EP3218542B1 - Bügelerleichterung von textilien - Google Patents

Bügelerleichterung von textilien Download PDF

Info

Publication number
EP3218542B1
EP3218542B1 EP15790877.3A EP15790877A EP3218542B1 EP 3218542 B1 EP3218542 B1 EP 3218542B1 EP 15790877 A EP15790877 A EP 15790877A EP 3218542 B1 EP3218542 B1 EP 3218542B1
Authority
EP
European Patent Office
Prior art keywords
polymer
acid
groups
substituents
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15790877.3A
Other languages
English (en)
French (fr)
Other versions
EP3218542A1 (de
Inventor
Iwona Spill
Peter Schmiedel
Markus OBERTHÜR
Vahid Ameri Dehabadi
Hans-Jürgen BUSCHMANN
Jochen Stefan Gutmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP3218542A1 publication Critical patent/EP3218542A1/de
Application granted granted Critical
Publication of EP3218542B1 publication Critical patent/EP3218542B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • D06M15/6436Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain containing amino groups
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3723Polyamines or polyalkyleneimines
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/373Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicones
    • C11D3/3742Nitrogen containing silicones
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3769(Co)polymerised monomers containing nitrogen, e.g. carbonamides, nitriles or amines
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/356Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of other unsaturated compounds containing nitrogen, sulfur, silicon or phosphorus atoms
    • D06M15/3562Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of other unsaturated compounds containing nitrogen, sulfur, silicon or phosphorus atoms containing nitrogen
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/61Polyamines polyimines
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/06Processes in which the treating agent is dispersed in a gas, e.g. aerosols
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/10Processes in which the treating agent is dissolved or dispersed in organic solvents; Processes for the recovery of organic solvents thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/12Soft surfaces, e.g. textile
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/02Natural fibres, other than mineral fibres
    • D06M2101/04Vegetal fibres
    • D06M2101/06Vegetal fibres cellulosic
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/20Treatment influencing the crease behaviour, the wrinkle resistance, the crease recovery or the ironing ease
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2201/00Cellulose-based fibres, e.g. vegetable fibres
    • D10B2201/01Natural vegetable fibres
    • D10B2201/02Cotton

Definitions

  • the present invention relates to the use of amino group-containing polymers having substituents carrying carboxylic acid groups for reducing creasing tendency and facilitating the ironing of textiles made of cellulosic material, as well as a household practicable process for ironing and / or wrinkle-reducing finishing of textiles made of cellulose-containing material.
  • Textiles made of cellulose such as cotton or cellulose regenerated fibers (for example Modal or Lyocel) have from the consumer's point of view positive properties in terms of wearing comfort.
  • cellulose regenerated fibers for example Modal or Lyocel
  • a major disadvantage of these textiles is the slight creasing during wear, after washing and drying. This tendency to wrinkle is due to the swelling of the cellulose fibers and their low elastic restoring forces ("bounce") after deformation.
  • Formaldehyde-free crosslinking processes for cellulose are also known, for example from US 2004/0043915 A1 a crosslinking process carried out with the aid of hydroxyl-bearing polymer and polycarboxylic acids, in particular butanetetracarboxylic acid (BTCA). From the article by CMWelch in Textile Research Journal, 1988, 480-486 is the use of tetracarboxylic acids for the crosslinking of cellulose fibers known. These formaldehyde-free approaches of cellulose crosslinking with the aid of polycarboxylic acids could be suitable from a toxicological point of view for a home application in principle.
  • BTCA butanetetracarboxylic acid
  • ion pairs bonds are used for the crosslinking of cellulose.
  • Cotton usually has a content of carboxyl groups of about 10 -6 mol / g.
  • the cellulose can be treated with chloro or bromoacetic acid to increase the number of its carboxyl groups.
  • Interaction of the carboxylated cellulose with polycations, such as cationized chitosan, can result in ionic crosslinks that reduce the tendency to crease. Without the carboxylation, the effect is too small and carboxylation of cotton fabrics with haloacetic acids is not considered for home use.
  • finishing agents for anti-cellulite finishing of cellulosic textiles which contain hydrophobically modified polyethyleneimines and / or polyvinylamines, the hydrophobic modification taking place by reaction of the polyethyleneimines and / or polyvinylamines with long-chain carboxylic acids, alkyl halides, alkyl epoxides, alkyl ketene dimers or cyclic dicarboxylic acid anhydrides.
  • EP 0 095 676 A1 discloses the use of aminopolysiloxanes bearing carboxy-terminated substituents attached via amide bonds to the aminopolysiloxane backbone for fabric softening and water repellent treatment of textile materials.
  • the European patent application EP 1 108 765 discloses the use of carboxyl group-containing side chain polysiloxanes for the hydrophobization of leather and furs.
  • the invention therefore relates to the use of an amino-containing polymer having substituents carrying carboxylic acid groups for reducing the tendency of the edges of textiles to crease of cellulose-containing material, characterized in that the polymer is accessible by reacting aminopolysiloxanes, polyvinylamines or polyalkyleneimines with haloalkanoic acids.
  • Another object of the invention is the use of an amino-containing polymer having substituents carrying carboxylic acid groups for facilitating the ironing of textiles of cellulose-containing material, characterized in that the polymer is accessible by reacting aminopolysiloxanes, polyvinylamines or polyalkyleneimines with haloalkanoic acids.
  • Further objects of the invention are methods which can be carried out in the household for ironing and / or wrinkle-reducing finishing of textiles made of cellulosic material by contacting the textile with an amino group-containing polymer having substituents carrying carboxylic acid groups, characterized in that the polymer is prepared by reacting aminopolysiloxanes, Polyvinylamines or polyalkyleneimines with haloalkanoic acids is accessible.
  • the cellulosic materials from which the textiles to be treated are made include cotton, regenerated cellulosic fibers such as Modal or Lyocel, and blended fabrics of cotton or cellulose regenerated fibers with other apparel-based materials such as polyester and polyamide.
  • the textile is ironed following treatment with said polymer with a standard household iron.
  • the measures of the invention significantly reduce the creasing tendency of textiles made of cellulosic material compared to the untreated starting textiles or exclusive treatment with a noncarboxylic acid-substituted amino-containing polymer.
  • a noncarboxylic acid-substituted amino-containing polymer it is conceivable that the reaction of carboxyl groups of the polymer with hydroxyl groups of the cotton leads to covalent bonds (ester bonds).
  • the amino groups of the polymer may possibly interact electrostatically with carboxyl groups of the cotton (ionic crosslinking). Both covalent and ionic crosslinks could lead to an increased bounce of the textile and thus to crease reduction.
  • KEW crease recovery angle
  • the polymer used in the context of the invention has, in addition to the multiple amino groups and the carboxyl groups, no further nucleophilic units, such as, for example, hydroxyl groups.
  • Polymers preferred according to the invention are selected from aminopolysiloxanes, polyvinylamines and polyalkyleneimines, such as polyethyleneimines, and mixtures thereof, which carry substituents with carboxyl groups on the nitrogen atom of the amino function.
  • the polymers which can be used according to the invention are obtainable by reacting aminopolysilxanes, polyvinylamines or polyalkyleneimines with haloalkanoic acids, for example bromoacetic acid.
  • haloalkanoic acids for example bromoacetic acid.
  • preferably only molar amounts of haloalkanoic acid are used based on amino group-containing polymer that are not introduced to all nitrogen atoms of the amino groups of the polymer carboxyl substituent substituents.
  • Polyvinylamines are prepared via polymer-analogous reactions, such as by hydrolysis of poly-N-vinylamides, such as poly-N-vinylformamide or poly-N-vinylacetamide, or poly-N-vinylimides, such as poly-N-vinylsuccinimide, formed by the polymerization of the corresponding Monomers are readily available, or produced by Hofmann degradation of polyacrylamide.
  • poly-N-vinylamides such as poly-N-vinylformamide or poly-N-vinylacetamide
  • poly-N-vinylimides such as poly-N-vinylsuccinimide
  • Polyalkyleneimines are polymers having an N-atom-containing backbone connected by alkylene groups, which may carry alkyl groups on the non-N atoms.
  • the polyalkyleneimine preferably has primary amino functions at the ends and preferably both secondary and tertiary amino functions inside; if appropriate, it may also have only secondary amino functions on the inside, so that the result is not a branched-chain but a linear polymer.
  • the ratio of primary to secondary amino groups in the polyalkyleneimine is preferably in the range from 1: 0.5 to 1: 1.5, in particular in the range from 1: 0.7 to 1: 1.
  • the ratio of primary to tertiary amino groups in the polyalkyleneimine is preferably in the range from 1: 0.2 to 1: 1, in particular in the range from 1: 0.5 to 1: 0.8.
  • the polyalkyleneimine preferably has an average molar mass in the range from 500 g / mol to 50,000 g / mol, in particular from 550 g / mol to 5000 g / mol.
  • the mean molecular weights given here and optionally for other polymeric ingredients are weight-average molar masses M w , which can in principle be determined by means of gel permeation chromatography with the aid of an RI detector, wherein the measurement is expediently carried out against an external standard.
  • the N atoms in the polyalkyleneimine are preferably separated from one another by alkylene groups having 2 to 12 C atoms, in particular 2 to 6 C atoms, where not all alkylene groups must have the same C atom number. Particularly preferred are ethylene groups, 1,2-propylene groups, 1,3-propylene groups, and mixtures thereof. If desired, some of the amino functions in the polyalkyleneimine can carry 1 or 2 alkyl groups, the alkyl groups preferably being propyl and / or ethyl groups.
  • C 1 -C 18 -hydrocarbon radicals R 1 are methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, neopentyl, tert-pentyl, n-butyl Hexyl, n-heptyl, n-octyl, trimethylpentyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl, cycloalkyl, in particular cyclopentyl or cyclohexyl, methylcyclohexyl, aryl, in particular phenyl or naphthyl, Alkaryl, in particular o-, m- or p-toluyl, xylyl or ethylphenyl; Aralkyl radicals, in particular benzy
  • alkenyl radicals such as vinyl, allyl, 5-hexenyl, E-4-hexenyl, Z-4-hexen-1-yl, 2- (3-cyclohexenyl) -ethyl and cyclododeca-4,8-dienyl.
  • Preferred radicals having aliphatic double bond are vinyl, allyl, and the 5-hexenyl radical.
  • C 1 - to C 10 -alkyl radicals R 4 are the examples listed above for R 1 for linear and cyclic alkyl radicals having at most 10 C atoms.
  • Examples of the divalent C 1 - to C 18 -hydrocarbon radicals R 3 are saturated straight- or branched-chain or cyclic alkylene radicals such as the methylene and ethylene radical and also propylene, butylene, pentylene, hexylene, 2-methylpropylene, cyclohexylene and Octadecylene or unsaturated alkylene or arylene radicals such as the hexenylene radical and phenylene radical, wherein the n-propylene radical and the 2-methylpropylene radical are particularly preferred.
  • Preferred examples of the divalent hydrocarbon radicals R 5 are the examples listed above for R 1 , wherein the ethylene group is particularly preferred.
  • the textile is made of cellulosic material at temperatures in the range of 10 ° C to 100 ° C, in particular from 20 ° C to 60 ° C, brought into contact with said amino group-containing polymer having substituents carrying carboxylic acid groups.
  • the textile of cellulose-containing material is preferably brought into contact with the amino group-containing polymer having substituents carrying carboxylic acid groups over a period of from 10 minutes to 180 minutes, in particular from 30 minutes to 60 minutes.
  • the implementation of the invention can be carried out, for example, by bringing textiles made of cellulosic material into contact with an aqueous preparation containing said polymer.
  • This can be used as part of a conventional washing process, which can be carried out by means of a household washing machine or by hand.
  • the amino group-containing polymer is preferably used in the rinsing step, that is to say after the actual washing step.
  • the polymer essential to the invention may be a constituent of agents used in such washing processes, or it may be added separately to such agents or aqueous formulations containing them.
  • Another object of the present invention is therefore a laundry or laundry care containing an amino group-containing polymer having substituents carrying carboxylic acid groups, which is accessible by reacting aminopolysiloxanes, polyvinylamines or polyalkyleneimines with haloalkanoic acids, characterized in that it contains a nonionic surfactant.
  • the active ingredient may also be in the use of the user by facilitating confectioning form, for example in admixture or granulated with vehicles, binders, wrapping materials, extrusion aids, flowability improvers, stabilizers, solvents, rheology modifiers and / or emulsifiers.
  • This embodiment of the invention makes it possible for the consumer in a simple manner, the advantages of the invention by using said polymer in addition to conventional washing and / or laundry aftertreatment only to bear, if they are desirable.
  • Said polymer may be present in a liquid or solid agent, whereby the single dosage (pouch packaging, Pouch) of the agent is possible.
  • the said polymer can also be present in a liquid spray product which, after dilution with water or, in particular, undiluted, can be sprayed onto a textile.
  • said polymer in particular by spraying in the form of a liquid spray product, after washing and drying of the textile applied to this.
  • the present invention is therefore also a method in which a cotton or other cellulosic material existing or containing this textile with an amino group-containing polymer having carboxylic acid group-bearing substituents, which is accessible by reacting aminopolysiloxanes, polyvinylamines or polyalkyleneimines with haloalkanoic acids, in Contact and then fixed with a household iron in the desired shape.
  • Ironing temperatures preferably occur in the range from 50 ° C. to 220 ° C., in particular from 100 ° C. to 160 ° C.
  • a cumulative effect of the system according to the invention results in some, for example 1 to 5, times repeated applications.
  • the textile does not need to be ironed after each application of the polymer according to the invention. Crease recovery angle improves from application to application.
  • This cumulative effect allows the use of lower concentrations of the active ingredient according to the invention. Furthermore, it reduces the danger of damaging a textile by ironing in an undesired shape (for example a fold); Ironing errors can be corrected at the next application. For this reason, a dosage of the active substances essential to the invention which brings about a cumulative effect is preferred.
  • the concentration of amino group-containing polymer having substituents carrying carboxylic acid groups in an aqueous treatment liquor is in particular in the range from 0.1 g / l to 10 g / l, more preferably from 0.2 g / l to 2 g / l.
  • Detergents or laundry detergents which contain the active ingredient to be used according to the invention or are used together or used in the process according to the invention may contain all customary other constituents of such agents which do not undesirably interact with the active ingredient essential to the invention.
  • Such an agent contains nonionic surfactants selected from fatty alkyl polyglycosides, fatty alkyl polyalkoxylates, in particular ethoxylates and / or propoxylates, fatty acid polyhydroxyamides and / or ethoxylation and / or propoxylation products of fatty alkylamines, vicinal diols, fatty acid alkyl esters and / or fatty acid amides and mixtures thereof, especially in one Amount in the range of 2 wt .-% to 25 wt .-%.
  • Suitable nonionic surfactants include the alkoxylates, in particular the ethoxylates and / or propoxylates of saturated or mono- to polyunsaturated linear or branched-chain alcohols having 10 to 22 C atoms, preferably 12 to 18 C atoms.
  • the degree of alkoxylation of the alcohols is generally between 1 and 20, preferably between 3 and 10. They can be prepared in a known manner by reacting the corresponding alcohols with the corresponding alkylene oxides.
  • Particularly suitable are the derivatives of fatty alcohols, although their branched-chain isomers, in particular so-called oxo alcohols, can be used for the preparation of usable alkoxylates.
  • alkoxylates in particular the ethoxylates, primary alcohols with linear, in particular dodecyl, tetradecyl, hexadecyl or octadecyl radicals and mixtures thereof.
  • suitable alkoxylation products of alkylamines, vicinal diols and carboxamides, which correspond to the said alcohols with respect to the alkyl part usable.
  • the ethylene oxide and / or propylene oxide insertion products of fatty acid alkyl esters and Fettklarepolyhydroxyamide into consideration.
  • alkylpolyglycosides which are suitable for incorporation in the compositions according to the invention are compounds of the general formula (G) n -OR 12 , in which R 12 is an alkyl or alkenyl radical having 8 to 22 C atoms, G is a glycose unit and n is a number between 1 and 10 mean.
  • the glycoside component (G) n are oligomers or polymers of naturally occurring aldose or ketose monomers, including especially glucose, mannose, fructose, galactose, talose, gulose, altrose, allose, idose, ribose, arabinose, xylose and lyxose.
  • the oligomers consisting of such glycosidically linked monomers are characterized not only by the nature of the sugars contained in them by their number, the so-called Oligomermaschinesgrad.
  • the degree of oligomerization n assumes as the value to be determined analytically generally broken numerical values; it is between 1 and 10, with the glycosides preferably used below a value of 1.5, in particular between 1.2 and 1.4.
  • Preferred monomer building block is glucose because of its good availability.
  • Nonionic surfactant is in agents which contain an active ingredient according to the invention or used in the context of the use according to the invention or the method according to the invention, preferably in amounts of 1 wt .-% to 30 wt .-%, in particular from 1 wt .-% to 25 Wt .-%, with amounts in the upper part of this range are more likely to be found in liquid agents and particulate preferably contain lower amounts of up to 5 wt .-%.
  • soaps suitable being saturated fatty acid soaps, such as the salts of lauric acid, myristic acid, palmitic acid or stearic acid, and soaps derived from natural fatty acid mixtures, for example coconut, palm kernel or tallow fatty acids.
  • those soap mixtures are preferred which are composed of 50% to 100% by weight of saturated C 12 -C 18 fatty acid soaps and up to 50% by weight of oleic acid soap.
  • soap is included in amounts of from 0.1% to 5% by weight.
  • higher amounts of soap can be contained, usually up to 20 wt .-%.
  • the agents may also contain betaines which, if present, are preferably used in amounts of from 0.5% to 7% by weight. Among these, esterquats are particularly preferred.
  • the compositions may contain peroxygen bleaching agents, in particular in amounts ranging from 5% by weight to 70% by weight, and optionally bleach activator, in particular Amounts in the range of 2 wt .-% to 10 wt .-%, contained.
  • the bleaches in question are preferably the peroxygen compounds generally used in detergents, such as percarboxylic acids, for example dodecanedioic acid or phthaloylaminoperoxicaproic acid, hydrogen peroxide, alkali metal perborate, which may be in the form of tetra- or monohydrate, percarbonate, perpyrophosphate and persilicate, which are generally used as alkali metal salts, in particular as sodium salts.
  • Such bleaching agents are in detergents containing an active ingredient according to the invention, preferably in amounts of up to 25 wt .-%, in particular up to 15 wt .-% and particularly preferably from 5 wt .-% to 15 wt .-%, each based on total agent, present, in particular percarbonate is used.
  • the optionally present component of the bleach activators comprises the commonly used N- or O-acyl compounds, for example polyacylated alkylenediamines, in particular tetraacetylethylenediamine, acylated glycolurils, in particular tetraacetylglycoluril, N-acylated hydantoins, hydrazides, triazoles, urazoles, diketopiperazines, sulphurylamides and cyanurates, and also carboxylic anhydrides , in particular phthalic anhydride, carboxylic acid esters, in particular sodium isononanoyl-phenolsulfonate, and acylated sugar derivatives, in particular pentaacetylglucose, as well as cationic nitrile derivatives such as trimethylammoniumacetonitrile salts.
  • N- or O-acyl compounds for example polyacylated alkylenediamines, in particular tetraacetyl
  • the bleach activators may have been coated and / or granulated in a known manner with coating substances, granulated tetraacetylethylenediamine having mean particle sizes of from 0.01 mm to 0.8 mm, granulated 1, with the aid of carboxymethylcellulose. 5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine, and / or in particulate form, trialkylammonium acetonitrile is particularly preferred.
  • Such bleach activators are preferably contained in detergents in amounts of up to 8% by weight, in particular from 2% by weight to 6% by weight, based in each case on the total agent.
  • the composition contains water-soluble and / or water-insoluble builder, in particular selected from alkali metal aluminosilicate, crystalline alkali metal silicate with modulus above 1, monomeric polycarboxylate, polymeric polycarboxylate and mixtures thereof, in particular in amounts ranging from 2.5 wt .-% to 60 wt .-%.
  • water-soluble and / or water-insoluble builder in particular selected from alkali metal aluminosilicate, crystalline alkali metal silicate with modulus above 1, monomeric polycarboxylate, polymeric polycarboxylate and mixtures thereof, in particular in amounts ranging from 2.5 wt .-% to 60 wt .-%.
  • the agent preferably contains from 20% to 55% by weight of water-soluble and / or water-insoluble, organic and / or inorganic builders.
  • the water-soluble organic builder substances include, in particular, those from the class of polycarboxylic acids, in particular citric acid and sugar acids, as well as the polymeric (poly) carboxylic acids, in particular the polycarboxylates obtainable by oxidation of polysaccharides, polymeric acrylic acids, methacrylic acids, maleic acids and mixed polymers thereof, which also small amounts of polymerizable substances without carboxylic acid functionality may contain polymerized.
  • the molecular weight of homopolymers of unsaturated carboxylic acids is generally intermediate 5000 g / mol and 200000 g / mol, those of the copolymer between 2000 g / mol and 200,000 g / mol, preferably 50,000 g / mol to 120,000 g / mol, based on the free acid.
  • a particularly preferred acrylic acid-maleic acid copolymer has a molecular weight of 50,000 g / mol to 100,000 g / mol.
  • Suitable, although less preferred, compounds of this class are copolymers of acrylic or methacrylic acid with vinyl ethers, such as vinylmethyl ethers, vinyl esters, ethylene, propylene and styrene, in which the acid content is at least 50% by weight.
  • vinyl ethers such as vinylmethyl ethers, vinyl esters, ethylene, propylene and styrene
  • the acid content is at least 50% by weight.
  • Terpolymers which contain two carboxylic acids and / or salts thereof as monomers and also vinyl alcohol and / or a vinyl alcohol derivative or a carbohydrate as the third monomer may also be used as water-soluble organic builder substances.
  • the first acidic monomer or its salt is derived from a monoethylenically unsaturated C 3 -C 8 -carboxylic acid and preferably from a C 3 -C 4 -monocarboxylic acid, in particular from (meth) acrylic acid.
  • the second acidic monomer or its salt may be a derivative of a C 4 -C 8 dicarboxylic acid, with maleic acid being particularly preferred.
  • the third monomeric unit is formed in this case of vinyl alcohol and / or preferably an esterified vinyl alcohol.
  • Preferred terpolymers contain from 60% by weight to 95% by weight, in particular from 70% by weight to 90% by weight, of (meth) acrylic acid and / or (meth) acrylate, particularly preferably acrylic acid and / or acrylate, and maleic acid and / or maleate and 5 wt .-% to 40 wt .-%, preferably 10 wt .-% to 30 wt .-% of vinyl alcohol and / or vinyl acetate.
  • the second acidic monomer or its salt may also be a derivative of an allylsulfonic acid which is in the 2-position with an alkyl radical, preferably with a C 1 -C 4 -alkyl radical, or an aromatic radical which is preferably derived from benzene or benzene derivatives , is substituted.
  • Preferred terpolymers contain from 40% by weight to 60% by weight, in particular from 45 to 55% by weight, of (meth) acrylic acid and / or (meth) acrylate, particularly preferably acrylic acid and / or acrylate, 10% by weight to 30 wt .-%, preferably 15 wt .-% to 25 wt .-% methallylsulfonic acid and / or Methallylsulfonat and as the third monomer 15 wt .-% to 40 wt .-%, preferably 20 wt .-% to 40 wt. % of a carbohydrate.
  • This carbohydrate may be, for example, a mono-, di-, oligo- or polysaccharide, mono-, di- or oligosaccharides being preferred, sucrose being particularly preferred.
  • the use of the third monomer presumably incorporates predetermined breaking points in the polymer which are responsible for the good biodegradability of the polymer.
  • These terpolymers generally have a molecular weight between 1000 g / mol and 200000 g / mol, preferably between 2000 g / mol and 50,000 g / mol and in particular between 3000 g / mol and 10,000 g / mol.
  • polycarboxylic acids are generally used in the form of their water-soluble salts, in particular their alkali metal salts.
  • Such organic builder substances are preferably present in amounts of up to 40% by weight, in particular up to 25% by weight and particularly preferably from 1% by weight to 5% by weight. Quantities close to the stated upper limit are preferably used in pasty or liquid, in particular hydrous, agents.
  • Crystalline or amorphous alkali metal aluminosilicates in amounts of up to 50% by weight, preferably not more than 40% by weight, and in liquid agents, in particular from 1% by weight to 5% by weight, are particularly suitable as water-insoluble, water-dispersible inorganic builder materials.
  • the detergent-grade crystalline aluminosilicates especially zeolite NaA and optionally NaX, are preferred. Amounts near the above upper limit are preferably used in solid, particulate agents.
  • suitable aluminosilicates have no particles with a particle size greater than 30 .mu.m and preferably consist of at least 80% by weight of particles having a size of less than 10 .mu.m.
  • Suitable substitutes or partial substitutes for the said aluminosilicate are crystalline alkali metal silicates which may be present alone or in a mixture with amorphous silicates.
  • the alkali metal silicates useful as builders in the compositions preferably have a molar ratio of alkali metal oxide to SiO 2 below 0.95, in particular from 1: 1.1 to 1:12, and may be present in amorphous or crystalline form.
  • Preferred alkali metal silicates are the sodium silicates, in particular the amorphous sodium silicates, with a molar ratio of Na 2 O: SiO 2 of 1: 2 to 1: 2.8.
  • Such amorphous alkali silicates are commercially available, for example, under the name Portil®. Those with a molar ratio of Na 2 O: SiO 2 of 1: 1.9 to 1: 2.8 are preferably added in the course of the production as a solid and not in the form of a solution.
  • the crystalline silicates which may be present alone or in admixture with amorphous silicates, are crystalline layer silicates with the general formula Na 2 Si x O 2x + 1 ⁇ are used yH 2 O, in which x, the so-called module, a number from 1.9 to 4 and y is a number from 0 to 20 and preferred values for x are 2, 3 or 4.
  • Preferred crystalline phyllosilicates are those in which x in the abovementioned general formula assumes the values 2 or 3.
  • both ⁇ - and ⁇ -Natriumdisitikate Na 2 Si 2 O 5 ⁇ yH 2 O
  • amorphous alkali metal silicates can be used in agents which contain an active ingredient to be used according to the invention.
  • a crystalline sodium layer silicate with a modulus of 2 to 3 is used, as can be prepared from sand and soda.
  • Crystalline sodium silicates with a modulus in the range of 1.9 to 3.5 are used in a further preferred embodiment of detergents which contain an active ingredient used in the invention.
  • alkali metal silicates are preferably 1 wt .-% to 50 wt .-% and in particular 5 wt .-% to 35 wt .-%, based on anhydrous active substance. If alkali metal aluminosilicate, in particular zeolite, is present as an additional builder substance, the content of alkali silicate is preferably 1% by weight to 15% by weight and in particular 2% by weight to 8% by weight, based on anhydrous active substance.
  • the weight ratio of aluminosilicate to silicate, in each case based on anhydrous active substances, is then preferably 4: 1 to 10: 1. In agents containing both amorphous and crystalline alkali metal silicates, the weight ratio of amorphous alkali metal silicate to crystalline alkali metal silicate is preferably 1: 2 to 2: 1 and especially 1: 1 to 2: 1.
  • water-soluble or water-insoluble inorganic substances may be contained in the agents containing an active ingredient to be used according to the present invention, used together with it or used in methods of the invention. Suitable in this context are the alkali metal carbonates, alkali metal bicarbonates and alkali metal sulfates and mixtures thereof. Such additional inorganic material may be present in amounts up to 70% by weight.
  • the agents may contain other ingredients customary in detergents or cleaners.
  • these optional ingredients include, in particular, enzymes, enzyme stabilizers, complexing agents for heavy metals, for example aminopolycarboxylic acids, aminohydroxypolycarboxylic acids, polyphosphonic acids and / or aminopolyphosphonic acids, foam inhibitors, for example organopolysiloxanes or paraffins, solvents and optical brighteners, for example stilbene disulfonic acid derivatives.
  • agents which contain an active substance used according to the invention up to 1% by weight, in particular 0.01% by weight to 0.5% by weight, of optical brighteners, in particular compounds from the class of the substituted 4,4 ' -Bis (2,4,6-tri-amino-s-triazinyl) -stilbene-2,2'-disulphonic acids, up to 5% by weight, in particular from 0.1% by weight to 2% by weight
  • optical brighteners in particular compounds from the class of the substituted 4,4 ' -Bis (2,4,6-tri-amino-s-triazinyl) -stilbene-2,2'-disulphonic acids
  • up to 5% by weight in particular from 0.1% by weight to 2% by weight
  • Complexing agents for heavy metals, in particular aminoalkylenephosphonic acids and their salts and up to 2% by weight, in particular from 0.1% by weight to 1% by weight, of foam inhibitors, the weight proportions in each case referring to the total agent.
  • Solvents that can be used in particular for liquid agents are, in addition to water, preferably those nonaqueous solvents which are water-miscible. These include the lower alcohols, for example, ethanol, propanol, isopropanol, and the isomeric butanols, glycerol, lower glycols, such as ethylene and propylene glycol, and the derivable from said classes of compounds ether.
  • the active compounds used in the invention are usually dissolved or in suspended form.
  • Optionally present enzymes are preferably selected from the group comprising protease, amylase, lipase, cellulase, hemicellulase, oxidase, peroxidase, pectinase and mixtures thereof.
  • proteases derived from microorganisms such as bacteria or fungi, come into question. It can be obtained in a known manner by fermentation processes from suitable microorganisms.
  • Proteases are commercially available, for example, under the names BLAP®, Savinase®, Esperase®, Maxatase®, Optimase®, Alcalase®, Durazym® or Maxapem®.
  • the lipase which can be used can be obtained, for example, from Humicola lanuginosa, from Bacillus species, from Pseudomonas species, from Fusarium species, from Rhizopus species or from Aspergillus species.
  • Suitable lipases are commercially available, for example, under the names Lipolase®, Lipozym®, Lipomax®, Lipex®, Amano® lipase, Toyo-Jozo® lipase, Meito® lipase and Diosynth® lipase.
  • Suitable amylases are commercially available, for example, under the names Maxamyl®, Termamyl®, Duramyl® and Purafect® OxAm.
  • the usable cellulase may be a recoverable from bacteria or fungi enzyme, which has a pH optimum, preferably in the weakly acidic to slightly alkaline range of 6 to 9.5.
  • Such cellulases are commercially available under the names Celluzyme®, Carezyme® and Ecostone®.
  • Suitable pectinases are, for example, under the names Gamanase®, Pektinex AR®, X-Pect® or Pectaway® from Novozymes, under the name Rohapect UF®, Rohapect TPL®, Rohapect PTE100®, Rohapect MPE®, Rohapect MA plus HC, Rohapect DA12L ®, Rohapect 10L®, Rohapect B1L® from AB Enzymes and available under the name Pyrolase® from Diversa Corp., San Diego, CA, USA.
  • enzyme stabilizers include amino alcohols, for example mono-, di-, triethanol- and -propanolamine and mixtures thereof, lower carboxylic acids, boric acid, alkali metal borates, boric acid-carboxylic acid combinations, boric acid esters, boronic acid derivatives, calcium salts, for example Ca-formic acid combination, magnesium salts, and / or sulfur-containing reducing agents.
  • Suitable foam inhibitors include long-chain soaps, especially behenic soap, fatty acid amides, paraffins, waxes, microcrystalline waxes, organopolysiloxanes and mixtures thereof, which moreover can contain microfine, optionally silanated or otherwise hydrophobicized silica.
  • foam inhibitors are preferably bound to granular, water-soluble carrier substances.
  • polyester-active soil release polymers include copolyesters of dicarboxylic acids, for example adipic acid, phthalic acid or terephthalic acid, diols, for example ethylene glycol or propylene glycol, and polydiols, for example polyethylene glycol or polypropylene glycol.
  • Preferred soil release polymers include those compounds which are formally accessible by esterification of two monomeric moieties, wherein the first monomer is a dicarboxylic acid HOOC-Ph-COOH and the second monomer is a diol HO- (CHR 11 -) a OH, which may also be present as a polymeric diol H- (O- (CHR 11 -) a ) b OH ,
  • Ph is an o-, m- or p-phenylene radical which can carry 1 to 4 substituents selected from alkyl radicals having 1 to 22 C atoms, sulfonic acid groups, carboxyl groups and mixtures thereof
  • R 11 denotes hydrogen, an alkyl radical having 1 to 22 C atoms and mixtures thereof
  • a is a number from 2 to 6 and b is a number from 1 to 300.
  • the molar ratio of monomer diol units to polymer diol units is preferably 100: 1 to 1: 100, in particular 10: 1 to 1:10.
  • the degree of polymerization b is preferably in the range of 4 to 200, particularly 12 to 140.
  • the molecular weight or the average molecular weight or the maximum of the molecular weight distribution of preferred soil release polyester is in the range of 250 g / mol to 100,000 g / mol, in particular from 500 g / mol to 50,000 g / mol.
  • the acid underlying the radical Ph is preferably selected from terephthalic acid, isophthalic acid, phthalic acid, trimellitic acid, mellitic acid, the isomers of sulfophthalic acid, sulfoisophthalic acid and sulfoterephthalic acid and mixtures thereof. If their acid groups are not part of the ester bonds in the polymer, they are preferably in salt form, in particular as alkali or ammonium salt.
  • the sodium and potassium salts are particularly preferable.
  • the monomer HOOC-Ph-COOH small proportions, in particular not more than 10 mol% based on the proportion of Ph having the meaning given above, of other acids having at least two carboxyl groups may be included in the soil release-capable polyester.
  • these include, for example, alkylene and alkenylene dicarboxylic acids such as malonic acid, succinic acid, fumaric acid, maleic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid and sebacic acid.
  • the preferred diols HO- (CHR 11 -) a OH include those in which R 11 is hydrogen and a is a number from 2 to 6, and those in which a is 2 and R 11 is hydrogen and the alkyl radicals 1 to 10, in particular 1 to 3 C-atoms is selected.
  • R 11 is hydrogen and a is a number from 2 to 6
  • R 11 is hydrogen and the alkyl radicals 1 to 10, in particular 1 to 3 C-atoms is selected.
  • those of the formula HO-CH 2 -CHR 11 -OH in which R 11 has the abovementioned meaning are particularly preferred.
  • diol components are ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 1,2-decanediol, 1, 2-dodecanediol and neopentyl glycol.
  • Particularly preferred among the polymeric diols is polyethylene glycol having an average molecular weight in the range from 1000 g / mol to 6000 g / mol.
  • the polyesters may also be end-capped, alkyl groups having from 1 to 22 carbon atoms and esters of monocarboxylic acids being suitable as end groups.
  • the ester groups bonded via end groups can be based on alkyl, alkenyl and aryl monocarboxylic acids having 5 to 32 carbon atoms, in particular 5 to 18 carbon atoms.
  • valeric acid caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, undecanoic acid, undecenoic acid, lauric acid, lauroleinic acid, tridecanoic acid, myristic acid, Myristoleic, pentadecanoic, palmitic, stearic, petroselinic, petroselaidic, oleic, linoleic, linolaidic, linolenic, levostic, arachidic, gadoleic, arachidonic, behenic, erucic, brassidic, clupanodonic, lignoceric, cerotic a total of up to 25 carbon atoms, in particular 1 to 12 carbon atoms, for example, tert-butylbenzoic acid.
  • the end groups may also be based on hydroxymonocarboxylic acids having from 5 to 22 carbon atoms, including, for example, hydroxyvaleric acid, hydroxycaproic acid, ricinoleic acid, the hydrogenation product of which include hydroxystearic acid and also o-, m- and p-hydroxybenzoic acid.
  • the hydroxymonocarboxylic acids may in turn be linked to one another via their hydroxyl group and their carboxyl group and thus be present several times in an end group.
  • the number of hydroxymonocarboxylic acid units per end group is in the range from 1 to 50, in particular from 1 to 10.
  • polymers of ethylene terephthalate and polyethylene oxide terephthalate in which the polyethylene glycol units have molecular weights of 750 g / mol to 5000 g / mol and the molar ratio of ethylene terephthalate to polyethylene oxide terephthalate is 50:50 to 90:10 used in combination with an essential ingredient of the invention.
  • the soil release polymers are preferably water-soluble, the term "water-soluble" being understood to mean a solubility of at least 0.01 g, preferably at least 0.1 g, of the polymer per liter of water at room temperature and pH 8.
  • preferred polymers have a solubility of at least 1 g per liter, in particular at least 10 g per liter, under these conditions.
  • the laundry care agents used as aftertreatment agents may contain additional plasticizer components, preferably cationic surfactants, with the amino group-containing polymer having substituents carrying carboxylic acid groups which is obtainable by reacting aminopolysiloxanes, polyvinylamines or polyalkylenimines with haloalkanoic acids.
  • additional plasticizer components preferably cationic surfactants
  • the amino group-containing polymer having substituents carrying carboxylic acid groups which is obtainable by reacting aminopolysiloxanes, polyvinylamines or polyalkylenimines with haloalkanoic acids.
  • fabric softening components are quaternary ammonium compounds, cationic polymers and emulsifiers, such as those used in hair care products and also in textile saliva.
  • Suitable examples are quaternary ammonium compounds of the formulas (II) and (III), wherein in (II) R and R 1 is an acyclic alkyl radical having 12 to 24 carbon atoms, R 2 is a saturated C 1 -C 4 alkyl or hydroxyalkyl radical, R 3 is either R, R 1 or R 2 or an aromatic radical.
  • X - is either a halide, methosulfate, methophosphate or phosphate ion and mixtures thereof.
  • Examples of cationic compounds of the formula (II) are didecyldimethylammonium chloride, ditallowdimethylammonium chloride or dihexadecylammonium chloride.
  • Ester quats are so-called ester quats. Esterquats are characterized by their good biodegradability and are preferred in the context of the present invention.
  • R 4 is an aliphatic alkyl radical having 12 to 22 carbon atoms with 0, 1, 2 or 3 double bonds
  • R 5 is H, OH or O (CO)
  • R 7 is independently of R 5 is H, OH or O (CO) R 8
  • R 7 and R 8 are each independently an aliphatic alkyl radical having 12 to 22 carbon atoms with 0, 1, 2 or 3 double bonds.
  • m, n and p can each independently be 1, 2 or 3.
  • X - may be either a halide, methosulfate, methophosphate or phosphate ion, as well as mixtures of these.
  • Examples of compounds of the formula (III) are methyl N- (2-hydroxyethyl) -N, N-di (tallowacyl-oxyethyl) ammonium methosulfate, bis (palmitoyl) -ethyl-hydroxyethyl-methyl-ammonium methosulfate or methyl -N, N-bis (acyloxyethyl) -N- (2-hydroxyethyl) ammonium methosulfate.
  • the agents contain the additional plasticizer components in amounts of up to 35% by weight, preferably from 0.1 to 25% by weight, more preferably from 0.5 to 15% by weight and especially from 1 to 10 Wt .-%, each based on the total agent.
  • the agents may contain pearlescing agents.
  • Pearlescing agents give the textiles an extra shine and are therefore preferably used in mild detergents.
  • suitable pearlescing agents are: alkylene glycol esters; fatty acid; partial glycerides; Esters of polybasic, optionally hydroxy-substituted carboxylic acids with fatty alcohols having 6 to 22 carbon atoms; Fatty substances, such as, for example, fatty alcohols, fatty ketones, fatty aldehydes, fatty ethers and fatty carbonates, which in total have at least 24 carbon atoms; Ring opening products of olefin epoxides having 12 to 22 carbon atoms with fatty alcohols having 12 to 22 carbon atoms, fatty acids and / or polyols having 2 to 15 carbon atoms and 2 to 10 hydroxyl groups and mixtures thereof.
  • liquid agents may additionally contain thickeners.
  • thickening agents may be, for example, agar-agar, carrageenan, tragacanth, gum arabic, alginates, pectins, polyoses, guar flour, locust bean gum, starch, dextrins, gelatin and casein, cellulose derivatives such as carboxymethyl cellulose, hydroxyethyl and propyl cellulose, and polymeric polysaccharide thickeners like xanthan gum;
  • fully synthetic polymers such as polyacrylic and polymethacrylic compounds, vinyl polymers, polycarboxylic acids, polyethers, polyimines, polyamides and polyurethanes come into question.
  • the textile care agents according to the invention comprise thickeners, preferably in amounts of up to 10% by weight, more preferably up to 5% by weight, in particular from 0.1 to
  • the agents may additionally contain odor absorbers and / or color transfer inhibitors.
  • the agents optionally contain from 0.1% to 2%, preferably from 0.2% to 1%, by weight of color transfer inhibitor which in a preferred embodiment of the invention comprises a vinylpyrrolidone polymer, Vinylimidazole, vinylpyridine N-oxide or a copolymer of these.
  • polyvinylpyrrolidones having molecular weights of from 15,000 to 50,000 as well as polyvinylpyrrolidones having molecular weights above 1,000,000, in particular from 1,500,000 to 4,000,000, N-vinylimidazole / N-vinylpyrrolidone copolymers, polyvinyl oxazolidones, copolymers based on vinyl monomers and carboxylic acid amides, pyrrolidone group-containing polyesters and polyamides, grafted polyamidoamines, polyamine-N-oxide polymers, polyvinyl alcohols and copolymers based on acrylamidoalkenylsulfonic acids.
  • enzymatic systems comprising a peroxidase and hydrogen peroxide or a substance which produces hydrogen peroxide in water.
  • a mediator compound for the peroxidase for example an acetosyringone, a phenol derivative or a phenotiazine or phenoxazine, is preferred in this case, wherein also above-mentioned polymeric Farbübertragungsinhibitorwirkstoffe can be used.
  • Polyvinylpyrrolidone preferably has an average molecular weight in the range from 10 000 to 60 000, in particular in the range from 25 000 to 50 000, for use in compositions according to the invention.
  • the copolymers those of vinylpyrrolidone and vinylimidazole in a molar ratio of 5: 1 to 1: 1 having an average molecular weight in the range of 5,000 to 50,000, especially 10,000 to 20,000 are preferred.
  • Preferred deodorizing substances are metal salts of an unbranched or branched, unsaturated or saturated, mono- or polyhydroxylated fatty acid having at least 16 carbon atoms and / or a rosin acid with the exception of the alkali metal salts and any desired mixtures thereof.
  • a particularly preferred unbranched or branched, unsaturated or saturated, mono- or polyhydroxylated fatty acid having at least 16 carbon atoms is ricinoleic acid.
  • a particularly preferred rosin acid is abietic acid.
  • Preferred metals are the transition metals and the lanthanides, in particular the transition metals of the groups VIIIa, Ib and IIb of the Periodic Table and lanthanum, cerium and neodymium, more preferably cobalt, nickel, copper and zinc, most preferably zinc.
  • the cobalt, nickel and copper salts and the zinc salts are similarly effective, but for toxicological reasons, the zinc salts are to be preferred. It is advantageous and therefore particularly preferred to use as deodorizing substances one or more metal salts of ricinoleic acid and / or abietic acid, preferably zinc ricinoleate and / or zinc abietate, in particular zinc ricinoleate.
  • Cyclodextrins as well as mixtures of the abovementioned metal salts with cyclodextrin, preferably in a weight ratio of from 1:10 to 10: 1, particularly preferably from 1: 5 to 5: 1 and in particular from 1, also turn out to be further suitable deodorizing substances within the meaning of the invention. 3 to 3: 1.
  • the term "cyclodextrin” includes all known cyclodextrins, ie both unsubstituted cyclodextrins having 6 to 12 glucose units, in particular alpha-, beta- and gamma-cyclodextrins and also their mixtures and / or their derivatives and / or mixtures thereof.
  • compositions according to the invention presents no difficulties and can be carried out in a known manner, for example by spray-drying or granulation, wherein, for example, enzymes and possibly other thermally sensitive ingredients such as bleaching agents are optionally added separately later.
  • a process comprising an extrusion step is preferred.
  • compositions in tablet form which may be monophasic or multiphase, monochromatic or multicolor and in particular consist of one or more layers, in particular two layers
  • the procedure is preferably such that all components - optionally one layer at a time - in a mixer mixed together and the mixture by means of conventional tablet presses, such as eccentric presses or rotary presses, with pressing forces in the range of about 50 to 100 kN, preferably compressed at 60 to 70 kN.
  • a tablet produced in this way has a weight of 10 g to 50 g, in particular 15 g up to 40 g.
  • the spatial form of the tablets is arbitrary and can be round, oval or angular, with intermediate forms are also possible. Corners and edges are advantageously rounded. Round tablets preferably have a diameter of 30 mm to 40 mm. In particular, the size of rectangular or cuboid-shaped tablets, which are predominantly introduced via the metering device, for example the washing machine, is dependent on the geometry and the volume of this metering device.
  • Exemplary preferred embodiments have a base area of (20 to 30 mm) x (34 to 40 mm), in particular of 26x36 mm or 24x38 mm.
  • Liquid or pasty compositions in the form of common solvents, in particular water, containing solutions are usually prepared by simply mixing the ingredients, which can be added in bulk or as a solution in an automatic mixer.
  • the agents are present, preferably in liquid form, as a portion in a completely or partially water-soluble coating. Portioning makes it easier for the consumer to dose.
  • the funds can be packed, for example, in foil bags.
  • Pouches made of water-soluble film make it unnecessary for the consumer to tear open the packaging. In this way, a convenient dosing of a single, sized for a wash portion by inserting the bag directly into the washing machine or by throwing the bag into a certain amount of water, for example in a bucket, a bowl or hand basin, possible.
  • the film bag surrounding the washing portion dissolves without residue when it reaches a certain temperature.
  • water-soluble detergent portions There are numerous processes in the prior art for producing water-soluble detergent portions, which are basically also useful in the context of the present invention.
  • the best known methods are the tubular film processes with horizontal and vertical sealing seams.
  • Further suitable for the production of film bags or dimensionally stable detergent portions is the Thermoformverrfahren (thermoforming process).
  • the water-soluble envelopes need not necessarily consist of a film material, but can also represent dimensionally stable containers that can be obtained for example by means of an injection molding process.
  • the filling material is injected into the forming capsule, wherein the injection pressure of the filling liquid presses the polymer bands in the Kugelschalenkavticianen.
  • a process for the preparation of water-soluble capsules in which first the filling and then the sealing takes place, is based on the so-called Bottle-Pack® process. In this case, a tubular preform is guided into a two-part cavity. The cavity is closed, the lower tube portion is sealed, then the tube is inflated to form the capsule shape in the cavity, filled and finally sealed.
  • the shell material used for the preparation of the water-soluble portion is preferably a water-soluble polymeric thermoplastic, more preferably selected from the group (optionally partially acetalized) polyvinyl alcohol, polyvinyl alcohol copolymers, polyvinylpyrrolidone, polyethylene oxide, gelatin, cellulose and derivatives thereof, starch and derivatives thereof, blends and composites, inorganic salts and mixtures of said materials, preferably hydroxypropylmethylcellulose and / or polyvinyl alcohol blends.
  • Polyvinyl alcohols are commercially available, for example under the trademark Mowiol® (Clariant).
  • Polyvinyl alcohols which are particularly suitable for the purposes of the present invention are, for example, Mowiol® 3-83, Mowiol® 4-88, Mowiol® 5-88, Mowiol® 8-88 and Clariant L648.
  • the water-soluble thermoplastic used to prepare the portion may additionally optionally comprise polymers selected from the group comprising acrylic acid-containing polymers, polyacrylamides, oxazoline polymers, polystyrene sulfonates, polyurethanes, polyesters, polyethers and / or mixtures of the above polymers.
  • the water-soluble thermoplastic used comprises a polyvinyl alcohol whose degree of hydrolysis makes up 70 to 100 mol%, preferably 80 to 90 mol%, particularly preferably 81 to 89 mol% and in particular 82 to 88 mol%. It is further preferred that the water-soluble thermoplastic used comprises a polyvinyl alcohol whose molecular weight is in the range from 10,000 to 100,000 gmol -1 , preferably from 11,000 to 90,000 gmol -1 , more preferably from 12,000 to 80,000 gmol -1 and especially from 13,000 to 70,000 gmol -1 lies.
  • thermoplastics are used in amounts of at least 50% by weight, preferably of at least 70% by weight, more preferably of at least 80% by weight and in particular of at least 90% by weight, based in each case on the weight the water-soluble polymeric thermoplastic.
  • Test textiles of a size of approx. 12 x 18 cm were cut out of pressed cotton fabric (type "Stella Royal" of the manufacturer Brenneth) and ironed.
  • the aqueous emulsion of Example 1 which had been diluted to a content of 1% by weight of the polymer, was applied to the lobules to give a moisture degree of about 100% of the textile weight.
  • the lobes were dried for 45 minutes at 25 ° C and then ironed flat with a household iron (Rowenta®, model DE634B) (temperature two points).
  • Example 2 The aminopropylmethylsiloxane-dimethylsiloxane copolymer without carboxylic acid groups (V2) used as starting material in Example 1 was applied in otherwise the same way, however from 2 weight percent formulation, tested and compared with amino group-containing polymer also having 2 weight percent formulation with carboxylic acid group carrying substituent E1.
  • the crease recovery angles listed in Table 2 (mean values of 5-fold determinations) were observed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Textile Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Description

  • Die vorliegende Erfindung betrifft die Verwendung von aminogruppenhaltigen Polymeren mit Carbonsäuregruppen-tragenden Substituenten zur Reduzierung der Knitterneigung und zur Erleichterung des Bügelns von Textilien aus cellulosehaltigem Material sowie ein im Haushalt durchführbares Verfahren zur bügelerleichternden und/oder knitterneigungsmindernden Ausrüstung von Textilien aus cellulosehaltigem Material.
  • Textilien aus Cellulose, wie Baumwolle oder Celluloseregeneratfasern (zum Beispiel Modal oder Lyocel) besitzen aus Verbrauchersicht positive Eigenschaften bezüglich des Tragekomforts. Allerdings ist ein großer Nachteil dieser Textilien die leichte Knitterbildung während des Tragens, nach der Wäsche und dem Trocknen. Diese Knitterneigung beruht auf dem Quellen der Cellulosefasern und ihrer geringen elastischen Rückstellkräfte ("Sprungkraft") nach einer Deformation.
  • Daher ist es seit langer Zeit üblich, Baumwoll- oder Cellulosische Textilien nach der Wäsche und dem Trocknen zu bügeln und sie somit in die gewünschte Form zu bringen. Für den Verbraucher wäre es indessen vorteilhaft, im Rahmen der Textilpflege in der Lage zu sein, die Bildung von Knittern zu reduzieren, was die Arbeit des Bügelns erleichtern würde oder im Idealfall das Bügeln völlig überflüssig machen würde.
  • Bei der Textilherstellung versucht man mit Hilfe von permanenten Textilausrüstungen durch eine Vernetzung der Cellulosemoleküle untereinander deren Knitterneigung zu vermindern. Durch die Vernetzung der Cellulosemoleküle erhöht sich die Elastizität des Materials. Die knittervermeidenden Ausrüstungen werden im Rahmen der Textilveredlung an der Rohware durchgeführt. Allerdings sind Vernetzter, die in der Textilindustrie angewendet werden, wie Formaldehyd-Harnstoff- und Formaldehyd-Melamin-Kombinationen, aufgrund ihrer Toxizität oder der Bedingungen, unter denen sie zur Anwendung gelangen müssen, nicht für den Einsatz in Waschmitteln oder für die Anwendung im Haushalt geeignet.
  • Auch formaldehydfreie Vernetzungsverfahren für Cellulose sind bekannt, so zum Beispiel aus US 2004/0043915 A1 ein Vernetzungsverfahren, das mit Hilfe von hydroxygruppen-tragendem Polymer und Polycarbonsäuren, insbesondere Butantetracarbonsäure (BTCA), durchgeführt wird. Aus dem Artikel von C.M.Welch in Textile Research Journal, 1988, 480-486 ist der Einsatz von Tetracarbonsäuren zum Vernetzen von Cellulosefasern bekannt. Diese formaldehydfreien Ansätze der Cellulosevernetzung mit Hilfe von Polycarbonsäuren könnten aus toxikologischer Sicht für eine Heimanwendung prinzipiell geeignet sein. Leider benötigen die Reaktionen der Carboxylgruppen von Polycarbonsäuren mit den Hydroxylgruppen der Cellulose, die zu Estern führen, sowohl eine große Menge an Katalysatoren wie Triazole oder Hypophosphite oder Phosphite als auch hohe Temperaturen. Dies ist für ein Endverbraucherprodukt nicht praktikabel.
  • In einem anderen Ansatz, wie zum Beispiel von M. Hashem, P.Hauser und B.Smith in Textile Research Journal, 2003, 762-766 beschrieben, werden lonenpaarbindungen für die Vernetzung der Cellulose ausgenutzt. Baumwolle hat üblicherweise einen Gehalt an Carboxylgruppen von ca. 10-6 mol/g. Um zu möglichst vielen Ionenpaarkontakten zu kommen, kann die Cellulose mit Chlor- oder Bromessigsäure behandelt werden, um die Anzahl ihrer Carboxylgruppen zu erhöhen. Dank Wechselwirkung der carboxylierten Cellulose mit Polykationen wie zum Beispiel kationisiertem Chitosan können ionische Vernetzungen entstehen, welche die Knitterbildungsneigung verringern. Ohne die Carboxylierung ist der Effekt zu klein, und eine Carboxylierung von Baumwolltextilien mit Halogenessigsäuren kommt für eine Heimanwendung nicht in Betracht.
  • Aus der Patentanmeldung CN 1793483 A ist ein Verfahren zur Herstellung von modifizierten Baumwollfasern bekannt, das die Schritte der Oxidation gebleichter Baumwollfasern mit Periodat, des Entfernen des Oxidationsmittels, Waschen und Trocknen der Cellulosefasern, und des Vernetzens durch Umsetzung mit einer OH- und NH2-Gruppen enthaltenden Substanz wie Kollagen, Chitosan, Seidenfibroin oder Sericin umfasst.
  • Aus der Patentanmeldung DE 101 24 387 A1 sind Ausrüstungsmittel zur Antiknitterausrüstung von cellulosehaltigen Textilien bekannt, die hydrophob modifizierte Polyethylenimine und/oder Polyvinylamine enthalten, wobei die hydrophobe Modifizierung durch Umsetzung der Polyethylenimine und/oder Polyvinylamine mit langkettigen Carbonsäuren, Alkylhalogeniden, Alkylepoxiden, Alkylketen-Dimeren oder cyclischen Dicarbonsäureanhydriden erfolgt.
  • Die europäische Patentanmeldung EP 0 095 676 A1 offenbart die Verwendung von Aminopolysiloxanen, welche über Amidbindungen an das Aminopolysiloxangerüst gebundene Substituenten mit endständigen Carboxylgruppen tragen, zur gewebeweichmachenden und wasserabstoßenden Behandlung von textilen Materialien.
  • Aus der US-amerikanischen Patentschrift US 6 277 445 B1 sind Organopolysiloxane mit Carboxyalk(en)ylcarbonylgruppen bekannt, die in Form wasserhaltiger Emulsionen zur wasserdichtenden Ausrüstung von Pappe verwendet werden können.
  • Die europäische Patentanmeldung EP 1 108 765 offenbart die Verwendung von carboxylgruppenhaltige Seitenketten aufweisenden Polysiloxanen zur Hydrophobierung von Leder und Pelzen.
  • Es wurde überraschend gefunden, dass die Knitterneigung eines Baumwoll- oder anderweitigen cellulosischen Textils (zum Beispiel aus Celluloseregeneratfasern) durch das In-Kontakt-Bringen mit einem aminogruppenhaltigen Polymer, welches Carbonsäuregruppen-tragende Substituenten aufweist, das durch Umsetzung von Aminopolysiloxanen, Polyvinylaminen oder Polyalkyleniminen mit Halogenalkansäuren zugänglich ist, und gewünschtenfalls anschließendes Bügeln verringert werden kann.
  • Gegenstand der Erfindung ist daher die Verwendung eines aminogruppenhaltigen Polymers mit Carbonsäuregruppen-tragenden Substituenten zur Reduzierung der Knitterneigung von Textilien aus cellulosehaltigem Material, dadurch gekennzeichnet, dass das Polymer durch Umsetzung von Aminopolysiloxanen, Polyvinylaminen oder Polyalkyleniminen mit Halogenalkansäuren zugänglich ist. Ein weiterer Gegenstand der Erfindung ist die Verwendung eines aminogruppenhaltigen Polymers mit Carbonsäuregruppen-tragenden Substituenten zur Erleichterung des Bügelns von Textilien aus cellulosehaltigem Material, dadurch gekennzeichnet, dass das Polymer durch Umsetzung von Aminopolysiloxanen, Polyvinylaminen oder Polyalkyleniminen mit Halogenalkansäuren zugänglich ist.
  • Weitere Gegenstände der Erfindung sind im Haushalt durchführbare Verfahren zur bügelerleichternden und/oder knitterneigungsmindernden Ausrüstung von Textilien aus cellulosehaltigem Material durch In-Kontakt-Bringen des Textils mit einem aminogruppenhaltigen Polymer mit Carbonsäuregruppen-tragenden Substituenten, dadurch gekennzeichnet, dass das Polymer durch Umsetzung von Aminopolysiloxanen, Polyvinylaminen oder Polyalkyleniminen mit Halogenalkansäuren zugänglich ist.
  • Zu den cellulosehaltigen Materialien, aus denen die zu behandelnden Textilien hergestellt sind, gehören Baumwolle, Celluloseregeneratfasern wie zum Beispiel Modal oder Lyocel, und Mischgewebe aus Baumwolle oder Celluloseregeneratfasern mit anderen für Bekleidungszwecke üblichen Materialien wie Polyester und Polyamid.
  • In bevorzugten Ausführungsformen der Erfindung wird das Textil anschließend an die Behandlung mit dem genannten Polymer mit einem üblichen Haushaltsbügeleisen gebügelt.
  • Durch die Maßnahmen der Erfindung wird die Knitterneigung von Textilien aus cellulosehaltigem Material gegenüber den unbehandelten Ausgangstextilien oder einer ausschließlichen Behandlung mit einem nicht carbonsäuresubstituierten aminogruppenhaltigen Polymer erheblich reduziert. Ohne an diese Theorie gebunden sein zu wollen ist denkbar, dass die Reaktion von Carboxylgruppen des Polymers mit Hydroxylgruppen der Baumwolle zu kovalenten Bindungen (Esterbindungen) führt. Zusätzlich können möglicherweise die Aminogruppen des Polymers elektrostatisch mit Carboxylgruppen der Baumwolle wechselwirken (ionische Vernetzung). Die sowohl kovalenten als auch ionischen Vernetzungen könnten zu einer erhöhten Sprungkraft des Textils und damit zu einer Knitterreduzierung führen.
  • Die Beurteilung des Knitterfrei-Effektes kann durch die Messung des Knittererholungswinkels (KEW) gemäß DIN 53890:1972 erfolgen. Unveredelte Baumwolle weist in der Regel Knittererholungswinkel von etwa 60° bis 80° auf. Durch die Anwendung der vorliegenden Erfindung ergeben sich KEW Werte von deutlich über 80°.
  • Das im Rahmen der Erfindung eingesetzte Polymer weist neben den mehreren Aminogruppen und den Carboxylgruppen keine weiteren nukleophilen Einheiten, wie beispielsweise Hydroxylgruppen, auf. Erfindungsgemäß bevorzugte Polymere werden aus Aminopolysiloxanen, Polyvinylaminen und Polyalkyleniminen, wie Polyethylenimine, und Mischungen aus diesen, die am Stickstoffatom der Aminofunktion Substituenten mit Carboxylgruppen tragen, ausgewählt. Vorzugsweise ist nicht jedes Stickstoffatom des aminogruppenhaltigen Polymers mit einem carboxylgruppen-tragenden Substituenten versehen, sondern nur ein Bruchteil der Anzahl an Stickstoffatomen des aminogruppenhaltigen Polymers weist einen carboxylgruppen-tragenden Substituenten auf. Die erfindungsgemäß brauchbaren Polymere sind durch Umsetzung von Aminopolysilxanen, Polyvinylaminen oder Polyalkyleniminen mit Halogenalkansäuren, wie beispielsweise Bromessigsäure, zugänglich. Dabei werden vorzugsweise nur solche molaren Mengen an Halogenalkansäure bezogen auf aminogruppenhaltiges Polymer eingesetzt, dass nicht an sämtliche Stickstoffatome der Aminogruppen des Polymers carboxylgruppentragende Substituenten eingeführt werden.
  • Polyvinylamine werden über polymeranaloge Reaktionen wie durch Hydrolyse von Poly-N-vinylamiden, wie Poly-N-vinylformamid oder Poly-N-vinylacetamid, oder Poly-N-vinylimiden, wie Poly-N-vinylsuccinimid, hergestellt, die durch die Polymerisation der entsprechenden Monomere leicht zugänglich sind, oder durch Hofmann-Abbau aus Polyacrylamid hergestellt.
  • Bei Polyalkyleniminen handelt es sich um Polymere mit einem durch Alkylengruppen verbundenen N-Atom-haltigen Rückgrat, das an den nicht N-Atomen Alkylgruppen tragen kann. Das Polyalkylenimin weist an den Enden vorzugsweise primäre Aminofunktionen und im Inneren vorzugsweise sowohl sekundäre als auch tertiäre Aminofunktionen auf; gegebenenfalls kann es im Inneren auch lediglich sekundäre Aminofunktionen aufweisen, so dass sich nicht ein verzweigtkettiges, sondern ein lineares Polymer ergibt. Das Verhältnis von primären zu sekundären Aminogruppen im Polyalkylenimin liegt vorzugsweise im Bereich von 1:0,5 bis 1:1,5, insbesondere im Bereich von 1:0,7 bis 1:1. Das Verhältnis von primären zu tertiären Aminogruppen im Polyalkylenimin liegt vorzugsweise im Bereich von 1:0,2 bis 1:1, insbesondere im Bereich von 1:0,5 bis 1:0,8. Vorzugsweise weist das Polyalkylenimin eine mittlere Molmasse im Bereich von 500 g/mol bis 50000 g/mol, insbesondere von 550 g/mol bis 5000 g/mol auf. Bei den hier und gegebenenfalls für andere polymere Inhaltsstoffe angegebenen mittleren Molmassen handelt es sich um gewichtsmittlere Molmassen Mw, die grundsätzlich mittels Gelpermeationschromatographie mit Hilfe eines RI-Detektors bestimmbar sind, wobei die Messung zweckmäßig gegen einen externen Standard erfolgt. Die N-Atome im Polyalkylenimin sind vorzugsweise durch Alkylengruppen mit 2 bis 12 C-Atomen, insbesondere 2 bis 6 C-Atomen voneinander getrennt, wobei nicht sämtliche Alkylengruppen die gleiche C-Atomzahl aufweisen müssen. Besonders bevorzugt sind Ethylengruppen, 1,2-Propylengruppen, 1,3-Propylengruppen, und deren Mischungen. Einige der Aminofunktionen im Polyalkylenimin können gewünschtenfalls 1 oder 2 Alkylgruppen tragen, wobei es sich bei den Alkylgruppen vorzugsweise um Propyl- und/oder Ethylgruppen handelt.
  • Im Rahmen der vorliegenden Erfindung bevorzugte Aminopolysiloxane weisen die allgemeine Formel (I) auf,

            R1 2R2Si-O-(SiR1R2-O-)nSiR1 2R2     (I)

    in der
    • R1 für geradkettige oder verzweigte oder cyclische C1- bis C18-Kohlenwasserstoffreste,
    • R2 für R1 oder eine der Gruppen -R3-NHR4 oder -R3-NR4-R3-NHR4 steht, in denen
    • R3 für einen geradkettigen oder verzweigten oder cyclischen zweiwertigen C1-bis C18-Kohlenwasserstoffrest und
    • R4 für ein Wasserstoffatom, einen C1- bis C10-Alkylrest steht,
    • und n für einen Wert von 10 bis 2000 steht,
    • wobei nicht alle Reste R1, nicht alle Reste R2, nicht alle Reste R3 und nicht alle Reste R4 in der Verbindung gleich sein müssen, mit der Maßgabe, dass mindestens 2 der Reste R2 nicht R1 sind und in mindestens 1, vorzugsweise in mindestens 2 der nicht R1 seienden Reste R2 der Rest R4 eine Gruppe -R5-COOX ist, in denen R5 ein zweibindiger Kohlenwasserstoffrest mit 1 bis 30 Kohlenstoffatomen, insbesondere 2 bis 20 Kohlenstoffatomen, und X Wasserstoff, ein Alkalimetall oder eine Ammoniumgruppe ist.
  • Beispiele für C1-C18-Kohlenwasserstoffreste R1 sind Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, isoButyl, tert.-Butyl, n-Pentyl, neo-Pentyl, tert.-Pentyl, n-Hexyl, n-Heptyl-, n-Octyl-, Trimethylpentyl, n-Nonyl-, n-Decyl-, n-Undecyl-, n-Dodecyl-, Cycloalkyl, insbesondere Cyclopentyl oder Cyclohexyl, Methylcyclohexyl, Aryl, insbesondere Phenyl oder Naphthyl, Alkaryl, insbesondere o-, m- oder p-Toluyl, Xylyl oder Ethylphenyl; Aralkylreste, insbesondere Benzyl, α- oder β-Phenylethyl. Die Kohlenwasserstoffreste können gegebenenfalls eine C=C Doppelbindung enthalten. Beispiele sind Alkenylreste wie Vinyl, Allyl, 5-Hexenyl, E-4-Hexenyl, Z-4-Hexen-1-yl, 2-(3-Cyclohexenyl)-ethyl- und Cyclododeca-4,8-dienyl. Bevorzugte Reste mit aliphatischer Doppelbindung sind Vinyl, Allyl, und der 5-Hexenylrest. Vorzugsweise enthalten jedoch höchstens 1% der Kohlenwasserstoffreste R1 eine C=C Doppelbindung. Beispiele für C1- bis C10-Alkylreste R4 sind die vorstehend bei R1 aufgeführten Beispiele für lineare und cyclische Alkylreste mit höchstens 10 C-Atomen. Beispiele für die zweiwertigen C1- bis C18-Kohlenwasserstoffreste R3 sind gesättigte gerad- oder verzweigtkettige oder cyclische Alkylenreste wie der Methylen- und Ethylenrest sowie Propylen-, Butylen-, Pentylen-, Hexylen-, 2-Methylpropylen-, Cyclohexylen- und Octadecylenreste oder ungesättigte Alkylen- oder Arylenreste wie der Hexenylenrest und Phenylenrest, wobei der n-Propylenrest und der 2-Methylpropylenrest besonders bevorzugt sind. Bevorzugte Beispiele für die zweiwertigen Kohlenwasserstoffreste R5 sind die vorstehend bei R1 aufgeführten Beispiele, wobei die Ethylengruppe besonders bevorzugt ist.
  • Vorzugsweise wird das Textil aus cellulosehaltigem Material bei Temperaturen im Bereich von 10 °C bis 100 °C, insbesondere von 20 °C bis 60 °C, mit dem genannten aminogruppenhaltigen Polymer mit Carbonsäuregruppen-tragenden Substituenten in Kontakt gebracht. Weiterhin vorzugsweise wird das Textil aus cellulosehaltigem Material über einen Zeitraum von 10 Minuten bis 180 Minuten, insbesondere von 30 Minuten bis 60 Minuten, mit dem aminogruppenhaltigen Polymer mit Carbonsäuregruppen-tragenden Substituenten in Kontakt gebracht. Die Einhaltung mindestens einer dieser Bedingungen führt vermutlich - ohne an diese Theorie gebunden sein zu wollen - zu einer chemischen Reaktion der Cellulose mit dem aminogruppenhaltigen Polymer mit Carbonsäuregruppen-tragenden Substituenten in einem solchen Ausmaß, dass eine besonders hohe Reduzierung der Knitterneigung beobachtet wird.
  • Die Durchführung der Erfindung kann beispielsweise so erfolgen, dass man Textilien aus cellulosehaltigem Material mit einer wässrigen Zubereitung in Kontakt bringt, die das genannte Polymer enthält. Diese kann im Rahmen eines üblichen Waschverfahrens, das mit Hilfe einer Haushaltswaschmaschine oder per Hand ausgeführt werden kann, zum Einsatz kommen. Dabei kommt das aminogruppenhaltige Polymer vorzugsweise im Spülschritt, das heißt nach dem eigentlichen Waschschritt, zum Einsatz. Möglich ist aber auch der gemeinsame Einsatz von aminogruppenhaltigem Polymer und Waschmittel im Waschschritt. Das erfindungswesentliche Polymer kann ein Bestandteil von in solchen Waschverfahren zum Einsatz kommenden Mitteln sein, oder es kann solchen Mitteln oder diese enthaltenden wässrigen Zubereitungen separat zugesetzt werden.
  • Ein weiterer Gegenstand der vorliegenden Erfindung ist daher ein Wasch- oder Wäschepflegemittel enthaltend ein aminogruppenhaltigen Polymer mit Carbonsäuregruppen-tragenden Substituenten, das durch Umsetzung von Aminopolysiloxanen, Polyvinylaminen oder Polyalkyleniminen mit Halogenalkansäuren zugänglich ist, dadurch gekennzeichnet dass es ein nichtionisches Tensid enthält.
  • Dabei ist es möglich, das genannte Polymer als solches einzusetzen; der Wirkstoff kann aber auch in den Gebrauch durch den Anwender erleichternder Konfektionierungsform vorliegen, zum Beispiel in Abmischung oder granuliert mit Trägersubstanzen, Bindemitteln, Umhüllungsmaterialien, Extrusionshilfsmitteln, Rieselfähigkeitsverbesserern, Stabilisatoren, Lösungsmitteln, Rheologiemodifikatoren und/oder Emulgatoren. Diese Ausführungsform der Erfindung macht es für den Verbraucher in einfacher Weise möglich, die Vorteile der Erfindung durch Einsatz des genannten Polymers neben herkömmlichen Wasch- und/oder Wäschenachbehandlungsmitteln nur dann zum Tragen kommen zu lassen, wenn sie erwünscht sind.
  • Das genannte Polymer kann in einem flüssigen oder festen Mittel vorhanden sein, wobei auch die Einzeldosierung (Beutelverpackung, Pouch) des Mittels möglich ist.
  • Das genannte Polymer kann auch in einem flüssigen Sprühprodukt enthalten sein, das nach Verdünnen mit Wasser oder insbesondere unverdünnt auf ein Textil aufgesprüht werden kann. In einer bevorzugten Ausführungsform der Erfindung wird das genannte Polymer, insbesondere durch Aufsprühen in Form eines flüssigen Sprühprodukts, nach dem Waschen und Trocknen des Textils auf dieses aufgebracht.
  • Nach der Anwendung des genannten Polymers ist bevorzugt, das Textil ein Mal oder wenige Male unter haushaltsüblichen Bedingungen zu bügeln. Insbesondere dadurch wird ein besonders hoher Effekt bewirkt, der die Elastizität und Sprungkraft des Textils besonders erhöht und dieses in dieser erwünschten Form besonders fixiert. In dem Bügeln nachfolgenden Waschgängen unter Einsatz des genannten Polymers wird die Knitterbildung besonders reduziert. Zudem wird die Entstehung von Trageknittern beim Gebrauch der Textilien verringert.
  • Gegenstand der vorliegenden Erfindung ist daher ebenfalls ein Verfahren, in dem ein Baumwoll- oder aus sonstigem cellulosischen Material bestehendes oder dieses enthaltendes Textil mit einem aminogruppenhaltigen Polymer mit Carbonsäuregruppen-tragenden Substituenten, welches durch Umsetzung von Aminopolysiloxanen, Polyvinylaminen oder Polyalkyleniminen mit Halogenalkansäuren zugänglich ist, in Kontakt gebracht und anschließend mit einem haushaltsüblichen Bügeleisen in der gewünschten Form fixiert wird. Dabei treten vorzugsweise Bügeltemperaturen im Bereich von 50 °C bis 220 °C, insbesondere von 100 °C bis 160 °C auf.
  • Ein kumulativer Effekt des erfindungsgemäßen Systems ergibt sich bei einigen, zum Beispiel 1 bis 5, mal wiederholten Anwendungen. Das Textil braucht dabei nicht nach jeder Anwendung des erfindungsgemäßen Polymers gebügelt zu werden. Der Knittererholungswinkel verbessert sich von Anwendung zu Anwendung. Dieser kumulative Effekt ermöglicht den Einsatz geringerer Konzentrationen des erfindungswesentlichen Wirkstoffs. Des Weiteren verringert er die Gefahr, ein Textil durch Einbügeln einer unerwünschten Form (zum Beispiel einer Falte) zu beschädigen; Fehler beim Bügeln können bei der nächsten Anwendung korrigiert werden. Aus diesem Grund ist eine Dosierung der erfindungswesentlichen Wirkstoffe, die einen kumulativen Effekt bewirkt, bevorzugt. Die Konzentration an aminogruppenhaltigen Polymer mit Carbonsäuregruppen-tragenden Substituenten in wässriger Behandlungsflotte liegt insbesondere im Bereich von 0,1 g/l bis 10 g/l, besonders bevorzugt von 0,2 g/l bis 2 g/l.
  • Wasch- oder Wäschepflegemittel, welche den erfindungsgemäß zu verwendenden Wirkstoff enthalten oder mit diesen zusammen verwendet oder im erfindungsgemäßen Verfahren eingesetzt werden, können alle üblichen sonstigen Bestandteile derartiger Mittel enthalten, die nicht in unerwünschter Weise mit dem erfindungswesentlichen Wirkstoff wechselwirken.
  • Ein solches Mittel enthält nichtionische Tenside, ausgewählt aus Fettalkylpolyglykosiden, Fettalkylpolyalkoxylaten, insbesondere -ethoxylaten und/oder -propoxylaten, Fettsäurepolyhydroxyamiden und/oder Ethoxylierungs-und/oder Propoxylierungsprodukten von Fettalkylaminen, vicinalen Diolen, Fettsäurealkylestern und/oder Fettsäureamiden sowie deren Mischungen, insbesondere in einer Menge im Bereich von 2 Gew.-% bis 25 Gew.-%.
  • Zu den in Frage kommenden nichtionischen Tensiden gehören die Alkoxylate, insbesondere die Ethoxylate und/oder Propoxylate von gesättigten oder ein- bis mehrfach ungesättigten linearen oder verzweigtkettigen Alkoholen mit 10 bis 22 C-Atomen, vorzugsweise 12 bis 18 C-Atomen. Der Alkoxylierungsgrad der Alkohole liegt dabei in der Regel zwischen 1 und 20, vorzugsweise zwischen 3 und 10. Sie können in bekannter Weise durch Umsetzung der entsprechenden Alkohole mit den entsprechenden Alkylenoxiden hergestellt werden. Geeignet sind insbesondere die Derivate der Fettalkohole, obwohl auch deren verzweigtkettige Isomere, insbesondere sogenannte Oxoalkohole, zur Herstellung verwendbarer Alkoxylate eingesetzt werden können. Brauchbar sind demgemäß die Alkoxylate, insbesondere die Ethoxylate, primärer Alkohole mit linearen, insbesondere Dodecyl-, Tetradecyl-, Hexadecyl- oder Octadecyl-Resten sowie deren Gemische. Außerdem sind entsprechende Alkoxylierungsprodukte von Alkylaminen, vicinalen Diolen und Carbonsäureamiden, die hinsichtlich des Alkylteils den genannten Alkoholen entsprechen, verwendbar. Darüber hinaus kommen die Ethylenoxid- und/oder Propylenoxid-Insertionsprodukte von Fettsäurealkylestern sowie Fettsäurepolyhydroxyamide in Betracht. Zur Einarbeitung in die erfindungsgemäßen Mittel geeignete sogenannte Alkylpolyglykoside sind Verbindungen der allgemeinen Formel (G)n-OR12, in der R12 einen Alkyl- oder Alkenylrest mit 8 bis 22 C-Atomen, G eine Glykoseeinheit und n eine Zahl zwischen 1 und 10 bedeuten. Bei der Glykosidkomponente (G)n handelt es sich um Oligo- oder Polymere aus natürlich vorkommenden Aldose- oder Ketose-Monomeren, zu denen insbesondere Glucose, Mannose, Fruktose, Galaktose, Talose, Gulose, Altrose, Allose, Idose, Ribose, Arabinose, Xylose und Lyxose gehören. Die aus derartigen glykosidisch verknüpften Monomeren bestehenden Oligomere werden außer durch die Art der in ihnen enthaltenen Zucker durch deren Anzahl, den sogenannten Oligomerisierungsgrad, charakterisiert. Der Oligomerisierungsgrad n nimmt als analytisch zu ermittelnde Größe im allgemeinen gebrochene Zahlenwerte an; er liegt bei Werten zwischen 1 und 10, bei den vorzugsweise eingesetzten Glykosiden unter einem Wert von 1,5, insbesondere zwischen 1,2 und 1,4. Bevorzugter Monomer-Baustein ist wegen der guten Verfügbarkeit Glucose. Der Alkyl- oder Alkenylteil R12 der Glykoside stammt bevorzugt ebenfalls aus leicht zugänglichen Derivaten nachwachsender Rohstoffe, insbesondere aus Fettalkoholen, obwohl auch deren verzweigtkettige Isomere, insbesondere sogenannte Oxoalkohole, zur Herstellung verwendbarer Glykoside eingesetzt werden können. Brauchbar sind demgemäß insbesondere die primären Alkohole mit linearen Octyl-, Decyl-, Dodecyl-, Tetradecyl-, Hexadecyl- oder Octadecylresten sowie deren Gemische. Besonders bevorzugte Alkylglykoside enthalten einen Kokosfettalkylrest, das heißt Mischungen mit im wesentlichen R12=Dodecyl und R12=Tetradecyl. Nichtionisches Tensid ist in Mitteln, welche einen erfindungsgemäß verwendeten Wirkstoff enthalten oder im Rahmen der erfindungsgemäßen Verwendung oder des erfindungsgemäßen Verfahrens eingesetzt werden, vorzugsweise in Mengen von 1 Gew.-% bis 30 Gew.-%, insbesondere von 1 Gew.-% bis 25 Gew.-% enthalten, wobei Mengen im oberen Teil dieses Bereiches eher in flüssigen Mitteln anzutreffen sind und teilchenförmige Mittel vorzugsweise eher geringere Mengen von bis zu 5 Gew.-% enthalten.
  • Als weitere fakultative tensidische Inhaltsstoffe kommen Seifen in Betracht, wobei gesättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure oder Stearinsäure, sowie aus natürlichen Fettsäuregemischen, zum Beispiel Kokos-, Palmkern- oder Talgfettsäuren, abgeleitete Seifen geeignet sind. Insbesondere sind solche Seifengemische bevorzugt, die zu 50 Gew.-% bis 100 Gew.-% aus gesättigten C12-C18-Fettsäureseifen und zu bis 50 Gew.-% aus Ölsäureseife zusammengesetzt sind. Vorzugsweise ist Seife in Mengen von 0,1 Gew.-% bis 5 Gew.-% enthalten. Insbesondere in flüssigen Mitteln, welche einen erfindungsgemäß verwendeten Wirkstoff enthalten, können jedoch auch höhere Seifenmengen von in der Regel bis zu 20 Gew.-% enthalten sein.
  • Gewünschtenfalls können die Mittel auch Betaine enthalten, die - falls vorhanden - vorzugsweise in Mengen von 0,5 Gew.-% bis 7 Gew.-% eingesetzt werden. Unter diesen sind Esterquats besonders bevorzugt.
  • Die Mittel können gewünschtenfalls Bleichmittel auf Persauerstoffbasis, insbesondere in Mengen im Bereich von 5 Gew.-% bis 70 Gew.-%, sowie gegebenenfalls Bleichaktivator, insbesondere in Mengen im Bereich von 2 Gew.-% bis 10 Gew.-%, enthalten. Die in Betracht kommenden Bleichmittel sind vorzugsweise die in Waschmitteln in der Regel verwendeten Persauerstoffverbindungen wie Percarbonsäuren, beispielsweise Dodecandipersäure oder Phthaloylaminoperoxicapronsäure, Wasserstoffperoxid, Alkaliperborat, das als Tetra- oder Monohydrat vorliegen kann, Percarbonat, Perpyrophosphat und Persilikat, die in der Regel als Alkalisalze, insbesondere als Natriumsalze, vorliegen. Derartige Bleichmittel sind in Waschmitteln, welche einen erfindungsgemäß verwendeten Wirkstoff enthalten, vorzugsweise in Mengen bis zu 25 Gew.-%, insbesondere bis zu 15 Gew.-% und besonders bevorzugt von 5 Gew.-% bis 15 Gew.-%, jeweils bezogen auf gesamtes Mittel, vorhanden, wobei insbesondere Percarbonat zum Einsatz kommt. Die fakultativ vorhandene Komponente der Bleichaktivatoren umfasst die üblicherweise verwendeten N- oder O-Acylverbindungen, beispielsweise mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin, acylierte Glykolurile, insbesondere Tetraacetylglykoluril, N-acylierte Hydantoine, Hydrazide, Triazole, Urazole, Diketopiperazine, Sulfurylamide und Cyanurate, außerdem Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, Carbonsäureester, insbesondere Natrium-isononanoyl-phenolsulfonat, und acylierte Zuckerderivate, insbesondere Pentaacetylglukose, sowie kationische Nitrilderivate wie Trimethylammoniumacetonitril-Salze. Die Bleichaktivatoren können zur Vermeidung der Wechselwirkung mit den Persauerstoffverbindungen bei der Lagerung in bekannter Weise mit Hüllsubstanzen überzogen und/oder granuliert worden sein, wobei mit Hilfe von Carboxymethylcellulose granuliertes Tetraacetylethylendiamin mit mittleren Korngrößen von 0,01 mm bis 0,8 mm, granuliertes 1,5-Diacetyl-2,4-dioxohexahydro-1,3,5-triazin, und/oder in Teilchenform konfektioniertes Trialkylammoniumacetonitril besonders bevorzugt ist. In Waschmitteln sind derartige Bleichaktivatoren vorzugsweise in Mengen bis zu 8 Gew.-%, insbesondere von 2 Gew.-% bis 6 Gew.-%, jeweils bezogen auf gesamtes Mittel, enthalten.
  • In einer weiteren Ausführungsform enthält das Mittel wasserlöslichen und/oder wasserunlöslichen Builder, insbesondere ausgewählt aus Alkalialumosilikat, kristallinem Alkalisilikat mit Modul über 1, monomerem Polycarboxylat, polymerem Polycarboxylat und deren Mischungen, insbesondere in Mengen im Bereich von 2,5 Gew.-% bis 60 Gew.-%.
  • Das Mittel enthält vorzugsweise 20 Gew.-% bis 55 Gew.-% wasserlöslichen und/oder wasserunlöslichen, organischen und/oder anorganischen Builder. Zu den wasserlöslichen organischen Buildersubstanzen gehören insbesondere solche aus der Klasse der Polycarbonsäuren, insbesondere Citronensäure und Zuckersäuren, sowie der polymeren (Poly-)carbonsäuren, insbesondere die durch Oxidation von Polysacchariden zugänglichen Polycarboxylate, polymere Acrylsäuren, Methacrylsäuren, Maleinsäuren und Mischpolymere aus diesen, die auch geringe Anteile polymerisierbarer Substanzen ohne Carbonsäurefunktionalität einpolymerisiert enthalten können. Die relative Molekülmasse der Homopolymeren ungesättigter Carbonsäuren liegt im allgemeinen zwischen 5000 g/mol und 200000 g/mol, die der Copolymeren zwischen 2000 g/mol und 200000 g/mol, vorzugsweise 50000 g/mol bis 120000 g/mol, bezogen auf freie Säure. Ein besonders bevorzugtes Acrylsäure-Maleinsäure-Copolymer weist eine relative Molekülmasse von 50000 g/mol bis 100000 g/mol auf. Geeignete, wenn auch weniger bevorzugte Verbindungen dieser Klasse sind Copolymere der Acrylsäure oder Methacrylsäure mit Vinylethern, wie Vinylmethylethern, Vinylester, Ethylen, Propylen und Styrol, in denen der Anteil der Säure mindestens 50 Gew.-% beträgt. Als wasserlösliche organische Buildersubstanzen können auch Terpolymere eingesetzt werden, die als Monomere zwei Carbonsäuren und/oder deren Salze sowie als drittes Monomer Vinylalkohol und/oder ein Vinylalkohol-Derivat oder ein Kohlenhydrat enthalten. Das erste saure Monomer oder dessen Salz leitet sich von einer monoethylenisch ungesättigten C3-C8-Carbonsäure und vorzugsweise von einer C3-C4-Monocarbonsäure, insbesondere von (Meth-)acrylsäure ab. Das zweite saure Monomer oder dessen Salz kann ein Derivat einer C4-C8-Dicarbonsäure sein, wobei Maleinsäure besonders bevorzugt ist. Die dritte monomere Einheit wird in diesem Fall von Vinylalkohol und/oder vorzugsweise einem veresterten Vinylalkohol gebildet. Insbesondere sind Vinylalkohol-Derivate bevorzugt, welche einen Ester aus kurzkettigen Carbonsäuren, beispielsweise von C1-C4-Carbonsäuren, mit Vinylalkohol darstellen. Bevorzugte Terpolymere enthalten dabei 60 Gew.-% bis 95 Gew.-%, insbesondere 70 Gew.-% bis 90 Gew.-% (Meth)acrylsäure und/oder (Meth)acrylat, besonders bevorzugt Acrylsäure und/oder Acrylat, und Maleinsäure und/oder Maleinat sowie 5 Gew.-% bis 40 Gew.-%, vorzugsweise 10 Gew.-% bis 30 Gew.-% Vinylalkohol und/oder Vinylacetat. Ganz besonders bevorzugt sind dabei Terpolymere, in denen das Gewichtsverhältnis (Meth)acrylsäure und/oder (Meth)acrylat zu Maleinsäure und/oder Maleat zwischen 1:1 und 4:1, vorzugsweise zwischen 2:1 und 3:1 und insbesondere 2:1 und 2,5:1 liegt. Dabei sind sowohl die Mengen als auch die Gewichtsverhältnisse auf die Säuren bezogen. Das zweite saure Monomer oder dessen Salz kann auch ein Derivat einer Allylsulfonsäure sein, die in 2-Stellung mit einem Alkylrest, vorzugsweise mit einem C1-C4-Alkylrest, oder einem aromatischen Rest, der sich vorzugsweise von Benzol oder Benzol-Derivaten ableitet, substituiert ist. Bevorzugte Terpolymere enthalten dabei 40 Gew.-% bis 60 Gew.-%, insbesondere 45 bis 55 Gew.-% (Meth)acrylsäure und/oder (Meth)acrylat, besonders bevorzugt Acrylsäure und/oder Acrylat, 10 Gew.-% bis 30 Gew.-%, vorzugsweise 15 Gew.-% bis 25 Gew.-% Methallylsulfonsäure und/oder Methallylsulfonat und als drittes Monomer 15 Gew.-% bis 40 Gew.-%, vorzugsweise 20 Gew.-% bis 40 Gew.-% eines Kohlenhydrats. Dieses Kohlenhydrat kann dabei beispielsweise ein Mono-, Di-, Oligo- oder Polysaccharid sein, wobei Mono-, Di- oder Oligosaccharide bevorzugt sind, besonders bevorzugt ist Saccharose. Durch den Einsatz des dritten Monomers werden vermutlich Sollbruchstellen in dem Polymer eingebaut, die für die gute biologische Abbaubarkeit des Polymers verantwortlich sind. Diese Terpolymere weisen im Allgemeinen eine relative Molekülmasse zwischen 1000 g/mol und 200000 g/mol, vorzugsweise zwischen 2000 g/mol und 50000 g/mol und insbesondere zwischen 3000 g/mol und 10000 g/mol auf. Sie können, insbesondere zur Herstellung flüssiger Mittel, in Form wässriger Lösungen, vorzugsweise in Form 30- bis 50-gewichtsprozentiger wässriger Lösungen eingesetzt werden. Alle genannten Polycarbonsäuren werden in der Regel in Form ihrer wasserlöslichen Salze, insbesondere ihre Alkalisalze, eingesetzt.
  • Derartige organische Buildersubstanzen sind vorzugsweise in Mengen bis zu 40 Gew.-%, insbesondere bis zu 25 Gew.-% und besonders bevorzugt von 1 Gew.-% bis 5 Gew.-% enthalten. Mengen nahe der genannten Obergrenze werden vorzugsweise in pastenförmigen oder flüssigen, insbesondere wasserhaltigen, Mitteln eingesetzt.
  • Als wasserunlösliche, wasserdispergierbare anorganische Buildermaterialien werden insbesondere kristalline oder amorphe Alkalialumosilikate, in Mengen von bis zu 50 Gew.-%, vorzugsweise nicht über 40 Gew.-% und in flüssigen Mitteln insbesondere von 1 Gew.-% bis 5 Gew.-%, eingesetzt. Unter diesen sind die kristallinen Alumosilikate in Waschmittelqualität, insbesondere Zeolith NaA und gegebenenfalls NaX, bevorzugt. Mengen nahe der genannten Obergrenze werden vorzugsweise in festen, teilchenförmigen Mitteln eingesetzt. Geeignete Alumosilikate weisen insbesondere keine Teilchen mit einer Korngröße über 30 µm auf und bestehen vorzugsweise zu wenigstens 80 Gew.-% aus Teilchen mit einer Größe unter 10 µm. Ihr Calciumbindevermögen, das nach den Angaben der deutschen Patentschrift DE 24 12 837 bestimmt werden kann, liegt im Bereich von 100 bis 200 mg CaO pro Gramm. Geeignete Substitute oder Teilsubstitute für das genannte Alumosilikat sind kristalline Alkalisilikate, die allein oder im Gemisch mit amorphen Silikaten vorliegen können. Die in den Mitteln als Gerüststoffe brauchbaren Alkalisilikate weisen vorzugsweise ein molares Verhältnis von Alkalioxid zu SiO2 unter 0,95, insbesondere von 1:1,1 bis 1:12 auf und können amorph oder kristallin vorliegen. Bevorzugte Alkalisilikate sind die Natriumsilikate, insbesondere die amorphen Natriumsilikate, mit einem molaren Verhältnis Na2O:SiO2 von 1:2 bis 1:2,8. Derartige amorphe Alkalisilikate sind beispielsweise unter dem Namen Portil® im Handel erhältlich. Solche mit einem molaren Verhältnis Na2O:SiO2 von 1:1,9 bis 1:2,8 werden im Rahmen der Herstellung bevorzugt als Feststoff und nicht in Form einer Lösung zugegeben. Als kristalline Silikate, die allein oder im Gemisch mit amorphen Silikaten vorliegen können, werden vorzugsweise kristalline Schichtsilikate der allgemeinen Formel Na2SixO2x+1 · yH2O eingesetzt, in der x, das sogenannte Modul, eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Bevorzugte kristalline Schichtsilikate sind solche, bei denen x in der genannten allgemeinen Formel die Werte 2 oder 3 annimmt. Insbesondere sind sowohl β- als auch δ-Natriumdisitikate (Na2Si2O5·yH2O) bevorzugt. Auch aus amorphen Alkalisilikaten hergestellte, praktisch wasserfreie kristalline Alkalisilikate der obengenannten allgemeinen Formel, in der x eine Zahl von 1,9 bis 2,1 bedeutet, können in Mitteln, welche einen erfindungsgemäß zu verwendenden Wirkstoff enthalten, eingesetzt werden. In einer weiteren bevorzugten Ausführungsform erfindungsgemäßer Mittel wird ein kristallines Natriumschichtsilikat mit einem Modul von 2 bis 3 eingesetzt, wie es aus Sand und Soda hergestellt werden kann. Kristalline Natriumsilikate mit einem Modul im Bereich von 1,9 bis 3,5, werden in einer weiteren bevorzugten Ausführungsform von Waschmitteln, welche einen erfindungsgemäß verwendeten Wirkstoff enthalten, eingesetzt. Deren Gehalt an Alkalisilikaten beträgt vorzugsweise 1 Gew.-% bis 50 Gew.-% und insbesondere 5 Gew.-% bis 35 Gew.-%, bezogen auf wasserfreie Aktivsubstanz. Falls als zusätzliche Buildersubstanz auch Alkalialumosilikat, insbesondere Zeolith, vorhanden ist, beträgt der Gehalt an Alkalisilikat vorzugsweise 1 Gew.-% bis 15 Gew.-% und insbesondere 2 Gew.-% bis 8 Gew.-%, bezogen auf wasserfreie Aktivsubstanz. Das Gewichtsverhältnis Alumosilikat zu Silikat, jeweils bezogen auf wasserfreie Aktivsubstanzen, beträgt dann vorzugsweise 4:1 bis 10:1. In Mitteln, die sowohl amorphe als auch kristalline Alkalisilikate enthalten, beträgt das Gewichtsverhältnis von amorphem Alkalisilikat zu kristallinem Alkalisilikat vorzugsweise 1:2 bis 2:1 und insbesondere 1:1 bis 2:1.
  • Zusätzlich zum genannten anorganischen Builder können weitere wasserlösliche oder wasserunlösliche anorganische Substanzen in den Mitteln, welche einen erfindungsgemäß zu verwendenden Wirkstoff enthalten, mit diesem zusammen verwendet oder in erfindungsgemäßen Verfahren eingesetzt werden, enthalten sein. Geeignet sind in diesem Zusammenhang die Alkalicarbonate, Alkalihydrogencarbonate und Alkalisulfate sowie deren Gemische. Derartiges zusätzliches anorganisches Material kann in Mengen bis zu 70 Gew.-% vorhanden sein.
  • Zusätzlich können die Mittel weitere in Wasch- oder Reinigungsmitteln übliche Bestandteile enthalten. Zu diesen fakultativen Bestandteilen gehören insbesondere Enzyme, Enzymstabilisatoren, Komplexbildner für Schwermetalle, beispielsweise Aminopolycarbonsäuren, Aminohydroxypolycarbonsäuren, Polyphosphonsäuren und/oder Aminopolyphosphonsäuren, Schauminhibitoren, beispielsweise Organopolysiloxane oder Paraffine, Lösungsmittel und optische Aufheller, beispielsweise Stilbendisulfonsäurederivate. Vorzugsweise sind in Mitteln, welche einen erfindungsgemäß verwendeten Wirkstoff enthalten, bis zu 1 Gew.-%, insbesondere 0,01 Gew.-% bis 0,5 Gew.-% optische Aufheller, insbesondere Verbindungen aus der Klasse der substituierten 4,4'-Bis-(2,4,6-tri-amino-s-triazinyl)-stilben-2,2'-disulfonsäuren, bis zu 5 Gew.-%, insbesondere 0,1 Gew.-% bis 2 Gew.-% Komplexbildner für Schwermetalle, insbesondere Aminoalkylenphosphonsäuren und deren Salze und bis zu 2 Gew.-%, insbesondere 0,1 Gew.-% bis 1 Gew.-% Schauminhibitoren enthalten, wobei sich die genannten Gewichtsanteile jeweils auf gesamtes Mittel beziehen.
  • Lösungsmittel, die insbesondere bei flüssigen Mitteln eingesetzt werden können, sind neben Wasser vorzugsweise solche nichtwässrigen Lösungsmittel, die wassermischbar sind. Zu diesen gehören die niederen Alkohole, beispielsweise Ethanol, Propanol, iso-Propanol, und die isomeren Butanole, Glycerin, niedere Glykole, beispielsweise Ethylen- und Propylenglykol, und die aus den genannten Verbindungsklassen ableitbaren Ether. In derartigen flüssigen Mitteln liegen die erfindungsgemäß verwendeten Wirkstoffe in der Regel gelöst oder in suspendierter Form vor.
  • Gegebenenfalls anwesende Enzyme werden vorzugsweise aus der Gruppe umfassend Protease, Amylase, Lipase, Cellulase, Hemicellulase, Oxidase, Peroxidase, Pektinase und Mischungen aus diesen ausgewählt. In erster Linie kommt aus Mikroorganismen, wie Bakterien oder Pilzen, gewonnene Protease in Frage. Sie kann in bekannter Weise durch Fermentationsprozesse aus geeigneten Mikroorganismen gewonnen werden. Proteasen sind im Handel beispielsweise unter den Namen BLAP®, Savinase®, Esperase®, Maxatase®, Optimase®, Alcalase®, Durazym® oder Maxapem® erhältlich. Die einsetzbare Lipase kann beispielsweise aus Humicola lanuginosa, aus Bacillus-Arten, aus Pseudomonas-Arten, aus Fusarium-Arten, aus Rhizopus-Arten oder aus Aspergillus-Arten gewonnen werden. Geeignete Lipasen sind beispielsweise unter den Namen Lipolase®, Lipozym®, Lipomax®, Lipex®, Amano®-Lipase, Toyo-Jozo®-Lipase, Meito®-Lipase und Diosynth®-Lipase im Handel erhältlich. Geeignete Amylasen sind beispielsweise unter den Namen Maxamyl®, Termamyl®, Duramyl® und Purafect® OxAm handelsüblich. Die einsetzbare Cellulase kann ein aus Bakterien oder Pilzen gewinnbares Enzym sein, welches ein pH-Optimum vorzugsweise im schwach sauren bis schwach alkalischen Bereich von 6 bis 9,5 aufweist. Derartige Cellulasen sind unter den Namen Celluzyme®, Carezyme® und Ecostone® handelsüblich. Geeignete Pektinasen sind beispielsweise unter den Namen Gamanase®, Pektinex AR®, X-Pect® oder Pectaway® von Novozymes, unter dem Namen Rohapect UF®, Rohapect TPL®, Rohapect PTE100®, Rohapect MPE®, Rohapect MA plus HC, Rohapect DA12L®, Rohapect 10L®, Rohapect B1L® von AB Enzymes und unter dem Namen Pyrolase® von Diversa Corp., San Diego, CA, USA erhältlich.
  • Zu den gegebenenfalls, insbesondere in flüssigen Mitteln vorhandenen üblichen Enzymstabilisatoren gehören Aminoalkohole, beispielsweise Mono-, Di-, Triethanol- und -propanolamin und deren Mischungen, niedere Carbonsäuren, Borsäure, Alkaliborate, Borsäure-Carbonsäure-Kombinationen, Borsäureester, Boronsäurederivate, Calciumsalze, beispielsweise Ca-Ameisensäure-Kombination, Magnesiumsalze, und/oder schwefelhaltige Reduktionsmittel.
  • Zu den geeigneten Schauminhibitoren gehören langkettige Seifen, insbesondere Behenseife, Fettsäureamide, Paraffine, Wachse, Mikrokristallinwachse, Organopolysiloxane und deren Gemische, die darüber hinaus mikrofeine, gegebenenfalls silanierte oder anderweitig hydrophobierte Kieselsäure enthalten können. Zum Einsatz in partikelförmigen Mitteln sind derartige Schauminhibitoren vorzugsweise an granulare, wasserlösliche Trägersubstanzen gebunden.
  • Zu den bekanntlich polyesteraktiven schmutzablösevermögenden Polymeren gehören Copolyester aus Dicarbonsäuren, beispielsweise Adipinsäure, Phthalsäure oder Terephthalsäure, Diolen, beispielsweise Ethylenglykol oder Propylenglykol, und Polydiolen, beispielsweise Polyethylenglykol oder Polypropylenglykol. Zu den bevorzugt eingesetzten schmutzablösevermögenden Polyestern gehören solche Verbindungen, die formal durch Veresterung zweier Monomerteile zugänglich sind, wobei das erste Monomer eine Dicarbonsäure HOOC-Ph-COOH und das zweite Monomer ein Diol HO-(CHR11-)aOH, das auch als polymeres Diol H-(O-(CHR11-)a)bOH vorliegen kann, ist. Darin bedeutet Ph einen o-, m- oder p-Phenylenrest, der 1 bis 4 Substituenten, ausgewählt aus Alkylresten mit 1 bis 22 C-Atomen, Sulfonsäuregruppen, Carboxylgruppen und deren Mischungen, tragen kann, R11 Wasserstoff, einen Alkylrest mit 1 bis 22 C-Atomen und deren Mischungen, a eine Zahl von 2 bis 6 und b eine Zahl von 1 bis 300. Vorzugsweise liegen in den aus diesen erhältlichen Polyestern sowohl Monomerdioleinheiten -O-(CHR11-)aO- als auch Polymerdioleinheiten -(O-(CHR11-)a)bO- vor. Das molare Verhältnis von Monomerdioleinheiten zu Polymerdioleinheiten beträgt vorzugsweise 100:1 bis 1:100, insbesondere 10:1 bis 1:10. In den Polymerdioleinheiten liegt der Polymerisationsgrad b vorzugsweise im Bereich von 4 bis 200, insbesondere von 12 bis 140. Das Molekulargewicht oder das mittlere Molekulargewicht oder das Maximum der Molekulargewichtsverteilung bevorzugter schmutzablösevermögender Polyester liegt im Bereich von 250 g/mol bis 100000 g/mol, insbesondere von 500 g/mol bis 50000 g/mol. Die dem Rest Ph zugrundeliegende Säure wird vorzugsweise aus Terephthalsäure, Isophthalsäure, Phthalsäure, Trimellithsäure, Mellithsäure, den Isomeren der Sulfophthalsäure, Sulfoisophthalsäure und Sulfoterephthalsäure sowie deren Gemischen ausgewählt. Sofern deren Säuregruppen nicht Teil der Esterbindungen im Polymer sind, liegen sie vorzugsweise in Salzform, insbesondere als Alkali- oder Ammoniumsalz vor. Unter diesen sind die Natrium- und Kaliumsalze besonders bevorzugt. Gewünschtenfalls können statt des Monomers HOOC-Ph-COOH geringe Anteile, insbesondere nicht mehr als 10 Mol-% bezogen auf den Anteil an Ph mit der oben gegebenen Bedeutung, anderer Säuren, die mindestens zwei Carboxylgruppen aufweisen, im schmutzablösevermögenden Polyester enthalten sein. Zu diesen gehören beispielsweise Alkylen- und Alkenylendicarbonsäuren wie Malonsäure, Bernsteinsäure, Fumarsäure, Maleinsäure, Glutarsäure, Adipinsäure, Pimelinsäure, Korksäure, Azelainsäure und Sebacinsäure. Zu den bevorzugten Diolen HO-(CHR11-)aOH gehören solche, in denen R11 Wasserstoff und a eine Zahl von 2 bis 6 ist, und solche, in denen a den Wert 2 aufweist und R11 unter Wasserstoff und den Alkylresten mit 1 bis 10, insbesondere 1 bis 3 C-Atomen ausgewählt wird. Unter den letztgenannten Diolen sind solche der Formel HO-CH2-CHR11-OH, in der R11 die obengenannte Bedeutung besitzt, besonders bevorzugt. Beispiele für Diolkomponenten sind Ethylenglykol, 1,2-Propylenglykol, 1,3-Propylenglykol, 1,4-Butandiol, 1,5-Pentandiol, 1,6-Hexandiol, 1,8-Octandiol, 1,2-Decandiol, 1,2-Dodecandiol und Neopentylglykol. Besonders bevorzugt unter den polymeren Diolen ist Polyethylenglykol mit einer mittleren Molmasse im Bereich von 1000 g/mol bis 6000 g/mol. Gewünschtenfalls können die Polyester auch endgruppenverschlossen sein, wobei als Endgruppen Alkylgruppen mit 1 bis 22 C-Atomen und Ester von Monocarbonsäuren in Frage kommen. Den über Esterbindungen gebundenen Endgruppen können Alkyl-, Alkenyl- und Arylmonocarbonsäuren mit 5 bis 32 C-Atomen, insbesondere 5 bis 18 C-Atomen, zugrunde liegen. Zu diesen gehören Valeriansäure, Capronsäure, Önanthsäure, Caprylsäure, Pelargonsäure, Caprinsäure, Undecansäure, Undecensäure, Laurinsäure, Lauroleinsäure, Tridecansäure, Myristinsäure, Myristoleinsäure, Pentadecansäure, Palmitinsäure, Stearinsäure, Petroselinsäure, Petroselaidinsäure, Ölsäure, Linolsäure, Linolaidinsäure, Linolensäure, Eläostearinsäure, Arachinsäure, Gadoleinsäure, Arachidonsäure, Behensäure, Erucasäure, Brassidinsäure, Clupanodonsäure, Lignocerinsäure, Cerotinsäure, Melissinsäure, Benzoesäure, die 1 bis 5 Substituenten mit insgesamt bis zu 25 C-Atomen, insbesondere 1 bis 12 C-Atomen tragen kann, beispielsweise tert.-Butylbenzoesäure. Den Endgruppen können auch Hydroxymonocarbonsäuren mit 5 bis 22 C-Atomen zugrunde liegen, zu denen beispielsweise Hydroxyvaleriansäure, Hydroxycapronsäure, Ricinolsäure, deren Hydrierungsprodukt Hydroxystearinsäure sowie o-, m- und p-Hydroxybenzoesäure gehören. Die Hydroxymonocarbonsäuren können ihrerseits über ihre Hydroxylgruppe und ihre Carboxylgruppe miteinander verbunden sein und damit mehrfach in einer Endgruppe vorliegen. Vorzugsweise liegt die Anzahl der Hydroxymonocarbonsäureeinheiten pro Endgruppe, das heißt ihr Oligomerisierungsgrad, im Bereich von 1 bis 50, insbesondere von 1 bis 10. In einer bevorzugten Ausgestaltung der Erfindung werden Polymere aus Ethylenterephthalat und Polyethylenoxid-terephthalat, in denen die Polyethylenglykol-Einheiten Molgewichte von 750 g/mol bis 5000 g/mol aufweisen und das Molverhältnis von Ethylenterephthalat zu Polyethylenoxid-terephthalat 50:50 bis 90:10 beträgt, in Kombination mit einem erfindungswesentlichen Wirkstoff verwendet. Die schmutzablösevermögenden Polymere sind vorzugsweise wasserlöslich, wobei unter dem Begriff "wasserlöslich" eine Löslichkeit von mindestens 0,01 g, vorzugsweise mindestens 0,1 g des Polymers pro Liter Wasser bei Raumtemperatur und pH 8 verstanden werden soll. Bevorzugt eingesetzte Polymere weisen unter diesen Bedingungen jedoch eine Löslichkeit von mindestens 1 g pro Liter, insbesondere mindestens 10 g pro Liter auf.
  • In einer Ausführungsform der Erfindung können insbesondere die als Nachbehandlungsmittel zum Einsatz kommenden Wäschepflegemittel mit dem aminogruppenhaltigen Polymer mit Carbonsäuregruppen-tragenden Substituenten, das durch Umsetzung von Aminopolysiloxanen, Polyvinylaminen oder Polyalkyleniminen mit Halogenalkansäuren zugänglich ist, zusätzliche Weichmacherkomponenten, vorzugsweise Kationtenside, enthalten. Beispiele für gewebeweichmachende Komponenten sind quartäre Ammoniumverbindungen, kationische Polymere und Emulgatoren, wie sie in Haarpflegemitteln und auch in Mitteln zur Textilavivage eingesetzt werden.
  • Geeignete Beispiele sind quartäre Ammoniumverbindungen der Formeln (II) und (III),
    Figure imgb0001
    wobei in (II) R und R1 für einen acyclischen Alkylrest mit 12 bis 24 Kohlenstoffatomen, R2 für einen gesättigten C1-C4 Alkyl- oder Hydroxyalkylrest steht, R3 entweder gleich R, R1 oder R2 ist oder für einen aromatischen Rest steht. X- steht entweder für ein Halogenid-, Methosulfat-, Methophosphat- oder Phosphation sowie Mischungen aus diesen. Beispiele für kationische Verbindungen der Formel (II) sind Didecyldimethylammoniumchlorid, Ditalgdimethylammoniumchlorid oder Dihexadecylammoniumchlorid.
  • Verbindungen der Formel (III) sind sogenannte Esterquats. Esterquats zeichnen sich durch ihre gute biologische Abbaubarkeit aus und sind im Rahmen der vorliegenden Erfindung bevorzugt. Hierbei steht R4 für einen aliphatischen Alkylrest mit 12 bis 22 Kohlenstoffatomen mit 0, 1, 2 oder 3 Doppelbindungen; R5 steht für H, OH oder O(CO)R7, R6 steht unabhängig von R5 für H, OH oder O(CO)R8, wobei R7 und R8 unabhängig voneinander jeweils für einen aliphatischen Alkylrest mit 12 bis 22 Kohlenstoffatomen mit 0, 1, 2 oder 3 Doppelbindungen steht. m, n und p können jeweils unabhängig voneinander den Wert 1, 2 oder 3 haben. X- kann entweder ein Halogenid-, Methosulfat-, Methophosphat- oder Phosphation sowie Mischungen aus diesen sein. Bevorzugt sind Verbindungen, die für R5 die Gruppe O(CO)R7 und für R4 und R7 Alkylreste mit 16 bis 18 Kohlenstoffatomen enthalten. Besonders bevorzugt sind Verbindungen, bei denen R6 zudem für OH steht. Beispiele für Verbindungen der Formel (III) sind Methyl-N-(2-hydroxyethyl)-N,N-di(talgacyl-oxyethyl)ammonium-methosulfat, Bis-(palmitoyl)-ethyl-hydroxyethyl-methyl-ammonium-methosulfat oder Methyl-N,N-bis(acyloxyethyl)-N-(2-hydroxyethyl)ammonium-methosulfat.
  • In einer bevorzugten Ausführungsformen enthalten die Mittel die zusätzlichen Weichmacherkomponenten in Mengen bis zu 35 Gew.-%, vorzugsweise von 0,1 bis 25 Gew.-%, besonders bevorzugt von 0,5 bis 15 Gew.-% und insbesondere von 1 bis 10 Gew.-%, jeweils bezogen auf das gesamte Mittel.
  • Zusätzlich zu den vorgenannten Komponenten können die Mittel Perlglanzmittel enthalten. Perlglanzmittel verleihen den Textilien einen zusätzlichen Glanz und werden daher vorzugsweise in Feinwaschmitteln eingesetzt. Als Perlglanzmittel kommen beispielsweise in Frage: Alkylenglycolester; Fettsäurealkanolamide; Partialglyceride; Ester von mehrwertigen, gegebenenfalls hydroxysubstituierte Carbonsäuren mit Fettalkoholen mit 6 bis 22 Kohlenstoffatomen; Fettstoffe, wie beispielsweise Fettalkohole, Fettketone, Fettaldehyde, Fettether und Fettcarbonate, die in Summe mindestens 24 Kohlenstoffatome aufweisen; Ringöffnungsprodukte von Olefinepoxiden mit 12 bis 22 Kohlenstoffatomen mit Fettalkoholen mit 12 bis 22 Kohlenstoffatomen, Fettsäuren und/oder Polyolen mit 2 bis 15 Kohlenstoffatomen und 2 bis 10 Hydroxylgruppen sowie deren Mischungen.
  • Weiterhin können flüssige Mittel zusätzlich Verdicker enthalten. Zur Erhöhung der Verbraucherakzeptanz hat sich der Einsatz von Verdickungsmitteln insbesondere bei gelförmigen Flüssigwaschmitteln bewährt. Aus der Natur stammende Polymere, die als Verdickungsmittel Verwendung finden können, sind beispielsweise Agar-Agar, Carrageen, Tragant, Gummi arabicum, Alginate, Pektine, Polyosen, Guar-Mehl, Johannisbrotbaumkernmehl, Stärke, Dextrine, Gelatine und Casein, Cellulosederivate wie Carboxymethylcellulose, Hydroxyethyl- und -propylcellulose, und polymere Polysaccharid-Verdickungsmittel wie Xanthan; daneben kommen auch vollsynthetische Polymere wie Polyacryl- und Polymethacryl-Verbindungen, Vinylpolymere, Polycarbonsäuren, Polyether, Polyimine, Polyamide und Polyurethane in Frage. In einer bevorzugten Ausführungsform enthalten die erfindungsgemäßen Textilpflegemittel Verdicker, vorzugsweise in Mengen von bis zu 10 Gew.-%, besonders bevorzugt bis zu 5 Gew.-%, insbesondere von 0,1 bis 1 Gew.-%, jeweils bezogen auf das gesamte Mittel.
  • Weiterhin können die Mittel zusätzlich Geruchsabsorber und/oder Farbübertragungsinhibitoren enthalten. In einer bevorzugten Ausführungsform enthalten die Mittel gegebenenfalls 0,1 Gew.-% bis 2 Gew.-%, vorzugsweise 0,2 Gew.-% bis 1 Gew.-% Farbübertragungsinhibitor, der in einer bevorzugten Ausgestaltung der Erfindung ein Polymer aus Vinylpyrrolidon, Vinylimidazol, Vinylpyridin-N-Oxid oder ein Copolymer aus diesen ist. Brauchbar sind sowohl beispielsweise Polyvinylpyrrolidone mit Molgewichten von 15 000 bis 50 000 wie auch Polyvinylpyrrolidone mit Molgewichten über 1 000 000, insbesondere von 1 500 000 bis 4 000 000, N-Vinylimidazol/N-Vinylpyrrolidon-Copolymere, Polyvinyloxazolidone, Copolymere auf Basis von Vinylmonomeren und Carbonsäureamiden, pyrrolidongruppenhaltige Polyester und Polyamide, gepfropfte Polyamidoamine, Polyamin-N-Oxid-Polymere, Polyvinylalkohole und Copolymere auf Basis von Acrylamidoalkenylsulfonsäuren. Eingesetzt werden können aber auch enzymatische Systeme, umfassend eine Peroxidase und Wasserstoffperoxid beziehungsweise eine in Wasser Wasserstoffperoxid-liefernde Substanz. Der Zusatz einer Mediatorverbindung für die Peroxidase, zum Beispiel eines Acetosyringons, eines Phenolderivats oder eines Phenotiazins oder Phenoxazins, ist in diesem Fall bevorzugt, wobei auch zusätzlich noch oben genannte polymere Farbübertragungsinhibitorwirkstoffe eingesetzt werden können. Polyvinylpyrrolidon weist zum Einsatz in erfindungsgemäßen Mitteln vorzugsweise eine durchschnittliche Molmasse im Bereich von 10 000 bis 60 000, insbesondere im Bereich von 25 000 bis 50 000 auf. Unter den Copolymeren sind solche aus Vinylpyrrolidon und Vinylimidazol im Molverhältnis 5:1 bis 1:1 mit einer durchschnittlichen Molmasse im Bereich von 5 000 bis 50 000, insbesondere 10 000 bis 20 000 bevorzugt.
  • Bevorzugte desodorierende Substanzen sind Metallsalze einer unverzweigten oder verzweigten, ungesättigten oder gesättigten, ein- oder mehrfach hydroxylierten Fettsäure mit mindestens 16 Kohlenstoffatomen und/oder einer Harzsäure mit Ausnahme der Alkalimetallsalze sowie beliebige Mischungen hiervon. Eine besonders bevorzugte unverzweigte oder verzweigte, ungesättigte oder gesättigte, ein- oder mehrfach hydroxylierte Fettsäure mit mindestens 16 Kohlenstoffatomen ist die Ricinolsäure. Eine besonders bevorzugte Harzsäure ist die Abietinsäure. Bevorzugte Metalle sind die Übergangsmetalle und die Lanthanoide, insbesondere die Übergangsmetalle der Gruppen VIIIa, Ib und IIb des Periodensystems sowie Lanthan, Cer und Neodym, besonders bevorzugt Cobalt, Nickel, Kupfer und Zink, äußerst bevorzugt Zink. Die Cobalt-, Nickel- sowie Kupfersalze und die Zinksalze sind zwar ähnlich wirksam, aus toxikologischen Gründen sind die Zinksalze jedoch zu bevorzugen. Als vorteilhaft und daher besonders bevorzugt als desodorierende Substanzen einzusetzen sind ein oder mehrere Metallsalze der Ricinolsäure und/oder der Abietinsäure, vorzugsweise Zinkricinoleat und/oder Zinkabietat, insbesondere Zinkricinoleat. Als weitere geeignete desodorierende Substanzen erweisen sich im Sinne der Erfindung ebenfalls Cyclodextrine, sowie Mischungen der vorgenannten Metallsalze mit Cyclodextrin, bevorzugt in einem Gewichtsverhältnis von 1:10 bis 10:1, besonders bevorzugt von 1:5 bis 5:1 und insbesondere von 1:3 bis 3:1. Der Begriff "Cyclodextrin" beinhaltet dabei alle bekannten Cyclodextrine, d.h. sowohl unsubstituierte Cyclodextrine mit 6 bis 12 Glucoseeinheiten, insbesondere alpha-, beta- und gamma-Cyclodextrine als auch deren Mischungen und/oder deren Derivate und/oder deren Mischungen.
  • Die Herstellung erfindungsgemäß eingesetzter fester Mittel bietet keine Schwierigkeiten und kann auf bekannte Weise, zum Beispiel durch Sprühtrocknen oder Granulation, erfolgen, wobei zum Beispiel Enzyme und eventuelle weitere thermisch empfindliche Inhaltsstoffe wie Bleichmittel gegebenenfalls später separat zugesetzt werden. Zur Herstellung erfindungsgemäßer Mittel mit erhöhtem Schüttgewicht, insbesondere im Bereich von 650 g/l bis 950 g/l, ist ein einen Extrusionsschritt aufweisendes Verfahren bevorzugt.
  • Zur Herstellung von Mitteln in Tablettenform, die einphasig oder mehrphasig, einfarbig oder mehrfarbig und insbesondere aus einer Schicht oder aus mehreren, insbesondere aus zwei Schichten bestehen können, geht man vorzugsweise derart vor, dass man alle Bestandteile - gegebenenfalls je einer Schicht - in einem Mischer miteinander vermischt und das Gemisch mittels herkömmlicher Tablettenpressen, beispielsweise Exzenterpressen oder Rundläuferpressen, mit Presskräften im Bereich von etwa 50 bis 100 kN, vorzugsweise bei 60 bis 70 kN verpresst. Insbesondere bei mehrschichtigen Tabletten kann es von Vorteil sein, wenn mindestens eine Schicht vorverpresst wird. Dies wird vorzugsweise bei Presskräften zwischen 5 und 20 kN, insbesondere bei 10 bis 15 kN durchgeführt. Man erhält so problemlos bruchfeste und dennoch unter Anwendungsbedingungen ausreichend schnell lösliche Tabletten mit Bruch- und Biegefestigkeiten von normalerweise 100 bis 200 N, bevorzugt jedoch über 150 N. Vorzugsweise weist eine derart hergestellte Tablette ein Gewicht von 10 g bis 50 g, insbesondere von 15 g bis 40 g auf. Die Raumform der Tabletten ist beliebig und kann rund, oval oder eckig sein, wobei auch Zwischenformen möglich sind. Ecken und Kanten sind vorteilhafterweise abgerundet. Runde Tabletten weisen vorzugsweise einen Durchmesser von 30 mm bis 40 mm auf. Insbesondere die Größe von eckig oder quaderförmig gestalteten Tabletten, welche überwiegend über die Dosiervorrichtung beispielsweise der Waschmaschine eingebracht werden, ist abhängig von der Geometrie und dem Volumen dieser Dosiervorrichtung.
  • Beispielhaft bevorzugte Ausführungsformen weisen eine Grundfläche von (20 bis 30 mm) x (34 bis 40 mm), insbesondere von 26x36 mm oder von 24x38 mm auf.
  • Flüssige oder pastöse Mittel in Form von übliche Lösungsmittel, insbesondere Wasser, enthaltenden Lösungen werden in der Regel durch einfaches Mischen der Inhaltsstoffe, die in Substanz oder als Lösung in einen automatischen Mischer gegeben werden können, hergestellt.
  • In einer besonders bevorzugten Ausführungsform liegen die Mittel, vorzugsweise in flüssiger Form, als Portion in einer ganz oder teilweise wasserlöslichen Umhüllung vor. Die Portionierung erleichtert dem Verbraucher die Dosierbarkeit.
  • Die Mittel können dabei beispielsweise in Folienbeutel eingepackt vorliegen. Beutelverpackungen aus wasserlöslicher Folie machen ein Aufreißen der Verpackung durch den Verbraucher unnötig. Auf diese Weise ist ein bequemes Dosieren einer einzelnen, für einen Waschgang bemessenen Portion durch Einlegen des Beutels direkt in die Waschmaschine oder durch Einwerfen des Beutels in eine bestimmte Menge Wasser, beispielsweise in einem Eimer, einer Schüssel oder im Handwaschbecken, möglich. Der die Waschportion umgebende Folienbeutel löst sich bei Erreichen einer bestimmten Temperatur rückstandsfrei auf.
  • Im Stand der Technik existieren zahlreiche Verfahren zur Herstellung wasserlöslicher Waschmittelportionen, die grundsätzlich auch im Rahmen der vorliegenden Erfindung brauchbar sind. Bekannteste Verfahren sind dabei die Schlauchfolienverfahren mit horizontalen und vertikalen Siegelnähten. Weiterhin geeignet zur Herstellung von Folienbeuteln oder auch formstabilen Waschmittelportionen ist das Thermoformverrfahren (Tiefziehverfahren). Die wasserlöslichen Umhüllungen müssen allerdings nicht zwangsläufig aus einem Folienmaterial bestehen, sondern können auch formstabile Behältnisse darstellen, die beispielsweise mittels eines Spritzgußverfahrens erhalten werden können.
  • Weiterhin sind Verfahren zur Herstellung wasserlöslicher Kapseln aus Polyvinylalkohol oder Gelatine bekannt, die prinzipiell die Möglichkeit bieten, Kapseln mit einem hohen Befüllgrad bereitzustellen. Die Verfahren beruhen darauf, dass in eine formgebende Kavität das wasserlösliche Polymer eingeführt wird. Das Befüllen und Versiegeln der Kapseln erfolgt entweder synchron oder in nacheinanderfolgenden Schritten, wobei im letzteren Fall die Befüllung der Kapseln durch eine kleine Öffnung erfolgt. Die Befüllung der Kapseln erfolgt dabei beispielsweise durch einen Befüllkeil, der oberhalb von zwei sich gegeneinanderdrehenden Trommeln, die auf ihrer Oberfläche Kugelhalbschalen aufweisen, angeordnet ist. Die Trommeln führen Polymerbänder, die die Kugelhalbschalenkavitäten bedecken. An den Positionen an denen das Polymerband der einen Trommel mit dem Polymerband der gegenüberliegenden Trommel zusammentrifft findet eine Versiegelung statt.
  • Parallel dazu wird das Befüllgut in die sich ausbildende Kapsel injiziert, wobei der Injektionsdruck der Befüllflüssigkeit die Polymerbänder in die Kugelhalbschalenkavitäten presst. Ein Verfahren zur Herstellung wasserlöslicher Kapseln, bei dem zunächst die Befüllung und anschließend die Versiegelung erfolgt, basiert auf dem sogenannten Bottle-Pack®-Verfahren. Hierbei wird ein schlauchartiger Vorformling in eine zweiteilige Kavität geführt. Die Kavität wird geschlossen, wobei der untere Schlauchabschnitt versiegelt wird, anschließend wird der Schlauch aufgeblasen zur Ausbildung der Kapselform in der Kavität, befüllt und abschließend versiegelt.
  • Das für die Herstellung der wasserlöslichen Portion verwendete Hüllmaterial ist vorzugsweise ein wasserlöslicher polymerer Thermoplast, besonders bevorzugt ausgewählt aus der Gruppe (gegebenenfalls teilweise acetalisierter) Polyvinylalkohol, Polyvinylalkohol-Copolymere, Polyvinylpyrrolidon, Polyethylenoxid, Gelatine, Cellulose und deren Derivate, Stärke und deren Derivate, Blends und Verbünde, anorganische Salze und Mischungen der genannten Materialien, vorzugsweise Hydroxypropylmethylcellulose und/oder Polyvinylalkohol-Blends. Polyvinylalkohole sind kommerziell verfügbar, beispielsweise unter dem Warenzeichen Mowiol® (Clariant). Im Rahmen der vorliegenden Erfindung besonders geeignete Polyvinylalkohole sind beispielsweise Mowiol® 3-83, Mowiol® 4-88, Mowiol® 5-88, Mowiol® 8-88 sowie Clariant L648. Das zur Herstellung der Portion verwendete wasserlösliche Thermoplast kann zusätzlich gegebenenfalls Polymere ausgewählt aus der Gruppe, umfassend Acrylsäure-haltige Polymere, Polyacrylamide, Oxazolin-Polymere, Polystyrolsulfonate, Polyurethane, Polyester, Polyether und/oder Mischungen der vorstehenden Polymere, aufweisen. Bevorzugt ist, wenn das verwendete wasserlösliche Thermoplast einen Polyvinylalkohol umfasst, dessen Hydrolysegrad 70 bis 100 Mol-%, vorzugsweise 80 bis 90 Mol-%, besonders bevorzugt 81 bis 89 Mol-% und insbesondere 82 bis 88 Mol-% ausmacht. Weiter bevorzugt ist, dass das verwendete wasserlösliche Thermoplast einen Polyvinylalkohol umfasst, dessen Molekulargewicht im Bereich von 10.000 bis 100.000 gmol-1, vorzugsweise von 11.000 bis 90.000 gmol-1, besonders bevorzugt von 12.000 bis 80.000 gmol-1 und insbesondere von 13.000 bis 70.000 gmol-1 liegt. Weiterhin bevorzugt ist, wenn die Thermoplaste in Mengen von mindestens 50 Gew.-%, vorzugsweise von mindestens 70 Gew.-%, besonders bevorzugt von mindestens 80 Gew.-% und insbesondere von mindestens 90 Gew.-%, jeweils bezogen auf das Gewicht des wasserlöslichen polymeren Thermoplasts, vorliegt.
  • Beispiele Beispiel 1: Herstellung aminogruppenhaltiger Polymere mit Carbonsäuregruppen-tragenden Substituenten
  • Zu 2 g einer 6 gewichtsprozentigen Lösung von Aminopropylmethylsiloxan-dimethylsiloxan-Copolymer (Hersteller Gelest Inc.) und 4 g NaOH in 100 ml Wasser wurden 0,5 g Bromessigsäure zugefügt und das Reaktionssystem wurde für 24 Stunden bei Raumtemperatur gehalten. Anschließend wurde der pH-Wert durch Zugabe von Salzsäure auf pH 5 bis 6 gebracht. Nach Zugabe einiger Tropfen des nichtionischen Emulgators Marlipal® O 13/60 erhielt man eine homogene Emulsion.
  • Beispiel 2: Knittererduktionstest
  • Testtextilien einer Größe von ca. 12 x 18 cm wurden aus entappretiertem Baumwollgewebe (Typ "Stella Royal" des Herstellers Brenneth) ausgeschnitten und gebügelt. Auf die Läppchen wurde die auf einen Gehalt von 1 Gew.-% des Polymers verdünnte wässrige Emulsion des Beispiels 1 aufgebracht, so dass sich ein Durchfeuchtungsgrad von ca. 100% des Textilgewichts ergab. Die Läppchen wurden 45 Minuten bei 25 °C getrocknet und dann mit einem haushaltsüblichen Bügeleisen (Rowenta®, Modell DE634B) glatt gebügelt (Temperatur zwei Punkte).
  • An den so behandelten Läppchen (E1) wurden die Knittererholungswinkel gemessen.
  • Zum Vergleich wurden Läppchen des unbehandelten Textil (V1) ebenfalls vermessen.
  • Nach einer Knittererholungszeit von 5 Minuten oder 30 Minuten ergaben sich die in Tabelle 1 angegebenen Werte für die Knittererholungswinkel (Mittelwerte aus 5fach Bestimmungen). Tabelle 1: Knittererholungswinkel
    Erholungszeit E1 V1
    5 Minuten 86,8° 67,4°
    30 Minuten 95,8° 75,4°
  • Das in Beispiel 1 als Ausgangsmaterial eingesetzte Aminopropylmethylsiloxan-dimethylsiloxan-Copolymer ohne Carbonsäuregruppen (V2) wurde in ansonsten gleicher Weise, jedoch aufgebracht aus 2 gewichtsprozentiger Formulierung, getestet und mit ebenfalls aus 2 gewichtsprozentiger Formulierung aufgebrachtem aminogruppenhaltigem Polymer mit Carbonsäuregruppen-tragenden Substituenten E1 verglichen. Man beobachtete die in Tabelle 2 aufgeführten Knittererholungswinkel (Mittelwerte aus 5fach Bestimmungen). Tabelle 2: Knittererholungswinkel
    Erholungszeit E1 V2
    30 Minuten 92° 77°
  • Man erkennt, dass das Aminosiloxan mit den carboxylgruppentragenden Substituenten eine deutliche Verbesserung des Knittererholungswinkels bewirkt.

Claims (10)

  1. Verwendung eines aminogruppenhaltigen Polymers mit Carbonsäuregruppen-tragenden Substituenten zur Reduzierung der Knitterneigung von Textilien aus cellulosehaltigem Material, dadurch gekennzeichnet, dass das Polymer durch Umsetzung von Aminopolysiloxanen, Polyvinylaminen oder Polyalkyleniminen mit Halogenalkansäuren zugänglich ist.
  2. Verwendung eines aminogruppenhaltigen Polymers mit Carbonsäuregruppen-tragenden Substituenten zur Erleichterung des Bügelns von Textilien aus cellulosehaltigem Material, dadurch gekennzeichnet, dass das Polymer durch Umsetzung von Aminopolysilxanen, Polyvinylaminen oder Polyalkyleniminen mit Halogenalkansäuren zugänglich ist..
  3. Verfahren zur bügelerleichternden und/oder knitterneigungsmindernden Ausrüstung von Textilien aus cellulosehaltigem Material durch In-Kontakt-Bringen mit einem aminogruppenhaltigen Polymer mit Carbonsäuregruppen-tragenden Substituenten, dadurch gekennzeichnet, dass das Polymer durch Umsetzung von Aminopolysiloxanen, Polyvinylaminen oder Polyalkyleniminen mit Halogenalkansäuren zugänglich ist.
  4. Verwendung oder Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Textil aus cellulosehaltigem Material bei Temperaturen im Bereich von 10 °C bis 100 °C, insbesondere von 20 °C bis 60 °C, und/oder über einen Zeitraum von 10 Minuten bis 180 Minuten, insbesondere von 30 Minuten bis 60 Minuten, mit dem aminogruppenhaltigen Polymer mit Carbonsäuregruppen-tragenden Substituenten in Kontakt gebracht wird.
  5. Verwendung oder Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Textil anschließend an die Behandlung mit dem aminogruppenhaltigen Polymer mit Carbonsäuregruppen-tragenden Substituenten mit einem üblichen Haushaltsbügeleisen gebügelt wird.
  6. Verwendung oder Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass Bügeltemperaturen im Bereich von 50 °C bis 220 °C, insbesondere von 100 °C bis 160 °C auftreten.
  7. Wasch- oder Wäschepflegemittel enthaltend ein aminogruppenhaltiges Polymer mit Carbonsäuregruppen-tragenden Substituenten, das durch Umsetzung von Aminopolysiloxanen, Polyvinylaminen oder Polyalkyleniminen mit Halogenalkansäuren zugänglich ist, dadurch gekennzeichnet, dass es ein nichtionisches Tensid, ausgewählt aus Fettalkylpolyglykosiden, Fettalkylpolyalkoxylaten, insbesondere -ethoxylaten und/oder -propoxylaten, Fettsäurepolyhydroxyamiden und/oder Ethoxylierungs-und/oder Propoxylierungsprodukten von Fettalkylaminen, vicinalen Diolen, Fettsäurealkylestern und/oder Fettsäureamiden sowie deren Mischungen, enthält.
  8. Mittel nach Anspruch 7, dadurch gekennzeichnet, dass es ein flüssiges Sprühprodukt ist, das nach Verdünnen mit Wasser oder insbesondere unverdünnt auf ein Textil aufgesprüht werden kann.
  9. Verwendung, Verfahren oder Mittel nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Polymer aus Aminopolysiloxanen, die am Stickstoffatom der Aminofunktion Substituenten mit Carboxylgruppen tragen, ausgewählt werden.
  10. Verwendung, Verfahren oder Mittel nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Polymer aus Polyvinylaminen, Polyalkyleniminen und Mischungen aus diesen, die am Stickstoffatom der Aminofunktion Substituenten mit Carboxylgruppen tragen, ausgewählt wird.
EP15790877.3A 2014-11-11 2015-10-29 Bügelerleichterung von textilien Active EP3218542B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014222924.3A DE102014222924A1 (de) 2014-11-11 2014-11-11 Bügelerleichterung von Textilien
PCT/EP2015/075075 WO2016074934A1 (de) 2014-11-11 2015-10-29 Bügelerleichterung von textilien

Publications (2)

Publication Number Publication Date
EP3218542A1 EP3218542A1 (de) 2017-09-20
EP3218542B1 true EP3218542B1 (de) 2019-04-10

Family

ID=54476923

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15790877.3A Active EP3218542B1 (de) 2014-11-11 2015-10-29 Bügelerleichterung von textilien

Country Status (4)

Country Link
US (1) US10697113B2 (de)
EP (1) EP3218542B1 (de)
DE (1) DE102014222924A1 (de)
WO (1) WO2016074934A1 (de)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT330930B (de) 1973-04-13 1976-07-26 Henkel & Cie Gmbh Verfahren zur herstellung von festen, schuttfahigen wasch- oder reinigungsmitteln mit einem gehalt an calcium bindenden substanzen
JPS6036513B2 (ja) * 1981-02-05 1985-08-21 ト−レ・シリコ−ン株式会社 繊維用処理剤
EP0095676A3 (de) * 1982-05-21 1984-03-28 SWS Silicones Corporation Carboxylgruppen enthaltende Polysiloxane, ein Verfahren zu deren Herstellung und deren Anwendung
US6277445B1 (en) * 1998-10-12 2001-08-21 Shin-Etsu Chemical Co., Ltd. Organopolysiloxane compound and composition containing the same
DE19959949A1 (de) * 1999-12-13 2001-06-21 Bayer Ag Hydrophobierung mit carboxylgruppenhaltigen Polysiloxanen
DE10124387A1 (de) * 2001-05-18 2002-11-28 Basf Ag Hydrophob modifizierte Polyethylenimine und Polyvinylamine zur Antiknitterausrüstung von cellulosehaltigen Textilien
GB0219281D0 (en) 2002-08-19 2002-09-25 Unilever Plc Fabric care composition
CN1793483A (zh) 2005-12-29 2006-06-28 苏州大学 一种抗皱棉纤维的制备方法
BR112012018894A2 (pt) * 2010-01-29 2016-04-12 Procter & Gamble copolímeros de polidimetilsiloxano-poliéter lineares como grupos amino e/ou amônio quaternário e uso dos mesmos

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20170241073A1 (en) 2017-08-24
US10697113B2 (en) 2020-06-30
EP3218542A1 (de) 2017-09-20
DE102014222924A1 (de) 2016-05-12
WO2016074934A1 (de) 2016-05-19

Similar Documents

Publication Publication Date Title
EP3810742B1 (de) Xylosecarbamate als schmutzablösevermögende wirkstoffe
WO2017137295A1 (de) 6-desoxy-6-amino-cellulosen als schmutzablösevermögende wirkstoffe
WO2008022827A1 (de) Waschmittel mit baumwollaktivem schmutzablösevermögendem cellulosederivat
DE102013219183A1 (de) Cellulosecarbamate als schmutzablösevermögende Wirkstoffe
EP3275983A1 (de) Polymere aus vinylpyrrolidon und/oder vinylacetat als textilpflegende inhaltsstoffe
DE102017209211A1 (de) Schutz vor Elastizitätsverlust
EP3263690A1 (de) Beschleunigung der wäschetrocknung
EP3322743A1 (de) Vermeidung von textilknittern
EP1592764B1 (de) Erhöhung der wasseraufnahmefähigkeit von textilien
WO2017063960A1 (de) Waschmittel enthaltend isoparaffine
EP3218542B1 (de) Bügelerleichterung von textilien
WO2015155057A1 (de) Bügelerleichterung von textilien
EP3275982A1 (de) Acylglutamate als textilpflegende inhaltsstoffe
WO2017191094A1 (de) Knitterneigungsvermeidung bei textilien
EP3487972B1 (de) Propylenglykolester als textilpflegende inhaltsstoffe
WO2021115909A1 (de) Knitterneigungsvermeidung bei textilien
WO2018046417A1 (de) Beschleunigung der wäschetrocknung
DE102014205801A1 (de) Vermeidung von Textilknittern
DE102016217291A1 (de) Beschleunigung der Wäschetrocknung
EP3263689A1 (de) Beschleunigung der wäschetrocknung
EP3263685A1 (de) Beschleunigung der wäschetrocknung
DE102010028378A1 (de) Polyelektrolyt-Komplexe als schmutzablösevermögende Wirkstoffe
DE102022200126A1 (de) Fucoidane als vergrauungsinhibierende Wirkstoffe
DE102022200269A1 (de) Saccharosederivate als vergrauungsinhibierende Wirkstoffe

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170509

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BUSCHMANN, HANS-JUERGEN

Inventor name: OBERTHUER, MARKUS

Inventor name: DEHABADI, VAHID AMERI

Inventor name: GUTMANN, JOCHEN STEFAN

Inventor name: SPILL, IWONA

Inventor name: SCHMIEDEL, PETER

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181114

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1118789

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015008672

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190410

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190910

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190711

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190810

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015008672

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

26N No opposition filed

Effective date: 20200113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191029

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20151029

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1118789

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231020

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231026

Year of fee payment: 9

Ref country code: DE

Payment date: 20231020

Year of fee payment: 9