EP3218704A1 - RUßSENSOR - Google Patents

RUßSENSOR

Info

Publication number
EP3218704A1
EP3218704A1 EP15794880.3A EP15794880A EP3218704A1 EP 3218704 A1 EP3218704 A1 EP 3218704A1 EP 15794880 A EP15794880 A EP 15794880A EP 3218704 A1 EP3218704 A1 EP 3218704A1
Authority
EP
European Patent Office
Prior art keywords
electrode
soot
soot sensor
electric field
field strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP15794880.3A
Other languages
English (en)
French (fr)
Inventor
Eckart Garneyer
Sebastian Reiß
Patrick EBERL-NEUMAIER
Alexander Waha
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vitesco Technologies GmbH
Original Assignee
Continental Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive GmbH filed Critical Continental Automotive GmbH
Publication of EP3218704A1 publication Critical patent/EP3218704A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0656Investigating concentration of particle suspensions using electric, e.g. electrostatic methods or magnetic methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/007Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring oxygen or air concentration downstream of the exhaust apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/60Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrostatic variables, e.g. electrographic flaw testing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/05Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a particulate sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0046Investigating dispersion of solids in gas, e.g. smoke

Definitions

  • soot sensor having a measuring electrode and an outer electrode, wherein the measuring electrode and the outer electrode are electrically isolated from each other ⁇ by an insulation body.
  • the reduction of exhaust emissions in motor vehicles is an important goal in the development of new motor vehicles. Therefore, combustion processes in internal combustion engines are thermodynamically optimized, so that the efficiency of the internal combustion ⁇ machine is significantly improved.
  • diesel engines are increasingly used, which, with modern design, have a very high efficiency.
  • the disadvantage of this combustion technique compared to optimized Otto engines, however, is a significantly increased emissions of soot.
  • the soot is particularly carcinogenic due to the addition of polycyclic aromatics, which has already been reacted in various regulations.
  • soot sensors are used to measure the currently ejected soot, so the engine management in one
  • the soot filter which is also referred to as a diesel particulate filter, may be preceded by a soot sensor and / or a soot sensor connected downstream.
  • the upstream of the diesel particulate filter sensor serves to increase the system safety and to ensure an operation of the diesel particulate filter under optimum Bedin ⁇ conditions. Since this depends to a great extent on the amount of soot stored in the diesel particulate filter, it is very important to accurately measure the particulate concentration upstream of the diesel particulate filter system, in particular the determination of a high particulate concentration upstream of the diesel particulate filter.
  • a diesel particulate filter downstream soot sensor offers the ability to make an on-board diagnosis and also serves to ensure the correct operation of the exhaust aftertreatment system.
  • DE 195 36 705 AI discloses a device for measuring soot particles, wherein an electric field between a flowed through by the gas flow sheath electrode and an inner electrode within this sheath electrode by applying a constant DC electrical voltage is generated and the Charging current to maintain the constant DC voltage between the sheath electrode and inner electrode is measured. Good measurement results are achieved in the context of the disclosure of DE 195 36 705 AI, when a DC voltage of 2000 to 3000 volts is used to generate the electric field.
  • a high measuring current between the first electrode and the second electrode can be produced with a comparatively low voltage, is proportional to the number of soot particles in the exhaust gas.
  • the first electrode is rod-shaped. This shape allows the production of a very compact soot sensor. Is formed when the second electrode zy ⁇ relieving shaped, a soot sensor can be produced in which the cylindrical second electrode is concentrated ⁇ trisch formed around the rod-shaped first electrode. The resulting soot sensor shows a long service life with a very compact design.
  • the elements for concentrating the electric field strength are designed as spiky tips. Spiky tips allow a very high concentration of the electric field, which in a very small space high field strengths can be achieved, which can lead to avalanche-like reinforcements of the charge carriers between the first elec ⁇ trode and the second electrode.
  • the elements for concentrating the electric field strength are formed as triangular tips, one can obtain a very durable soot sensor, since the triangular tips are very robust components.
  • the elements for concentration of the electric field strength are formed by nanostructuring of the surface of the first electrode and / or the surface of the second electrode, the electric fields and the electric field strengths associated with them can be predestined and modeled particularly well, resulting in a particularly accurate measuring soot sensor leads.
  • FIG. 1 shows a soot sensor
  • FIG. 2 shows a soot sensor according to the invention
  • FIG. 3 shows a further embodiment of the soot sensor according to the invention
  • FIG. 4 shows a further embodiment of the device known from FIG.
  • FIG. 5 shows a further embodiment of the invention
  • FIG. 1 shows a soot sensor 1.
  • the soot sensor 1 consists of a first electrode 2, which is arranged in the interior of a second electrode 3. Between the first electrode 2 and the second electrode is the exhaust gas of the internal combustion engine, in which soot particles 4 are contained.
  • the concentration of the soot particles 4 in the exhaust gas should be measured by the soot sensor. In other words, it can be said that the soot content in the exhaust gas should be determined with the soot sensor.
  • a measuring voltage is applied by the voltage supply 6 between the first electrode 2 and the second electrode 3.
  • the first electrode 2 is electrically insulated from the second electrode 3 by means of the insulating body 5.
  • the insulating body 5 may be constructed as a disk of a ceramic material.
  • an ohmic resistor 7 is connected between the voltage supply and the second electrode 3, which resistor has a high impedance in order to measure the relatively small currents which occur due to the soot particles 4 between the first electrode 2 and the second electrode 3 To be able to form second electrode 3.
  • the measurement of these currents is carried out by the current measuring element 8, which is connected to a transmitter 9.
  • Such soot sensors 1 are used for on-board diagnosis in motor vehicles with diesel engines.
  • FIG. 2 shows a soot sensor 1 according to a first electrode 2 and a second electrode 3.
  • the first electrode 2 is electrically insulated from the second electrode 3 by a Iso ⁇ lationspian 5, and between the first electrode 2 and second electrode 3 is a applied electrical voltage, which is generated by the electrical power supply 6.
  • the soot sensor 1 according to the invention the concentration of the soot particles 4 in the exhaust gas is to be measured.
  • the soot content in the exhaust gas should also be determined with the soot sensor 1 according to the invention.
  • Soot particles 4 which are transported in an exhaust gas flow from an internal combustion ⁇ machine through an exhaust pipe, can penetrate into the soot sensor integrated in the exhaust pipe 1.
  • the soot particles 4 enter an electric field, which forms due to the applied electrical voltage between the first electrode 2 and the second electrode 3.
  • the first elec trode ⁇ 2 is formed as a rod-shaped threaded rod, wherein the elements 15 are formed to the concentration of the electric field strength by the threads between which triangular tips are formed. At these points, the electric field is concentrated, so that the electric field strength in the area of the tips becomes very high. The large increase in the electric field strength in the area of the peaks can exceed the breakdown field strength of the gas in the area. When exceeding the breakdown field strength of the gas are electrically charged
  • FIG. 2 also shows an ohmic resistor 7, which is advantageous in order to be able to measure the electrical current flowing through the evaluation electronics 9, which flows between the first electrode 2 and the second electrode 3.
  • a protective cap 10 can be seen in Figure 2, which serves for the targeted guidance of Ab ⁇ gas flow through the soot sensor 1.
  • the exhaust gases can penetrate, for example through a first opening 11 in the soot sensor 1, where between the first electrode 2 and the second electrode 3, the soot content in the exhaust gas can be measured. Thereafter, the exhaust gas flow through the second opening 12 formed in the second electrode 3 leaves the soot sensor 1 and is returned to the main exhaust gas flow via the third port 13.
  • FIG. 3 shows a further embodiment of the soot sensor 1 according to the invention.
  • the soot sensor 1 is rotationally symmetrical about a central axis 14.
  • the first electrode 2 is formed as a rod-shaped electrode.
  • the cylindrical second electrode 3 is formed concentrically around the first electrode.
  • the second electrode 3 is thus formed as a hollow cylinder.
  • the field concentration elements 15 formed on the inner surface of the second electrode 3 are formed here as triangles.
  • the tips of the triangles lead to a very high field strength in the area of the tips of the triangles. Due to this high field strength, the breakdown field strength can be exceeded in the exhaust gas, which is due to a lavender-like Impact ionization a high measurement current can be generated, which can be well registered with the evaluation electronics 9.
  • FIG. 4 shows a further embodiment of the soot sensor 1 known from FIG. 3.
  • the first electrode 2 is equipped with elements 15 for concentrating the electric field strength, which are designed as spiky tips.
  • the second electrode 3 has semicircular elements 15 for concentrating the electric field strength on its inner surface.
  • FIG. 5 shows a further embodiment of the soot sensor 1 according to the invention.
  • both the first electrode 2 and the second electrode 3 are designed as rod-shaped elements.
  • Both on the first electrode 2 and on the second electrode 3 triangular elements 15 are formed for the concentration of elek- fresh field strength.
  • the first electrode 2 and the second electrode 3 are electrically isolated from each other by means of the insulating body 5.
  • a protective cap 10 is formed over the first electrode 2 and the second electrode 3.
  • the protective cap 10 in turn allows via the first opening 11, the second opening 12 and the third opening 13, the inflow of the exhaust gas and the soot particles into the interior of the soot sensor 1 and thus also between the first electrode 2 and the second electrode 3.
  • the second electrode 3 may be formed in the context of the disclosure of Figures 1 to 5 as a hollow cylinder.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

Rußsensor mit einer ersten Elektrode und einer zweiten Elektrode, wobei die erste Elektrode und die zweite Elektrode durch einen Isolationskörper elektrisch voneinander isoliert sind und zwischen der ersten Elektrode und der zweiten Elektrode eine elektrischen Spannung anlegbar ist und Rußpartikel mit einem Gasstrom in den Raum zwischen der ersten Elektrode und der zweiten Elektrode gelangen können. Um einen Rußsensor anzugeben, der einen deutlich höheren Messstrom liefert, sind auf der Oberfläche der ersten Elektrode und/oder auf der Oberfläche der zweiten Elektrode Elemente zur Konzentration der elektrischen Feldstärke ausgebildet.

Description

Beschreibung Rußsensor Die Erfindung betrifft einen Rußsensor mit einer Messelektrode und einer Außenelektrode, wobei die Messelektrode und die Außenelektrode durch einen Isolationskörper elektrisch von¬ einander isoliert sind. Die Verringerung von Abgasemissionen bei Kraftfahrzeugen ist ein wichtiges Ziel bei der Entwicklung neuer Kraftfahrzeuge. Daher werden Verbrennungsprozesse in Brennkraftmaschinen thermody- namisch optimiert, so dass der Wirkungsgrad der Brennkraft¬ maschine deutlich verbessert wird. Im Kraftfahrzeugbereich werden zunehmend Dieselmotoren eingesetzt, die, bei moderner Bauart, einen sehr hohen Wirkungsgrad aufweisen. Der Nachteil dieser Verbrennungstechnik gegenüber optimierten Otto-Motoren ist jedoch ein deutlich erhöhter Ausstoß von Ruß. Der Ruß ist besonders durch die Anlagerung polyzyklischer Aromate stark krebserregend, worauf in verschiedenen Vorschriften bereits reagiert wurde. So wurden beispielsweise Abgas-Emissionsnormen mit Höchstgrenzen für die Rußemission erlassen. Um die Ab¬ gas-Emissionsnormen flächendeckend für Kraftfahrzeuge mit Dieselmotoren erfüllen zu können, besteht die Notwendigkeit, preisgünstige Sensoren herzustellen, die den Rußgehalt im Abgasstrom des Kraftfahrzeuges zuverlässig messen.
Der Einsatz derartiger Rußsensoren dient der Messung des aktuell ausgestoßenen Rußes, damit dem Motormanagement in einem
Kraftfahrzeug in einer aktuellen Fahrsituation Informationen zukommen, um mit regelungstechnischen Anpassungen die Emis¬ sionswerte zu reduzieren. Darüber hinaus kann mit Hilfe der Rußsensoren eine aktive Abgasreinigung durch Abgas-Rußfilter eingeleitet werden oder eine Abgasrückführung zur Brennkraft- maschine erfolgen. Im Falle der Rußfilterung werden regenerier¬ bare Filter verwendet, die einen wesentlichen Teil des Ru߬ gehaltes aus dem Abgas herausfiltern. Benötigt werden Ruß- Sensoren für die Detektion von Ruß, um die Funktion der Rußfilter zu überwachen bzw. um deren Regenerationszyklen zu steuern.
Dazu kann dem Rußfilter, der auch als Dieselpartikelfilter bezeichnet wird, ein Rußsensor vorgeschaltet sein und/oder ein Rußsensor nachgeschaltet sein.
Der dem Dieselpartikelfilter vorgeschaltete Sensor dient zur Erhöhung der Systemsicherheit und zur Sicherstellung eines Betriebes des Dieselpartikelfilters unter optimalen Bedin¬ gungen. Da dies in hohem Maße von der im Dieselpartikelfilter eingelagerten Rußmenge abhängt, ist eine genaue Messung der Partikelkonzentration vor dem Dieselpartikelfiltersystem, insbesondere die Ermittlung einer hohen Partikelkonzentration vor dem Dieselpartikelfilter, von hoher Bedeutung.
Ein dem Dieselpartikelfilter nachgeschalteter Rußsensor bietet die Möglichkeit, eine fahrzeugeigene Diagnose vorzunehmen und dient ferner der Sicherstellung des korrekten Betriebes der Abgasnachbehandlungsanlage.
Der Stand der Technik zeigt verschiedene Ansätze zur Detektion von Ruß. Ein in Laboratorien weithin verfolgter Ansatz besteht in der Verwendung der LichtStreuung durch die Rußpartikel. Diese Vorgehensweise eignet sich für aufwändige Messgeräte. Wenn versucht wird, dies auch als mobiles Sensorsystem im Abgasstrang einzusetzen, muss festgestellt werden, dass Ansätze zur Rea¬ lisierung eines optischen Sensors in einem Kraftfahrzeug mit sehr hohen Kosten verbunden sind. Weiterhin bestehen ungelöste Probleme bezüglich der Verschmutzung der benötigten optischen Fenster durch Verbrennungsabgase.
Die DE 195 36 705 AI offenbart eine Vorrichtung zur Messung von Rußpartikeln, wobei ein elektrisches Feld zwischen einer von dem Gasstrom durchströmten Mantel-Elektrode und einer Innen-Elek- trode innerhalb dieser Mantel-Elektrode durch Anlegen einer konstanten elektrischen Gleichspannung erzeugt wird und der Ladestrom zur Aufrechterhaltung der konstanten Gleichspannung zwischen Mantel-Elektrode und Innen-Elektrode gemessen wird. Gute Messergebnisse werden im Rahmen der Offenbarung der DE 195 36 705 AI erzielt, wenn eine Gleichspannung von 2000 bis 3000 Volt zur Erzeugung des elektrischen Feldes verwendet wird.
Bei diesen elektrostatischen Rußsensoren ändert sich der Strom zwischen den beiden Elektroden in Abhängigkeit von der Ru߬ konzentration im Abgasstrom. Die hier auftretenden Ströme sind jedoch relativ klein und deren Stromstärke liegt in der Grö¬ ßenordnung von pA bis hin zu kleinen nA Werten. Daher muss die gesamte Messanordnung für diese elektrostatischen Rußsensoren sehr hochohmig ausgeführt ausgebildet sein. Es ist eine Aufgabe der vorliegenden Erfindung, einen Rußsensor anzugeben, der einen deutlich höheren Messstrom liefert.
Die Aufgabe wird durch die Merkmale des unabhängigen Anspruchs gelöst .
Dadurch, dass auf der Oberfläche der ersten Elektrode und/oder auf der Oberfläche der zweiten Elektrode Elemente zur Konzen¬ tration der elektrischen Feldstärke ausgebildet sind, kann mit einer vergleichsweise geringen Spannung ein hoher Messstrom zwischen der ersten Elektrode und der zweiten Elektrode erzeugt werden, der proportional zur Anzahlt der Rußpartikel im Abgas ist .
Bei einer Weiterbildung der Erfindung ist die erste Elektrode stabförmig ausgebildet. Diese Form lässt die Herstellung eines sehr kompakten Rußsensors zu. Wenn die zweite Elektrode zy¬ linderförmig ausgebildet ist, kann ein Rußsensor hergestellt werden, bei dem die zylinderförmige zweite Elektrode konzen¬ trisch um die stabförmige erste Elektrode ausgebildet ist. Der so geschaffene Rußsensor zeigt eine hohe Lebensdauer bei einer sehr kompakten Bauweise. Bei einer Ausgestaltung der Erfindung sind die Elemente zur Konzentration der elektrischen Feldstärke als stachelartige Spitzen ausgebildet. Stachelartige Spitzen erlauben eine sehr hohe Konzentration des elektrischen Feldes, womit auf sehr engem Raum hohe Feldstärken erreichbar sind, die zu lawinenartigen Verstärkungen der Ladungsträger zwischen der der ersten Elek¬ trode und der zweiten Elektrode führen können.
Wenn die Elemente zur Konzentration der elektrischen Feldstärke als dreieckige Spitzen ausgebildet sind, kann man einen sehr langlebigen Rußsensor erhalten, da die dreieckigen Spitzen sehr robuste Bauteile sind.
Bei einer Weiterbildung der Erfindung sind die Elemente zur Konzentration der elektrischen Feldstärke als Riefen in der
Oberfläche der ersten Elektrode und/oder in der Oberfläche der zweiten Elektrode ausgebildet. Riefen lassen sich in einer Oberfläche besonders leicht herstellen und sie sind daher besonders kostengünstig.
Wenn die Elemente zur Konzentration der elektrischen Feldstärke durch Nanostrukturierung der Oberfläche der ersten Elektrode und/oder der Oberfläche der zweiten Elektrode ausgebildet sind, lassen sich die elektrischen Felder und die mit ihnen verbundenen elektrischen Feldstärken besonders gut vorherbestimmen und regelrecht modellieren, was zu einem besonders genau messenden Rußsensor führt.
Im Folgenden wird die vorliegende Erfindung unter Bezugnahme auf die begleitenden Zeichnungen und anhand bevorzugter Ausfüh¬ rungsformen erläutert. Diese Ausführungsformen umfassen Ru߬ sensoren für den Einsatz in einem Kraftfahrzeug. Es zeigen:
Figur 1 einen Rußsensor,
Figur 2 einen erfindungsgemäßen Rußsensor, Figur 3 eine weitere Ausgestaltung des erfindungsgemäßen Rußsensors ,
Figur 4 eine weitere Ausgestaltung des aus Figur 3 bekannten
Rußsensors ,
Figur 5 eine weitere Ausgestaltung des erfindungsgemäßen
Rußsensors . Figur 1 zeigt einen Rußsensor 1. Der Rußsensor 1 besteht aus einer ersten Elektrode 2, die im Inneren einer zweiten Elektrode 3 angeordnet ist. Zwischen der ersten Elektrode 2 und der zweiten Elektrode befindet sich das Abgas des Verbrennungsmotors, in dem Rußpartikel 4 enthalten sind. Die Konzentration der Rußpartikel 4 im Abgas soll durch den Rußsensor gemessen werden. Mit anderen Worten kann man sagen, dass mit dem Rußsensor der Rußgehalt im Abgas bestimmt werden soll. Dazu wird eine Messspannung durch die Spannungsversorgung 6 zwischen der ersten Elektrode 2 und der zweiten Elektrode 3 angelegt. Die erste Elektrode 2 ist von der zweiten Elektrode 3 mithilfe des Isolationskörpers 5 elektrisch isoliert. Der Isolationskörper 5 kann als Scheibe aus einem keramischen Material aufgebaut sein. Weiterhin ist in Figur 1 zu erkennen, dass zwischen der Spannungsversorgung und der zweiten Elektrode 3 ein ohmscher Widerstand 7 geschaltet ist, der hochohmig ausgeführt ist, um die relativ kleinen Ströme zu messen, die sich aufgrund der Rußpartikel 4 zwischen der ersten Elektrode 2 und der zweiten Elektrode 3 ausbilden zu können. Die Messung dieser Ströme erfolgt durch das Strommesselement 8, das mit einer Auswerteelektronik 9 verbunden ist. Derartige Ruß- sensoren 1 werden zur On-Board-Diagnose in Kraftfahrzeugen mit Dieselmotoren eingesetzt.
Die Spannung die zwischen der ersten Elektrode 2 und der zweiten Elektrode 3 angelegt werden muss, um verwertbare Messströme zu erhalten, ist relativ hoch. Eine derartige Spannung kann 2 bis 3 kV betragen und ist damit relativ aufwendig zu kontrollieren. Daher ist es vorteilhaft zur Erzeugung gut auswertbarer Mess- ströme die im Folgenden beschriebenen erfindungsgemäßen Aus¬ führungen der ersten Elektrode 2 und/oder der zweiten Elektrode 3 zu verwenden. Figur 2 zeigt einen erfindungsgemäßen Rußsensor 1 mit einer ersten Elektrode 2 und einer zweiten Elektrode 3. Die erste Elektrode 2 ist von der zweiten Elektrode 3 durch einen Iso¬ lationskörper 5 elektrisch isoliert, und zwischen der ersten Elektrode 2 und der zweiten Elektrode 3 wird eine elektrische Spannung angelegt, die von der elektrischen Spannungsversorgung 6 erzeugt wird. Mit dem erfindungsgemäßen Rußsensor 1 soll die Konzentration der Rußpartikel 4 im Abgas gemessen werden. Also soll auch mit dem erfindungsgemäßen Rußsensor 1 der Rußgehalt im Abgas bestimmt werden.
Rußpartikel 4, die in einem Abgasstrom von einer Brennkraft¬ maschine durch ein Auspuffrohr transportiert werden, können in den im Auspuffrohr integrierten Rußsensor 1 eindringen. Die Rußpartikel 4 gelangen in ein elektrisches Feld, das sich auf Grund der angelegten elektrischen Spannung zwischen der ersten Elektrode 2 und der zweiten Elektrode 3 ausbildet. Um zwischen der ersten Elektrode 2 und der zweiten Elektrode 3 einen gut messbaren elektrischen Strom zu erzeugen, sind auf der Oberfläche der ersten Elektrode 2 und/oder auf der Oberfläche der zweiten Elektrode 3 Elemente 15 zur Konzentration der elektrischen
Feldstärke ausgebildet. In diesem Beispiel ist die erste Elek¬ trode 2 als stabförmige Gewindestange ausgebildet, wobei die Elemente 15 zur Konzentration der elektrischen Feldstärke durch die Gewindegänge gebildet werden, zwischen denen dreieckige Spitzen ausgebildet sind. An diesen Spitzen wird das elektrische Feld konzentriert, womit die elektrische Feldstärke im Bereich der Spitzen sehr hoch wird. Die starke Erhöhung der elektrischen Feldstärke im Bereich der Spitzen kann die Durchbruchsfeldstärke des Gases in dem Bereich überschreiten. Beim Überschreiten der Durchbruchsfeldstärke des Gases werden elektrisch geladene
Partikel gebildet, die in Richtung der entgegengesetzten Elek- ^
trode beschleunigt werden und infolge von Stoßionisationen zu einer lavinenartigen Ausbildung von Ladungsträgern führen. Wenn diese Ladungsträgerlavine eine Elektrodenoberfläche erreicht, ist ein sehr hoher Strom messbar, der gut ausgewertet werden kann und der proportional zur Anzahl der geladenen Partikel im Abgas ist .
Weiterhin zeigt aber Figur 2 einen Ohmschen Widerstand 7, der vorteilhaft ist, um mit der Auswerteelektronik 9 den elektrischen Strom messen zu können, der zwischen der ersten Elektrode 2 und der zweiten Elektrode 3 fließt. Darüber hinaus ist in Figur 2 eine Schutzkappe 10 zu erkennen, die zur gezielten Führung des Ab¬ gasstromes durch den Rußsensor 1 dient. Die Abgase können beispielsweise durch eine erste Öffnung 11 in den Rußsensor 1 eindringen, wo zwischen der ersten Elektrode 2 und der zweiten Elektrode 3 der Rußgehalt im Abgas gemessen werden kann. Danach verlässt der Abgasstrom durch die zweite Öffnung 12, die in der zweiten Elektrode 3 ausgebildet ist, den Rußsensor 1 und wird über die dritte Öffnung 13 zurück in den Hauptabgasstrom geführt.
Figur 3 zeigt eine weitere Ausgestaltung des erfindungsgemäßen Rußsensors 1. Hier ist der Rußsensor 1 rotationssymmetrisch um eine zentrale Achse 14 ausgebildet. Die erste Elektrode 2 ist als stabförmige Elektrode ausgebildet. Die zylinderförmige zweite Elektrode 3 ist konzentrisch um die erste Elektrode ausgebildet. Die zweite Elektrode 3 ist somit als Hohlzylinder ausgebildet. Der Isolationskörper 5, der hier als Scheibe ausgebildet ist, trennt die erste Elektrode 2 von der zweiten Elektrode 3 elektrisch. Mit der Spannungsversorgung 6 kann zwischen der erste Elektrode 2 und der zweiten Elektrode 3 eine Spannung angelegt werden. Die auf der inneren Oberfläche der zweiten Elektrode 3 ausgebildeten Elemente 15 zur Feldkonzentration sind hier als Dreiecke ausgebildet. Die Spitzen der Dreiecke führen zu einer sehr hohen Feldstärke im Bereich der Spitzen der Dreiecke. Durch diese hohe Feldstärke kann im Abgas die Durchbruchsfeldstärke überschritten werden, womit auf Grund einer lavinenartigen Stoßionisation ein hoher Messstrom erzeugt werden kann, der mit der Auswertelektronik 9 gut registriert werden kann.
Figur 4 zeigt eine weitere Ausgestaltung des aus Figur 3 bekannten Rußsensors 1. Die erste Elektrode 2 ist mit Elementen 15 zur Konzentration der elektrischen Feldstärke ausgestattet, die als stachelartige Spitzen ausgebildet sind. Die zweite Elektrode 3 weist an ihrer inneren Oberfläche halbkreisförmige Elemente 15 zur Konzentration der elektrischen Feldstärke auf. Es ist eine Vielzahl möglicher Oberflächenstrukturen der ersten Elektrode 2 und der zweiten Elektrode 3 denkbar, womit eine gezielte Mo¬ dellierung der Feldverteilung im Inneren des Rußsensors 1 er¬ folgen kann. Figur 5 zeigt eine weitere Ausgestaltung des erfindungsgemäßen Rußsensors 1. Hier sind sowohl die erste Elektrode 2 als auch die zweite Elektrode 3 als stabförmige Elemente ausgebildet. Sowohl auf der ersten Elektrode 2 als auch auf der zweiten Elektrode 3 sind dreieckförmige Elemente 15 zur Konzentration der elek- frischen Feldstärke ausgebildet. Die erste Elektrode 2 und die zweite Elektrode 3 sind mit Hilfe des Isolationskörpers 5 elektrisch voneinander isoliert. Eine Schutzkappe 10 ist über der ersten Elektrode 2 und der zweiten Elektrode 3 ausgebildet. Die Schutzkappe 10 ermöglicht wiederum über die erste Öffnung 11, die zweite Öffnung 12 und die dritte Öffnung 13 das Einströmen des Abgases und der Rußpartikel in den Innenraum des Rußsensors 1 und somit auch zwischen die erste Elektrode 2 und die zweite Elektrode 3. Die zweite Elektrode 3 kann im Rahmen der Offenbarung der Figuren 1 bis 5 als Hohlzylinder ausgebildet sein.

Claims

Rußsensor (1) mit einer ersten Elektrode (2) und einer zweiten Elektrode (3) , wobei die erste Elektrode (2) und die zweite Elektrode (3) durch einen Isolationskörper (5) elektrisch voneinander isoliert sind und zwischen der ersten Elektrode (2) und der zweiten Elektrode (3) eine elektrischen Spannung anlegbar ist, wobei Rußpartikel (4) mit einem Gasstrom in den Raum zwischen der ersten Elektrode (2) und der zweiten Elektrode (3) gelangen können, d a d u r c h g e k e n n z e i c h n e t , dass auf der Oberfläche der ersten Elektrode (2) und/oder auf der Oberfläche der zweiten Elektrode (3) Elemente (15) zur Konzentration der elektrischen Feldstärke ausgebildet sind .
Rußsensor (1) nach Anspruch 1, d a d u r c h g e ¬ k e n n z e i c h n e t , dass die erste Elektrode (2) stabförmig ausgebildet ist.
Rußsensor (1) nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t , dass die zweite Elektrode (3) zylinderförmig ausgebildet ist.
Rußsensor (1) nach Anspruch 1 und 2, d a d u r c h g e k e n n z e i c h n e t , dass die zylinderförmige zweite Elektrode (3) konzentrisch um die stabformige erste Elektrode (2) ausgebildet ist.
Rußsensor (1) nach mindestens einem der vorgenannten Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass die Elemente (15) zur Konzentration der elektrischen Feldstärke als stachelartige Spitzen ausgebildet sind.
Rußsensor (1) nach mindestens einem der vorgenannten Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass die Elemente (15) zur Konzentration der elektrischen Feldstärke als dreieckige Spitzen ausgebildet sind.
Rußsensor (1) nach mindestens einem der vorgenannten Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass die Elemente (15) zur Konzentration der elektrischen Feldstärke als Riefen in der Oberfläche der ersten Elektrode (2) und/oder in der Oberfläche der zweiten Elektrode (3) ausgebildet sind.
Rußsensor (1) nach mindestens einem der vorgenannten Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass die Elemente (15) zur Konzentration der elektrischen Feldstärke durch Nanostrukturierung der Oberfläche der ersten Elektrode (2) und/oder der Oberfläche der zweiten Elektrode (3) ausgebildet sind.
EP15794880.3A 2014-11-10 2015-11-10 RUßSENSOR Withdrawn EP3218704A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014222844.1A DE102014222844B4 (de) 2014-11-10 2014-11-10 Rußsensor
PCT/EP2015/076183 WO2016075127A1 (de) 2014-11-10 2015-11-10 RUßSENSOR

Publications (1)

Publication Number Publication Date
EP3218704A1 true EP3218704A1 (de) 2017-09-20

Family

ID=54545112

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15794880.3A Withdrawn EP3218704A1 (de) 2014-11-10 2015-11-10 RUßSENSOR

Country Status (5)

Country Link
US (1) US10481066B2 (de)
EP (1) EP3218704A1 (de)
CN (1) CN107110757A (de)
DE (1) DE102014222844B4 (de)
WO (1) WO2016075127A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014222844B4 (de) 2014-11-10 2018-05-09 Continental Automotive Gmbh Rußsensor
DE102016213641B4 (de) * 2016-07-26 2023-03-30 Emisense Technologies Llc Partikelsensor mit Umlenkelement
DE102016213637B4 (de) 2016-07-26 2023-09-21 Emisense Technologies Llc Partikelsensor mit Schutzelement gegen Verschmutzung
DE102017209404A1 (de) * 2017-06-02 2018-12-06 Robert Bosch Gmbh Elektrostatische Partikelsensoreinheit mit beheizter Elektrode
DE102017215790A1 (de) 2017-09-07 2019-03-07 Continental Automotive Gmbh Partikelsensor mit Schutzelement gegen Verschmutzung
DE102017215847B3 (de) 2017-09-08 2019-01-31 Continental Automotive Gmbh Gassensor mit Schaltelement zur Eigendiagnose und Verfahren zur Eigendiagnose eines Gassensors
JP2020008317A (ja) * 2018-07-03 2020-01-16 新日本無線株式会社 イオンセンサ

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2445004A1 (de) 1974-09-20 1976-04-01 Bosch Gmbh Robert Verfahren und vorrichtung zur bestimmung des staubgehaltes in stroemenden gasen
DE19536705A1 (de) 1995-09-30 1997-04-03 Guenther Prof Dr Ing Hauser Partikel-Meßverfahren und Vorrichtung
DE19817402C1 (de) 1998-04-20 1999-09-30 Logistikzentrum Inst Fuer Mate Sensoranordnung zur quantitativen Bestimmung von in einem Gasstrom enthaltenen Partikeln
DE19853841C2 (de) 1998-11-23 2001-04-12 Victor Gheorghiu Meßsonde und Meßverfahren zur schnellen Erfassung der Partikelkonzentration in strömenden und ruhenden unbrennbaren Gasen
DE10128869A1 (de) 2000-06-21 2002-01-03 Volkswagen Ag Sensor zur Erfassung eines Verbrennungsparameters
JP4856950B2 (ja) * 2003-05-08 2012-01-18 パナソニック株式会社 電気スイッチおよびそれを用いた記憶素子
US6961603B2 (en) * 2003-06-17 2005-11-01 Instrumentarim Corp. Unitary multi-electrode biopotential signal sensor and method for making same
US20070253051A1 (en) * 2003-09-29 2007-11-01 Kunihiko Ishihara Optical Device
DE102004039647A1 (de) 2004-08-14 2006-02-23 Günther Prof. Dr.-Ing. Hauser Russladungssensor
ATE363067T1 (de) * 2004-10-04 2007-06-15 Mettler Toledo Ag Bezugselektrode für potentiometrische messungen und verfahren zu deren überwachung
DE102004059650B4 (de) * 2004-12-10 2006-09-28 Robert Bosch Gmbh Resistive Partikelsensoren mit Messelektroden
DE102006040351A1 (de) * 2006-08-29 2008-03-06 Robert Bosch Gmbh Sensor zur resistiven Bestimmung von Konzentrationen leitfähiger Partikel in Gasgemischen
DE102007033213A1 (de) * 2007-07-17 2009-01-22 Robert Bosch Gmbh Sensorelement und Sensor zur Detektion von leitfähigen Partikeln in einem Gasstrom sowie Verfahren zu deren Herstellung und deren Verwendung
WO2009032262A1 (en) * 2007-08-30 2009-03-12 Ceramatec, Inc. Ceramic particulate matter sensor with low electrical leakage
US20110003279A1 (en) * 2009-06-04 2011-01-06 Gordhanbhai Nathalal Patel Monitoring devices and processes based on transformation, destruction and conversion of nanostructures
DE102009020743A1 (de) * 2009-05-11 2010-12-09 Heraeus Sensor Technology Gmbh Fotolithographisch strukturierter Dickschichtsensor
DE102010030634A1 (de) * 2010-06-29 2011-12-29 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines Partikelsensors
JP2012012960A (ja) * 2010-06-29 2012-01-19 Nippon Soken Inc 粒子状物質検出センサ
DE102010054671A1 (de) * 2010-12-15 2012-06-21 Continental Automotive Gmbh Verfahren zum Betreiben eines Rußsensors
US8875560B2 (en) * 2011-06-30 2014-11-04 Caterpillar Inc. System implementing constituent identification and concentration detection
AU2011374432B2 (en) * 2011-08-04 2015-11-12 Toyota Jidosha Kabushiki Kaisha Device for controlling internal combustion engine
CN105452843B (zh) * 2013-08-14 2019-11-26 罗伯特·博世有限公司 颗粒传感器和用于制造颗粒传感器的方法
CA2974938A1 (en) * 2014-08-11 2016-02-18 Formarum Inc. Water treatment system and method
DE102014222844B4 (de) 2014-11-10 2018-05-09 Continental Automotive Gmbh Rußsensor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2016075127A1 *

Also Published As

Publication number Publication date
DE102014222844A1 (de) 2016-05-12
CN107110757A (zh) 2017-08-29
WO2016075127A1 (de) 2016-05-19
US10481066B2 (en) 2019-11-19
US20170315043A1 (en) 2017-11-02
DE102014222844B4 (de) 2018-05-09

Similar Documents

Publication Publication Date Title
DE102014222844B4 (de) Rußsensor
DE102009028239A1 (de) Verfahren und Vorrichtung zur Eigendiagnose eines Partikelsensors
EP2864757A1 (de) Verfahren zur funktionskontrolle eines sensors zur detektion von teilchen und sensor zur detektion von teilchen
WO2016046229A1 (de) Russsensor
EP3391024B1 (de) Elektrostatischer russsensor
DE102013209872A1 (de) Verfahren und Vorrichtung zum Betreiben eines Partikelsensors
DE102010055478A1 (de) Verfahren zum Betreiben eines Rußsensors
DE102019115156A1 (de) Abgasfeinstaubsensor
DE102015225739B4 (de) Verfahren zum Betreiben eines elektrostatischen Rußsensors
DE102014220398A1 (de) Verfahren zur Funktionskontrolle eines Sensors zur Detektion von Teilchen
WO2018215214A1 (de) Partikelsensor und herstellungsverfahren hierfür
DE102009046315A1 (de) Verfahren und Vorrichtung zum Betreiben eines Partikelsensors
DE102015215848B4 (de) Verfahren zur Funktionsüberwachung eines elektrostatischen Rußsensors
DE102017215689A1 (de) Partikelsensor für eine Brennkraftmaschine
DE102009000077A1 (de) Partikelsensor mit Referenzmesszelle
EP3877746A1 (de) Partikelsensor und betriebsverfahren hierfür
DE102016213637A1 (de) Partikelsensor mit Schutzelement gegen Verschmutzung
DE102013206092A1 (de) Verfahren zur Auswertung der Messwerte eines Rußsensors
DE102013220813A1 (de) Rußsensor
DE102016213641A1 (de) Partikelsensor mit Umlenkelement
DE102017209299A1 (de) Elektrostatische Partikelsensoreinheit mit Haupt- und Hilfselektroden
DE102013220890A1 (de) Rußsensor
WO2019048413A1 (de) Partikelsensor mit schutzelement gegen verschmutzung
DE102017202859A1 (de) Verfahren zum Betreiben eines elektrostatischen Partikelsensors und elektrostatischer Partikelsensor
WO2019120790A1 (de) Sensoranordnung zur erfassung von partikeln eines messgases in einem messgasraum und verfahren zur erfassung von partikeln eines messgases in einem messgasraum

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170612

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: EBERL-NEUMAIER, PATRICK

Inventor name: WAHA, ALEXANDER

Inventor name: REISS, SEBASTIAN

Inventor name: GARNEYER, ECKART

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CONTINENTAL AUTOMOTIVE GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VITESCO TECHNOLOGIES GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20201008

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20210420