuatorelemente, die die Spannmittel, beispielsweise verspannte Federn oder Spannhebel, lösen oder öffnen. Es ist hier also quasi eine Kombination zwischen den beiden unterschiedlichen Möglichkeiten gegeben, wobei hier das Aktuatorelement nicht zum aktiven Öffnen der Kokille selbst dient, sondern zum aktiven Lösen der Spannmittel und damit zur Initiierung des eigenen Öffnungsvorgangs selbst. Der Öffnungszeitpunkt wird so gewählt, dass es trotz schrumpfungsbedingter Verspannung zwischen dem Metallgegenstand und der Kokille nicht zu einer negativen Beeinflussung des Metallgegenstands kommt.
  • Sind mehrere Spannmittel vorgesehen, so ist bevorzugt jedem Spannmittel ein separat ansteuerbares Aktuatorelement zugeordnet. Diese werden bevorzugt simultan angesteuert, um die Spannmittel gleichzeitig zu lösen.
  • Wie beschrieben erfolgt die Ansteuerung des oder jedes Aktuatorelements in Abhängigkeit des Schrumpfungsverhaltens des Metallgegenstands. Es geht also in die Steuerung die Volumenkontraktion respektive die Festigkeit der Randschicht des Gussteils ein. Da die Kokillenparameter wie Größe der Kavität und damit das Schmelzvolumen, das Kokillenmaterial und dessen Wärmeleitfähigkeitseigenschaften sowie die Kokillenwandstärke etc. bekannt sind, kann das Erstarrungs- und Schrumpfungsverhalten abgeschätzt werden und das oder jedes Aktuatorelement über die Steuerungseinrichtung zeitgesteuert angesteuert werden. Es wird also bestimmt, wie sich der Schrumpfungsvorgang mit der Zeit verhält, um anhand des Schrumpfungsverlaufs eine zeitbasierte Steuerung vorzunehmen. Alternativ ist es auch denkbar, dass die Steuerung des Öffnungsvorgangs druckbasiert durch entsprechende Sensoren in der Kokille realisiert wird. Alternativ oder zusätzlich ist auch eine temperaturbasierte Steuerung über ein kokillenseitiges Thermoelement denkbar. Nach einer weiteren Alternative ist es auch denkbar die Steuerung der Aktuatorelemente in Abhängigkeit einer Simulation des Schrumpfungs- oder Erstarrungsvorgangs vorzunehmen. In der Steuerungseinrichtung läuft also gestützt auf eine Reihe an Randbedingungen respektive Simulationsparametern eine Simulation des Schrumpfungs- oder Erstarrungsvorgangs der Metallschmelze ab. Diese Simulation ist nun Basis für die Steuerung des oder jedes Aktuatorelements, sei es ein Aktuatorelement, über das die Kokillenteile aktiv auseinander bewegt werden, sei es ein Aktuatorelement, über das ein Spannmittel oder dergleichen betätigt wird.
  • Das oder jedes Aktuatorelement arbeitet wie beschrieben elektrisch, hydraulisch oder pneumatisch. Es ist über eine oder mehrere entsprechende Versorgungsleitungen mit einer Steuerungseinrichtung im Falle eines elektrisch arbeitenden Aktuatorelements oder einer Pumpe oder Fördereinrichtung im Falle eines hydraulisch oder pneumatisch arbeitenden Aktuatorelements verbunden. Die Versorgungsleitungen sind so zum Aktuatorelement respektive zur Kokille zu führen, dass eine etwaige Kokillenrotation möglich ist. Wie beschrieben erfolgt der Guss üblicherweise unter Vakuum, bei entsprechend hoher Temperatur und einer Rotation mit mehreren 100 U/min, z.B. ≤ 400 U/min.
  • Wie zuvor beschrieben wird bevorzugt ein in seiner Länge veränderbares Aktuatorelement oder mehrere solcher Aktuatorelemente verwendet. Neben dem Einsatz eines solchen Elements in Form eines Stellzylinders ist es alternativ denkbar, als Aktuatorelement ein Metallelement zu verwendet, das seine Länge in Abhängigkeit der Temperatur der Kokille verändert. Auch hier erfolgt das Öffnen in Abhängigkeit eines kokillenseitig gegebenen Parameters, nämlich der Temperatur. Ein solches Metallelement besteht aus einem Material mit einem möglichst hohen Wärmedehnungskoeffizienten, so dass es mit zunehmender Temperatur seine Länge entsprechend stark ändert, mithin sich also längt, wodurch die beiden Kokillenteile, an denen das Metallelement festgelegt ist, auseinander gedrückt werden. Der Temperatureintrag erfolgt direkt über die sich während des Erstarrens und Abkühlens erwärmende Kokille, in der das Metallelement, von denen natürlich auch mehrere verteilt vorgesehen sein können, angeordnet ist. Der Grad der Erwärmung der Kokille ist ein Maß für den Erstarrungsgrad des Metallgegenstands, so dass ein Öffnen der Kokille zum Spannungsabbau auch hierdurch möglich ist. Das Metallelement ist z.B. an beiden relativ zueinander zu bewegenden Kokillenteilen in entsprechenden vorzugsweise formkompatiblen Aufnahmen oder Vertiefungen angeordnet, so dass ein guter Wärmeübergang von der Kokille auf das Metallelement möglich ist. Das Metallelement weist z.B. die Form eines Stiftes oder Bolzens auf.
  • In Weiterbildung der Erfindung kann in einem oder mehreren Kokillenteilen ein ein Kühlmittel führender Kühlmittelkanal vorgesehen sein. Über diesen Kühlmittelkanal ist ein gezieltes Kühlen der Kokille und damit eine gezielte Wärmeabfuhr möglich. Hierüber kann folglich die Erstarrung und Abkühlung beeinflusst werden. Auch eine gezielte Vorwärmung oder Temperierung der Kokille ist hierüber möglich. Als Kühlmittel wird üblicherweise ein Fluid verwendet, beispielsweise Öl, Wasser oder Druckluft. Sind mehrere Kühlmittelkanäle vorgesehen, so können diese unterschiedlich temperiert oder bedient werden, um unterschiedliche Abkühlbedingungen in verschiedenen Kokillenbereichen zu erzielen. Der Kühlmittelkanal, wobei natürlich auch mehrere Kühlmittelkanäle vorgesehen sein können, kann so geführt werden, dass gezielt bestimmte Kokillenteilbereiche gekühlt werden, um beispielsweise Bereiche des Metallgegenstandes mit einem hohen Volumen stärker zu kühlen als andere Bereiche oder Ähnliches. Ist ein oder sind mehrere solcher Kühlkanäle vorgesehen so geht die Kühlwirkung in die Bestimmung der Steuerparameter zur Ansteuerung des oder der Aktuatorelemente ein, beispielsweise werden entsprechende Kühlparameter im Rahmen der Simulation berücksichtigt. Zur weiteren Steuerung der Kühlung und damit Beeinflussung der Erstarrung und Abkühlung kann an einem oder mehreren Kokillenteilen ein oder mehrere eine höhere oder niedrigere Wärmeleitfähigkeit als das Kokillenmaterial aufweisende Metalleinlage, beispielsweise aus Kupfer, eingebracht sein und/oder ein oder mehrere Kokillenteile zur Änderung der Kokillendicke außenseitig lokal aufgedickt oder abgetragen sein. Die Anbringung oder Integration einer oder mehrerer Metalleinlagen führt dazu, dass Wärme besser vom Kokilleninneren nach außen abgeführt werden kann, als dies durch das Kokillenmaterial der Fall wäre. Wird alternativ oder zusätzlich die Kokillendicke lokal reduziert, ergibt sich ebenfalls eine Verbesserung, da die Wärme schneller abgeführt werden kann. Die Kokille selbst ist bevorzugt eine metallene Dauerform. Sie besteht aus einem Metallwerkstoff wie beispielsweise Gusseisen, Stahl, Kupfer, Niob oder Molybdän sowie etwaigen hieraus gebildeten Legierungen. Grundsätzlich können alle metallenen Werkstoffe verwendet werden, die aufgrund ihrer physikalischen Eigenschaften und chemischen Beständigkeit gegenüber der Metallschmelze, bevorzugt der TiAl-Schmelze verwendet werden können.
  • Die Erfindung betrifft insgesamt ein Verfahren zur Herstellung eines hochbelastbaren Bauteils aus einer α + γ - TiAl-Legierung für Kolbenmaschinen und Gasturbinen, insbesondere Flugtriebwerke, bei welchem eine Schmelze aus einer TiAl-Legierung bereitgestellt wird, welche in einem Zentrifugal-Schleudergussverfahren in eine oder mehrere Kokillen zu einem oder mehreren vorkonturierten Halbzeugen für eine schmiede- und/oder bearbeitungstechnische Weiterverarbeitung zum Fertigteil vergossen wird, wobei die oder jede Kokille eine Kavität mit wenigstens einer Hinterschneidung und eine oder mehrere ebene oder freigeformte Trennebenen besitzt und durch einen durch die Kontraktion des abkühlenden Bauteils erzeugten inneren Druck selbst und/oder über ein in Abhängigkeit eines kokillenseitig gegebenen physikalischen Parameters ansteuerbares oder betätigbares Aktuatorelement während des Erstarrungs- und Abkühlprozesses geöffnet wird.
  • Der durch Abkühlen insbesondere über seine Längsachse schrumpfende Metallgegenstand drückt erfindungsgemäß schrumpfungs- oder kontraktionsbedingt direkt oder indirekt gegen eine Fläche, die derart angeordnet ist, dass die beiden Kokillenteile druckbedingt voneinander wegbewegt werden.
  • Das oder jedes Aktuatorelement kann über die Steuerungseinrichtung zeitgesteuert, druckgesteuert, temperaturgesteuert oder in Abhängigkeit einer Simulation des Schrumpfungs- oder Erstarrungsvorgangs angesteuert werden.
  • Die verschiedenen Öffnungsmechanismen können entweder separat oder kumulativ genutzt werden.
  • Erfindungsgemäß wird ein Metallgegenstand aus einer Titanaluminid-Legierung, insbesondere (α+γ)-Titanaluminid-Legierung gegossen, also aus einem schlechte Gießeigenschaften und ein äußerst sprödes Verhalten bei Raumtemperatur aufweisenden Material. Als Kokille wird eine metallene Dauerform verwendet, aus einem Metall oder einer Metalllegierung, das oder die physikalische und chemische Eigenschaften aufweist, die einen TiAl-Guss erlauben respektive hinreichend gegenüber diesem Material beständig sind.
  • Bevorzugt, jedoch nicht zwingend, wird eine Kokille der zuvor beschriebenen Art verwendet.
  • Sämtliche Ausführungen betreffend die Kokille gelten in gleicher Weise für das erfindungsgemäße Verfahren, und umgekehrt.
  • Weitere Vorteile und Einzelheiten der Erfindung ergeben sich aus den im Folgenden beschriebenen Ausführungsbeispielen sowie anhand der Zeichnung. Diese zeigen verschiedene Ausführungen von im Rahmen des erfindungsgemäßen Verfahrens verwendbaren Kokillen. Dabei zeigen:
  • Fig. 1
    eine Prinzipdarstellung einer Kokille in einer Schnittansicht,
    Fig. 2
    eine Prinzipdarstellung eines Metallgegenstands einer ersten Ausführungsform, beispielsweise für die Herstellung einer Niederdruckturbinenschaufel ,
    Fig. 3
    eine Prinzipdarstellung einer Kokille einer zweiten Ausführungsform,
    Fig. 4
    eine Prinzipdarstellung eines Metallgegenstands einer zweiten Ausführungsform, beispielsweise für die Herstellung einer Niederdruckturbinenschaufel, in einer Seitenansicht a) und einer Draufsicht b), der in der Kokille nach Fig. 3 gegossen werden kann,
    Fig. 5
    eine erfindungsgemäß verwendbare Kokille einer ersten Ausführungsform in drei Ansichten zur Erläuterung des Öffnungsvorgangs der Kokille,
    Fig. 6
    eine erfindungsgemäß verwendbare Kokille einer zweiten Ausführungsform in drei Ansichten,
    Fig. 7
    eine erfindungsgemäß verwendbare Kokille einer dritten Ausführungsform in drei Ansichten,
    Fig. 8
    eine erfindungsgemäß verwendbare Kokille einer vierten Ausführungsform in drei Ansichten,
    Fig. 9
    eine erfindungsgemäß verwendbare Kokille einer fünften Ausführungsform in drei Ansichten,
    Fig. 10
    eine erfindungsgemäß verwendbare Kokille einer sechsten Ausführungsform mit randseitigen Ausnehmungen,
    Fig. 11
    eine erfindungsgemäß verwendbare Kokille einer siebten Ausführungsform in drei Ansichten,
    Fig. 12
    eine erfindungsgemäß verwendbare Kokille einer achten Ausführungsform in drei Ansichten,
    Fig. 13
    eine erfindungsgemäß verwendbare Kokille einer neunten Ausführungsform in drei Ansichten,
    Fig. 14
    eine erfindungsgemäß verwendbare Kokille einer zehnten Ausführungsform in zwei Ansichten,
    Fig. 15
    die Kokille aus Fig. 14 in drei weiteren Ansichten, und
    Fig. 16
    eine erfindungsgemäß verwendbare Kokille einer elften Ausführungsform in drei Ansichten.
  • Fig. 1 zeigt eine Kokille 1 bestehend aus zwei Kokillenteilen 2a, 2b, die jeweils ein Formnest 3a, 3b aufweisen. In der zusammengesetzten Form ergänzen sich die beiden Formnester 3a, 3b und definieren eine Kavität 4, die zum Gießen eines konturierten Metallgegenstandes mit Schmelze zu füllen ist.
  • Die beiden Kokillenteile 2a, 2b sind voneinander längs einer im gezeigten Beispiel ebenen Trennebene 5 trennbar, um den ausgehärteten Metallgegenstand aus der Kavität 4 entnehmen zu können.
  • Im gezeigten Beispiel ist die Kavität 4 zum Gießen eines Metallgegenstandes zur Herstellung einer Niederdruckturbinenschaufel ausgelegt. Die Kavität 4 weist ein über ihre Längsachse variierendes Volumen mit zwei randseitigen größeren Volumenbereichen 6a, 6b sowie einen mittleren, schmäleren Volumenbereich 6c auf. Ersichtlich weisen die Volumenbereiche 6a, 6b jeweils Hinterschneidungen auf, resultierend aus der Durchmesservergrößerung. Sie sind über schräg verlaufende Flächen 7a, 7b bzw. 8a, 8b begrenzt, wobei diese Flächen unter einem Winkel α bzw. β zur Trennebene 5 verlaufen. Die Volumenabschnitte 6a, 6b können rotationssymmetrisch, also rund sein, sie können aber auch drei-, vier- oder mehreckig oder freigeformt sein, je nach gewünschter Form.
  • Fig. 2 zeigt ein Beispiel eines Metallgegenstandes 9, der mit einer Kokille 1 gemäß Fig. 1 gegossen werden kann. Dieser Metallgegenstand 9 dient wie beschrieben exemplarisch zur Herstellung einer Niederdruckturbinenschaufel. Er zeichnet sich durch ein Deckband 10, das im Volumenbereich 6b abgebildet wird, einen Schaufelfuß 11, der im Volumenbereich 6a abgebildet wird, und einen Schaufelblatt 12, der im Volumenbereich 6c abgebildet wird, aus. Seine Form entspricht der der Kavität 4, er ist lediglich schrumpfungsbedingt etwas kleiner vom Volumen, verglichen mit dem Volumen der Kavität 4. Hierauf wird nachfolgend noch eingegangen.
  • Fig. 4 zeigt in einer Seitenansicht a) und einer Draufsicht b) eine zweite Ausführungsform eines Metallgegenstandes 9, der gleichermaßen zur Herstellung einer Niederdruckturbinenschaufel geeignet ist und der in einer Kokille 1 gemäß Fig. 3 gegossen werden kann. Dieser Metallgegenstand 9' weist ebenfalls ein Deckband 10', einen Schaufelfuß 11' sowie ein Schaufelblatt 12' auf. An ihm ist jedoch, seitlich vorspringend, ein Speiser 13 angeformt, der einen Materialnachfluss in den eigentlichen Raum der Kavität 4 ermöglicht. Dieser Speiser 13 dient also als Materialreservoir. Die Kavität 4 weist hierzu, siehe Fig. 3, einen entsprechenden, seitlich erweiterten Formnestabschnitt 6d auf. Dieser Formnestabschnitt weist, resultierend aus der Geometrie des Speisers, zwangsläufig entsprechend schräge Flächen 15a, 15b auf, damit die schrägen Flächen 14a und 14b des Speisers 13 gebildet werden können. Diese Flächen sind in Fig. 3 gezeigt. In Fig. 3 ist im oberen Teil a exemplarisch eine Schnittansicht durch die beiden Kokillenteile 2a, 2b gezeigt, während Fig. 3 im Teil b eine Draufsicht auf das Kokillenteil 2b, also das untere Kokillenteil, zeigt.
  • Quasi ausgehend von der Grundform gemäß Fig. 1 ist im Volumen der Kavität 4 ein zusätzlicher Volumenbereich 6d realisiert, der der Bildung des Speisers 13 dient. Dieser ist über entsprechende Schrägflächen 15a und 15b definiert. Auch die Flächen 15a, 15b stehen ersichtlich unter einem Winkel γ zur Trennebene 5 der Kokillenteile 2a, 2b. Der Winkel der Flächen 15a, 15b ist hier exemplarisch gleich, er kann aber auch unterschiedlich sein.
  • Beim Gießen derartiger Metallgegenstände 9, 9', wie in den Fig. 2 und 4 gezeigt, beispielsweise aus einer Titanaluminid-Legierung stellt sich eine beachtliche Volumenkontraktion des Gussteils während der Abkühlung ein, der zu hohen Spannungen des in der Kavität 4 eingeschlossenen Metallgegenstandes führen würde, da die Volumenschrumpfung über die Hinterschneidungen im Bereich der Volumenabschnitte 6a, 6b respektive 6d behindert wäre. Um einen Spannungsabbau zu realisieren ist jedoch, wie in den nachfolgenden Fig. 5 - 9 gezeigt wird, eine Möglichkeit angegeben, wie die Kokille 1 definiert geöffnet werden kann, um einen Spannungsabbau zu realisieren.
  • Fig. 5 zeigt eine erste Ausführungsform einer erfindungsgemäßen Kokille bestehend aus den beiden Kokillenteilen 2a, 2b. Diese sind über Führungen 17 geführt aufeinander gesetzt. Im Bereich der Führungen 17 sind Spannmittel 18 beispielsweise in Form von Federelementen 26 vorgesehen, über die die beiden Kokillenteile 2a, 2b gegeneinander verspannt werden.
  • Ausgehend vom Bildabschnitt a) wird zunächst die Schmelze in die Kavität der Kokille 1 eingebracht, die sodann langsam in der Kokille 1 erstarrt, so dass sich der Metallgegenstand 9 (gleichermaßen könnte auch der Metallgegenstand 9' gebildet werden) bildet.
  • Mit zunehmender Erstarrung und Abkühlung schrumpft der Metallgegenstand 9, wie im Figurenteil b) gezeigt ist. Über die beiden Pfeile 19 ist angedeutet, dass sich das Volumen insbesondere axial reduziert, das heißt, dass sich der Metallgegenstand quasi verkürzt. Nachdem der Metallgegenstand randseitig, gegebenenfalls bereits im gesamten Volumen erstarrt ist, kommt es dazu, dass der Metallgegenstand 9 gegen die Flächen 7a, 7b respektive 8a, 8b drückt. Da diese Flächen unter einem Winkel α respektive β, der >0° und <90° ist und bevorzugt im Bereich zwischen 20 - 70°, insbesondere zwischen 30 - 60° liegt, zur Trennebene stehen, ergibt sich eine Druckkomponente in Richtung des Pfeils 20, wie im Figurenteil b) gezeigt. Es baut sich also ein Innendruck auf. Aufgrund der Schrägstellung der entsprechenden Flächen 7a, 7b, 8a, 8b relativ zur Trennebene 5 wird nun das obere Kokillenteil 2a vom unteren Kokillenteil 2b weggedrückt. Dies geschieht gegen die Rückstellkraft der Federelemente 26, die hierbei zusammengedrückt werden. Ersichtlich öffnet sich die Kokille, gemäß Teilfigur b) ist das obere Kokillenteil 2a vom unteren Kokillenteil 2b bereits etwas beabstandet. Die Winkel der Flächen können gleich sein, sie können aber auch in unterschiedlichen Bauteilbereichen unterschiedlich groß sein.
  • Nimmt die Abkühlung und damit der Volumenkontraktion weiter zu, wie in Teilfigur c) durch die Pfeile 19 gezeigt ist, so drückt respektive arbeitet der Metallgegenstand 9 immer weiter respektive stärker gegen die entsprechenden Flächen 7a, 7b, respektive 8a, 8b, so dass die Kokille immer weiter geöffnet wird.
  • Die Federelemente 26 werden immer weiter zusammengedrückt. Der Schrumpfungs- und Öffnungsgrad ist in den Figuren (dies gilt für alle Figuren) übertrieben dargestellt, um das Funktionsprinzip darstellen zu können.
  • Dadurch, dass die Kokille in diesem Fall sukzessive durch den sukzessiven schrumpfenden Metallgegenstand geöffnet wird, wird hierüber zwangsläufig die Spannung zwischen Metallgegenstand und Kokillenteilen 2a, 2b abgebaut. Diese abgebauten Spannungen können sich nicht mehr schädlich auf den Metallgegenstand auswirken. Das Öffnen der Kokille erfolgt hier allein durch den schrumpfenden Metallgegenstand selbst.
  • Fig. 6 zeigt ein Ausführungsbeispiel einer zweiten Ausführungsform einer erfindungsgemäßen Kokille 1, die im gezeigten Beispiel aus vier Kokillenteilen 2a, 2b, 2c und 2d besteht, die jeweilige Formnester 3a, 3b, 3c und 3d aufweisen, die in ihrer Gesamtheit wiederum die Kavität 4 bilden. Die Kokillenteile 2a und 2c sind über eine im gezeigten Beispiel horizontale Trennebene 5 von den unteren Kokillenteilen 2b, 2d getrennt. Die Kokillenteile 2a und 2b ihrerseits sind über eine vertikale Trennebene 5' von den Kokillenteilen 2c und 2d getrennt.
  • Im gezeigten Beispiel sind die Kokillenteile 2a, 2b wiederum über entsprechende Führungen 17 geführt miteinander verbunden, wobei den Führungen 17 wiederum entsprechende Spannmittel 18 in Form von Federelementen 26 zugeordnet sind. Die Form der Kavität entspricht angenommenermaßen der wie zu Fig. 5 beschrieben, also der des Metallgegenstands 9. Gleichermaßen könnte die Kavität 4 aber auch die Form aufweisen, wie sie der Metallgegenstand 9' zeigt.
  • Gemäß Teilfigur 6a wird auch hier zunächst Schmelze in die Kavität 4 der Kokille 1 eingebracht, die zur Bildung des Metallgegenstandes 9 erstarrt. Es kommt wiederum mit zunehmender Erstarrung und Abkühlung zu einer Volumenkontraktion, wie durch die Pfeile 19 dargestellt ist, die primär in Längsrichtung des Metallgegenstandes 9 gegeben ist. Der Metallgegenstand 9 drückt auch hier gegen die Flächen 7a, 7b respektive 8a, 8b, die hier an den einzelnen Kokillenteilen 2a - 2d realisiert sind. Resultierend aus dem Druck ergibt sich wiederum eine Druckkomponente in Richtung der Pfeile 20. Dies führt dazu, dass die Kokillenteile 2a, 2b auseinander bewegt werden, wie Teilfigur b und insbesondere bei fortschreitender Abkühlung die Teilfigur c zeigt. Die Kokille 1 wird abschnittsweise geöffnet, es kommt wiederum zum Spannungsabbau, auch wenn hier nur ein abschnittsweises Öffnen der Kokille erfolgt.
  • Würde ein Metallgegenstand 9' gegossen, so hätte die Kavität die in Fig. 3 gezeigte Form. Zum Öffnen würde der Metallgegenstand 9' in diesem Fall nicht nur gegen die Schrägflächen 7a, 7b, 8a und 8b drücken respektive arbeiten, sondern zusätzlich gegen die Schrägflächen 15a, 15b, das heißt, dass auch der erstarrende Speiser 13 dazu dient, die Kokillenöffnung gegen die Rückstellkraft der Federelemente 26 zu erwirken.
  • Fig. 7 zeigt ein Ausführungsbeispiel einer erfindungsgemäßen Kokille 1 wiederum bestehend exemplarisch aus den beiden Kokillenteilen 2a, 2b, bei welcher Kokille 1 ein Aktuatorelement 21 vorgesehen ist, über das die Kokille 1 aktiv geöffnet werden kann.
  • Das Aktuatorelement 21 ist im gezeigten Beispiel an den beiden Kokillenteilen 2a, 2b an entsprechenden Lagerbereichen 23a, 23b abgestützt. Es handelt sich beispielsweise um einen Stellzylinder 22, der elektrisch, hydraulisch oder pneumatisch betätigt wird, wozu entsprechende, hier nicht näher gezeigte Versorgungs- oder Steuerleitungen zum Aktuatorelement 21 geführt sind.
  • Angenommenermaßen wird wiederum ein Metallgegenstand 9 gegossen, das heißt, die Kavität 4 weist die bezüglich Fig. 1 detailliert beschriebene Geometrie auf. Gleichermaßen könnte auch hier ein Metallgegenstand 9' mit einer entsprechenden Kavitätsgeometrie gegossen werden.
  • Nach Eingießen der Schmelze erstarrt der Metallgegenstand 9, wie in Teilfigur a gezeigt ist. Es kommt, wie Teilfigur b zeigt und durch die Pfeile 19 angedeutet ist, zu einem Volumenschwund und damit einer Kontraktion in Längsrichtung des Metallgegenstands 9, so dass sich im Inneren wiederum Spannungen im Metallgegenstand 9 aufbauen. Um diese zu kompensieren wird das Aktuatorelement 21 respektive der Stellzylinder 22 über eine nicht näher gezeigte Steuerungseinrichtung angesteuert, so dass er die Kokillenteile 2a, 2b auseinander bewegt, wie in den Teilfiguren b, c durch die Pfeile 20 dargestellt ist. Zwar arbeitet auch hier der Metallgegenstand 9 gegen die entsprechenden schrägstehenden Flächen 7a, 7b, 8a, 8b, jedoch ist dieser Lasteintrag in die Kokille nicht respektive nicht allein dafür verantwortlich, die Kokille zu öffnen. Die Kokillenöffnung kann entweder ausschließlich durch das Aktuatorelement 21 erfolgen, oder durch das Aktuatorelement 21, unterstützt durch die "Arbeit" des Metallgegenstands.
  • Fig. 8 zeigt eine weitere Ausführungsform einer erfindungsgemäßen Kokille 1, die - vergleichbar mit Fig. 6 - ebenfalls aus vier Kokillenteilen 2a, 2b, 2c und 2d besteht. Vergleichbar mit Fig. 7 sind auch hier die beiden Kokillenteile 2a, 2b über ein Aktuatorelement 21, vorzugsweise einen Stellzylinder 22, der an entsprechenden Lagerabschnitten 23a, 23b aufgelagert ist, gekoppelt.
  • Wie Fig. 8 deutlich zeigt, werden hier mit zunehmendem Schrumpfen des Metallgegenstands 9, der exemplarisch auch hier gegossen wird, die Kokillenteile 2a, 2b über das Aktuatorelement 21 auseinander gefahren und die Kokille, siehe insbesondere Teilfigur c, geöffnet, so dass es zum Spannungsabbau kommt. Zwar drücken auch hier, wie durch die Pfeile 19 dargestellt ist, die entsprechenden Flanken des Metallgegenstands 9 gegen die entsprechenden schrägen Flächen 7a, 7b, 8a, 8b der Kokillenteile 2a, 2d, jedoch ist dieser Druck nicht respektive nicht ausschließlich für das Öffnen der Kokille verantwortlich. Das Öffnen der Kokille respektive das Auseinanderfahren der Kokillenteile 2a, 2b wird allein durch das Aktuatorelement 21 initiiert, der Druck des Metallgegenstands gegen die entsprechenden Schrägflächen wirkt allenfalls unterstützend.
  • Fig. 9 zeigt eine Ausführungsform einer erfindungsgemäßen Kokille 1, die wiederum nur aus zwei Kokillenteilen 2a, 2b besteht, die über entsprechende Führungen 17 mit zugeordneten Spannelementen 18 umfassend die Federelemente 26 miteinander verspannt sind. Es sei wiederum angenommen, dass ein Metallgegenstand 9 mit der entsprechenden Geometrie gegossen wird, das heißt, die Kavität 4 weist die bezüglich Fig. 1 beschriebene Form auf. Vorgesehen ist auch hier ein Aktuatorelement 21, beispielsweise wiederum ein Stellzylinder 22, der an einem Auflagerabschnitt 23a des Kokillenteils 2a angeordnet ist, während er mit seinem anderen Ende an einem positionsfesten Auflager 24 angeordnet ist.
  • Nach Eingießen der Schmelze kommt es auch hier zu einer Erstarrung und Abkühlung und damit einer Volumenkontraktion seitens des Metallgegenstandes 9. Dieser arbeitet, siehe Teilfigur 2b, wiederum gegen die schrägen Flächen 7a, 7b, 8a, 8b. Dieser Druck führt dazu, dass es zu einem Öffnen der Kokille 1 kommt. Das Aktuatorelement 21 unterstützt diesen Öffnungsvorgang, bewegt also das Kokillenteil 2a vom Kokillenteil 2b weg. Hier wirken also die beiden Öffnungsmechanismen zusammen, das heißt, dass die Öffnung sowohl durch den auf die Kokillenteile 2a, 2b drückenden, schrumpfenden Metallgegenstand 9 als auch den sich längenden Stellzylinder 22 erwirkt wird. In der in Teilfigur c gezeigten Offenstellung sind die Kokillenteile 2a, 2b hinreichend weit auseinander gefahren, es ist ein entsprechender vollständiger Spannungsabbau gegeben. Wie durch die Pfeile 19 und 20 dargestellt, hat sich einerseits der Metallgegenstand 9 in Längsrichtung verkürzt, gleichzeitig aber wurde auch das Kokillenteil 2a relativ vom Kokillenteil 2b wegbewegt.
  • Die Ansteuerung des Aktuatorelements 21, also beispielsweise des Stellzylinders, erfolgt, wie lediglich in Fig. 9 exemplarisch dargestellt ist, über eine Steuerungseinrichtung 25. Die Ansteuerung kann zeitgesteuert erfolgen, das heißt, dass nach Ablauf einer bestimmten Zeit nach Einbringen der Schmelze das Aktuatorelement 21 - gleich welche Kokillenausführungsform nun betrachtet wird - kontinuierlich betätigt wird, um sukzessive das Kokillenteil 2a vom Kokillenteil 2b zu trennen. Neben einer zeitbasierten Ansteuerung ist auch eine druckbasierte oder temperaturbasierte Ansteuerung denkbar. Alternativ ist es denkbar, die Ansteuerung auch auf Basis einer Simulation, die den Schrumpfungs- und Erstarrungsvorgang des Metallgegenstands 9 simuliert, vorzunehmen. Exemplarisch ist in Fig. 9 des Weiteren in jedem Kokillenteil 2a, 2b ein Kühlmittelkanal 27 dargestellt, der über eine nicht näher gezeigte Kühlmittelversorgung mit Kühlmittel versorgt wird. Hierüber können die Kokillenteile entsprechend gekühlt werden. Als Kühlmittel wird beispielsweise Öl oder Wasser oder Luft verwendet, oder eine Kombination mindestens zweier dieser Kühlmittel. Diese Kühlung geht, sofern die Steuerungseinrichtung 25 über eine Simulation arbeitet, in die Simulation mit ein.
  • Zusätzlich oder alternativ können auch Materialeinlagen an den Kokillenteilen vorgesehen sein, die die Wärmeabfuhr beeinflussen, die also eine höhere oder geringere Wärmeleitfähigkeit als das Kokillenmaterial aufweisen.
  • Auch besteht die Möglichkeit, an der Kokille außenseitig Veränderungen der lokalen Kokillendicke vorzunehmen, z.B. durch Materialabtrag oder Materialauftrag, um die lokale Wärmeabfuhr zu beeinflussen. Ein Prinzipbeispiel ist in Fig. 10 gezeigt, wo die Kokille 1 an den Seiten Ausnehmungen 28 aufweist.
  • Fig. 11 zeigt ein Ausführungsbeispiel einer erfindungsgemäßen Kokille 1, bei der der Metallgegenstand selbst keine entsprechenden Schrägflächen aufweist, gleichwohl aber Hinterschneidungen in der Kavität 4 vorgesehen sind. Hier sind die Schrägflächen an den aneinander anliegenden Stoßseiten der Kokillenteile vorgesehen, derart, dass im Falle einer Längenkontraktion des erstarrenden Metallgegenstandes die beiden beweglichen Kokillenteile auf den Schrägflächen des feststehenden Kokillenteils abgleiten und es so zur Kokillenöffnung kommt.
  • Vorgesehen sind drei Kokillenteile 2a, 2b und 2c. Das feststehende Kokillenteil 2a, das aus zwei lösbar miteinander verschraubten Einzelteilen (nicht näher gezeigt) zur Ermöglichung der Entformung des Metallgegenstands 9 besteht, weist zwei schräge Flächen 7a, 7b auf, die quasi keilförmig aufeinander zulaufen. Jedes der beweglichen Kokillenteile 2b, 2c weist eine Schrägfläche 8a bzw. 8b auf, wobei in der geschlossenen Form die Kokillenteile 2b, 2c formschlüssig aneinander und über die schrägen Flächen 8a, 8b an den Flächen 7a, 7b anliegen.
  • Gezeigt ist die bereits eingegossene Schmelze zur Bildung des Metallgegenstandes 9, der hier quasi knochenförmig in der Prinzipdarstellung gezeigt ist, wobei kavitäts- und metallgegenstandsseitig keine Schrägflächen vorgesehen sind. Zum Verspannen der Kokillenteile 2b und 2c sind auch hier wieder entsprechende Führungen 17 mit Spannmitteln 18 umfassend die Federelemente 26 vorgesehen.
  • Die Teilfigur 11b zeigt die Kokille 1 während des Gießprozesses, beispielsweise während der Rotation der Kokille 1. Wie durch die Pfeile 19 auch hier dargestellt, kontrahiert der Metallgegenstand 9 schrumpfungsbedingt insbesondere entlang seiner Längsachse. Der verbreiterte Bereich 29 des Metallgegenstandes 9 drückt kontraktionsbedingt innerhalb seiner Teilkavität gegen die entsprechenden hinterschnittenen Flanken an den Kokillenteilen 2b, 2c. Dies führt dazu, dass die beiden Kokillenteile 2b und 2c mit ihren schrägen Flächen 8a, 8b auf den schrägen Flächen 7a, 7b des Kokillenteils 2a abgleiten und es auf diese Weise sukzessive zu einer Kokillenöffnung und damit zu einem Spannungsabbau kommt. Die Kokillenöffnung ist durch die Pfeile 20 dargestellt. Die geöffnete Kokille ist in Teilfigur 2c dargestellt, wo ersichtlich ist, dass die Kokillenteile 2b und 2c einerseits relativ zum feststehenden Kokillenteil 2a, andererseits auch relativ zueinander verschoben sind.
  • Sofern die Kokille nach dem teilweisen Erstarren und der Ausbildung einer stabilen Randschicht nicht mehr rotiert, kann der Öffnungsvorgang im Wesentlichen auch allein durch die gespannten Federelemente 2b realisiert werden, die die Kokillenteile 2b, 2c in die Offenstellung ziehen, quasi dem Volumenschwund folgend.
  • Fig. 12 zeigt ein vergleichbares Ausführungsbeispiel einer solchen Kokille 1, bei der wiederum drei Kokillenteile 2a, 2b und 2c vorgesehen sind, wobei die Kokillenteile 2b und 2c relativ zum feststehenden Kokillenteil 2a beweglich sind. Sie sind über entsprechende Führungen 30 relativ zum Kokillenteil 2a beweglich geführt.
  • Die Kavität 4 weist auch hier exemplarisch keine Schrägflächen auf, wiederum weist die Kavität eine Art Knochenform auf.
  • Fig. 12a zeigt den Ausgangszustand der Gießform. In diesem Ausgangszustand sind die beiden Kokillenteile 2b und 2c quasi geöffnet. Die Kokille 1 ist also nicht geschlossen.
  • Das Schließen erfolgt erst, wenn bei diesem Ausführungsbeispiel die Kokille 1 in Rotation versetzt wird, wobei die wirkenden Zentrifugalkräfte dazu führen, dass die beiden Kokillenteile 2b, 2c, über die Führungen 30 geführt, mit ihren schrägen Flächen 8a, 8b auf den schrägen Flächen 7a, 7b des Kokillenteils 2a abgleiten und, wie durch die Pfeile 31 dargestellt ist, in die Schließstellung bewegt werden. In dieser Position kann die Schmelze zugeführt werden, um den Metallgegenstand 9 zu gießen.
  • Auch hier erstarrt der Metallgegenstand und kontrahiert über seine Längsachse, wie durch die Pfeile 19 dargestellt ist. Diese Längenkontraktion und die damit auf die Kokillenteile 2b, 2c ausgeübte, in Richtung der Längsachse wirkende Kraft wirkt der Zentrifugalkraft entgegen. Da die kontraktionsbedingte Kraft deutlich größer ist als die Zentrifugalkraft kommt es mit zunehmendem Erstarren und damit Schrumpfen des Metallgegenstandes 19 dazu, dass die Kokillenteile 2b, 2c, wie durch die Pfeile 20 dargestellt ist, auseinanderbewegt werden, sie gleiten mit ihren schrägen Flächen 8a, 8b auf den schrägen Flächen 7a, 7b des feststehenden Kokillenteils ab. Auch hierüber kann folglich der Spannungsabbau erreicht werden.
  • Fig. 13 zeigt ein weiteres Ausführungsbeispiel einer erfindungsgemäßen Kokille 1, das dem Ausführungsbeispiel aus Fig. 12 nahe kommt, was den grundsätzlichen Aufbau der Kokille 1 sowie das Funktionsprinzip angeht. Diesbezüglich wird auf die vorstehenden Ausführungen verwiesen.
  • Anders als bei der Ausführungsform nach Fig. 12 ist hier jedem beweglichen Kokillenelement 2b, 2c ein Rückstellelement 32 umfassend ein Federelement 33 vorgesehen, das jeweils an einem Auflager 34 befestigt ist und mit dem anderen Ende mit dem Kokillenteil 2b bzw. 2c gekoppelt ist.
  • In der Ausgangsstellung gemäß Teilfigur 13a sind auch hier die Kokillenteile 2b, 2c geöffnet und relativ zum Kokillenteil 2a verschoben. Die Federelemente 33 sind entspannt respektive kontrahiert.
  • Das Schließen der Kokille 1 erfolgt auch hier durch die Zentrifugalkraft während der Rotation, wie durch die Pfeile 31 dargestellt ist. Die Zentrifugalkraft führt dazu, dass die Kokillenteile 2b, 2c mit ihren schrägen Flächen 8a, 8b auf den schrägen Flächen 7a, 7b des feststehenden Kokillenteils 2a, über die Führungen 30 geführt, abgleiten. Hierbei kommt es zu einer Längung des jeweiligen Federelements 33, so dass dieses eine Rückstellkraft aufbaut. Diese Rückstellkraft wirkt also der Zentrifugalkraft entgegen. Sie unterstützt den über den erstarrenden Metallgegenstand 9 induzierten Öffnungsvorgang, wie er in Teilfigur 13c dargestellt ist. Der entlang seiner Längsachse schrumpfende Metallgegenstand, siehe die Pfeile 19, drückt, wie bereits zu Fig. 12 beschrieben, gegen die Kokillenteile 2b, 2c, so dass diese wiederum auf dem Kokillenteil 2a abgleiten. Diese Gleitbewegung wird durch die Federelemente 33, die sich hierbei wieder kontrahieren, unterstützt.
  • Sofern die Kokille nach dem teilweisen Erstarren und der Ausbildung einer stabilen Randschicht nicht mehr rotiert, kann der Öffnungsvorgang im Wesentlichen auch allein durch die gespannten Federelemente 2b realisiert werden, die die Kokillenteile 2b, 2c in die Offenstellung ziehen, quasi dem Volumenschwindung folgend.
  • Fig. 14 zeigt eine Ausführungsform einer Kokille 1, exemplarisch bestehend aus zwei Kokillenteilen 2a, 2b und zwar in Teilfigur 14a in einer Seitenansicht und in Teilfigur 14b in einer Draufsicht auf die untere Kokillenhälfte 2b.
  • Der Öffnungsvorgang wird hier über mehrere thermisch aktivierbare Stellelemente 35 in Form von Metallstiften 36 erwirkt.
  • Exemplarisch ist hier wiederum eine Kavität 4 gezeigt, deren Geometrie der Kavität 4 aus den Figuren 1 - 9 entspricht, die also über entsprechende Schrägflächen 7a, 7b und 8a, 8b verfügt, gegen die der Metallgegenstand 9 drückt. Der Öffnungsprozess kann über diesen bereits vorstehend beschriebenen Mechanismus zusätzlich unterstützt werden, er kann aber auch allein über die Stellelemente 35 erwirkt werden.
  • Bei den Stellelementen 35 respektive den Metallelementen 36, die die Form von Bolzen oder Stiften haben, handelt es sich um Metallelemente mit einem möglichst hohen Wärmedehnungskoeffizienten. Jedes Metallelement 36 ist in entsprechenden Aufnahmen 37 an den beiden Kokillenteilen 2a, 2b aufgenommen, wobei die Geometrie der Aufnahmen 37 bevorzugt der Geometrie des Metallelements 36 entspricht, so dass ein guter Wärmeübergang von Kokille zum Metallelement gegeben ist. Denn die Erwärmung der Metallelemente 36 erfolgt ausschließlich über die Kokille 1. Nach Eingießen der Schmelze erwärmt sich zwangsläufig während des Abkühlens des Metallgegenstandes 9 die Kokille 1. Hierüber kommt es auch zu einer Erwärmung der Metallgegenstände 36. Diese sind derart ausgelegt, dass sie erwärmungsbedingt eine Extension in Längsrichtung vornehmen, sie längen sich also. Da sie beidseits an den Kokillenteilen 2a, 2b aufgelagert sind, führt eine Längung zwangsläufig dazu, dass die Kokillenteilen 2a, 2b auseinandergedrückt werden, so dass die Kokille 1 geöffnet wird. Dies ist exemplarisch Fig. 15 gezeigt.
  • Teilfigur 15a zeigt die Situation nach dem Einbringen der Schmelze zur Bildung des Metallgegenstandes 9. Mit zunehmendem Abkühlen und Erstarren kommt es zur Längskontraktion, wie die Pfeile 19 anzeigen. Gleichzeitig längen sich aber auch die Metallelemente 36, von denen in Fig. 15 schnittbedingt nur eines gezeigt ist. Es kommt zum Auseinanderdrücken der Kokillenteile 2a, 2b und damit zum Öffnen der Kokille 1, wie durch den Pfeil 20 angedeutet ist. Dieser Öffnungsvorgang erfolgt im gezeigten Beispiel wieder gegen die Rückstellkraft der Spannmittel 18, wobei auch hier die Kokillenteile über Führungen 17 definiert relativ zueinander bewegbar sind. Der Öffnungsvorgang kann im Wesentlichen allein durch die Metallelemente 36 erreicht werden, oder im Zusammenwirken mit dem Metallgegenstand 9.
  • Fig. 16 zeigt schließlich eine Kokille 1, die ähnlich der Kokille aus Fig. 3 aufgebaut ist. Sie besteht aus zwei Kokillenteilen 2a, 2b und weist einen zusätzlichen seitlichen Formnestabschnitt auf, der über schräge Flächen 15a, 15b begrenzt ist. Dieser Formnestabschnitt ermöglicht das Ausbilden eines Speisers 13 am Metallgegenstand 9, wie in Teilfigur 16a gezeigt. In dem Formnestabschnitt ist jedoch zusätzlich ein Einlegeteil 37 aufgenommen, das keilförmig ist und entsprechende schräge Flächen 38a, 38b aufweist, mit denen es an den schrägen Flächen 15a, 15b anliegt. Der Speiser 13 bildet sich in unmittelbarem Anschluss an das Einlegeteil 37 aus. Der Speiser 13 weist exemplarisch eine rundliche Geometrie auf, kann aber auch anders geformt sein.
  • Wird die Schmelze eingegossen und erstarrt der Metallgegenstand 9, so kontrahiert er wieder über seine Längsachse, wie die Pfeile 19 zeigen. Der Speiser 13 arbeitet gegen das Einlegeteil 37, das, wie durch den Pfeil 39 dargestellt ist, ebenfalls in Richtung der Längsachse verschoben wird. Es drückt mit seinen schrägen Flächen 38a, 38b gegen die schrägen Flächen 15a, 15b der beiden Kokillenteile 2a, 2b, so dass es zum Öffnen der Kokille 1 kommt, wie durch den Pfeil 20 dargestellt ist. Teilfigur 16c zeigt die geöffnete Kokille 1. Hier drückt also der Metallgegenstand 9 über das Einlegeteil 37 indirekt gegen die Flächen der Kokillenteile 2a, 2b. Der Öffnungsvorgang kann entweder nur über diesen über das Einlegeteil 37 ausgeübten Druck erfolgen, oder in Unterstützung durch den ebenfalls entsprechende Schrägflächen aufweisenden Metallgegenstand 9, der gegen die entsprechenden schrägen Flächen der Kokillenteile 2a, 2b drückt.
  • Die erfindungsgemäße Kokille, gleich welcher Ausführungsform, wird insbesondere dazu verwendet, einen Metallgegenstand respektive ein Halbzeug mit einer über die Längsachse variierenden Volumenverteilung für eine schmiede- und/oder bearbeitungstechnische Weiterverarbeitung zum Fertigteil herzustellen. Das Fertigteil kann insbesondere, jedoch nicht ausschließlich für den Einsatz in einer Kolbenmaschine oder einer Gasturbine, insbesondere in Flugtriebwerken, vorgesehen sein.
  • Wie beschrieben wird bevorzug eine Titanaluminid-Legierung zur Bildung des Metallgegenstands 9 oder 9' verwendet. Eine solche Legierung kann folgende Zusammensetzung (in Atom%) aufweisen:
    • 40 - 49% Al
    • 1 - 10% Nb
    • 0,01 - 10% wenigstens eines der Elemente Mo, Cr, Mn oder B
    sowie ein Rest aus Ti und erschmelzungsbedingten Verunreinigungen.
  • Besonders bevorzugt wird eine Legierung folgender Zusammensetzung (in Atom%):
    • 42 - 48,5% Al
    • 1,5 - 5,5% Nb
    • 0,05 - 5% wenigstens eines der Elemente Mo, Cr, Mn oder B
    sowie ein Rest aus Ti und erschmelzungsbedingten Verunreinigungen.
  • In weiterer Konkretisierung wird bevorzugt eine Legierung folgender Zusammensetzung (in Atom%) verwendet:
    • 43,3 - 48,2% Al
    • 1,8 - 4,2% Nb
    • 0,07 - 2,7% wenigstens eines der Elemente Mo, Cr, Mn oder B
    sowie ein Rest aus Ti und erschmelzungsbedingten Verunreinigungen.
  • Als weitere Legierungselemente können Ta, Si, V oder C enthalten sein. Dies gilt für alle vorgenannten Zusammensetzungen.
  • Beim Gießprozess wird eine solche Legierung erschmolzen, was beispielsweise durch VIM (Vacuum Induction Melting), VAR (Vacuum Arc Remelting) oder PAM (Plasma Arc Melting) erfolgen kann und anschließend in die Gießform gegossen, in der die Schmelze in der beschriebenen Weise erstarrt. Der Guss erfolgt dabei entweder statisch, druckunterstützt oder in einer Kombination aus beiden, wobei vorzugsweise das Zentrifugal-Schleudergussverfahren zum Einsatz kommt. Dabei wird die Schmelze aus dem Schmelztiegel/-behälter in ein rotierendes Gießsystem, bestehend aus einem Schmelzeverteiler, Laufsystem und der oder den Kokillen, gegossen. Das Schmelzen der Legierung sowie der Guss erfolgt bevorzugt unter Vakuum, wahlweise auch bei chemisch inerter Atmosphäre unter Schutzgas.

Claims (17)

  1. Verfahren zur Herstellung eines hochbelastbaren Metallgegenstands (9, 9') aus einer α + γ - TiAl-Legierung für Kolbenmaschinen und Gasturbinen, insbesondere Flugtriebwerke, bei welchem eine Schmelze aus einer TiAl-Legierung bereitgestellt wird, welche in einem Zentrifugal-Schleudergussverfahren in eine oder mehrere Kokillen (1) zu einem oder mehreren vorkonturierten Halbzeugen für eine schmiede- und/oder bearbeitungstechnische Weiterverarbeitung zum Fertigteil vergossen wird, wobei die oder jede Kokille (1) eine Kavität (4) mit wenigstens einer Hinterschneidung und eine oder mehrere ebene oder freigeformte Trennebenen (5) besitzt und durch einen durch die Kontraktion des abkühlenden Metallgegenstands (9, 9') erzeugten inneren Druck selbst und/oder über ein in Abhängigkeit eines kokillenseitig gegebenen physikalischen Parameters ansteuerbares oder betätigbares Aktuatorelement (21) während des Erstarrungs- und Abkühlprozesses geöffnet wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der durch Abkühlen schrumpfende Metallgegenstand (9, 9') kontraktionsbedingt gegen eine Fläche (7a, 7b, 8a, 8b, 15a, 15b) drückt, wobei die Fläche (7a, 7b, 8a, 8b, 15a, 15b) derart angeordnet ist, dass die beiden Kokillenteile (2a, 2b, 2c, 2d) druckbedingt voneinander wegbewegt werden.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das oder jedes Aktuatorelement (21) über die Steuerungseinrichtung (25) zeitgesteuert, druckgesteuert, temperaturgesteuert oder in Abhängigkeit einer Simulation des Schrumpfungs- oder Erstarrungsvorgangs angesteuert wird.
  4. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass eine Kokille (1) verwendet wird umfassend wenigstens zwei lösbar miteinander verbindbare Kokillenteile (2a, 2b, 2c, 2d) mit jeweils wenigstens einem Formnest (3a, 3b, 3c, 3d), wobei sich die Formnester (3a, 3b, 3c, 3d) bei geschlossener Kokille (1) zu einer Kavität (4) mit einem längs einer Achse variierenden Volumen mit einer oder mehreren Hinterschneidungen ergänzen und längs einer ebenen oder freigeformten Trennebene (5) voneinander lösbar sind, wobei an wenigstens einem Kokillenteil wenigstens eine Fläche (7a, 7b, 8a, 8b, 15a, 15b) vorgesehen ist, gegen die über den beim Abkühlen schrumpfenden Metallgegenstand (9, 9') kontraktionsbedingt direkt oder indirekt Druck aufbaubar ist, wobei die Fläche (7a, 7b, 8a, 8b, 15a, 15b) derart angeordnet ist, dass die beiden Kokillenteile (2a, 2b, 2c, 2d) druckbedingt voneinander wegbewegbar sind, und/oder wobei wenigstens ein in Abhängigkeit des Schrumpfungsverhaltens oder eines kokillenseitig gegebenen physikalischen Parameters betätigbares Aktuatorelement (21) zum Öffnen der Kokille (1) vorgesehen ist.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass eine Kokille verwendet wird, bei der
    - entweder die Kokillenteile (2a, 2b, 2c, 2d) in der Schließstellung verbindende Klemm- oder Spannmittel (18) vorgesehen sind, die derart ausgelegt sind, dass sie eine Rückstellkraft erzeugen, gegen die die Kokillenteile (2a, 2b, 2c, 2d) durch den schrumpfenden Metallgegenstand (9, 9') aus der Schließstellung drückbar sind,
    - oder die Kokillenteile (2a, 2b, 2c, 2d) durch Rotation in die Schließstellung bewegbar sind und Spannmittel (26) vorgesehen sind, die bei einer Bewegung in die Schließstellung eine Rückstellkraft aufbauen, wobei die Kokillenteile (2a, 2b, 2c, 2d) sowohl durch den schrumpfenden Metallgegenstand (9, 9') als auch die Rückstellkraft aus der Schließstellung drückbar sind,
    - oder die Kokillenteile (2a, 2b, 2c, 2d) in der Schließstellung fest miteinander verspannende Spannmittel vorgesehen sind, die über einen in Abhängigkeit des Schrumpfungsverhaltens oder eines kokillenseitig gegebenen physikalischen Parameters betätigbaren, über eine Steuerungseinrichtung (25) ansteuerbaren Aktuator (21) zum Öffnen der Kokille (1) lösbar und die Kokillenteile (2a, 2b, 2c, 2d) durch den schrumpfenden Metallgegenstand (9, 9') aus der Schließstellung drückbar sind.
  6. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass eine Kokille (1) verwendet wird, bei der die Fläche (7a, 7b, 8a, 8b, 15a, 15b) als Schrägfläche aufgeführt ist, die unter einem Winkel (α, β, γ) >0° und <90° zur Trennebene (5) steht, wobei vorzugsweise der Winkel (α, β, γ) ≥ 15°, insbesondere ≥ 30° und ≤ 75°, insbesondere ≤60° ist.
  7. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass eine Kokille (1) verwendet wird, bei der die Fläche (7a, 7b, 8a, 8b) an einem Formnest (3a, 3b) vorgesehen ist und eine Begrenzungsfläche des Metallgegenstands (9) darstellt, oder dass die Fläche (15a, 15b) im Bereich eines zusätzlichen Formnestabschnitts (6d) ausgebildet ist, wobei vorzugsweise in dem zusätzlichen Formnestabschnitt (6d) wenigstens ein Einlegeteil (37) angeordnet ist, das eine komplementäre Fläche (38a, 38b) aufweist, und gegen das der Metallgegenstand (9) beim Abkühlen drückt, derart, dass das Einlegeteil (37) gegen die Fläche (15a, 15b) drückt.
  8. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass eine Kokille (1) verwendet wird, die mehr als zwei Kokillenteile (2a, 2b, 2c, 2d) aufweist, die jeweils ein Formnest (3a, 3b, 3c, 3d) aufweisen, die sich zu der Kavität (4) ergänzen, wobei die wenigstens eine Fläche (7a, 7b, 8a, 8b, 15a, 15b) derart angeordnet ist, dass sich zumindest zwei Kokillenteile (2a, 2b) schrumpfungsbedingt voneinander wegbewegen.
  9. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass eine Kokille (1) verwendet wird, bei der die Fläche (7a, 7b, 8a, 8b) eine äußere Begrenzungsfläche eines Kokillenteils (2a, 2b, 2c) ist, wobei zwei Kokillenteile (2a, 2b, 2c) mit ihren Flächen (7a, 7b, 8a, 8b) derart aneinander anliegen, dass sie druckbedingt gegeneinander verschiebbar sind.
  10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass eine Kokille (1) verwendet wird, bei der wenigstens drei Kokillenteile (2a, 2b, 2c) vorgesehen sind, wobei ein erstes Kokillenteil (2a) zwei unter einem Winkel zueinander verlaufende Flächen (7a, 7b) aufweist, an denen jeweils ein weiteres Kokillenteil (2b, 2c) mit einer entsprechenden Fläche (8a, 8b) anliegt, derart, dass die beiden weiteren Kokillenteile (2b, 2c) druckbedingt auseinander und relativ zum ersten Kokillenteil bewegbar sind.
  11. Verfahren nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass eine Kokille (1) verwendet wird, bei der die Kokillenteile (2a, 2b, 2c) über Führungsmittel (30) aneinander geführt bewegbar sind.
  12. Verfahren nach Anspruch 10 und 11, dadurch gekennzeichnet, dass eine Kokille (1) verwendet wird, bei der die Kokillenteile (2a, 2b, 2c) derart angeordnet und relativ zueinander bewegbar sind, dass die beiden weiteren Kokillenteile (2b, 2c) bei einer Rotation der Kokille (1) ausgehend von einer Offenstellung in eine Schließstellung bewegbar sind, aus der sie vorzugsweise druckbedingt wieder herausbewegbar sind.
  13. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass eine Kokille (1) verwendet wird, bei der die Kokillenteile (2a, 2b, 2c, 2d) über Verbindungsabschnitte oder Führungen (17) formschlüssig ineinandergreifen.
  14. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass eine Kokille (1) verwendet wird, bei der die Klemm- oder Spannmittel (18) ein oder mehrere Federelemente (26) umfassen, über die die Kokillenteile (2a, 2b, 2c, 2d) miteinander verspannt sind.
  15. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass eine Kokille (1) verwendet wird, bei der mehrere Spannmittel vorgesehen sind, denen jeweils ein separat ansteuerbares Aktuatorelement (21) zugeordnet ist.
  16. Verfahren nach einem der vorangehenden Ansprüche , dadurch gekennzeichnet, dass das oder jedes Aktuatorelement (21) über die Steuerungseinrichtung (25) zeitgesteuert, druckgesteuert oder temperaturgesteuert oder in Abhängigkeit einer Simulation des Schrumpfungs- oder Erstarrungsvorgangs angesteuert wird.
  17. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Aktuatorelement (21) elektrisch, hydraulisch oder pneumatisch arbeitet.
EP17163412.4A 2016-03-30 2017-03-28 Verfahren zum giessen eines konturierten metallgegenstandes, insbesondere aus tial Not-in-force EP3225331B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016105795.9A DE102016105795A1 (de) 2016-03-30 2016-03-30 Kokille zum Gießen eines konturierten Metallgegenstandes, insbesondere aus TiAl

Publications (2)

Publication Number Publication Date
EP3225331A1 EP3225331A1 (de) 2017-10-04
EP3225331B1 true EP3225331B1 (de) 2018-10-31

Family

ID=58448486

Family Applications (2)

Application Number Title Priority Date Filing Date
EP17163412.4A Not-in-force EP3225331B1 (de) 2016-03-30 2017-03-28 Verfahren zum giessen eines konturierten metallgegenstandes, insbesondere aus tial
EP17163410.8A Active EP3225330B1 (de) 2016-03-30 2017-03-28 Kokille zum giessen eines konturierten metallgegenstandes, insbesondere aus tial

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP17163410.8A Active EP3225330B1 (de) 2016-03-30 2017-03-28 Kokille zum giessen eines konturierten metallgegenstandes, insbesondere aus tial

Country Status (3)

Country Link
EP (2) EP3225331B1 (de)
DE (1) DE102016105795A1 (de)
ES (2) ES2708387T3 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111687382A (zh) * 2020-06-12 2020-09-22 泉州市宏山工程机械有限公司 一种支重轮制造设备及支重轮制造工艺

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110232244B (zh) * 2019-06-13 2022-10-14 河北科技大学 一种基于ProCAST软件卧式离心铸造筒型件内孔收缩模拟的方法
CN112247079A (zh) * 2020-09-28 2021-01-22 安徽长青建筑制品有限公司 一种脚手架扣件加工用冲压模具
DE102021000614A1 (de) 2021-02-08 2022-08-11 Access E.V. Kokille zur rissfreien Herstellung eines Metallgegenstandes mit mindestens einem Hinterschnitt, insbesondere aus intermetallischen Legierungen wie TiAl, FeAl und anderen spröden oder rissanfälligen Werkstoffen, sowie ein entsprechendes Verfahren.
CN113976824B (zh) * 2021-10-20 2023-09-15 中国航发沈阳黎明航空发动机有限责任公司 一种防止联体单晶导向叶片型芯自由端产生杂晶的方法
CN117324587B (zh) * 2023-11-03 2024-03-26 广州市型腔模具制造有限公司 一种可免热处理铝合金的铸造制备装置及其铸造方法
CN117680662B (zh) * 2024-02-04 2024-04-09 山西禧佑源民机完工中心有限公司 一种用于航空飞机金属涡轮叶片铸造设备

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2367727A (en) * 1941-12-13 1945-01-23 Henry E Mcwane Apparatus for casting articles in permanent metal molds
DE3828091A1 (de) * 1988-08-18 1990-02-22 Siemens Ag Verfahren zum veraendern eines rechnergespeicherten cad-3d-modells eines gussformteiles im hinblick auf schwindung
FR2642685B1 (fr) * 1989-01-16 1991-05-17 Creusot Loire Procede de coulee sous pression de produits plats metalliques tels que des brames et dispositif de mise en oeuvre de ce procede
EP0572683B1 (de) * 1992-01-13 1999-12-08 Honda Giken Kogyo Kabushiki Kaisha Verfahren zum Giessen von Aluminiumlegierungen und Gusstücken
DE4418452A1 (de) * 1993-05-26 1994-12-01 Konica Corp Metallgießform und Metall-Formgießvorrichtung
EP0686443B1 (de) * 1994-06-09 1999-11-10 ALD Vacuum Technologies GmbH Verfahren zum Herstellen von Gussteilen aus reaktiven Metallen und wiederverwendbare Giessform zur Durchführung des Verfahrens
DE19846781C2 (de) * 1998-10-10 2000-07-20 Ald Vacuum Techn Ag Verfahren und Vorrichtung zum Herstellen von Präzisionsgußteilen durch Schleudergießen
IL143931A0 (en) * 1998-12-23 2002-04-21 United Technologies Corp Die casting of high temperature material
KR100667997B1 (ko) * 1998-12-23 2007-01-15 유나이티드 테크놀로지스 코포레이션 다이 캐스트 티탄 합금 제품 및 다이 캐스트 가스 터빈 엔진 부품
IL133607A (en) * 1998-12-23 2004-03-28 United Technologies Corp Apparatus for die casting material having a high melting temperature
DE10329530A1 (de) * 2003-06-30 2005-02-03 Access Materials&Processes Gieß- und Erstarrungsverfahren für Bauteile aus intermetallischen Legierungen
DE102005054616B3 (de) * 2005-11-16 2006-11-09 Hydro Aluminium Mandl&Berger Gmbh Dauergießform und Gießformeinsatz
DE102006057660B4 (de) * 2006-12-07 2019-08-22 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Druckgießen von Bauteilen und Verwendung einer Sprühvorrichtung einer Druckgießvorrichtung
DE102011011531B4 (de) * 2011-02-17 2014-08-14 Audi Ag Auswerferanordnung zur Entformung eines Gussbauteils aus einer Gießform eines Gießwerkzeugs

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111687382A (zh) * 2020-06-12 2020-09-22 泉州市宏山工程机械有限公司 一种支重轮制造设备及支重轮制造工艺

Also Published As

Publication number Publication date
EP3225330A1 (de) 2017-10-04
EP3225331A1 (de) 2017-10-04
ES2709191T3 (es) 2019-04-15
EP3225330B1 (de) 2018-10-31
ES2708387T3 (es) 2019-04-09
DE102016105795A1 (de) 2017-10-05

Similar Documents

Publication Publication Date Title
EP3225331B1 (de) Verfahren zum giessen eines konturierten metallgegenstandes, insbesondere aus tial
EP2848333B1 (de) Verfahren und Vorrichtung zur Herstellung eines metallischen Bauteils mittels eines Gieß- und Formwerkzeugs
DE69936736T2 (de) Druckgiessen von hochtemperaturmaterialien
EP0835705B1 (de) Verfahren und Vorrichtung zum Herstellen von gesteuert erstarrten Präzisionsgussteilen durch Schleudergiessen
DE69923930T2 (de) Vorrichtung zum Druckgiessen von Material mit hohem Schmelzpunkt
EP0718059B1 (de) Oxidabstreifer
EP3645192B1 (de) Verfahren, giessform und vorrichtung zur herstellung eines fahrzeugrads
WO2012159898A1 (de) Giessverfahren für dauerformen
EP2945760B1 (de) Giessform zur herstellung von gussteilen, insbesondere zylinderblöcken und zylinderköpfen, mit funktionaler anbindung des speisers
DE112013007406B4 (de) Verfahren zum Herstellen von Bauteilen aus einer Aluminiumlegierung
DE10209347B4 (de) Herstellungsverfahren für einen Turbinenradläufer
EP1948374B1 (de) Dauergiessform und giessformeinsatz
DE10209346B4 (de) Herstellungsverfahren für ein mehrteiliges Ventil für Verbrennungsmotoren
DE102016123491B4 (de) Gießvorrichtung, Presse und Verfahren zum Gießen eines Bauteils
WO2010139571A1 (de) Verfahren zur herstellung eines läufers eines turboladers
EP3651919B1 (de) Verfahren zum betreiben einer giessvorrichtung zum giessen unter druck
WO2015155170A1 (de) Druckgiessmaschine und druckgussverfahren zur herstellung mehrerer gussstücke
DE102007017690A1 (de) Verfahren und Vorrichtung zur Herstellung eines Gussteils
DE102021000614A1 (de) Kokille zur rissfreien Herstellung eines Metallgegenstandes mit mindestens einem Hinterschnitt, insbesondere aus intermetallischen Legierungen wie TiAl, FeAl und anderen spröden oder rissanfälligen Werkstoffen, sowie ein entsprechendes Verfahren.
DE102006002341A1 (de) Spritzgießwerkzeug
DE10346265B4 (de) Werkzeug und Verfahren zum Thixoschmieden von Schmiedeteilen aus Stahl
WO1999046072A1 (de) Giessvorrichtung und giessverfahren mit nachverdichtung
DE102017125634B4 (de) Gießvorrichtung und Verfahren zum Herstellen einer Leichtmetallfelge sowie Leichtmetallfelge
DE102012203039B4 (de) Verfahren zum Betreiben einer Druckgussmaschine mit einer Schmelzetransportvorrichtung
DE69935176T2 (de) Verfahren zur Herstellung von Produkten aus Titanium-Legierungen durch Druckgiessen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180328

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B22D 17/22 20060101ALI20180528BHEP

Ipc: C22C 30/00 20060101ALI20180528BHEP

Ipc: B22C 9/06 20060101ALI20180528BHEP

Ipc: B22D 21/00 20060101ALI20180528BHEP

Ipc: B22D 17/26 20060101ALI20180528BHEP

Ipc: B22D 13/10 20060101AFI20180528BHEP

Ipc: C22C 14/00 20060101ALI20180528BHEP

INTG Intention to grant announced

Effective date: 20180625

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1058782

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017000300

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181031

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2709191

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20190415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190228

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190131

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190131

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190301

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190201

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017000300

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190328

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20210324

Year of fee payment: 5

Ref country code: FR

Payment date: 20210322

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210318

Year of fee payment: 5

Ref country code: GB

Payment date: 20210324

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170328

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20210421

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502017000300

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220328

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221001

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20230503

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1058782

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220329

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220328