EP3223026B1 - Procédé, dispositif et système destines à localiser un défaut sur une ligne d'un réseau d'alimentation électrique - Google Patents

Procédé, dispositif et système destines à localiser un défaut sur une ligne d'un réseau d'alimentation électrique Download PDF

Info

Publication number
EP3223026B1
EP3223026B1 EP16161729.5A EP16161729A EP3223026B1 EP 3223026 B1 EP3223026 B1 EP 3223026B1 EP 16161729 A EP16161729 A EP 16161729A EP 3223026 B1 EP3223026 B1 EP 3223026B1
Authority
EP
European Patent Office
Prior art keywords
line
current
fault
voltage values
fault location
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16161729.5A
Other languages
German (de)
English (en)
Other versions
EP3223026A1 (fr
Inventor
Cezary Dzienis
Andreas Jurisch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP16161729.5A priority Critical patent/EP3223026B1/fr
Priority to BR102017004862-4A priority patent/BR102017004862B1/pt
Priority to CN201710167016.5A priority patent/CN107219439B/zh
Priority to US15/465,802 priority patent/US10228408B2/en
Publication of EP3223026A1 publication Critical patent/EP3223026A1/fr
Application granted granted Critical
Publication of EP3223026B1 publication Critical patent/EP3223026B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/086Locating faults in cables, transmission lines, or networks according to type of conductors in power transmission or distribution networks, i.e. with interconnected conductors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/085Locating faults in cables, transmission lines, or networks according to type of conductors in power transmission or distribution lines, e.g. overhead
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/088Aspects of digital computing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/11Locating faults in cables, transmission lines, or networks using pulse reflection methods
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0138Electrical filters or coupling circuits

Definitions

  • the invention relates to a method for determining the fault location of a fault on a line of an electrical power supply network, in which first current and / or voltage values are measured and provided with a time stamp at a first line end of the line, and second current values are measured at a second line end of the line. and / or voltage values are measured and provided with a time stamp, and using the time-stamped first and second current and / or voltage values after the occurrence of a fault on the line, the fault location of the fault is determined.
  • the invention also relates to a corresponding device and a system for determining the fault location of a fault on a line of an electrical power supply network.
  • Such a method and such a device for determining a fault location are, for example, from US 2006/0012374 A1 known.
  • a rough result of the fault location can be achieved, for example, by determining the fault direction.
  • This method is mainly used in extinguished, isolated and high-resistance earthed power supply networks with a radial structure or a low degree of meshing.
  • a wattmetric method can be used as described in the European patent EP 2476002 B1 is known.
  • Another method for identifying the direction of the fault is the so-called "wiper relay principle", which in one possible embodiment is, for example, from the international patent application WO 2012126526 A1 emerges. With these methods, however, an additional evaluation is necessary for more precise fault location.
  • Methods for more precise fault location use, for example, the measured current or voltage signals of the fundamental wave (50 Hz or 60 Hz signals) for fault location.
  • methods which use measured values from only one of the line ends (one-sided fault location) or measured values from both line ends (two-sided fault location).
  • the fault location is usually given as the distance from the respective measuring point (as a percentage of the line or in km or miles).
  • This fault location method is predominantly an impedance-based method in which an impedance up to the fault location is calculated from current and voltage measured values. A comparison with the line impedance of the entire line in the error-free case allows a conclusion to be drawn about the location of the error.
  • An exemplary implementation of such a fault location method can, for example, be found in US Pat US 4996624 A can be removed.
  • the accuracy of this method depends, among other things, on the measurement accuracy of the current and voltage transformers used, the accuracy of the line parameters used for fault location (e.g. impedance coating) as well as the given fault conditions (e.g. fault resistance, load) and the nature of the network. Disturbances and transients in the current and voltage signals can have a negative effect on the accuracy of this method. The resulting measurement errors can amount to several percent.
  • Improved accuracy in fault location can be achieved by using measured values from both line ends.
  • the fault location-related measured values must be brought together via a suitable communication link.
  • a suitable communication link refer to the US patent U.S. 5,929,642 referred;
  • a very high level of accuracy is achieved when locating the fault.
  • the invention is based on the object of being able to locate faults with measured values from both line ends with even greater accuracy.
  • This object is achieved according to the invention by a method of the type specified in the introduction, in which, using the time-stamped first and second current and / or voltage values at both line ends, profiles of traveling waves propagating along the line in the direction of the line ends when the fault occurs are determined, and the fault location is determined from the profiles of the traveling waves determined for both line ends by determining a time difference with which the traveling waves arrive at the two line ends, the time difference being determined from a pattern comparison of the profiles of the traveling waves determined for the line ends.
  • the fault location is not based solely on the flank determination of the traveling waves, but also takes into account a profile of the traveling waves, and thus a longer course of measured values the time difference with which the traveling waves arrive at both ends of the line can be determined with a comparatively high degree of accuracy.
  • the error location can be inferred in a simple manner from the time difference.
  • the timers used for time stamping the current and / or voltage measured values at both line ends are time-synchronized with one another in the method according to the invention, so that the time stamps assigned at both line ends can be compared with one another.
  • a cross-correlation of the profiles is carried out for pattern comparison of the profiles of the traveling waves.
  • an angle of the cross power spectrum of the profiles of the traveling waves is used for the pattern comparison.
  • a correction of the profile of the traveling wave of at least one line end is carried out before the pattern comparison, in which attenuation of the line is taken into account.
  • fault location can advantageously be carried out with high accuracy even in those lines in which, due to their length and / or material properties, losses in terms of the measured values cannot be neglected.
  • a further advantageous embodiment of the method according to the invention also provides that the fault location is determined exclusively using those current and voltage values that were measured at the two line ends during the occurrence of a first wave pulse of a traveling wave.
  • a first individual wave crest, a first individual wave trough or the combination of a first wave crest and a first wave trough is regarded as the first impulse of a traveling wave.
  • Another advantage of this approach is that the first wave pulse is not yet overlaid by reflection effects from the other end of the line and the profile of the traveling wave can thus be calculated in a comparatively easier way.
  • a reduction in the measured values to be transmitted is particularly advantageous if fault location is to take place in real time (online fault location), while in the case of subsequent fault location (offline fault location) there is usually more time available for fault location and a longer time for measured value transmission Duration can be accepted.
  • the fault location is determined exclusively using either current values or voltage values that were measured at the two line ends during the occurrence of a first wave pulse of a traveling wave.
  • This embodiment of the method according to the invention is based on the knowledge that fault location is usually still possible with relatively high accuracy if only current or voltage measured values are used to determine the profiles of the traveling waves.
  • the current and voltage values measured at the line ends are subjected to filtering, with first and second filtered current and voltage values being formed which indicate a selected frequency range of the measured current and voltage values, and determining the profiles of the traveling waves using the first and second filtered current and voltage values.
  • the selected frequency range includes high-frequency transient components or band-limited transient components of the measured current and voltage values.
  • the filter characteristic of the filter for the current and Voltage values used filters dampen those frequency ranges in which the current or voltage transformers used to measure the current and voltage measured values have measurement errors.
  • a mathematical transformation for decoupling the individual phase components is carried out with regard to the first and second filtered current and voltage values, with first and second transformed current and voltage values being formed, and the profiles of the traveling waves can be determined using the first and second transformed current and voltage values.
  • the method according to the invention can advantageously be used in - usually present - multiphase power supply networks.
  • the mathematical transformation the measured values of the individual phases are decoupled and can be evaluated more easily.
  • a modal transformation such as the Clarke transformation or an eigenvalue transformation come into consideration for the transformation.
  • a further advantageous embodiment of the method according to the invention also provides that the determination of the fault location is carried out if in the course of the first current and voltage values or values derived therefrom and / or in the course of the second current and voltage values or values derived therefrom Jump has been detected which exceeds a predetermined threshold.
  • the fault location method is only effective in the event of a sudden change in the course, such as an actual one In the event of a fault, carried out because the jump in the course of the current and voltage measured values or the values derived therefrom (e.g. the above-mentioned filtered or transformed current and voltage values) usually associated with the fault triggers the execution of the fault location method.
  • the jump detection is used for the correct positioning of the measuring window for the evaluation to determine the fault location.
  • the fault distance x determined using the fault location method is evaluated. If this distance is within the line length, typically between 0 and 1, then there is a fault on the line to be monitored; on the other hand, if it is outside the line, no fault is to be assumed on the line.
  • a further advantageous embodiment of the method according to the invention also provides that the fault location is determined by means of a device at each of the line ends, and the fault locations determined with the devices are output by the devices.
  • the location of the fault is determined at both ends of the line, based on the same measured values, but nevertheless independently of one another, which is why two results of the fault location are generated.
  • Different algorithms can also be executed in parts of the facilities; for example, different optimization methods can be used.
  • conclusions can be drawn about the reliability of the result.
  • the fault location determined at the respective end of the line can, for example, be displayed directly on the device as a percentage of the line length or as the distance from the respective measuring point (e.g. in km or miles) or output in the form of a signal or data telegram and to be transmitted to an operator of the energy supply network.
  • the devices at the two ends of the line can, for example, be protective devices - mostly already present - for monitoring the line for faults.
  • the fault location is determined by means of a device set up for this purpose, and the fault location determined is output by the device.
  • This device can be provided at one of the line ends or designed as a central device, e.g. a data processing device in a station or network control center.
  • the determined fault location can be displayed directly on the device, e.g. as a percentage of the line length or as the distance from a selected measuring point (e.g. in km or miles) or output in the form of a signal or data telegram and transmitted to an operator of the energy supply network.
  • a device for determining the fault location of a fault on a line of an electrical power supply network is provided with a computing device which is configured to use first current and / or voltage values measured and time-stamped at a first line end of the line and at a second Line end of the line measured and time-stamped second current and / or voltage values after the occurrence of a fault on the line to determine its fault location.
  • the computing device is set up to use the time-stamped first and second current and voltage values at both line ends to determine profiles of traveling waves propagating along the line in the direction of the line ends when the fault occurs, and that the computing device is set up to determine the fault location from the profiles of the traveling waves determined for both line ends by determining a time difference with which the traveling waves arrive at the two line ends, the time difference being determined from a pattern comparison of the profiles of the traveling waves determined for the line ends .
  • the device can advantageously be formed by an electrical protective device which, in addition to locating the fault, also performs other protection and monitoring functions for the electrical power supply network (e.g. a distance protection function, an overcurrent protection function or a differential protection function for the line).
  • an electrical protective device which, in addition to locating the fault, also performs other protection and monitoring functions for the electrical power supply network (e.g. a distance protection function, an overcurrent protection function or a differential protection function for the line).
  • the device is a separate fault localization device.
  • the device according to the invention is set up for performing the method according to the invention in any embodiment or a combination of any embodiments.
  • the advantages of the device according to the invention reference is made to the advantages described for the method according to the invention.
  • a system according to claim 16 which specifies a system for determining the fault location of a fault on a line of an electrical power supply network.
  • two devices designed according to claim 15 are provided which are connected to one another by a communication link for data exchange and are designed to carry out a method according to one of claims 1 to 14.
  • Figure 1 shows a schematic view of a system 10 for determining a fault location in an electrical power supply network.
  • an electrical line 11 of the power supply network is shown in a simplified representation.
  • the line has the length l.
  • the line 11 can be a single-phase or a multiphase line.
  • the line 11 is limited at its line ends 11a and 11b by circuit breakers 12a, 12b and by these, in particular in the event of a fault, can be connected to the rest of the circuit Figure 1 power supply network not shown in detail are disconnected. Measuring points are also provided at the line ends 11a, 11b at which in Figure 1 Current transformers 13a, 13b and voltage transformers 14a, 14b, which are only shown as examples, are used to record current and voltage measured values.
  • the current converters 13a, 13b and the voltage converters 14a, 14b can be so-called conventional or non-conventional converters. On the secondary side, the converters output current measured values i and voltage measured values u, which can be analog or digitized values.
  • Devices 15a, 15b for determining a fault location are connected to the current transformers 13a, 13b and the voltage transformers 14a, 14b at the respective line ends 11a, 11b.
  • the devices 15a, 15b record the current and voltage measured values and, if necessary, carry out digitization and / or preprocessing.
  • a time stamp is assigned to the respective measured values, which precisely specifies the point in time when they were recorded.
  • the devices 15a, 15b have internal timers which are time-synchronized with one another by means of common methods, for example GPS time pulses, IRIG-B, IEEE 1588. Due to the time stamping, the measured values recorded at both line ends 11a, 11b can be compared with one another.
  • the devices 15a, 15b can, for example, be electrical protective devices which, in addition to a fault location function, also perform other protective and monitoring functions.
  • the protection devices can be distance protection devices, differential protection devices or overcurrent protection devices that monitor the operating status of line 11 based on the recorded current and voltage measured values and, in the event of a fault, transmit a switch-off signal T to their respective circuit breakers 12a, 12b in order to open their switching contacts to cause.
  • the devices 15a, 15b are set up to determine and output the fault location on the line 11, i.e. the location on the line at which a fault (e.g. short circuit, earth fault) has occurred, in the event of a fault. To do this, they use the current and / or voltage measured values of their own line end and the other end of the line that were recorded during the fault.
  • the devices 15a, 15b are connected via a communication link 16, which can be any suitable wired or wireless communication link. Via the communication link 16, the devices 15a, 15b can, among other things, exchange their current and / or voltage measured values to determine the fault location.
  • the devices 15a, 15b locate faults according to the so-called traveling wave principle. This makes use of the fact that when a fault occurs, high-frequency transient signal components arise in the current and in the voltage, which propagate on line 11 in both directions at approximately the speed of light. This is in Figure 1 exemplary drawn. For this purpose, it is assumed that an error has occurred at an error location F. As shown, the traveling waves propagate from the fault location F both in the direction of the first line end 11a and in the direction of the second line end 11b and can be measured there with the transducers and evaluated with the devices 15a, 15b to determine the location of the fault.
  • the fault location F is at a distance x; accordingly, the fault location F is at a distance lx from the second line end's point of view.
  • the devices evaluate the current and voltage measured values as described in detail below and indicate the fault location F, for example as the distance or percentage of the line length l.
  • the operator of the energy supply network can forward the determined fault location F to a maintenance team, which can then locate the fault location and rectify the cause of the fault. To do this, it is necessary to determine the location of the fault as precisely as possible. A procedure for precise fault location is described below.
  • traveling wave fault location a bilateral traveling wave fault locator algorithm is explained below, that is to say an algorithm that works with measured values from both line ends 11a, 11b.
  • a propagation model for traveling waves along the line 11 is used.
  • the "theory of long lines” is used to set up the algorithm in question.
  • This is a model representation of an electrical line in the form of so-called “distributed parameters”. This is exemplified in Figure 2 shown.
  • equations (3) and (4) are partial differential equations of a homogeneous line and are commonly referred to as "telegraph equations”. They can be generalized to any ladder.
  • Equations (7) and (8) can be solved separately for voltage and current using differential equation theory:
  • U x e - ⁇ s x ⁇ A. 1 + e ⁇ s x ⁇ A. 2
  • Z c s ⁇ I. x e - ⁇ s x ⁇ A. 1 - e ⁇ s x ⁇ A. 2
  • Z stands for the series impedance and Y for the transverse admittance of a section of the line. The values are given in relation to length.
  • Equations (15) and (16) represent a voltage or current-related propagation model for traveling waves along the line 11.
  • Equation (15) is made up of two terms, one of which describes a forward moving voltage wave and the other a backward moving voltage wave.
  • Equation (23) v is the speed of the traveling wave and l is the length of the line; x denotes the location of the error.
  • the speed v of the traveling wave is constant in a broad frequency spectrum is to be considered.
  • the determination of the time difference ⁇ between the wave profiles S 1 and S 2 can be used to locate the fault.
  • the outer shape of the two wave profiles S 1 and S 2 is identical. This property is used below to determine the location of the fault using pattern recognition.
  • a suitably designed filter can be used, for example, to remove the low-frequency components from the measurement signals.
  • Figure 3 shows the transfer function (amplitude and phase response) of an exemplary filter, which is used to filter out the relevant frequencies for further analysis from the course of the current and voltage measured values where filtered current and voltage values are generated.
  • An exemplary pass band of a suitable filter can be around 30 kHz to 400 kHz.
  • conventional primary transducers usually used in power supply networks can transmit the signals in a quality sufficient for fault location.
  • Figure 4 shows an exemplary course of current and voltage measured values at one end of a three-phase high-voltage line during a single-pole fault in phase A.
  • the single-pole fault causes the current to rise in the faulty phase A, while the voltage in phase A collapses.
  • the current and voltage signals contain high-frequency transients that are to be evaluated for fault location.
  • the high-frequency transient components of the current and voltage measured values can be filtered out.
  • a filter for example a band pass filter as in connection with Figure 2 described
  • the high-frequency transient components of the current and voltage measured values can be filtered out.
  • This results in filtered current and voltage values as shown in Figure 5 are shown by way of example.
  • the non-faulty phases B and C have corresponding high-frequency patterns.
  • the lines in power supply networks usually include at least three phase conductors. It is therefore necessary to present the above equations given for a single-line system in a matrix form.
  • Such a system of equations can be simplified by means of a modal or eigenvalue transformation. In this way it is achieved that the individual equations of the resulting system of equations are decoupled from one another and can thus be viewed independently of one another. Furthermore this transformation enables the already established equations to be viewed in transformed components.
  • Figure 6 it can be seen that in the example of a single-pole fault in phase A, the ⁇ component does not occur. It can also be seen that the 0 component is significantly slower than the ⁇ component.
  • the outer shape of the wave profiles S 1 and S 2 is the same and also does not depend on the location of the fault.
  • the time difference ⁇ is therefore a clear criterion for specifying the location of the fault.
  • the parameter we are looking for is the time difference ⁇ .
  • Figure 7 the wave profiles S 1 and S 2 are plotted along a time axis.
  • the amount of data to be transmitted for fault location could be reduced.
  • the first pulse of the profile S 1 or S 2 of a traveling wave also contains no information about the behavior of the traveling wave from the opposite end, because this information is only available after a reflection at the opposite end and the subsequent transit time over the entire line (exp (- ⁇ (s ) ⁇ L)) arrives at the local end of the line.
  • the equations (24) and (25) given above can be reduced as follows: e - s 2 x - l v - U 2 s - Z c s ⁇ I.
  • the course of the respective first wave pulse is not influenced by this simplification, since, as mentioned, no overlay with reflections from the respective other end of the line has taken place here. Differences in the wave profiles S 1 and S 1, R or S 2 and S 2, R are therefore only found in the further course of the respective profiles.
  • the determination of the time difference ⁇ carried out by means of a pattern recognition also provides the same value as in the evaluation of the complete profiles S 1 and S 2 , so that the fault location can also be carried out with the reduced profiles S 1, R and S 2, R with the same accuracy can.
  • the wave profiles S 1, R and S 2, R are formed from a linear combination of voltages and currents. Since the wave impedance Z C is to be assumed to be constant in the frequency range to be considered, the waveform profiles with regard to currents and voltages can be viewed approximately separately from one another. In this way, on the one hand, the amount of data to be transmitted can be further reduced and, on the other hand, the effort for the pattern comparison for determining the time difference ⁇ can be reduced.
  • S I 1, R and S I 2, R stand for the current-based profiles of the traveling waves reduced to the first wave pulse at the respective line end.
  • S V 1, R and S V 2, R stand for the voltage-based profiles of the traveling waves at the respective line end that are reduced to the first wave pulse.
  • the following describes how a determination of the time difference ⁇ and thus of the fault location x can take place with the aid of a pattern recognition carried out with regard to the wave profiles at the line ends. All of the methods described are based initially on the already mentioned knowledge that although the wave profiles at both ends of the line differ in terms of a time shift, the external shape of both wave profiles is identical. In order to determine the correct time difference ⁇ , the best possible overlap of the outer shapes of the wave profiles must first be found by shifting on the time axis. The value of the time shift made then corresponds to the time difference ⁇ sought.
  • the determination of the time difference ⁇ that results from the best overlap of the wave profiles can be carried out in various suitable ways. In the following, some possible approaches will be explained by way of example.
  • the pattern recognition can be performed both with regard to the complete wave profiles S 1 , S 2 and with regard to the previously described reduced wave profiles S 1, R , S 2, R or S I 1, R , S I 2, R or S V 1, R , S V 2, R can be performed.
  • the question of which wave profile should be used for the evaluation must be answered after weighing up the bandwidth available for data transmission and the required location accuracy.
  • the types of wave profiles used for the evaluation can be selected, for example, as parameters in the devices 15a, 15b, so that the operator of the energy supply network the appropriate evaluation basis can be selected for the respective individual case.
  • the time difference ⁇ can be determined, for example, by forming a cross-correlation between the wave profiles S 1 , S 2 or S 1, R , S 2, R or S I 1, R , S I 2, R or S V 1, R , S V 2, R take place.
  • T F stands for the duration of a measurement window.
  • the maximum of this curve indicates the correct time difference ⁇ and thus, according to equation (34), to the fault location x.
  • This procedure is exemplified in Figure 11 indicated.
  • Figure 11 shows four diagrams in this regard, of which the top two indicate the courses of the wave profiles S 1, R and S 2, R reduced to the first wave pulse. The time shift of the wave pulses 110a and 110b can be seen.
  • the fourth diagram shows the course of the cross-correlation K S1S2 according to equation (41).
  • the maximum of the curve indicates the time shift ⁇ of the two wave profiles S 1, R and S 2, R and can be used to determine the location of the fault.
  • a zero crossing of the angle indicates a maximum of the curve of the cross-power spectrum and thus the correct time difference ⁇ .
  • time difference ⁇ can also be determined by means of a quadratic objective function, in which case the minimum must be searched for:
  • Q S. 1 S. 2 ⁇ ⁇ t 0 t 0 + T F. S. 1 t - S. 2 t + ⁇ 2 German
  • FIG. 2 shows a schematic flow diagram of an exemplary embodiment of a method for determining a fault location. The process steps are found above the dashed line in the device 15a at the first line end 11a, those below the dashed line in the device 15b at the second line end 11b (cf. Figure 1 ) instead of.
  • the local currents and voltages are measured in each case in steps 120a and 120b and corresponding current and voltage measured values are generated. These measured values are available as samples of the current and voltage signals on line 11. An example of the recorded current and voltage measured values is in Figure 4 evident.
  • filtering takes place in steps 121a and 121b.
  • corner frequencies e.g. the bandpass filter
  • the method can be adapted to the properties of the transducers 13a, 13b and 14a, 14b. If these converters only provide a medium bandwidth, e.g. only up to 10 kHz, then the filters must limit the bandwidth of the signals to the bandwidth of the converter. Depending on the phase error of the transducers used, a somewhat lower measurement accuracy can then be expected. If the converters can provide a higher bandwidth, e.g. up to 500 kHz, then the filters should be dimensioned accordingly.
  • steps 121a, 121b filtered current and voltage values are generated, as exemplified in FIG Figure 5 are shown.
  • An exemplary transmission characteristic of a suitable filter is shown in Figure 3 shown.
  • the respective traveling waves are each treated in steps 122a and 122b by a transformation (for example Clarke transformation), for example in order to decouple the phase-related components.
  • a transformation for example Clarke transformation
  • Transformed current and voltage values are generated, as exemplified in Figure 6 are shown.
  • a transient jump can also be determined per side in steps 123a and 123b, which can be used, for example, as a trigger for the measuring window positioning becomes.
  • the length of the measurement window should preferably be at least twice the propagation time of the traveling wave in the selected modal component.
  • the jump detection can take place with regard to the transformed or the filtered current and voltage values or also with regard to the original current and voltage measured values.
  • the transformed current and voltage values are converted into the frequency range in steps 124a and 124b. This is preferably done by means of a Fast Fourier Transformation (FFT) or Discrete Fourier Transformation (DFT).
  • FFT Fast Fourier Transformation
  • DFT Discrete Fourier Transformation
  • a frequency-dependent correction of the traveling wave profile (cf. equation (47)) can take place in the case of lossy lines. This is provided in steps 126a and 126b
  • the devices 15a and 15b then each carry out a fault location search by means of pattern recognition as described above in steps 125a and 125b.
  • the objective functions according to equations (43) or (46) can be processed in steps 125a and 125b.
  • the data in the time domain can instead be exchanged and evaluated according to equations (41) and (45).
  • the best possible overlap of the wave profiles of the traveling waves is sought at both ends of the line. This results in a time difference ⁇ which, according to equation (34), specifies the fault location x.
  • step 127 the determined error location is then output. According to Figure 14 this takes place in a common output step. Instead, a separate output can also take place by each of the two devices 15a and 15b.
  • the devices 15a and 15b usually have a computing device in which steps 120a / b to 127 are carried out.
  • This can be, for example, a microprocessor that accesses a corresponding device software that is located in a memory of the respective facility.
  • it can also be a computing module with hardware-specific programming, e.g. an ASIC or FPGA.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Locating Faults (AREA)

Claims (16)

  1. Procédé de détermination de l'emplacement (F) d'un défaut sur une ligne (11) d'un réseau d'alimentation en énergie électrique, dans lequel
    - on mesure des premières valeurs de courant et/ou de tension à un premier bout (11a) de la ligne (11) et on les munit d'un horodatage ;
    - on mesure des deuxièmes valeurs de courant et/ou de tension à un deuxième bout (11b) de la ligne (11) et on les munit d'un horodatage ; et
    - en utilisant les premières et deuxièmes valeurs de courant et/ou de tension horodatées, on détermine après l'apparition d'un défaut sur la ligne (11) son emplacement (F) ; caractérisé en ce que
    - en utilisant les premières et deuxièmes valeurs de courant et/ou de tension horodatées aux deux bouts (11a, 11b) de la ligne, on détermine des profils d'ondes progressives se propageant à l'apparition du défaut le long de la ligne en direction des bouts (11a, 11b) de la ligne ; et
    - on détermine l'emplacement (F) du défaut à partir des profils, déterminés pour les deux bouts (11a, 11b) de la ligne, des ondes progressives, en déterminant une différence de temps avec laquelle les ondes progressives arrivent aux deux bouts de la ligne, la différence de temps étant déterminée à partir d'une comparaison de modèle des profils, déterminés pour les bouts (11a, 11b) de la ligne, des ondes progressives.
  2. Procédé suivant la revendication 1,
    caractérisé en ce que,
    - pour la comparaison des modèles des profils des ondes progressives, on effectue une corrélation croisée des profils.
  3. Procédé suivant la revendication 1 ou 2,
    caractérisé en ce que,
    - pour la comparaison des modèles, on tire parti d'un angle du spectre de puissance croisée des profils des ondes progressives.
  4. Procédé suivant la revendication 1,
    caractérisé en ce que,
    - pour la comparaison des modèles, on effectue une minimisation d'une fonction cible formée de la différence des profils des ondes progressives.
  5. Procédé suivant l'une des revendications précédentes, caractérisé en ce que,
    - avant la comparaison des modèles, on effectue une correction du profil de l'onde progressive d'au moins un bout de la ligne, dans laquelle on prend en compte un amortissement de la ligne (11).
  6. Procédé suivant l'une des revendications précédentes, caractérisé en ce que
    - on détermine l'emplacement (F) du défaut en utilisant exclusivement les valeurs de courant et de tension, qui ont été mesurées aux deux bouts de la ligne pendant l'apparition d'une première impulsion d'une onde progressive.
  7. Procédé suivant l'une des revendications 1 à 5,
    caractérisé en ce que
    - on détermine l'emplacement (F) du défaut en utilisant exclusivement soit des valeurs de courant, soit des valeurs de tension, qui ont été mesurées aux deux bouts de la ligne pendant l'apparition d'une première impulsion d'une onde progressive.
  8. Procédé suivant l'une des revendications précédentes,
    caractérisé en ce que
    - on soumet les valeurs de courant et de tension mesurées aux bouts (11a, 11b) de la ligne à un filtrage, des premières et deuxièmes valeurs filtrées de courant et de tension étant formées, qui donnent une plage de fréquence sélectionnée des valeurs de courant et de tension mesurées ; et
    - on détermine les profils des ondes progressives en utilisant les premières et deuxièmes valeurs filtrées de courant et de tension.
  9. Procédé suivant la revendication 8,
    caractérisé en ce que
    - la plage de fréquence sélectionnée comprend des parties transitoires de haute fréquence ou des parties transitoires dans une bande limitée des valeurs mesurées de courant et de tension.
  10. Procédé suivant l'une des revendications 8 ou 9,
    caractérisé en ce que,
    - la caractéristique de filtre du filtre utilisé pour filtrer les valeurs de courant et de tension atténue des plages de fréquence, dans lesquelles des transducteurs de courant ou de tension, utilisés pour la mesure des valeurs de mesure de courant et de tension, présentent des erreurs de mesure.
  11. Procédé suivant l'une des revendications 8 à 10,
    caractérisé en ce que,
    - pour un réseau d'alimentation en énergie électrique polyphasé, on effectue, en ce qui concerne les premières et les deuxièmes valeurs de courant et de tension filtrées, une transformation mathématique de découplage des diverses proportions de phase, des premières et deuxièmes valeurs transformées de courant et de tension étant formées ; et
    - on détermine les profils des ondes progressives en utilisant les premières et deuxièmes valeurs transformées de courant et de tension.
  12. Procédé suivant l'une des revendications précédentes,
    caractérisé en ce que
    - on effectue la détermination de l'emplacement (F) du défaut si on a constaté, dans la courbe des premières valeurs de courant et de tension ou des valeurs qui en sont déduites et/ou dans la courbe des deuxièmes valeurs de courant et de tension des valeurs qui en sont déduites, un saut qui dépasse un seuil donné à l'avance.
  13. Procédé suivant l'une des revendications précédentes,
    caractérisé en ce que,
    - au moyen de respectivement un dispositif (15a, 15b) on effectue à chacun des bouts (11a, 11b) de la ligne la détermination de l'emplacement (F) du défaut ; et
    - on émet par les dispositifs (15a, 15b) les emplacements (F) de défaut déterminés par les dispositifs (15a, 15b).
  14. Procédé suivant l'une des revendications 1 à 12,
    caractérisé en ce que
    - on effectue la détermination de l'emplacement (F) du défaut au moyen d'un dispositif (15a, 15b) conçu à cet effet ; et
    - on émet par le dispositif (15a, 15b) l'emplacement (F) du défaut qui a été déterminé.
  15. Dispositif (15a, 15b) de détermination de l'emplacement (F) d'un défaut sur une ligne (11) d'un réseau d'alimentation en énergie électrique, comprenant
    - un dispositif de calcul, qui est conçu pour déterminer en utilisant des premières valeurs de courant et/ou de tension horodatées et mesurées à un premier bout (11a) de la ligne (11) et des deuxièmes valeurs de courant et/ou de tension horodatées et mesurées à un deuxième bout (11b) de la ligne (11) après l'apparition d'un défaut sur la ligne, son emplacement (F),
    caractérisé en ce que
    - le dispositif de calcul est conçu pour, en utilisant les premières et deuxièmes valeurs de courant et/ou de tension horodatées aux deux bouts de la ligne, déterminer des profils d'ondes progressives se propageant à l'apparition du défaut le long de la ligne en direction des bouts de la ligne ; et
    - le dispositif de calcul est conçu pour déterminer l'emplacement (F) du défaut à partir des profils, déterminés pour les deux bouts de la ligne, des ondes progressives, en déterminant une différence de temps avec laquelle les ondes progressives arrivent aux deux bouts de la ligne, la différence de temps étant déterminée à partir d'une comparaison de modèles des profils, déterminés pour les bouts de la ligne, des ondes progressives.
  16. Système (10) de détermination de l'emplacement (F) d'un défaut sur une ligne (11) d'un réseau d'alimentation en énergie électrique, comprenant deux dispositifs électriques (15a, 15b) constitués suivant la revendication 15 qui sont en liaison entre eux par une liaison (16) de communication pour l'échange de données et qui sont constitués pour effectuer un procédé suivant l'une des revendications 1 à 14.
EP16161729.5A 2016-03-22 2016-03-22 Procédé, dispositif et système destines à localiser un défaut sur une ligne d'un réseau d'alimentation électrique Active EP3223026B1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16161729.5A EP3223026B1 (fr) 2016-03-22 2016-03-22 Procédé, dispositif et système destines à localiser un défaut sur une ligne d'un réseau d'alimentation électrique
BR102017004862-4A BR102017004862B1 (pt) 2016-03-22 2017-03-10 Método, dispositivo e sistema para determinar a localização de falha de uma falha
CN201710167016.5A CN107219439B (zh) 2016-03-22 2017-03-20 确定供电网的导线上故障的故障位置的方法、装置和系统
US15/465,802 US10228408B2 (en) 2016-03-22 2017-03-22 Method, device and system for determining the fault location of a fault on a line of an electrical energy supply network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP16161729.5A EP3223026B1 (fr) 2016-03-22 2016-03-22 Procédé, dispositif et système destines à localiser un défaut sur une ligne d'un réseau d'alimentation électrique

Publications (2)

Publication Number Publication Date
EP3223026A1 EP3223026A1 (fr) 2017-09-27
EP3223026B1 true EP3223026B1 (fr) 2021-04-28

Family

ID=55589721

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16161729.5A Active EP3223026B1 (fr) 2016-03-22 2016-03-22 Procédé, dispositif et système destines à localiser un défaut sur une ligne d'un réseau d'alimentation électrique

Country Status (4)

Country Link
US (1) US10228408B2 (fr)
EP (1) EP3223026B1 (fr)
CN (1) CN107219439B (fr)
BR (1) BR102017004862B1 (fr)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10295585B2 (en) * 2016-11-11 2019-05-21 Schweitzer Engineering Laboratories, Inc. Traveling wave based single end fault location
CN108957227B (zh) * 2018-06-28 2020-09-29 杭州电子科技大学 一种电缆故障位置检测方法
CN109470986A (zh) * 2018-09-26 2019-03-15 昆明理工大学 一种不等长双回线路的单端行波测距方法
US11067617B2 (en) 2018-10-08 2021-07-20 Schweitzer Engineering Laboratories, Inc. Single-end traveling wave fault location using line-mounted device
EP3660523B1 (fr) 2018-11-27 2023-04-19 Siemens Aktiengesellschaft Procédé, dispositif et système destinés à déterminer l'emplacement d'un défaut sur une ligne d'un réseau d'alimentation d'énergie électrique
US11474139B2 (en) * 2019-04-05 2022-10-18 Schweitzer Engineering Laboratories, Inc. Fault direction calculation during current transformer saturation
FR3101426B1 (fr) * 2019-09-26 2021-10-08 Electricite De France Procédé de détermination d’une position d’un précurseur de défaut dans un câble haute tension en fonctionnement
CN110850235A (zh) * 2019-11-27 2020-02-28 广东电网有限责任公司 基于电缆拓扑及故障暂态行波的多端定位算法及定位系统
CN111025088B (zh) * 2019-12-09 2020-12-25 北京铁诚精锐电力技术有限公司 铁路电力线路故障定位方法和装置
CN112988437B (zh) * 2019-12-17 2023-12-29 深信服科技股份有限公司 一种故障预测方法、装置及电子设备和存储介质
CN112003233B (zh) * 2020-07-15 2022-03-22 西安理工大学 一种基于数字仿真的时域距离保护阻抗元件整定方法
CN111896840B (zh) * 2020-07-15 2023-06-27 武汉三相电力科技有限公司 基于故障行波电压判断混合线路中故障区间的方法和系统
CN113131453B (zh) * 2021-05-25 2022-08-09 华北电力大学 一种用于柔性直流输电线路的单端行波保护方法
CN113453330A (zh) * 2021-07-12 2021-09-28 北京四方继保自动化股份有限公司 一种基于配电网终端差动业务数据的无线传输方法
CN113406444B (zh) * 2021-08-03 2023-03-14 成都交大许继电气有限责任公司 一种牵引网高阻故障识别方法及系统
CN114609479A (zh) * 2022-05-09 2022-06-10 广东电网有限责任公司珠海供电局 故障定位方法、装置、电子设备及存储介质

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4996624A (en) 1989-09-28 1991-02-26 Schweitzer Engineering Laboratories, Inc. Fault location method for radial transmission and distribution systems
DE4441334C1 (de) 1994-11-08 1996-07-11 Siemens Ag Verfahren zum Feststellen des Ortes eines Fehlers in einem vorgegebenen Überwachungsbereich eines mehrphasigen elektrischen Energieübertragungsleitungssystems
US5881130A (en) * 1997-09-15 1999-03-09 Teradyne, Inc. Fast and noise-insensitive load status detection
US7421510B2 (en) * 2002-08-30 2008-09-02 Microsoft Corporation Method and system for identifying lossy links in a computer network
US7535233B2 (en) * 2004-07-15 2009-05-19 Cooper Technologies Company Traveling wave based relay protection
CN101232176B (zh) * 2008-01-09 2011-08-10 潍坊学院 基于暂态行波的中性点非有效接地配电系统故障定位方法
EP2476002B1 (fr) 2009-09-09 2015-05-27 Siemens Aktiengesellschaft Identification de défauts dans des réseaux d'alimentation en énergie présentant un point neutre non relié à la terre ou une disparition du point neutre
CN101776725B (zh) * 2010-01-13 2011-07-20 上海交通大学 输电线路故障测距方法
WO2012126526A1 (fr) 2011-03-24 2012-09-27 Siemens Aktiengesellschaft Détermination de la direction des défauts de terre intermittents dans des réseaux de distribution électrique
US8655609B2 (en) * 2011-10-12 2014-02-18 Schweitzer Engineering Laboratories Inc Fault location using traveling waves
CN102426323B (zh) * 2011-10-31 2014-09-17 广东电网公司广州供电局 行波法定位中计算入射波与反射波时间差的方法及装置
FR2992733B1 (fr) * 2012-06-28 2014-08-08 Labinal Dispositif et procede de surveillance d'un reseau electrique
CN102809715B (zh) * 2012-08-20 2014-12-10 广州供电局有限公司 高压电力电缆故障在线定位装置
CN102967799B (zh) * 2012-11-29 2015-02-25 深圳市双合电气股份有限公司 一种电力系统故障综合测距方法
US20150081236A1 (en) * 2013-09-16 2015-03-19 Schweitzer Engineering Laboratories, Inc. Traveling wave validation using estimated fault location
US8990036B1 (en) * 2013-09-16 2015-03-24 Schweitzer Engineering Laboratories, Inc. Power line parameter adjustment and fault location using traveling waves
US20150081235A1 (en) * 2013-09-16 2015-03-19 Schweitzer Engineering Laboratories, Inc. Fault location using traveling waves by calculating traveling wave arrival time
CN103884964B (zh) * 2014-03-17 2015-12-09 国家电网公司 一种基于iec61850通信规约的行波测距方法
CN103969554A (zh) * 2014-05-30 2014-08-06 智友光电技术发展有限公司 高压电缆线路在线故障定位装置及其定位方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
BR102017004862A2 (pt) 2017-09-26
US10228408B2 (en) 2019-03-12
US20170276718A1 (en) 2017-09-28
EP3223026A1 (fr) 2017-09-27
CN107219439A (zh) 2017-09-29
CN107219439B (zh) 2021-03-09
BR102017004862B1 (pt) 2021-09-14

Similar Documents

Publication Publication Date Title
EP3223026B1 (fr) Procédé, dispositif et système destines à localiser un défaut sur une ligne d'un réseau d'alimentation électrique
EP3193420B1 (fr) Procede, dispositif et systeme destines a localiser un defaut sur une ligne d'un reseau d'alimentation electrique
EP3379273B1 (fr) Procédé, dispositif et système destinés à localiser un défaut sur une ligne d'un réseau d'alimentation électrique
EP3351949B1 (fr) Procédé et dispositif de détermination de l'emplacement d'un défaut à la terre par rapport à une conduite d'un réseau d'alimentation électrique triphasé ayant un point en étoile non mis à la terre
EP3660523B1 (fr) Procédé, dispositif et système destinés à déterminer l'emplacement d'un défaut sur une ligne d'un réseau d'alimentation d'énergie électrique
EP2476002B1 (fr) Identification de défauts dans des réseaux d'alimentation en énergie présentant un point neutre non relié à la terre ou une disparition du point neutre
DE60224445T2 (de) Fehlerfindung durch messungen von zwei enden einer leitung
EP3046197B1 (fr) Procédé et dispositif de détection de direction de défaut de mise à la terre dans un réseau à courant triphasé
EP3719510B1 (fr) Procédé, dispositif et système de détection d'un emplacement de défaillance sur une conduite d'un réseau d'alimentation électrique
DE2932929A1 (de) Fehlererkennungssystem zur fehlerortbestimmung mit getrennt gemessenem fehlerwiderstand
EP3477808B1 (fr) Procédé, appareil de protection et système de protection permettant de reconnaître un défaut sur une ligne d'un réseau d'alimentation électrique
EP1941285B1 (fr) Procédé d'élaboration d'une série de données et appareil de terrain ainsi que système de détection de la qualité électro-énergétique d'un réseau d'alimentation en énergie
DE2155470B2 (de) Verfahren zum digitalen Bestimmen der Lage der Nulldurchgange eines sinus förmigen Wechselstromsignals
EP2808688A1 (fr) Procédé de détermination d'un paramètre d'un réseau électrique
DE2523005B1 (de) Verfahren und einrichtung zur fehlerortseingrenzung auf einer leitung
EP1412767B1 (fr) Procede de localisation de defauts, notamment sur des reseaux basse et moyenne tension ramifies et circuit d'evaluation utilise a cet effet
EP3968038A1 (fr) Procédé et dispositif de détermination d'un emplacement défectueux dans un réseau d'alimentation en énergie électrique
DE2523006B2 (de) Verfahren und einrichtung zur fehlerortung auf einer leitung
EP3293854B1 (fr) Procédé de détermination de l'origine d'une panne sur un réseau d'alimentation électrique et appareil de protection pour réaliser un tel procédé
EP2289137A1 (fr) Ensemble et procédé pour produire un signal d erreur
EP3451477A1 (fr) Détection d'une erreur dans un système de transmission de courant continu
EP2238664B1 (fr) Systeme de protection de distance et procede de surveillance d'une ligne de transport d'energie electrique
EP3090267B1 (fr) Procédé de localisation d'un court-circuit dans un réseau électrique comprenant au moins un tronçon de ligne
EP2901534B1 (fr) Procédé de protection différentielle et appareil de protection servant à mettre en uvre un procédé de protection différentielle
CH684660A5 (de) Verfahren zur Ueberwachung mindestens einer elektrischen Leitung.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180305

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201130

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1387662

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016012892

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210830

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210729

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210828

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016012892

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210828

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220322

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220322

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230317

Year of fee payment: 8

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1387662

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220322

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230321

Year of fee payment: 8

Ref country code: DE

Payment date: 20220620

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220322

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230403

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428