EP3810742B1 - Xylosecarbamate als schmutzablösevermögende wirkstoffe - Google Patents

Xylosecarbamate als schmutzablösevermögende wirkstoffe Download PDF

Info

Publication number
EP3810742B1
EP3810742B1 EP19730290.4A EP19730290A EP3810742B1 EP 3810742 B1 EP3810742 B1 EP 3810742B1 EP 19730290 A EP19730290 A EP 19730290A EP 3810742 B1 EP3810742 B1 EP 3810742B1
Authority
EP
European Patent Office
Prior art keywords
groups
acid
weight
xylan
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19730290.4A
Other languages
English (en)
French (fr)
Other versions
EP3810742A1 (de
Inventor
Christian Kropf
Antje Gebert-Schwarzwaelder
Christa JUNKES
Thomas Heinze
Lars Gabriel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP3810742A1 publication Critical patent/EP3810742A1/de
Application granted granted Critical
Publication of EP3810742B1 publication Critical patent/EP3810742B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/22Carbohydrates or derivatives thereof
    • C11D3/222Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin
    • C11D3/227Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin with nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/001Softening compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0036Soil deposition preventing compositions; Antiredeposition agents
    • C11D2111/12

Definitions

  • the present invention relates to the use of certain soil-removing active ingredients to enhance the cleaning performance of detergents when washing textiles.
  • detergents In addition to the ingredients that are essential for the washing process, such as surfactants and builder materials, detergents usually contain other components that can be summarized under the term washing auxiliaries and that include such different groups of active ingredients as foam regulators, graying inhibitors, bleaching agents, bleach activators and color transfer inhibitors. Such auxiliaries also include substances which impart dirt-repellent properties to the laundry fiber and which, if present during the washing process, support the dirt-removing ability of the other detergent ingredients. The same applies to cleaning agents for hard surfaces. Such soil-removing substances are often referred to as "soil release" active ingredients or, because of their ability to render the treated surface, for example the fiber, dirt-repellent, as "soil repellents". For example, from the US patent U.S.
  • the European patent application EP 0 213 729 discloses the reduced redeposition when using detergents containing a combination of soap and nonionic surfactant with alkyl hydroxyalkyl cellulose. From the European patent application EP 0 213 730 textile treatment agents are known which contain cationic surfactants and nonionic cellulose ethers with HLB values of 3.1 to 3.8.
  • 4,000,093 discloses detergents containing 0.1% by weight to 3% by weight of alkyl cellulose, hydroxyalkyl cellulose or alkyl hydroxyalkyl cellulose and 5% by weight to 50% by weight of surfactant, the surfactant component essentially consists of C 10 to C 13 alkyl sulphate and has up to 5% by weight of C 14 alkyl sulphate and less than 5% by weight of alkyl sulphate having alkyl radicals of C 15 and higher.
  • the effect of such cellulose derivatives in water-containing liquid detergents can diminish after, in particular, prolonged storage under unfavorable conditions.
  • copolyesters containing dicarboxylic acid units such as terephthalic acid or sulfoisophthalic acid, alkylene glycol units such as ethylene glycol or propylene glycol, and polyalkylene glycol units such as polyethylene glycol. Dirt-removing copolyesters of the type mentioned and their use in detergents have been known for a long time.
  • the polymers known from the prior art have the disadvantage that, particularly in the case of textiles that do not consist, or at least do not consist predominantly, of polyester, have no or only insufficient effectiveness.
  • a large part of today's textiles consists of cotton or cotton-polyester blend fabrics, so that there is a need for more effective soil-removing active ingredients, particularly in the case of greasy stains on textiles of this type in particular.
  • Xylose carbamates of the general formula (I) can be obtained by analogy with known production processes, for example by a two-stage synthesis consisting of the reaction of xylan, which can be obtained from beech or birch wood, for example, with phenyl chloroformate or nitrophenyl chloroformate, based on the by Th. Elschner, K. Ganske and Th. Heinze in Cellulose 20 (2013) 339-353 methods described for cellulose carbamates, to give xylosephenyl carbonates or xylose nitrophenyl carbonates and subsequent aminolysis of the carbonates with amines of the H—NR 3 R 4 type to give the corresponding xylose carbamates.
  • Preferred -NR 3 R 4 groups are derived from amino alcohols such as, for example, 2-aminoethanol, 3-aminopropanol, 2-(2-aminoethoxy)ethanol, N-2-(2-hydroxyethyl)ethylenediamine, 2-amino-1,3 -propanediol, 2-amino-2-methyl-1,3-propanediol, 2-amino-2-ethyl-1,3-propanediol, tris (hydroxymethyl) aminomethane, polyalkoxylated and in particular ethoxylated amines, for example under the Trade names Jeffamine ® are available, ⁇ -amino acids, ⁇ -amino acids such as ⁇ -alanine, ⁇ -amino acids, aniline which may be substituted on the ring if desired, benzylamine which may be substituted on the ring if desired such as p-aminobenzylamine, morpholine, N-amino-
  • the xylan derivative to be used according to the invention contains other anhydroxylosic units linked to it, which may be unsubstituted or also correspond to the general formula (I).
  • anhydroxylose residues with other substituents for example alkyl groups such as methyl or ethyl groups, hydroxyalkyl groups such as hydroxyethyl or hydroxypropyl groups or oligoethoxyethyl or oligopropoxypropyl groups, carboxyalkyl groups such as carboxymethyl or carboxyethyl groups, aminoalkyl groups such as aminoethyl or trimethylammoniumethyl groups, sulfoalkyl groups such as sulfoethyl or sulfopropyl groups, ester groups such as acetic acid, ⁇ -aminopropionic acid, glycolic acid or malonic acid ester groups may be present.
  • xylans used for the production eg beech wood xylans, for example 4-methylglucuronic acid (normally 1% to 20%, on average about 9%) or possibly also glucuronic acid (about 2% to 14%) can be contained in the xylan derivative to be used according to the invention .
  • the average degree of substitution, based on the proportion of carbamate groups, in the xylan derivative to be used according to the invention is preferably in the range from 0.1 to 1.8, in particular 0.2 to 1.2. If other substituents are present in addition to carbamate groups, the average degree of substitution, based on the proportion of such other groups, is preferably below 1 and in particular below the degree of substitution for the carbamate groups.
  • the average degree of polymerization (DP) in the xylan used for the preparation of the xylan derivatives to be used according to the invention is preferably in the range from 20 to 1000, in particular in the range from 70 to 700.
  • the xylan derivatives to be used according to the invention are those with a number-average molar mass in the range of 3000 g/mol to 150,000 g/mol, in particular in the range from 30,000 g/mol to 110,000 g/mol, to be determined, for example, by means of size exclusion chromatography (GPC, eg eluent 0.5% LiBr in DMSO, flow rate 0.5 ml/min, JASCO ® system, pump: PU-980, detector: RI-930, column: PSS Novema 300 and PSS Novema 3000 in series) and Pullulan as a calibration standard, preferred.
  • GPS size exclusion chromatography
  • Another subject of the invention is a process for washing textiles, in which a detergent and a soil-removing active substance in the form of a xylan derivative defined above are used. These procedures can be carried out manually or, if necessary, with the aid of a standard household washing machine. It is possible to use the detergent and the soil-removing active ingredient simultaneously or in succession. Simultaneous use can be carried out particularly advantageously by using a detergent which contains the active ingredient which has the ability to remove dirt.
  • the effect of the active ingredient to be used according to the invention is particularly pronounced when it is used several times, ie in particular for removing soiling from textiles which had already been washed and/or aftertreated in the presence of the active ingredient before they were provided with the soiling.
  • the positive aspect mentioned can also be achieved by a washing process in which the textile is washed after the actual washing process, which is carried out using a detergent that can contain a named active ingredient, but in this case also freely may be carried out by this, is brought into contact with an aftertreatment agent, for example as part of a fabric softening step, which contains an active ingredient to be used according to the invention.
  • the washing performance-enhancing effect of the active ingredients to be used according to the invention occurs in the next washing process, even if, if desired, a detergent without an active ingredient to be used according to the invention is used again.
  • a detergent without an active ingredient to be used according to the invention is used again.
  • the active ingredient essential to the invention is added in the softening cycle of the textile wash.
  • the active ingredient used according to the invention leads to a significantly better detachment of grease and cosmetic stains in particular on textiles, in particular those made of cotton or cotton-containing fabrics, than is the case when compounds previously known for this purpose are used.
  • significant amounts of surfactants can be saved with the same fat removal capacity.
  • the use according to the invention can be carried out as part of a washing process in such a way that the soil-removing active ingredient is added to a detergent-containing liquor or, preferably, the active ingredient is introduced as a component of a detergent into the liquor which contains the object to be cleaned or which is brought into contact with it.
  • the use according to the invention in the context of a laundry after-treatment process can be carried out in such a way that the soil-removing active ingredient is added separately to the rinsing liquor, which is used after the wash cycle carried out using a detergent that contains bleach in particular, or it is introduced as a component of the laundry after-treatment agent, in particular a fabric softener.
  • the detergent used before the laundry aftertreatment agent can also contain an active ingredient to be used according to the invention, but can also be free of it.
  • the washing process preferably takes place at a temperature of 15.degree. C. to 60.degree. C., particularly preferably at a temperature of 20.degree. C. to 40.degree.
  • the washing process is furthermore preferably carried out at a pH of 6 to 11, particularly preferably at a pH of 7.5 to 9.5.
  • the use concentration of the xylan derivative in the wash liquor is preferably 0.001 g/l to 1 g/l, in particular 0.005 g/l to 0.2 g/l.
  • Agents that contain an active ingredient to be used according to the invention in the form of the xylan derivative mentioned or used together with it or used in methods according to the invention can contain all the usual other components of such agents that do not interact in an undesirable manner with the active ingredient essential to the invention, in particular surfactants.
  • the active ingredient defined above is preferably used in amounts of from 0.01% by weight to 10% by weight, particularly preferably from 0.1% by weight to 3% by weight, with this and the following quantitative data refer to the entire funds, unless otherwise stated.
  • An agent according to the invention or used in the method according to the invention or used in the context of the use according to the invention preferably contains water and is liquid; it contains in particular 2% by weight to 92% by weight, particularly preferably 3% by weight to 85% by weight, of water.
  • the active ingredient used according to the invention has a positive effect on the action of certain other detergent ingredients and that, conversely, the effect of the soil release active ingredient is additionally enhanced by certain other detergent ingredients.
  • these effects occur in particular with bleaching agents, with enzymatic active substances, in particular proteases and lipases, with water-soluble inorganic and/or organic builders, in particular based on oxidized carbohydrates or polymeric polycarboxylates, with synthetic anionic surfactants of the sulfate and sulfonate type, and with color transfer inhibitors, for example vinylpyrrolidone , Vinylpyridine or vinylimidazole polymers or copolymers or corresponding polybetaines, which is why the use of at least one of the other ingredients mentioned together with the active ingredient to be used according to the invention is preferred.
  • a composition which contains an active ingredient to be used according to the invention or is used together with it or is used in the method according to the invention preferably contains peroxygen-based bleaching agents, in particular in amounts ranging from 5% by weight to 70% by weight, and optionally
  • bleach activator in particular in amounts in the range from 2% by weight to 10% by weight, can also be free of bleach and bleach activator.
  • the bleaches that come into consideration are preferably the peroxygen compounds usually used in detergents, such as percarboxylic acids, for example dodecanediperoic acid or phthaloylaminoperoxicaproic acid, hydrogen peroxide, alkali metal perborate, which can be in the form of tetrahydrate or monohydrate, percarbonate, perpyrophosphate and persilicate, which are generally present as alkali metal salts, in particular as sodium salts.
  • Bleaching agents of this type are present in detergents which contain an active ingredient used according to the invention, preferably in amounts of up to 25% by weight, in particular up to 15% by weight and particularly preferably from 5% by weight to 15% by weight on the entire agent, available, with percarbonate being used in particular.
  • the optionally present component of the bleach activators includes the N- or O-acyl compounds commonly used, for example polyacylated alkylenediamines, in particular tetraacetylethylenediamine, acylated glycolurils, in particular tetraacetylglycoluril, N-acylated hydantoins, hydrazides, triazoles, urazoles, diketopiperazines, sulfurylamides and cyanurates, and also carboxylic acid anhydrides , in particular phthalic anhydride, carboxylic acid esters, in particular sodium isononanoylphenol sulfonate, and acylated sugar derivatives, in particular pentaacetyl glucose, and cationic nitrile derivatives such as trimethylammonium acetonitrile salts.
  • N- or O-acyl compounds commonly used, for example polyacylated alkylenediamines, in particular tetraacetylethylened
  • the bleach activators may have been coated or granulated in a known manner with encapsulating substances, granulated tetraacetylethylenediamine having weight-average particle sizes of 0.01 mm to 0.8 mm, granulated 1,5- Diacetyl-2,4-dioxohexahydro-1,3,5-triazine and/or trialkylammoniumacetonitrile formulated in particle form is particularly preferred.
  • Such bleach activators are preferably present in detergents in amounts of up to 8% by weight, in particular from 2% by weight to 6% by weight, based in each case on the detergent as a whole.
  • an agent used according to the invention or used in the method according to the invention contains nonionic surfactant selected from fatty alkyl polyglycosides, fatty alkyl polyalkoxylates, in particular ethoxylates and/or propoxylates, fatty acid polyhydroxyamides and/or ethoxylation and/or propoxylation products of fatty alkylamines, vicinal diols, fatty acid alkyl esters and /or fatty acid amides and mixtures thereof, in particular in an amount in the range from 2% by weight to 25% by weight.
  • nonionic surfactant selected from fatty alkyl polyglycosides, fatty alkyl polyalkoxylates, in particular ethoxylates and/or propoxylates, fatty acid polyhydroxyamides and/or ethoxylation and/or propoxylation products of fatty alkylamines, vicinal diols, fatty acid alkyl esters and /or fatty acid amides and mixture
  • a further embodiment of such agents comprises the presence of synthetic anionic surfactant of the sulfate and/or sulfonate type, in particular fatty alkyl sulfate, fatty alkyl ether sulfate, sulfofatty acid esters and/or sulfofatty acid disalts, in particular in an amount in the range from 2% to 25% by weight.
  • the anionic surfactant is preferably selected from the alkyl or alkenyl sulfates and/or the alkyl or alkenyl ether sulfates in which the alkyl or alkenyl group has 8 to 22, in particular 12 to 18, carbon atoms. These are usually not individual substances, but cuts or mixtures. Among these, preference is given to those whose proportion of compounds with longer-chain radicals in the range from 16 to 18 carbon atoms is more than 20% by weight.
  • Suitable nonionic surfactants include the alkoxylates, in particular the ethoxylates and/or propoxylates, of saturated or mono- to polyunsaturated linear or branched-chain alcohols having 10 to 22 carbon atoms, preferably 12 to 18 carbon atoms.
  • the degree of alkoxylation of the alcohols is generally between 1 and 20, preferably between 3 and 10. They can be prepared in a known manner by reacting the corresponding alcohols with the corresponding alkylene oxides.
  • the derivatives of fatty alcohols are particularly suitable, although their branched-chain isomers, in particular so-called oxo alcohols, can also be used for the preparation of useful alkoxylates.
  • the alkoxylates in particular the ethoxylates, of primary alcohols with linear, in particular dodecyl, tetradecyl, hexadecyl or octadecyl radicals, and mixtures thereof, can be used.
  • Corresponding alkoxylation products of alkylamines, vicinal diols and carboxamides which correspond to the alcohols mentioned with regard to the alkyl part can also be used.
  • the ethylene oxide and/or propylene oxide insertion products of fatty acid alkyl esters and fatty acid polyhydroxyamides also come into consideration.
  • alkyl polyglycosides suitable for incorporation into the agents according to the invention are compounds of the general formula (G) n -OR 12 , in which R 12 is an alkyl or alkenyl radical having 8 to 22 carbon atoms, G is a glycose unit and n is a number between 1 and 10 mean.
  • the glycoside component (G) n is an oligomer or polymer of naturally occurring aldose or ketose monomers, including in particular glucose, mannose, fructose, galactose, talose, gulose, altrose, allose, idose, ribose, arabinose, xylose and lyxose belong.
  • the oligomers consisting of such glycosidically linked monomers are characterized not only by the type of sugar they contain but also by their number, the so-called degree of oligomerization.
  • the degree of oligomerization n as a variable to be determined analytically, generally assumes fractional numerical values; it is between 1 and 10, in the case of the glycosides preferably used it is below a value of 1.5, in particular between 1.2 and 1.4.
  • the preferred monomer building block is glucose because it is readily available.
  • Nonionic surfactant is used according to the invention in compositions containing a soil release active ingredient used according to the invention or used in the method according to the invention, preferably in amounts of 1% by weight to 30% by weight, in particular from 1% by weight to 25% by weight % by weight, with amounts in the upper part of this range being more likely to be found in liquid detergents and particulate detergents preferably containing rather lower amounts of up to 5% by weight.
  • the agents can contain other surfactants, preferably synthetic anionic surfactants of the sulfate or sulfonate type, such as alkylbenzenesulfonates, in amounts of preferably not more than 20% by weight, in particular from 0.1% by weight to 18% by weight. %, in each case based on the total agent.
  • Synthetic anionic surfactants which are particularly suitable for use in such agents are the alkyl and/or alkenyl sulfates having 8 to 22 carbon atoms which carry an alkali metal, ammonium or alkyl or hydroxyalkyl-substituted ammonium ion as counter cation.
  • the derivatives of fatty alcohols with in particular 12 to 18 carbon atoms and their branched-chain analogues, the so-called oxo alcohols, are preferred.
  • the alkyl and alkenyl sulfates can be prepared in a known manner by reacting the corresponding alcohol component with a customary sulfating agent, in particular sulfur trioxide or chlorosulfonic acid, and subsequent neutralization with alkali metal, ammonium, or alkyl or hydroxyalkyl-substituted ammonium bases.
  • a customary sulfating agent in particular sulfur trioxide or chlorosulfonic acid
  • the sulfate-type surfactants that can be used also include the sulfated alkoxylation products of the alcohols mentioned, so-called ether sulfates.
  • Such ether sulfates preferably contain 2 to 30, in particular 4 to 10, ethylene glycol groups per molecule.
  • Suitable anionic surfactants of the sulfonate type include the ⁇ -sulphoesters obtainable by reacting fatty acid esters with sulfur trioxide and subsequent neutralization, in particular those derived from fatty acids having 8 to 22 carbon atoms, preferably 12 to 18 carbon atoms, and linear alcohols having 1 up to 6 carbon atoms, preferably 1 to 4 carbon atoms, deriving sulfonation products, and the sulfofatty acids resulting from these by formal hydrolysis.
  • the composition contains water-soluble and/or water-insoluble builder, in particular selected from alkali metal aluminosilicate, crystalline alkali metal silicate with a modulus above 1, monomeric polycarboxylate, polymeric polycarboxylate and mixtures thereof, in particular in amounts ranging from 2.5% by weight to 60 wt%.
  • water-soluble and/or water-insoluble builder in particular selected from alkali metal aluminosilicate, crystalline alkali metal silicate with a modulus above 1, monomeric polycarboxylate, polymeric polycarboxylate and mixtures thereof, in particular in amounts ranging from 2.5% by weight to 60 wt%.
  • the composition preferably contains 20% by weight to 55% by weight of water-soluble and/or water-insoluble, organic and/or inorganic builder.
  • the water-soluble organic builder substances include, in particular, those from the class of polycarboxylic acids, in particular citric acid and sugar acids, and polymeric (poly)carboxylic acids, in particular the polycarboxylates accessible by oxidation of polysaccharides, polymeric acrylic acids, methacrylic acids, maleic acids and mixed polymers of these, which also may contain small proportions of polymerizable substances without carboxylic acid functionality as polymerized units.
  • the relative molecular mass of the homopolymers of unsaturated carboxylic acids is generally between 5000 g/mol and 200000 g/mol, that of the copolymers between 2000 g/mol and 200000 g/mol, preferably 50000 g/mol to 120000 g/mol, based on the free acid .
  • a particularly preferred acrylic acid-maleic acid copolymer has a relative molecular weight of 50,000 g/mol to 100,000 g/mol.
  • Suitable, although less preferred, compounds of this class are copolymers of acrylic acid or methacrylic acid with vinyl ethers, such as vinyl methyl ethers, vinyl esters, ethylene, propylene and styrene, in which the proportion of the acid is at least 50% by weight.
  • Terpolymers which contain two carboxylic acids and/or their salts as monomers and vinyl alcohol and/or a vinyl alcohol derivative or a carbohydrate as the third monomer can also be used as water-soluble organic builder substances.
  • the first acidic monomer or its salt is derived from a monoethylenically unsaturated C 3 -C 8 -carboxylic acid and preferably from a C 3 -C 4 -monocarboxylic acid, in particular from (meth)acrylic acid.
  • the second acidic monomer or its salt can be a derivative of a C 4 -C 8 -dicarboxylic acid, maleic acid being particularly preferred.
  • the third monomeric unit is formed by vinyl alcohol and/or preferably an esterified vinyl alcohol.
  • vinyl alcohol derivatives which represent an ester of short-chain carboxylic acids, for example of C 1 -C 4 -carboxylic acids, with vinyl alcohol.
  • Preferred terpolymers contain 60% by weight to 95% by weight, in particular 70% by weight to 90% by weight, of (meth)acrylic acid or (meth)acrylate, particularly preferably acrylic acid or acrylate, and maleic acid or maleate as well 5% to 40% by weight, preferably 10% to 30% by weight, of vinyl alcohol and/or vinyl acetate.
  • the weight ratio of (meth)acrylic acid or (meth)acrylate to maleic acid or maleate is between 1:1 and 4:1, preferably between 2:1 and 3:1 and in particular 2:1 and 2.
  • the second acidic monomer or its salt can also be a derivative of an allylsulfonic acid which has an alkyl radical in the 2-position, preferably a C 1 -C 4 -alkyl radical, or an aromatic radical which is preferably derived from benzene or benzene derivatives , is substituted.
  • Preferred terpolymers contain 40% by weight to 60% by weight, in particular 45 to 55% by weight, of (meth)acrylic acid or (meth)acrylate, particularly preferably acrylic acid or acrylate, 10% by weight to 30% by weight.
  • % preferably 15% to 25% by weight of methallyl sulfonic acid or methallyl sulfonate and as a third monomer 15% to 40% by weight, preferably 20% to 40% by weight of a carbohydrate.
  • This carbohydrate can be, for example, a mono-, di-, oligo- or polysaccharide, with mono-, di- or oligosaccharides being preferred, and sucrose being particularly preferred.
  • the use of the third monomer incorporates predetermined breaking points in the polymer, which are responsible for the good biodegradability of the polymer.
  • terpolymers generally have a relative molecular mass of between 1000 g/mol and 200000 g/mol, preferably between 3000 g/mol and 10000 g/mol. They can be used in the form of aqueous solutions, preferably in the form of 30 to 50 percent by weight aqueous solutions, particularly for the production of liquid agents. All of the polycarboxylic acids mentioned are generally used in the form of their water-soluble salts, in particular their alkali metal salts.
  • Such organic builder substances are preferably present in amounts of up to 40% by weight, in particular up to 25% by weight and particularly preferably from 1% by weight to 5% by weight. Amounts close to the upper limit mentioned are preferably used in pasty or liquid, in particular aqueous, compositions.
  • crystalline or amorphous alkali metal aluminosilicates in amounts of up to 50% by weight, preferably not more than 40% by weight and in liquid compositions, in particular from 1% by weight to 5% by weight, are used as water-insoluble, water-dispersible inorganic builder materials. deployed.
  • the crystalline detergent grade aluminosilicates particularly zeolite NaA and optionally NaX, are preferred. Amounts close to the upper limit mentioned are preferably used in solid, particulate compositions.
  • suitable aluminosilicates do not have any particles with a grain size of more than 30 mm and preferably consist of at least 80% by weight of particles with a size of less than 10 mm.
  • Suitable substitutes or partial substitutes for the aluminosilicate mentioned are crystalline alkali metal silicates, which can be present alone or in a mixture with amorphous silicates.
  • the alkali metal silicates which can be used as builders in the agents preferably have a molar ratio of alkali metal oxide to SiO 2 below 0.95, in particular from 1:1.1 to 1:12, and can be present in amorphous or crystalline form.
  • Preferred alkali metal silicates are the sodium silicates, in particular the amorphous sodium silicates, with a molar Na 2 O:SiO 2 ratio of 1:2 up to 1:2.8.
  • Such amorphous alkali metal silicates are commercially available, for example, under the name Portil® . During production, they are preferably added as a solid and not in the form of a solution.
  • Crystalline phyllosilicates of the general formula Na 2 Si x O 2x+1 ⁇ yH 2 O are preferably used as crystalline silicates, which can be present alone or in a mixture with amorphous silicates, in which x, the so-called modulus, is a number of 1.9 to 4 and y is a number from 0 to 20 and preferred values for x are 2, 3 or 4.
  • Preferred crystalline layered silicates are those in which x has the value 2 or 3 in the general formula mentioned.
  • both ⁇ - and ⁇ -sodium disilicates Na 2 Si 2 O 5 .yH 2 O
  • Practically anhydrous crystalline alkali metal silicates of the abovementioned general formula, in which x is a number from 1.9 to 2.1, produced from amorphous alkali metal silicates can also be used in agents which contain an active ingredient to be used according to the invention.
  • a crystalline layered sodium silicate with a modulus of 2 to 3 is used, as can be produced from sand and soda.
  • Crystalline sodium silicates with a modulus in the range from 1.9 to 3.5 are used in a further preferred embodiment of detergents which contain an active ingredient used according to the invention.
  • alkali metal silicates are preferably 1% by weight to 50% by weight and in particular 5% by weight to 35% by weight, based on anhydrous active substance. If alkali metal aluminosilicate, in particular zeolite, is also present as an additional builder substance, the alkali metal silicate content is preferably 1% by weight to 15% by weight and in particular 2% by weight to 8% by weight, based on anhydrous active substance.
  • the weight ratio of aluminosilicate to silicate, based in each case on anhydrous active substances is then preferably 4:1 to 10:1.
  • the weight ratio of amorphous alkali metal silicate to crystalline alkali metal silicate is preferably 1:2 to 2:1 and in particular 1:1 to 2:1.
  • water-soluble or water-insoluble inorganic substances can be present in the agents which contain an active ingredient to be used according to the invention, used together with it or used in processes according to the invention.
  • the alkali metal carbonates, alkali metal hydrogen carbonates and alkali metal sulfates and mixtures thereof are suitable in this connection.
  • Such additional inorganic material may be present in amounts up to 70% by weight.
  • the detergents can contain other components that are customary in detergents and cleaning agents.
  • these optional components include, in particular, enzymes, enzyme stabilizers, complexing agents for heavy metals, for example aminopolycarboxylic acids, aminohydroxypolycarboxylic acids, polyphosphonic acids and/or aminopolyphosphonic acids, foam inhibitors, for example organopolysiloxanes or paraffins, solvents and optical brighteners, for example stilbenedisulfonic acid derivatives.
  • agents which contain an active ingredient used according to the invention up to 1% by weight, in particular 0.01% by weight to 0.5% by weight, is preferably Optical brighteners, in particular compounds from the class of substituted 4,4'-bis-(2,4,6-triamino-s-triazinyl)-stilbene-2,2'-disulfonic acids, up to 5% by weight, in particular 0 1% by weight to 2% by weight of complexing agents for heavy metals, in particular aminoalkylenephosphonic acids and their salts, and up to 2% by weight, in particular 0.1% by weight to 1% by weight, of foam inhibitors the proportions by weight mentioned relate to the entire agent.
  • solvents which can be used in particular in the case of liquid agents are preferably those which are water-miscible. These include the lower alcohols, for example ethanol, propanol, isopropanol, and the isomeric butanols, glycerol, lower glycols, for example ethylene and propylene glycol, and the ethers which can be derived from the classes of compounds mentioned.
  • the active ingredients used according to the invention are generally present in such liquid agents in dissolved or suspended form.
  • present enzymes are preferably selected from the group comprising protease, amylase, lipase, cellulase, hemicellulase, oxidase, peroxidase or mixtures thereof.
  • Protease obtained from microorganisms such as bacteria or fungi is primarily considered. It can be obtained in a known manner from suitable microorganisms by fermentation processes. Proteases are commercially available, for example, under the names BLAP® , Savinase® , Esperase® , Maxatase® , Optimase® , Alcalase® , Durazym® or Maxapem® .
  • the lipase that can be used can be obtained, for example, from Humicola lanuginosa, from Bacillus species, from Pseudomonas species, from Fusarium species, from Rhizopus species or from Aspergillus species.
  • Suitable lipases are commercially available, for example, under the names Lipolase® , Lipozym® , Lipomax® , Lipex® , Amano® lipase, Toyo- Jozo® lipase, Meito® lipase and Diosynth® lipase.
  • Suitable amylases are commercially available, for example, under the names Maxamyl® , Termamyl® , Duramyl® and Purafect® OxAm .
  • the cellulase that can be used can be an enzyme that can be obtained from bacteria or fungi and has a pH optimum, preferably in the weakly acidic to weakly alkaline range of 6 to 9.5.
  • Such cellulases are commercially available under the names Celluzyme® , Carezyme® and Ecostone® .
  • customary enzyme stabilizers that may be present, particularly in liquid agents, include amino alcohols, for example mono-, di-, triethanolamine and -propanolamine and mixtures thereof, lower carboxylic acids, boric acid or alkali metal borates, boric acid-carboxylic acid combinations, boric acid esters, boronic acid derivatives, calcium salts, for example Ca-formic acid combination, magnesium salts, and/or sulphur-containing reducing agents.
  • Suitable foam inhibitors include long-chain soaps, in particular behenic soap, fatty acid amides, paraffins, waxes, microcrystalline waxes, organopolysiloxanes and mixtures thereof, as well as microfine, optionally silanated or otherwise hydrophobic silica may contain.
  • foam inhibitors are preferably bound to granular, water-soluble carrier substances.
  • an agent into which the active ingredient to be used according to the invention is incorporated is particulate and contains up to 25% by weight, in particular 5% by weight to 20% by weight, of bleaching agent, in particular alkali metal percarbonate, up to 15% by weight.
  • bleaching agent in particular alkali metal percarbonate
  • -% in particular 1% to 10% by weight of bleach activator, 20% to 55% by weight of inorganic builder, up to 10% by weight, in particular 2% to 8% by weight.
  • % water-soluble organic builder 10% to 25% by weight synthetic anionic surfactant, 1% to 5% by weight nonionic surfactant and up to 25% by weight, especially 0.1% by weight up to 25% by weight of inorganic salts, in particular alkali metal carbonate and/or bicarbonate.
  • a composition into which the active substance to be used according to the invention is incorporated is liquid and contains 1% by weight to 25% by weight, in particular 5% by weight to 15% by weight, of nonionic surfactant, up to 10% by weight, in particular 0.5% by weight to 8% by weight, synthetic anionic surfactant, 3% by weight to 15% by weight, in particular 5% by weight to 10% by weight, soap, 0 5% by weight to 5% by weight, in particular 1% by weight to 4% by weight, of organic builder, in particular polycarboxylate such as citrate, up to 1.5% by weight, in particular 0.1% by weight % to 1% by weight of complexing agent for heavy metals, such as phosphonate, and in addition to any enzyme, enzyme stabilizer, dye and/or fragrance contained, water and/or water-miscible solvent.
  • nonionic surfactant up to 10% by weight, in particular 0.5% by weight to 8% by weight
  • synthetic anionic surfactant 3% by weight to 15% by weight, in particular 5% by weight to 10%
  • polyester-active soil-release polymers that can be used in addition to the active substances essential to the invention include copolyesters of dicarboxylic acids, for example adipic acid, phthalic acid or terephthalic acid, diols, for example ethylene glycol or propylene glycol, and polydiols, for example polyethylene glycol or polypropylene glycol.
  • dicarboxylic acids for example adipic acid, phthalic acid or terephthalic acid
  • diols for example ethylene glycol or propylene glycol
  • polydiols for example polyethylene glycol or polypropylene glycol.
  • the preferably used dirt-removing polyesters include those compounds that are formally accessible by esterification of two monomer parts, the first monomer being a dicarboxylic acid HOOC-Ph-COOH and the second monomer being a diol HO-(CHR 11 -) a OH, which can also be used as a polymeric diol H-(O-(CHR 11 -) a ) b OH may be present.
  • Ph is an o-, m- or p-phenylene radical which can carry 1 to 4 substituents selected from alkyl radicals having 1 to 22 carbon atoms, sulfonic acid groups, carboxyl groups and mixtures thereof, R 11 hydrogen, an alkyl radical having 1 to 22 carbon atoms and mixtures thereof, a is a number from 2 to 6 and b is a number from 1 to 300.
  • the polyesters obtainable from these preferably contain both monomer diol units -O-(CHR 11 -) a O- as well as polymer diol units -(O-(CHR 11 -) a ) b O-.
  • the molar ratio of monomer diol units to polymer diol units is preferably 100:1 to 1:100, in particular 10:1 to 1:10.
  • the degree of polymerization b in the polymer diol units is preferably in the range from 4 to 200, in particular from 12 to 140.
  • the molecular weight or the average molecular weight or the maximum of the molecular weight distribution of preferred polyesters with soil release properties is in the range from 250 g/mol to 100,000 g/mol, in particular from 500 g/mol to 50,000 g/mol.
  • the acid on which the radical Ph is based is preferably selected from terephthalic acid, isophthalic acid, phthalic acid, trimellitic acid, mellitic acid, the isomers of sulfophthalic acid, sulfoisophthalic acid and sulfoterephthalic acid and mixtures thereof. If their acid groups are not part of the ester bonds in the polymer, they are preferably present in salt form, in particular as an alkali metal or ammonium salt. Among these, the sodium and potassium salts are particularly preferred.
  • HOOC-Ph-COOH monomer small proportions, in particular not more than 10 mol % based on the proportion of Ph with the meaning given above, of other acids which have at least two carboxyl groups can be present in the soil-removing polyester.
  • these include, for example, alkylene and alkenylenedicarboxylic acids such as malonic acid, succinic acid, fumaric acid, maleic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid and sebacic acid.
  • Preferred diols HO-(CHR 11 -) a OH include those in which R 11 is hydrogen and a is from 2 to 6 and those in which a is 2 and R 11 is selected from hydrogen and the alkyl radicals 1 to 10, in particular 1 to 3 carbon atoms is selected.
  • R 11 is hydrogen and a is from 2 to 6
  • R 11 is selected from hydrogen and the alkyl radicals 1 to 10, in particular 1 to 3 carbon atoms is selected.
  • those of the formula HO-CH 2 -CHR 11 -OH, in which R 11 has the meaning given above are particularly preferred.
  • diol components are ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 1,2-decanediol, 1, 2-dodecanediol and neopentyl glycol.
  • Particularly preferred among the polymeric diols is polyethylene glycol with an average molar mass in the range from 1000 g/mol to 6000 g/mol.
  • these polyesters composed as described above can also be end-capped, suitable end groups being alkyl groups having 1 to 22 carbon atoms and esters of monocarboxylic acids.
  • the end groups bonded via ester bonds can be based on alkyl, alkenyl and aryl monocarboxylic acids having 5 to 32 carbon atoms, in particular 5 to 18 carbon atoms.
  • valeric acid caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, undecanoic acid, undecenoic acid, lauric acid, lauroleic acid, tridecanoic acid, myristic acid, myristoleic acid, pentadecanoic acid, palmitic acid, stearic acid, petroselinic acid, petroselaidic acid, oleic acid, linoleic acid, linolaidic acid, linolenic acid, eleostearic acid, arachidic acid , gadoleic acid, arachidonic acid, behenic acid, erucic acid, brassidic acid, clupanodonic acid, lignoceric acid, cerotic acid, melissic acid, benzoic acid, the 1st can carry up to 5 substituents with a total of up to 25 carbon atoms, in particular 1 to 12 carbon atoms, for example tert
  • the end groups can also be based on hydroxymonocarboxylic acids with 5 to 22 carbon atoms, which include, for example, hydroxyvaleric acid, hydroxycaproic acid, ricinoleic acid, their hydrogenation product hydroxystearic acid and o-, and p-hydroxybenzoic acid.
  • the hydroxymonocarboxylic acids can in turn be connected to one another via their hydroxyl group and their carboxyl group and can therefore be present more than once in an end group.
  • the number of hydroxymonocarboxylic acid units per end group, i.e. their degree of oligomerization, is preferably in the range from 1 to 50, in particular from 1 to 10.
  • polyester-active soil-removing polymers are preferably water-soluble, the term "water-soluble” meaning a solubility of at least 0.01 g, preferably at least 0.1 g, of the polymer per liter of water at room temperature and pH 8.
  • polymers which are preferably used have a solubility of at least 1 g per liter, in particular at least 10 g per liter, under these conditions.
  • Preferred laundry aftertreatment agents which contain an active ingredient to be used according to the invention have a so-called ester quat, ie a quaternized ester of carboxylic acid and amino alcohol, as the laundry softening active ingredient.
  • ester quat ie a quaternized ester of carboxylic acid and amino alcohol
  • These are known substances which can be obtained by the relevant methods of preparative organic chemistry, for example by partially esterifying triethanolamine with fatty acids in the presence of hypophosphorous acid, passing air through it and then quaternizing it with dimethyl sulfate or ethylene oxide.
  • the preparation of solid ester quats is also known, in which the quaternization of triethanolamine esters is carried out in the presence of suitable dispersants, preferably fatty alcohols.
  • Esterquats preferred in the compositions are quaternized fatty acid triethanolamine ester salts which follow the formula (IV), in which R 1 CO is an acyl radical having 6 to 22 carbon atoms, R 2 and R 3 are each independently hydrogen or R 1 CO, R 4 is an alkyl radical having 1 to 4 carbon atoms or a (CH 2 CH 2 O) q H- Group, m, n and p in total are 0 or numbers from 1 to 12, q is numbers from 1 to 12 and X is a charge-balancing anion such as halide, alkyl sulfate or alkyl phosphate.
  • R 1 CO is an acyl radical having 6 to 22 carbon atoms
  • R 2 and R 3 are each independently hydrogen or R 1 CO
  • R 4 is an alkyl radical having 1 to 4 carbon atoms or a (CH 2 CH 2 O) q H- Group
  • m, n and p in total are 0 or numbers from 1 to 12
  • q is numbers from
  • esterquats that can be used according to the invention are products based on caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, isostearic acid, stearic acid, oleic acid, elaidic acid, arachidic acid, behenic acid and erucic acid, and technical mixtures thereof, such as they occur, for example, in the pressure splitting of natural fats and oils.
  • Technical C 12/18 coconut fatty acids and in particular partially hydrogenated C 16/18 tallow or palm fatty acids and C 16/18 fatty acid cuts rich in elaidic acid are preferably used.
  • the fatty acids and the triethanolamine can generally be used in a molar ratio of from 1.1:1 to 3:1.
  • a ratio of from 1.2:1 to 2.2:1, preferably from 1.5:1 to 1.9:1 has proven to be particularly advantageous.
  • the esterquats preferably used are technical mixtures of mono-, di- and triesters with an average degree of esterification of 1.5 to 1.9 and are derived from technical C 16/18 tallow or palm fatty acid (iodine number 0 to 40). .
  • quaternized ester salts of carboxylic acids with diethanolalkylamines of the formula (V) are also suitable as ester quats, in which R 1 CO is an acyl radical having 6 to 22 carbon atoms, R 2 is hydrogen or R 1 CO, R 4 and R 5 are each independently alkyl radicals having 1 to 4 carbon atoms, m and n together are 0 or numbers from 1 to 12 and X is a charge-balancing anion such as halide, alkyl sulfate or alkyl phosphate.
  • ester quats are the quaternized ester salts of carboxylic acids with 1,2-dihydroxypropyldialkylamines of the formula (VI), in which R 1 CO is an acyl radical having 6 to 22 carbon atoms, R 2 is hydrogen or R 1 CO, R 4 , R 6 and R 7 are each independently alkyl radicals having 1 to 4 carbon atoms, m and n together are 0 or numbers from 1 to 12 and X is a charge-balancing anion such as halide, alkyl sulfate or alkyl phosphate.
  • R 1 CO is an acyl radical having 6 to 22 carbon atoms
  • R 2 is hydrogen or R 1 CO
  • R 4 , R 6 and R 7 are each independently alkyl radicals having 1 to 4 carbon atoms
  • m and n together are 0 or numbers from 1 to 12
  • X is a charge-balancing anion such as halide, alkyl sulfate or alkyl phosphate.
  • esterquats are usually sold in the form of 50 to 90 percent by weight alcoholic solutions, which can also be diluted with water without any problems, the usual alcoholic solvents being ethanol, propanol and isopropanol.
  • Esterquats are preferably used in amounts of 5% by weight to 25% by weight, in particular 8% by weight to 20% by weight, based in each case on the total laundry aftertreatment agent.
  • the laundry aftertreatment agents used according to the invention can also contain the detergent ingredients listed above, provided they do not have an unacceptable negative interaction with the ester quat. It is preferably a liquid, water-containing agent.
  • Table 1 shows the composition (ingredients in percent by weight, in each case based on the total detergent) of the detergents M1 to M4 according to the invention and of the detergent V1, which is free from a corresponding active ingredient:
  • Table 1 Composition V1 M1 M2 M3 M4 C 9-13 alkyl benzene sulfonate, Na salt 5 5 5 5 5 Sodium Lauryl Ether Sulfate with 2 EO 6 6 6 6 6 C 12-14 fatty alcohol with 7 EO 5 5 5 5 5 C 12-18 fatty acid, Na salt 3 3 3 3 3 3 3 3 3 3 NaOH 2 2 2 2 2 citric acid 2 2 2 2 2 2 phosphonate 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 enzymes, dyes, opt.
  • Table 2 Brightness value Y soiling / medium V1 M1 M2 M3 M4 Chocolate Ice Cream / Cotton 66.9 68.7 nb 67.9 68.7 makeup / cotton 35.4 36.8 39.7 36.4 nd Lipstick (pink) / cotton 36.1 37.8 39.2 nb 37.7 Motor oil (used) / cotton 66.3 67.8 nb 68.0 68.9 Black shoe polish / polyester 28.4 32.7 37.9 30.9 nb

Description

  • Die vorliegende Erfindung betrifft die Verwendung bestimmter schmutzablösevermögender Wirkstoffe zur Verstärkung der Reinigungsleistung von Waschmitteln beim Waschen von Textilien.
  • Waschmittel enthalten neben den für den Waschprozess unverzichtbaren Inhaltsstoffen wie Tensiden und Buildermaterialien in der Regel weitere Bestandteile, die man unter dem Begriff Waschhilfsstoffe zusammenfassen kann und die so unterschiedliche Wirkstoffgruppen wie Schaumregulatoren, Vergrauungsinhibitoren, Bleichmittel, Bleichaktivatoren und Farbübertragungsinhibitoren umfassen. Zu derartigen Hilfsstoffen gehören auch Substanzen, welche der Wäschefaser schmutzabstoßende Eigenschaften verleihen und die, falls während des Waschvorgangs anwesend, das Schmutzablösevermögen der übrigen Waschmittelbestandteile unterstützen. Gleiches gilt sinngemäß auch für Reinigungsmittel für harte Oberflächen. Derartige schmutzablösevermögende Substanzen werden oft als "Soil Release"-Wirkstoffe oder wegen ihres Vermögens, die behandelte Oberfläche, zum Beispiel der Faser, schmutzabstoßend auszurüsten, als "Soil Repellents" bezeichnet. So ist beispielsweise aus dem US-amerikanischen Patent US 4 136 038 die schmutzablösevermögende Wirkung von Methylcellulose bekannt. Die europäische Patentanmeldung EP 0 213 729 offenbart die verringerte Redeposition bei Einsatz von Waschmitteln, die eine Kombination von Seife und nichtionischem Tensid mit Alkyl-Hydroxyalkyl-Cellulose enthalten. Aus der europäischen Patentanmeldung EP 0 213 730 sind Textilbehandlungsmittel bekannt, die kationische Tenside und nichtionische Celluloseether mit HLB-Werten von 3,1 bis 3,8 enthalten. Die US-amerikanische Patentschrift US 4 000 093 offenbart Waschmittel, die 0,1 Gew.-% bis 3 Gew.-% Alkyl-Cellulose, Hydroxyalkyl-Cellulose oder Alkyl-Hydroxyalkyl-Cellulose sowie 5 Gew.-% bis 50 Gew.-% Tensid enthalten, wobei die Tensidkomponente im Wesentlichen aus C10- bis C13-Alkylsulfat besteht und bis zu 5 Gew.-% C14-Alkylsulfat und weniger als 5 Gew.-% Alkylsulfat mit Alkylresten von C15 und höher aufweist. Beobachtet wird in Einzelfällen allerdings, dass die Wirkung derartiger Cellulosederivate in wasserhaltigen Flüssigwaschmitteln nach insbesondere längerer Lagerung unter ungünstigen Bedingungen nachlassen kann.
  • Wegen ihrer chemischen Ähnlichkeit zu Polyesterfasern bei Textilien aus diesem Material besonders wirksame schmutzablösevermögende Wirkstoffe sind Copolyester, die Dicarbonsäureeinheiten wie Terephthalsäure oder Sulfoisophthalsäure, Alkylenglykoleinheiten wie Ethylenglykol oder Propylenglykol und Polyalkylenglykoleinheiten wie Polyethylenglykol enthalten. Schmutzablösevermögende Copolyester der genannten Art wie auch ihr Einsatz in Waschmitteln sind seit langer Zeit bekannt.
  • Die aus dem Stand der Technik bekannten Polymere weisen den Nachteil auf, dass sie insbesondere bei Textilien, die nicht oder zumindest nicht zum überwiegenden Teil aus Polyester bestehen, keine oder nur unzureichende Wirksamkeit besitzen. Ein großer Teil der heutigen Textilien besteht aber aus Baumwolle oder Baumwoll-Polyester-Mischgeweben, so dass ein Bedarf nach bei insbesondere fettigen Anschmutzungen auf insbesondere derartigen Textilien besser wirksamen schmutzablösevermögenden Wirkstoffen besteht.
  • Überraschenderweise wurde gefunden, dass diese Aufgabe durch die Verwendung von bestimmten Xylanderivaten gelöst werden kann.
  • Aus der internationalen Patentanmeldung WO 00/18860 A1 ist die Wiederaufbauwirkung von dort so genannten Celluloseestern, bei denen es sich auch um Cellulosecarbamate handeln kann, auf Textilien bekannt. Diese soll vermutlich darauf beruhen, dass sich die Celluloseester auf die geschädigten Textilstellen ablagern, durch Abspaltung der reaktiven Esterfunktionalität mit der Faser reagieren und dadurch die Schadstellen durch Cellulose verstärken. Aus der internationalen Patentanmeldung WO 00/18861 A1 ist bekannt, dass derartige Celluloseester die Affinität von auf ein Substrat, wie eine Faser, abzulagerndem Material für das Substrat verstärken. Die internationale Patentanmeldung WO 01/72937 A1 betrifft die Verringerung von Farbstoffverlusten beim Waschen gefärbter Textilien durch den Einsatz derartiger Celluloseester. Aus der internationalen Patentanmeldung WO 01/72944 A1 ist die Eignung derartiger Celluloseether zur Verstärkung der Ablagerung von Duftstoffen auf Textilien bekannt, und aus der Patentanmeldung GB 2 360 791 A ist bekannt, dass sie durch ihre Ablagerung auf Textilien zur Gewebeweichheit beitragen. US 2009/318325 A1 offenbart substituierte Xylane, insbesondere Carboxymethylxylan, mit schmutzablösender Wirkung. Ebringerová in Das Papier 46, 1992, 726-732 beschreibt Sulfoalkylxylane mit antiredepositiven Eigenschaften.
  • Gegenstand der Erfindung ist die Verwendung von Xylanderivaten, die eine Einheit der allgemeinen Formel (I) enthalten,
    Figure imgb0001
    in der R1 und R2 unabhängig voneinander für H oder -C(=O)-NR3R4 stehen mit der Maßgabe, dass mindestens 1 der Reste R1 und R2 gleich -C(=O)-NR3R4 ist, und
    • R3 und R4 unabhängig voneinander für -H, Aryl-, geradkettige oder verzweigte Alkyl-, Aryl-, Alkylaryl- oder Arylalkylgruppen stehen, die mit einer oder mehreren funktionellen Gruppen, wie Hydroxy-, Carboxy-, Oxy-, Amino- oder Ammoniumgruppen, substituiert sein können, und/oder die mit Heteroatomen, wie N, O oder S, unterbrochen sein können,
    • zur Verstärkung der Reinigungsleistung von Waschmitteln beim Waschen von Textilien.
  • Xylosecarbamate der allgemeinen Formel (I) sind durch Analogie bekannter Herstellverfahren zugänglich, zum Beispiel durch eine zweistufige Synthese bestehend aus der Umsetzung von beispielsweise aus Buchen- oder Birkenholz zugänglichem Xylan mit Phenylchloroformat oder Nitrophenylchloroformat, in Anlehnung an das von Th. Elschner, K. Ganske und Th. Heinze in Cellulose 20 (2013) 339-353 für Cellulosecarbamate beschriebene Verfahren, zu Xylosephenylcarbonaten oder Xylosenitrophenylcarbonaten und anschließender Aminolyse der Carbonate mit Aminen des Typs H-NR3R4 zu den entsprechenden Xylosecarbamaten. Bevorzugte Gruppen -NR3R4 leiten sich ab von Aminoalkoholen wie zum Beispiel 2-Aminoethanol, 3-Aminopropanol, 2-(2-aminoethoxy)ethanol, N-2-(2-hydroxyethyl)ethylendiamin, 2-Amino-1,3-propandiol, 2-Amino-2-methyl-1,3-Propandiol, 2-Amino-2-ethyl-1,3-Propandiol, Tris-(hydroxymethyl)aminomethan, mehrfach alkoxylierten und insbesondere ethoxylierten Aminen, die zum Beispiel unter dem Handelsnamen Jeffamine® erhältlich sind, α-Aminosäuren, β-Aminosäuren, wie zum Beispiel β-Alanin, ω-Aminosäuren, Anilin, das gewünschtenfalls am Ring substituiert sein kann, Benzylamin, das gewünschtenfalls am Ring substituiert sein kann wie beispielsweise p-Aminobenzylamin, Morpholin, N-Amino-Morpholin, N-Aminoalkyl-Morpholin, Ethylendiamin, und Mischungen aus diesen.
  • Neben der substituierten Anhydroxyloseinheit der allgemeinen Formel (I) enthält das erfindungsgemäß zu verwendende Xylanderivat weitere mit diesem verknüpfte Anhydroxyloseinheiten, die unsubstituiert sein können oder ebenfalls der allgemeinen Formel (I) entsprechen. Gewünschtenfalls können zusätzlich auch Anhydroxylosereste mit anderen Substituenten, zu denen beispielsweise Alkylgruppen wie Methyl- oder Ethylgruppen, Hydroxyalkylgruppen wie Hydroxyethyl- oder Hydroxypropylgruppen oder Oligoethoxyethyl- oder Oligopropoxypropylgruppen, Carboxyalkylgruppen wie Carboxymethyl- oder Carboxyethylgruppen, Aminoalkylgruppen wie Aminoethyl- oder Trimethylammoniumethylgruppen, Sulfoalkylgruppen wie Sulfoethyl- oder Sulfopropylgruppen, Estergruppen wie Essigsäure-, β-Aminopropionsäure-, Glykolsäure- oder Malonsäureestergruppen gehören, vorhanden sein. Aus den für die Herstellung verwendeten Xylanen, z.B. Buchenholzxylanen, können beispielsweise 4-Methylglucuronsäure (normalerweise 1 % bis 20%, durchschnittlich etwa 9 %) oder unter Umständen auch Glucuronsäure (etwa 2 % bis 14 %) in dem erfindungsgemäß zu verwendenden Xylanderivat enthalten sein. Der durchschnittliche Substitutionsgrad, bezogen auf den Anteil an Carbamatgruppen, im erfindungsgemäß zu verwendenden Xylanderivat liegt vorzugsweise im Bereich von 0,1 bis 1,8, insbesondere 0,2 bis 1,2. Falls neben Carbamatgruppen andere Substituenten vorhanden sind, liegt der durchschnittliche Substitutionsgrad, bezogen auf den Anteil derartiger anderer Gruppen, vorzugsweise unter 1 und insbesondere unterhalb des Substitutionsgrades für die Carbamatgruppen. Der durchschnittliche Polymerisationsgrad (DP) liegt im für die Herstellung der erfindungsgemäß zu verwendenden Xylanderivate eingesetzten Xylan vorzugsweise im Bereich von 20 bis 1000, insbesondere im Bereich von 70 bis 700. Unter den erfindungsgemäß zu verwendenden Xylanderivaten sind solche mit einer zahlenmittleren Molmasse im Bereich von 3000 g/mol bis 150000 g/mol, insbesondere im Bereich von 30000 g/mol bis 110000 g/mol, zu bestimmen beispielsweise mittels Größenausschlusschromatographie (GPC, z.B. Eluent 0,5% LiBr in DMSO, Fließrate 0,5 ml/min, System JASCO®, Pumpe: PU-980, Detektor: RI-930, Säule: PSS Novema 300 und PSS Novema 3000 in Reihe) und Pullulan als Kalibrierstandard, bevorzugt.
  • Ein weiterer Gegenstand der Erfindung ist ein Verfahren zum Waschen von Textilien, bei dem ein Waschmittel und ein schmutzablösevermögender Wirkstoff in Form eines oben definierten Xylanderivats zum Einsatz kommen. Diese Verfahren können manuell oder gegebenenfalls mit Hilfe einer üblichen Haushaltswaschmaschine ausgeführt werden. Dabei ist es möglich, das Waschmittel und den schmutzablösevermögenden Wirkstoff gleichzeitig oder nacheinander anzuwenden. Die gleichzeitige Anwendung lässt sich besonders vorteilhaft durch den Einsatz eines Waschmittels, welches den schmutzablösevermögenden Wirkstoff enthält, durchführen.
  • Besonders ausgeprägt ist der Effekt des erfindungsgemäß zu verwendenden Wirkstoffs bei mehrfacher Anwendung, das heißt insbesondere zur Entfernung von Anschmutzungen von Textilien, die bereits bei Anwesenheit des Wirkstoffs gewaschen und/oder nachbehandelt worden waren, bevor sie mit der Anschmutzung versehen wurden. Im Zusammenhang mit der Nachbehandlung ist darauf hinzuweisen, dass sich der bezeichnete positive Aspekt auch durch ein Waschverfahren realisieren lässt, bei dem das Textil nach dem eigentlichen Waschvorgang, der mit Hilfe eines Waschmittels, welches einen genannten Wirkstoff enthalten kann, aber in diesem Fall auch frei von diesem sein kann, ausgeführt wird, mit einem Nachbehandlungsmittel, beispielsweise im Rahmen eines Weichspülschrittes, welches einen erfindungsgemäß zu verwendenden Wirkstoff enthält, in Kontakt gebracht wird. Auch bei dieser Vorgehensweise tritt beim nächsten Waschvorgang, auch wenn gewünschtenfalls abermals ein Waschmittel ohne einen erfindungsgemäß zu verwendenden Wirkstoff verwendet wird, der waschleistungsverstärkende Effekt der erfindungsgemäß zu verwendenden Wirkstoffe auf. Dieser ist deutlich höher als einer sich bei Einsatz eines herkömmlichen Soil Release-Wirkstoffs ergebender. In einer besonders bevorzugten Ausführungsform erfolgt hierbei die Zugabe des erfindungswesentlichen Wirkstoffs im Weichspülgang der Textilwäsche.
  • Der erfindungsgemäß verwendete Wirkstoff führt zu einer signifikant besseren Ablösung von insbesondere Fett- und Kosmetik-Anschmutzungen auf Textilien, insbesondere solchen aus Baumwolle beziehungsweise baumwollhaltigem Gewebe, als dies bei Verwendung bisher für diesen Zweck bekannter Verbindungen der Fall ist. Alternativ können bei gleichbleibendem Fettablösevermögen bedeutende Mengen an Tensiden eingespart werden.
  • Die erfindungsgemäße Verwendung kann im Rahmen eines Waschprozesses derart erfolgen, dass man den schmutzablösevermögenden Wirkstoff einer waschmittelmittelhaltigen Flotte zusetzt oder vorzugsweise den Wirkstoff als Bestandteil eines Waschmittels in die Flotte einbringt, die den zu reinigenden Gegenstand enthält oder die mit diesem in Kontakt gebracht wird.
  • Die erfindungsgemäße Verwendung im Rahmen eines Wäschenachbehandlungsverfahrens kann entsprechend derart erfolgen, dass man den schmutzablösevermögenden Wirkstoff der Spülflotte separat zusetzt, die nach dem unter Anwendung eines insbesondere bleichmittelhaltigen Waschmittels erfolgten Waschgang zum Einsatz kommt, oder es als Bestandteil des Wäschenachbehandlungsmittels, insbesondere eines Weichspülers, einbringt. Bei diesem Aspekt der Erfindung kann das vor dem Wäschenachbehandlungsmittel zum Einsatz kommende Waschmittel ebenfalls einen erfindungsgemäß zu verwendenden Wirkstoff enthalten, kann jedoch auch frei von diesem sein.
  • Weitere Gegenstände der Erfindung sind daher Waschmittel und Wäschenachbehandlungsmittel, die oben definierte Xylanderivate enthalten.
  • Der Waschvorgang erfolgt vorzugsweise bei einer Temperatur von 15 °C bis 60 °C, besonders bevorzugt bei einer Temperatur von 20 °C bis 40 °C. Der Waschvorgang erfolgt weiterhin vorzugsweise bei einem pH-Wert von 6 bis 11, besonders bevorzugt bei einem pH-Wert von 7,5 bis 9,5. Die Einsatzkonzentration des Xylanderivats in der Waschflotte beträgt vorzugsweise 0,001 g/l bis 1 g/l, insbesondere 0,005 g/l bis 0,2 g/l.
  • Mittel, die einen erfindungsgemäß zu verwendenden Wirkstoff in Form des genannten Xylanderivats enthalten oder mit diesem zusammen verwendet beziehungsweise in erfindungsgemäßen Verfahren eingesetzt werden, können alle üblichen sonstigen Bestandteile derartiger Mittel enthalten, die nicht in unerwünschter Weise mit dem erfindungswesentlichen Wirkstoff wechselwirken, insbesondere Tensid. Vorzugsweise wird der oben definierte Wirkstoff in Mengen von 0,01 Gew.-% bis 10 Gew.-%, besonders bevorzugt von 0,1 Gew.-% bis 3 Gew.-%, eingesetzt, wobei sich diese und die folgenden Mengenangaben auf das gesamte Mittel beziehen, wenn nicht anders angegeben. Vorzugsweise ist ein erfindungsgemäßes oder im erfindungsgemäßen Verfahren eingesetztes oder im Rahmen der erfindungsgemäßen Verwendung eingesetztes Mittel wasserhaltig und flüssig; es enthält insbesondere 2 Gew.% bis 92 Gew.-%, besonders bevorzugt 3 Gew.% bis 85 Gew.-% Wasser.
  • Überraschenderweise wurde gefunden, dass der erfindungsgemäß verwendete Wirkstoff die Wirkung bestimmter anderer Waschmittelinhaltsstoffe positiv beeinflusst und dass umgekehrt die Wirkung des Soil Release-Wirkstoffs durch bestimmte andere Waschmittelinhaltsstoffe noch zusätzlich verstärkt wird. Diese Effekte treten insbesondere bei Bleichmitteln, bei enzymatischen Wirkstoffen, insbesondere Proteasen und Lipasen, bei wasserlöslichen anorganischen und/oder organischen Buildern, insbesondere auf Basis oxidierter Kohlenhydrate oder polymeren Polycarboxylaten, bei synthetischen Aniontensiden vom Sulfat- und Sulfonattyp, und bei Farbübertragungsinhibitoren, beispielsweise Vinylpyrrolidon-, Vinylpyridin- oder Vinylimidazol-Polymeren oder -Copolymeren oder entsprechenden Polybetainen, auf, weshalb der Einsatz mindestens eines der genannten weiteren Inhaltsstoffe zusammen mit erfindungsgemäß zu verwendendem Wirkstoff bevorzugt ist.
  • Ein Mittel, welches einen erfindungsgemäß zu verwendenden Wirkstoff enthält oder mit diesem zusammen verwendet wird beziehungsweise im erfindungsgemäßen Verfahren zum Einsatz kommt, enthält vorzugsweise Bleichmittel auf Persauerstoffbasis, insbesondere in Mengen im Bereich von 5 Gew.-% bis 70 Gew.-%, sowie gegebenenfalls Bleichaktivator, insbesondere in Mengen im Bereich von 2 Gew.-% bis 10 Gew.-%, kann jedoch in einer anderen bevorzugten Ausführungsform auch frei von Bleichmittel und Bleichaktivator sein. Die in Betracht kommenden Bleichmittel sind vorzugsweise die in Waschmitteln in der Regel verwendeten Persauerstoffverbindungen wie Percarbonsäuren, beispielsweise Dodecandipersäure oder Phthaloylaminoperoxicapronsäure, Wasserstoffperoxid, Alkaliperborat, das als Tetra- oder Monohydrat vorliegen kann, Percarbonat, Perpyrophosphat und Persilikat, die in der Regel als Alkalisalze, insbesondere als Natriumsalze, vorliegen. Derartige Bleichmittel sind in Waschmitteln, welche einen erfindungsgemäß verwendeten Wirkstoff enthalten, vorzugsweise in Mengen bis zu 25 Gew.-%, insbesondere bis zu 15 Gew.-% und besonders bevorzugt von 5 Gew.-% bis 15 Gew.-%, jeweils bezogen auf gesamtes Mittel, vorhanden, wobei insbesondere Percarbonat zum Einsatz kommt. Die fakultativ vorhandene Komponente der Bleichaktivatoren umfasst die üblicherweise verwendeten N- oder O-Acylverbindungen, beispielsweise mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin, acylierte Glykolurile, insbesondere Tetraacetylglykoluril, N-acylierte Hydantoine, Hydrazide, Triazole, Urazole, Diketopiperazine, Sulfurylamide und Cyanurate, außerdem Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, Carbonsäureester, insbesondere Natriumisononanoylphenolsulfonat, und acylierte Zuckerderivate, insbesondere Pentaacetylglukose, sowie kationische Nitrilderivate wie Trimethylammoniumacetonitril-Salze. Die Bleichaktivatoren können zur Vermeidung der Wechselwirkung mit den Persauerstoffverbindungen bei der Lagerung in bekannter Weise mit Hüllsubstanzen überzogen beziehungsweise granuliert worden sein, wobei mit Hilfe von Carboxymethylcellulose granuliertes Tetraacetylethylendiamin mit gewichtsmittleren Korngrößen von 0,01 mm bis 0,8 mm, granuliertes 1,5-Diacetyl-2,4-dioxohexahydro-1,3,5-triazin, und/oder in Teilchenform konfektioniertes Trialkylammoniumacetonitril besonders bevorzugt ist. In Waschmitteln sind derartige Bleichaktivatoren vorzugsweise in Mengen bis zu 8 Gew.-%, insbesondere von 2 Gew.-% bis 6 Gew.-%, jeweils bezogen auf gesamtes Mittel, enthalten.
  • In einer bevorzugten Ausführungsform enthält ein erfindungsgemäß verwendetes oder im erfindungsgemäßen Verfahren eingesetztes Mittel nichtionisches Tensid, ausgewählt aus Fettalkylpolyglykosiden, Fettalkylpolyalkoxylaten, insbesondere -ethoxylaten und/oder-propoxylaten, Fettsäurepolyhydroxyamiden und/oder Ethoxylierungs- und/oder Propoxylierungsprodukten von Fettalkylaminen, vicinalen Diolen, Fettsäurealkylestern und/oder Fettsäureamiden sowie deren Mischungen, insbesondere in einer Menge im Bereich von 2 Gew.-% bis 25 Gew.-%.
  • Eine weitere Ausführungsform derartiger Mittel umfasst die Anwesenheit von synthetischem Aniontensid vom Sulfat- und/oder Sulfonattyp, insbesondere Fettalkylsulfat, Fettalkylethersulfat, Sulfofettsäureester und/oder Sulfofettsäuredisalze, insbesondere in einer Menge im Bereich von 2 Gew.-% bis 25 Gew.-%. Bevorzugt wird das Aniontensid aus den Alkyl- bzw. Alkenylsulfaten und/oder den Alkyl- bzw. Alkenylethersulfaten ausgewählt, in denen die Alkyl- bzw. Alkenylgruppe 8 bis 22, insbesondere 12 bis 18 C-Atome besitzt. Bei diesen handelt es sich üblicherweise nicht um Einzelsubstanzen, sondern um Schnitte oder Mischungen. Darunter sind solche bevorzugt, deren Anteil an Verbindungen mit längerkettigen Resten im Bereich von 16 bis 18 C-Atomen über 20 Gew.-% beträgt.
  • Zu den in Frage kommenden nichtionischen Tensiden gehören die Alkoxylate, insbesondere die Ethoxylate und/oder Propoxylate von gesättigten oder ein- bis mehrfach ungesättigten linearen oder verzweigtkettigen Alkoholen mit 10 bis 22 C-Atomen, vorzugsweise 12 bis 18 C-Atomen. Der Alkoxylierungsgrad der Alkohole liegt dabei in der Regel zwischen 1 und 20, vorzugsweise zwischen 3 und 10. Sie können in bekannter Weise durch Umsetzung der entsprechenden Alkohole mit den entsprechenden Alkylenoxiden hergestellt werden. Geeignet sind insbesondere die Derivate der Fettalkohole, obwohl auch deren verzweigtkettige Isomere, insbesondere sogenannte Oxoalkohole, zur Herstellung verwendbarer Alkoxylate eingesetzt werden können. Brauchbar sind demgemäß die Alkoxylate, insbesondere die Ethoxylate, primärer Alkohole mit linearen, insbesondere Dodecyl-, Tetradecyl-, Hexadecyl- oder Octadecyl-Resten sowie deren Gemische. Außerdem sind entsprechende Alkoxylierungsprodukte von Alkylaminen, vicinalen Diolen und Carbonsäureamiden, die hinsichtlich des Alkylteils den genannten Alkoholen entsprechen, verwendbar. Darüber hinaus kommen die Ethylenoxid- und/oder Propylenoxid-Insertionsprodukte von Fettsäurealkylestern sowie Fettsäurepolyhydroxyamide in Betracht. Zur Einarbeitung in die erfindungsgemäßen Mittel geeignete sogenannte Alkylpolyglykoside sind Verbindungen der allgemeinen Formel (G)n-OR12, in der R12 einen Alkyl- oder Alkenylrest mit 8 bis 22 C-Atomen, G eine Glykoseeinheit und n eine Zahl zwischen 1 und 10 bedeuten. Bei der Glykosidkomponente (G)n handelt es sich um Oligo- oder Polymere aus natürlich vorkommenden Aldose- oder Ketose-Monomeren, zu denen insbesondere Glucose, Mannose, Fruktose, Galaktose, Talose, Gulose, Altrose, Allose, Idose, Ribose, Arabinose, Xylose und Lyxose gehören. Die aus derartigen glykosidisch verknüpften Monomeren bestehenden Oligomere werden außer durch die Art der in ihnen enthaltenen Zucker durch deren Anzahl, den sogenannten Oligomerisierungsgrad, charakterisiert. Der Oligomerisierungsgrad n nimmt als analytisch zu ermittelnde Größe im allgemeinen gebrochene Zahlenwerte an; er liegt bei Werten zwischen 1 und 10, bei den vorzugsweise eingesetzten Glykosiden unter einem Wert von 1,5, insbesondere zwischen 1,2 und 1,4. Bevorzugter Monomer-Baustein ist wegen der guten Verfügbarkeit Glucose. Der Alkyl- oder Alkenylteil R12 der Glykoside stammt bevorzugt ebenfalls aus leicht zugänglichen Derivaten nachwachsender Rohstoffe, insbesondere aus Fettalkoholen, obwohl auch deren verzweigtkettige Isomere, insbesondere sogenannte Oxoalkohole, zur Herstellung verwendbarer Glykoside eingesetzt werden können. Brauchbar sind demgemäß insbesondere die primären Alkohole mit linearen Octyl-, Decyl-, Dodecyl-, Tetradecyl-, Hexadecyl- oder Octadecylresten sowie deren Gemische. Besonders bevorzugte Alkylglykoside enthalten einen Kokosfettalkylrest, das heißt Mischungen mit im wesentlichen R12=Dodecyl und R12=Tetradecyl.
  • Nichtionisches Tensid ist in Mitteln, welche einen erfindungsgemäß verwendeten Soil Release-Wirkstoff enthalten, erfindungsgemäß verwendet oder im erfindungsgemäßen Verfahren eingesetzt werden, vorzugsweise in Mengen von 1 Gew.-% bis 30 Gew.-%, insbesondere von 1 Gew.-% bis 25 Gew.-% enthalten, wobei Mengen im oberen Teil dieses Bereiches eher in flüssigen Waschmitteln anzutreffen sind und teilchenförmige Waschmittel vorzugsweise eher geringere Mengen von bis zu 5 Gew.-% enthalten.
  • Die Mittel können stattdessen oder zusätzlich weitere Tenside, vorzugsweise synthetische Aniontenside des Sulfat- oder Sulfonat-Typs, wie beispielsweise Alkylbenzolsulfonate, in Mengen von vorzugsweise nicht über 20 Gew.-%, insbesondere von 0,1 Gew.-% bis 18 Gew.-%, jeweils bezogen auf gesamtes Mittel, enthalten. Als für den Einsatz in derartigen Mitteln besonders geeignete synthetische Aniontenside sind die Alkyl- und/oder Alkenylsulfate mit 8 bis 22 C-Atomen, die ein Alkali-, Ammonium- oder Alkyl- beziehungsweise Hydroxyalkyl-substituiertes Ammoniumion als Gegenkation tragen, zu nennen. Bevorzugt sind die Derivate der Fettalkohole mit insbesondere 12 bis 18 C-Atomen und deren verzweigtkettiger Analoga, der sogenannten Oxoalkohole. Die Alkyl- und Alkenylsulfate können in bekannter Weise durch Reaktion der entsprechenden Alkoholkomponente mit einem üblichen Sulfatierungsreagenz, insbesondere Schwefeltrioxid oder Chlorsulfonsäure, und anschließende Neutralisation mit Alkali-, Ammonium- oder Alkyl- beziehungsweise Hydroxyalkyl-substituierten Ammoniumbasen hergestellt werden. Zu den einsetzbaren Tensiden vom Sulfat-Typ gehören auch die sulfatierten Alkoxylierungsprodukte der genannten Alkohole, sogenannte Ethersulfate. Vorzugsweise enthalten derartige Ethersulfate 2 bis 30, insbesondere 4 bis 10 Ethylenglykol-Gruppen pro Molekül. Zu den geeigneten Aniontensiden vom Sulfonat-Typ gehören die durch Umsetzung von Fettsäureestern mit Schwefeltrioxid und anschließender Neutralisation erhältlichen α-Sulfoester, insbesondere die sich von Fettsäuren mit 8 bis 22 C-Atomen, vorzugsweise 12 bis 18 C-Atomen, und linearen Alkoholen mit 1 bis 6 C-Atomen, vorzugsweise 1 bis 4 C-Atomen, ableitenden Sulfonierungsprodukte, sowie die durch formale Verseifung aus diesen hervorgehenden Sulfofettsäuren.
  • Als weitere fakultative tensidische Inhaltsstoffe kommen Seifen in Betracht, wobei gesättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure oder Stearinsäure, sowie aus natürlichen Fettsäuregemischen, zum Beispiel Kokos-, Palmkern- oder Talgfettsäuren, abgeleitete Seifen geeignet sind. Insbesondere sind solche Seifengemische bevorzugt, die zu 50 Gew.-% bis 100 Gew.-% aus gesättigten C12-C18-Fettsäureseifen und zu bis 50 Gew.-% aus Ölsäureseife zusammengesetzt sind. Vorzugsweise ist Seife in Mengen von 0,1 Gew.-% bis 5 Gew.-% enthalten. Insbesondere in flüssigen Mitteln, welche ein erfindungsgemäß verwendetes Polymer enthalten, können jedoch auch höhere Seifenmengen von in der Regel bis zu 20 Gew.-% enthalten sein. Gewünschtenfalls können die Mittel auch Betaine und/oder kationische Tenside enthalten, die
    • falls vorhanden - vorzugsweise in Mengen von 0,5 Gew.-% bis 7 Gew.-% eingesetzt werden. Unter diesen sind die unten diskutierten Esterquats besonders bevorzugt.
  • In einer weiteren Ausführungsform enthält das Mittel wasserlöslichen und/oder wasserunlöslichen Builder, insbesondere ausgewählt aus Alkalialumosilikat, kristallinem Alkalisilikat mit Modul über 1, monomerem Polycarboxylat, polymerem Polycarboxylat und deren Mischungen, insbesondere in Mengen im Bereich von 2,5 Gew.-% bis 60 Gew.-%.
  • Das Mittel enthält vorzugsweise 20 Gew.-% bis 55 Gew.-% wasserlöslichen und/oder wasserunlöslichen, organischen und/oder anorganischen Builder. Zu den wasserlöslichen organischen Buildersubstanzen gehören insbesondere solche aus der Klasse der Polycarbonsäuren, insbesondere Citronensäure und Zuckersäuren, sowie der polymeren (Poly-)carbonsäuren, insbesondere die durch Oxidation von Polysacchariden zugänglichen Polycarboxylate, polymere Acrylsäuren, Methacrylsäuren, Maleinsäuren und Mischpolymere aus diesen, die auch geringe Anteile polymerisierbarer Substanzen ohne Carbonsäurefunktionalität einpolymerisiert enthalten können. Die relative Molekülmasse der Homopolymeren ungesättigter Carbonsäuren liegt im Allgemeinen zwischen 5000 g/mol und 200000 g/mol, die der Copolymeren zwischen 2000 g/mol und 200000 g/mol, vorzugsweise 50000 g/mol bis 120000 g/mol, bezogen auf freie Säure. Ein besonders bevorzugtes Acrylsäure-Maleinsäure-Copolymer weist eine relative Molekülmasse von 50000 g/mol bis 100000 g/mol auf. Geeignete, wenn auch weniger bevorzugte Verbindungen dieser Klasse sind Copolymere der Acrylsäure oder Methacrylsäure mit Vinylethern, wie Vinylmethylethern, Vinylester, Ethylen, Propylen und Styrol, in denen der Anteil der Säure mindestens 50 Gew.-% beträgt. Als wasserlösliche organische Buildersubstanzen können auch Terpolymere eingesetzt werden, die als Monomere zwei Carbonsäuren und/oder deren Salze sowie als drittes Monomer Vinylalkohol und/oder ein Vinylalkohol-Derivat oder ein Kohlenhydrat enthalten. Das erste saure Monomer beziehungsweise dessen Salz leitet sich von einer monoethylenisch ungesättigten C3-C8-Carbonsäure und vorzugsweise von einer C3-C4-Monocarbonsäure, insbesondere von (Meth-)acrylsäure ab. Das zweite saure Monomer beziehungsweise dessen Salz kann ein Derivat einer C4-C8-Dicarbonsäure sein, wobei Maleinsäure besonders bevorzugt ist. Die dritte monomere Einheit wird in diesem Fall von Vinylalkohol und/oder vorzugsweise einem veresterten Vinylalkohol gebildet. Insbesondere sind Vinylalkohol-Derivate bevorzugt, welche einen Ester aus kurzkettigen Carbonsäuren, beispielsweise von C1-C4-Carbonsäuren, mit Vinylalkohol darstellen. Bevorzugte Terpolymere enthalten dabei 60 Gew.-% bis 95 Gew.-%, insbesondere 70 Gew.-% bis 90 Gew.-% (Meth)acrylsäure bzw. (Meth)acrylat, besonders bevorzugt Acrylsäure oder Acrylat, und Maleinsäure oder Maleinat sowie 5 Gew.-% bis 40 Gew.-%, vorzugsweise 10 Gew.-% bis 30 Gew.-% Vinylalkohol und/oder Vinylacetat. Ganz besonders bevorzugt sind dabei Terpolymere, in denen das Gewichtsverhältnis (Meth)acrylsäure beziehungsweise (Meth)acrylat zu Maleinsäure beziehungsweise Maleat zwischen 1:1 und 4:1, vorzugsweise zwischen 2:1 und 3:1 und insbesondere 2:1 und 2,5:1 liegt. Dabei sind sowohl die Mengen als auch die Gewichtsverhältnisse auf die Säuren bezogen. Das zweite saure Monomer beziehungsweise dessen Salz kann auch ein Derivat einer Allylsulfonsäure sein, die in 2-Stellung mit einem Alkylrest, vorzugsweise mit einem C1-C4-Alkylrest, oder einem aromatischen Rest, der sich vorzugsweise von Benzol oder Benzol-Derivaten ableitet, substituiert ist. Bevorzugte Terpolymere enthalten dabei 40 Gew.-% bis 60 Gew.-%, insbesondere 45 bis 55 Gew.-% (Meth)acrylsäure oder (Meth)acrylat, besonders bevorzugt Acrylsäure oder Acrylat, 10 Gew.-% bis 30 Gew.-%, vorzugsweise 15 Gew.-% bis 25 Gew.-% Methallylsulfonsäure oder Methallylsulfonat und als drittes Monomer 15 Gew.-% bis 40 Gew.-%, vorzugsweise 20 Gew.-% bis 40 Gew.-% eines Kohlenhydrats. Dieses Kohlenhydrat kann dabei beispielsweise ein Mono-, Di-, Oligo- oder Polysaccharid sein, wobei Mono-, Di- oder Oligosaccharide bevorzugt sind, besonders bevorzugt ist Saccharose. Durch den Einsatz des dritten Monomers werden vermutlich Sollbruchstellen in dem Polymer eingebaut, die für die gute biologische Abbaubarkeit des Polymers verantwortlich sind. Diese Terpolymere weisen im Allgemeinen eine relative Molekülmasse zwischen 1000 g/mol und 200000 g/mol, vorzugsweise zwischen 3000 g/mol und 10000 g/mol auf. Sie können, insbesondere zur Herstellung flüssiger Mittel, in Form wässriger Lösungen, vorzugsweise in Form 30-bis 50-gewichtsprozentiger wässriger Lösungen eingesetzt werden. Alle genannten Polycarbonsäuren werden in der Regel in Form ihrer wasserlöslichen Salze, insbesondere ihre Alkalisalze, eingesetzt.
  • Derartige organische Buildersubstanzen sind vorzugsweise in Mengen bis zu 40 Gew.-%, insbesondere bis zu 25 Gew.-% und besonders bevorzugt von 1 Gew.-% bis 5 Gew.-% enthalten. Mengen nahe der genannten Obergrenze werden vorzugsweise in pastenförmigen oder flüssigen, insbesondere wasserhaltigen, Mitteln eingesetzt.
  • Als wasserunlösliche, wasserdispergierbare anorganische Buildermaterialien werden insbesondere kristalline oder amorphe Alkalialumosilikate, in Mengen von bis zu 50 Gew.-%, vorzugsweise nicht über 40 Gew.-% und in flüssigen Mitteln insbesondere von 1 Gew.-% bis 5 Gew.-%, eingesetzt. Unter diesen sind die kristallinen Alumosilikate in Waschmittelqualität, insbesondere Zeolith NaA und gegebenenfalls NaX, bevorzugt. Mengen nahe der genannten Obergrenze werden vorzugsweise in festen, teilchenförmigen Mitteln eingesetzt. Geeignete Alumosilikate weisen insbesondere keine Teilchen mit einer Korngröße über 30 mm auf und bestehen vorzugsweise zu wenigstens 80 Gew.-% aus Teilchen mit einer Größe unter 10 mm. Ihr Calciumbindevermögen, das nach den Angaben der deutschen Patentschrift DE 24 12 837 bestimmt werden kann, liegt im Bereich von 100 bis 200 mg CaO pro Gramm. Geeignete Substitute beziehungsweise Teilsubstitute für das genannte Alumosilikat sind kristalline Alkalisilikate, die allein oder im Gemisch mit amorphen Silikaten vorliegen können. Die in den Mitteln als Gerüststoffe brauchbaren Alkalisilikate weisen vorzugsweise ein molares Verhältnis von Alkalioxid zu SiO2 unter 0,95, insbesondere von 1:1,1 bis 1:12 auf und können amorph oder kristallin vorliegen. Bevorzugte Alkalisilikate sind die Natriumsilikate, insbesondere die amorphen Natriumsilikate, mit einem molaren Verhältnis Na2O:SiO2 von 1:2 bis 1:2,8. Derartige amorphe Alkalisilikate sind beispielsweise unter dem Namen Portil® im Handel erhältlich. Sie werden im Rahmen der Herstellung bevorzugt als Feststoff und nicht in Form einer Lösung zugegeben. Als kristalline Silikate, die allein oder im Gemisch mit amorphen Silikaten vorliegen können, werden vorzugsweise kristalline Schichtsilikate der allgemeinen Formel Na2SixO2x+1 · yH2O eingesetzt, in der x, das sogenannte Modul, eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Bevorzugte kristalline Schichtsilikate sind solche, bei denen x in der genannten allgemeinen Formel die Werte 2 oder 3 annimmt. Insbesondere sind sowohl ß- als auch δ-Natriumdisilikate (Na2Si2O5·yH2O) bevorzugt. Auch aus amorphen Alkalisilikaten hergestellte, praktisch wasserfreie kristalline Alkalisilikate der obengenannten allgemeinen Formel, in der x eine Zahl von 1,9 bis 2,1 bedeutet, können in Mitteln, welche einen erfindungsgemäß zu verwendenden Wirkstoff enthalten, eingesetzt werden. In einer weiteren bevorzugten Ausführungsform erfindungsgemäßer Mittel wird ein kristallines Natriumschichtsilikat mit einem Modul von 2 bis 3 eingesetzt, wie es aus Sand und Soda hergestellt werden kann. Kristalline Natriumsilikate mit einem Modul im Bereich von 1,9 bis 3,5, werden in einer weiteren bevorzugten Ausführungsform von Waschmitteln, welche einen erfindungsgemäß verwendeten Wirkstoff enthalten, eingesetzt. Deren Gehalt an Alkalisilikaten beträgt vorzugsweise 1 Gew.-% bis 50 Gew.-% und insbesondere 5 Gew.-% bis 35 Gew.-%, bezogen auf wasserfreie Aktivsubstanz. Falls als zusätzliche Buildersubstanz auch Alkalialumosilikat, insbesondere Zeolith, vorhanden ist, beträgt der Gehalt an Alkalisilikat vorzugsweise 1 Gew.-% bis 15 Gew.-% und insbesondere 2 Gew.-% bis 8 Gew.-%, bezogen auf wasserfreie Aktivsubstanz. Das Gewichtsverhältnis Alumosilikat zu Silikat, jeweils bezogen auf wasserfreie Aktivsubstanzen, beträgt dann vorzugsweise 4:1 bis 10:1. In Mitteln, die sowohl amorphe als auch kristalline Alkalisilikate enthalten, beträgt das Gewichtsverhältnis von amorphem Alkalisilikat zu kristallinem Alkalisilikat vorzugsweise 1:2 bis 2:1 und insbesondere 1:1 bis 2:1.
  • Zusätzlich zum genannten anorganischen Builder können weitere wasserlösliche oder wasserunlösliche anorganische Substanzen in den Mitteln, welche einen erfindungsgemäß zu verwendenden Wirkstoff enthalten, mit diesem zusammen verwendet beziehungsweise in erfindungsgemäßen Verfahren eingesetzt werden, enthalten sein. Geeignet sind in diesem Zusammenhang die Alkalicarbonate, Alkalihydrogencarbonate und Alkalisulfate sowie deren Gemische. Derartiges zusätzliches anorganisches Material kann in Mengen bis zu 70 Gew.-% vorhanden sein.
  • Zusätzlich können die Mittel weitere in Wasch- und Reinigungsmitteln übliche Bestandteile enthalten. Zu diesen fakultativen Bestandteilen gehören insbesondere Enzyme, Enzymstabilisatoren, Komplexbildner für Schwermetalle, beispielsweise Aminopolycarbonsäuren, Aminohydroxypolycarbonsäuren, Polyphosphonsäuren und/oder Aminopolyphosphonsäuren, Schauminhibitoren, beispielsweise Organopolysiloxane oder Paraffine, Lösungsmittel und optische Aufheller, beispielsweise Stilbendisulfonsäurederivate. Vorzugsweise sind in Mitteln, welche einen erfindungsgemäß verwendeten Wirkstoff enthalten, bis zu 1 Gew.-%, insbesondere 0,01 Gew.-% bis 0,5 Gew.-% optische Aufheller, insbesondere Verbindungen aus der Klasse der substituierten 4,4'-Bis-(2,4,6-triamino-s-triazinyl)-stilben-2,2'-disulfonsäuren, bis zu 5 Gew.-%, insbesondere 0,1 Gew.-% bis 2 Gew.-% Komplexbildner für Schwermetalle, insbesondere Aminoalkylenphosphonsäuren und deren Salze und bis zu 2 Gew.-%, insbesondere 0,1 Gew.-% bis 1 Gew.-% Schauminhibitoren enthalten, wobei sich die genannten Gewichtsanteile jeweils auf gesamtes Mittel beziehen.
  • Lösungsmittel, die insbesondere bei flüssigen Mitteln eingesetzt werden können, sind neben Wasser vorzugsweise solche, die wassermischbar sind. Zu diesen gehören die niederen Alkohole, beispielsweise Ethanol, Propanol, iso-Propanol, und die isomeren Butanole, Glycerin, niedere Glykole, beispielsweise Ethylen- und Propylenglykol, und die aus den genannten Verbindungsklassen ableitbaren Ether. In derartigen flüssigen Mitteln liegen die erfindungsgemäß verwendeten Wirkstoffe in der Regel gelöst oder in suspendierter Form vor.
  • Gegebenenfalls anwesende Enzyme werden vorzugsweise aus der Gruppe umfassend Protease, Amylase, Lipase, Cellulase, Hemicellulase, Oxidase, Peroxidase oder Mischungen aus diesen ausgewählt. In erster Linie kommt aus Mikroorganismen, wie Bakterien oder Pilzen, gewonnene Protease in Frage. Sie kann in bekannter Weise durch Fermentationsprozesse aus geeigneten Mikroorganismen gewonnen werden. Proteasen sind im Handel beispielsweise unter den Namen BLAP®, Savinase®, Esperase®, Maxatase®, Optimase®, Alcalase®, Durazym® oder Maxapem® erhältlich. Die einsetzbare Lipase kann beispielsweise aus Humicola lanuginosa, aus Bacillus-Arten, aus Pseudomonas-Arten, aus Fusarium-Arten, aus Rhizopus-Arten oder aus Aspergillus-Arten gewonnen werden. Geeignete Lipasen sind beispielsweise unter den Namen Lipolase®, Lipozym®, Lipomax®, Lipex®, Amano®-Lipase, Toyo-Jozo®-Lipase, Meito®-Lipase und Diosynth®-Lipase im Handel erhältlich. Geeignete Amylasen sind beispielsweise unter den Namen Maxamyl®, Termamyl®, Duramyl® und Purafect® OxAm handelsüblich. Die einsetzbare Cellulase kann ein aus Bakterien oder Pilzen gewinnbares Enzym sein, welches ein pH-Optimum vorzugsweise im schwach sauren bis schwach alkalischen Bereich von 6 bis 9,5 aufweist. Derartige Cellulasen sind unter den Namen Celluzyme®, Carezyme® und Ecostone® handelsüblich.
  • Zu den gegebenenfalls, insbesondere in flüssigen Mitteln vorhandenen üblichen Enzymstabilisatoren gehören Aminoalkohole, beispielsweise Mono-, Di-, Triethanol- und -propanolamin und deren Mischungen, niedere Carbonsäuren, Borsäure beziehungsweise Alkaliborate, Borsäure-Carbonsäure-Kombinationen, Borsäureester, Boronsäurederivate, Calciumsalze, beispielsweise Ca-Ameisensäure-Kombination, Magnesiumsalze, und/oder schwefelhaltige Reduktionsmittel.
  • Zu den geeigneten Schauminhibitoren gehören langkettige Seifen, insbesondere Behenseife, Fettsäureamide, Paraffine, Wachse, Mikrokristallinwachse, Organopolysiloxane und deren Gemische, die darüberhinaus mikrofeine, gegebenenfalls silanierte oder anderweitig hydrophobierte Kieselsäure enthalten können. Zum Einsatz in partikelförmigen Mitteln sind derartige Schauminhibitoren vorzugsweise an granulare, wasserlösliche Trägersubstanzen gebunden.
  • In einer bevorzugten Ausführungsform ist ein Mittel, in das erfindungsgemäß zu verwendender Wirkstoff eingearbeitet wird, teilchenförmig und enthält bis zu 25 Gew.-%, insbesondere 5 Gew.-% bis 20 Gew.-% Bleichmittel, insbesondere Alkalipercarbonat, bis zu 15 Gew.-%, insbesondere 1 Gew.-% bis 10 Gew.-% Bleichaktivator, 20 Gew.-% bis 55 Gew.-% anorganischen Builder, bis zu 10 Gew.-%, insbesondere 2 Gew.-% bis 8 Gew.-% wasserlöslichen organischen Builder, 10 Gew.-% bis 25 Gew.-% synthetisches Aniontensid, 1 Gew.-% bis 5 Gew.-% nichtionisches Tensid und bis zu 25 Gew.-%, insbesondere 0,1 Gew.-% bis 25 Gew.-% anorganische Salze, insbesondere Alkalicarbonat und/oder -hydrogencarbonat.
  • In einer weiteren bevorzugten Ausführungsform ist ein Mittel, in das erfindungsgemäß zu verwendender Wirkstoff eingearbeitet wird, flüssig und enthält 1 Gew.-% bis 25 Gew.-%, insbesondere 5 Gew.-% bis 15 Gew.-% nichtionisches Tensid, bis zu 10 Gew.-%, insbesondere 0,5 Gew.-% bis 8 Gew.-% synthetisches Aniontensid, 3 Gew.-% bis 15 Gew.-%, insbesondere 5 Gew.-% bis 10 Gew.-% Seife, 0,5 Gew.-% bis 5 Gew.-%, insbesondere 1 Gew.-% bis 4 Gew.-% organischen Builder, insbesondere Polycarboxylat wie Citrat, bis zu 1,5 Gew.-%, insbesondere 0,1 Gew.-% bis 1 Gew.-% Komplexbildner für Schwermetalle, wie Phosphonat, und neben gegebenenfalls enthaltenem Enzym, Enzymstabilisator, Farb- und/oder Duftstoff Wasser und/oder wassermischbares Lösungsmittel.
  • Möglich ist auch die Verwendung einer Kombination aus einem erfindungswesentlichen schmutzablösevermögenden Wirkstoff mit einem schmutzablösevermögenden Polymer aus einer Dicarbonsäure und einem gegebenenfalls polymeren Diol zur Verstärkung der Reinigungsleistung von Waschmitteln beim Waschen von Textilien. Auch im Rahmen erfindungsgemäßer Mittel und des erfindungsgemäßen Verfahrens sind solche Kombinationen mit einem insbesondere polyesteraktiven schmutzablösevermögenden Polymer möglich.
  • Zu den bekanntlich polyesteraktiven schmutzablösevermögenden Polymeren, die zusätzlich zu den erfindungswesentlichen Wirkstoffen eingesetzt werden können, gehören Copolyester aus Dicarbonsäuren, beispielsweise Adipinsäure, Phthalsäure oder Terephthalsäure, Diolen, beispielsweise Ethylenglykol oder Propylenglykol, und Polydiolen, beispielsweise Polyethylenglykol oder Polypropylenglykol. Zu den bevorzugt eingesetzten schmutzablösevermögenden Polyestern gehören solche Verbindungen, die formal durch Veresterung zweier Monomerteile zugänglich sind, wobei das erste Monomer eine Dicarbonsäure HOOC-Ph-COOH und das zweite Monomer ein Diol HO-(CHR11-)aOH, das auch als polymeres Diol H-(O-(CHR11-)a)bOH vorliegen kann, ist. Darin bedeutet Ph einen o-, m- oder p-Phenylenrest, der 1 bis 4 Substituenten, ausgewählt aus Alkylresten mit 1 bis 22 C-Atomen, Sulfonsäuregruppen, Carboxylgruppen und deren Mischungen, tragen kann, R11 Wasserstoff, einen Alkylrest mit 1 bis 22 C-Atomen und deren Mischungen, a eine Zahl von 2 bis 6 und b eine Zahl von 1 bis 300. Vorzugsweise liegen in den aus diesen erhältlichen Polyestern sowohl Monomerdioleinheiten -O-(CHR11-)aO- als auch Polymerdioleinheiten -(O-(CHR11-)a)bO- vor. Das molare Verhältnis von Monomerdioleinheiten zu Polymerdioleinheiten beträgt vorzugsweise 100:1 bis 1:100, insbesondere 10:1 bis 1:10. In den Polymerdioleinheiten liegt der Polymerisationsgrad b vorzugsweise im Bereich von 4 bis 200, insbesondere von 12 bis 140. Das Molekulargewicht beziehungsweise das mittlere Molekulargewicht oder das Maximum der Molekulargewichtsverteilung bevorzugter schmutzablösevermögender Polyester liegt im Bereich von 250 g/mol bis 100 000 g/mol, insbesondere von 500 g/mol bis 50 000 g/mol. Die dem Rest Ph zugrundeliegende Säure wird vorzugsweise aus Terephthalsäure, Isophthalsäure, Phthalsäure, Trimellithsäure, Mellithsäure, den Isomeren der Sulfophthalsäure, Sulfoisophthalsäure und Sulfoterephthalsäure sowie deren Gemischen ausgewählt. Sofern deren Säuregruppen nicht Teil der Esterbindungen im Polymer sind, liegen sie vorzugsweise in Salzform, insbesondere als Alkali- oder Ammoniumsalz vor. Unter diesen sind die Natrium- und Kaliumsalze besonders bevorzugt. Gewünschtenfalls können statt des Monomers HOOC-Ph-COOH geringe Anteile, insbesondere nicht mehr als 10 Mol-% bezogen auf den Anteil an Ph mit der oben gegebenen Bedeutung, anderer Säuren, die mindestens zwei Carboxylgruppen aufweisen, im schmutzablösevermögenden Polyester enthalten sein. Zu diesen gehören beispielsweise Alkylen- und Alkenylendicarbonsäuren wie Malonsäure, Bernsteinsäure, Fumarsäure, Maleinsäure, Glutarsäure, Adipinsäure, Pimelinsäure, Korksäure, Azelainsäure und Sebacinsäure. Zu den bevorzugten Diolen HO-(CHR11-)aOH gehören solche, in denen R11 Wasserstoff und a eine Zahl von 2 bis 6 ist, und solche, in denen a den Wert 2 aufweist und R11 unter Wasserstoff und den Alkylresten mit 1 bis 10, insbesondere 1 bis 3 C-Atomen ausgewählt wird. Unter den letztgenannten Diolen sind solche der Formel HO-CH2-CHR11-OH, in der R11 die obengenannte Bedeutung besitzt, besonders bevorzugt. Beispiele für Diolkomponenten sind Ethylenglykol, 1,2-Propylenglykol, 1,3-Propylenglykol, 1,4-Butandiol, 1,5-Pentandiol, 1,6-Hexandiol, 1,8-Octandiol, 1,2-Decandiol, 1,2-Dodecandiol und Neopentylglykol. Besonders bevorzugt unter den polymeren Diolen ist Polyethylenglykol mit einer mittleren Molmasse im Bereich von 1000 g/mol bis 6000 g/mol.
  • Gewünschtenfalls können diese wie oben beschrieben zusammengesetzten Polyester auch endgruppenverschlossen sein, wobei als Endgruppen Alkylgruppen mit 1 bis 22 C-Atomen und Ester von Monocarbonsäuren in Frage kommen. Den über Esterbindungen gebundenen Endgruppen können Alkyl-, Alkenyl- und Arylmonocarbonsäuren mit 5 bis 32 C-Atomen, insbesondere 5 bis 18 C-Atomen, zugrunde liegen. Zu diesen gehören Valeriansäure, Capronsäure, Önanthsäure, Caprylsäure, Pelargonsäure, Caprinsäure, Undecansäure, Undecensäure, Laurinsäure, Lauroleinsäure, Tridecansäure, Myristinsäure, Myristoleinsäure, Pentadecansäure, Palmitinsäure, Stearinsäure, Petroselinsäure, Petroselaidinsäure, Ölsäure, Linolsäure, Linolaidinsäure, Linolensäure, Eläostearinsäure, Arachinsäure, Gadoleinsäure, Arachidonsäure, Behensäure, Erucasäure, Brassidinsäure, Clupanodonsäure, Lignocerinsäure, Cerotinsäure, Melissinsäure, Benzoesäure, die 1 bis 5 Substituenten mit insgesamt bis zu 25 C-Atomen, insbesondere 1 bis 12 C-Atomen tragen kann, beispielsweise tert.-Butylbenzoesäure. Den Endgruppen können auch Hydroxymonocarbonsäuren mit 5 bis 22 C-Atomen zugrunde liegen, zu denen beispielsweise Hydroxyvaleriansäure, Hydroxycapronsäure, Ricinolsäure, deren Hydrierungsprodukt Hydroxystearinsäure sowie o-, mund p-Hydroxybenzoesäure gehören. Die Hydroxymonocarbonsäuren können ihrerseits über ihre Hydroxylgruppe und ihre Carboxylgruppe miteinander verbunden sein und damit mehrfach in einer Endgruppe vorliegen. Vorzugsweise liegt die Anzahl der Hydroxymonocarbonsäureeinheiten pro Endgruppe, das heißt ihr Oligomerisierungsgrad, im Bereich von 1 bis 50, insbesondere von 1 bis 10. In einer bevorzugten Ausgestaltung der Erfindung werden Polymere aus Ethylenterephthalat und Polyethylenoxid-terephthalat, in denen die Polyethylenglykol-Einheiten Molgewichte von 750 bis 5000 aufweisen und das Molverhältnis von Ethylenterephthalat zu Polyethylenoxid-terephthalat 50:50 bis 90:10 beträgt, in Kombination mit Kombination mit einem erfindungswesentlichen Wirkstoff verwendet.
  • Die polyesteraktiven schmutzablösevermögenden Polymere sind vorzugsweise wasserlöslich, wobei unter dem Begriff "wasserlöslich" eine Löslichkeit von mindestens 0,01 g, vorzugsweise mindestens 0,1 g des Polymers pro Liter Wasser bei Raumtemperatur und pH 8 verstanden werden soll. Bevorzugt eingesetzte Polymere weisen unter diesen Bedingungen jedoch eine Löslichkeit von mindestens 1 g pro Liter, insbesondere mindestens 10 g pro Liter auf.
  • Bevorzugte Wäschenachbehandlungsmittel, die einen erfindungsgemäß zu verwendenden Wirkstoff enthalten, weisen als wäscheweichmachenden Wirkstoff ein sogenanntes Esterquat auf, das heißt einen quaternierten Ester aus Carbonsäure und Aminoalkohol. Dabei handelt es sich um bekannte Stoffe, die man nach den einschlägigen Methoden der präparativen organischen Chemie erhalten kann, beispielsweise indem man Triethanolamin in Gegenwart von unterphosphoriger Säure mit Fettsäuren partiell verestert, Luft durchleitet und anschließend mit Dimethylsulfat oder Ethylenoxid quaterniert. Auch die Herstellung fester Esterquats ist bekannt, bei der man die Quaternierung von Triethanolaminestern in Gegenwart von geeigneten Dispergatoren, vorzugsweise Fettalkoholen, durchführt.
  • In den Mitteln bevorzugte Esterquats sind quaternierte Fettsäuretriethanolaminestersalze, die der Formel (IV) folgen,
    Figure imgb0002
    in der R1CO für einen Acylrest mit 6 bis 22 Kohlenstoffatomen, R2 und R3 unabhängig voneinander für Wasserstoff oder R1CO, R4 für einen Alkylrest mit 1 bis 4 Kohlenstoffatomen oder eine (CH2CH2O)qH-Gruppe, m, n und p in Summe für 0 oder Zahlen von 1 bis 12, q für Zahlen von 1 bis 12 und X für ein ladungsausgleichendes Anion wie Halogenid, Alkylsulfat oder Alkylphosphat steht. Typische Beispiele für Esterquats, die im Sinne der Erfindung Verwendung finden können, sind Produkte auf Basis von Capronsäure, Caprylsäure, Caprinsäure, Laurinsäure, Myristinsäure, Palmitinsäure, Isostearinsäure, Stearinsäure, Ölsäure, Elaidinsäure, Arachinsäure, Behensäure und Erucasäure sowie deren technische Mischungen, wie sie beispielsweise bei der Druckspaltung natürlicher Fette und Öle anfallen. Vorzugsweise werden technische C12/18-Kokosfettsäuren und insbesondere teilgehärtete C16/18-Talg- beziehungsweise Palmfettsäuren sowie elaidinsäure-reiche C16/18-Fettsäureschnitte eingesetzt. Zur Herstellung der quaternierten Ester können die Fettsäuren und das Triethanolamin in der Regel im molaren Verhältnis von 1,1 : 1 bis 3 : 1 eingesetzt werden. Im Hinblick auf die anwendungstechnischen Eigenschaften der Esterquats hat sich ein Einsatzverhältnis von 1,2 : 1 bis 2,2 : 1, vorzugsweise 1,5 : 1 bis 1,9 : 1 als besonders vorteilhaft erwiesen. Die bevorzugt eingesetzten Esterquats stellen technische Mischungen von Mono-, Di- und Triestern mit einem durchschnittlichen Veresterungsgrad von 1,5 bis 1,9 dar und leiten sich von technischer C16/18-Talg- bzw. Palmfettsäure (lodzahl 0 bis 40) ab. Quaternierte Fettsäuretriethanolaminestersalze der Formel (IV), in der R1CO für einen Acylrest mit 16 bis 18 Kohlenstoffatomen, R2 für R1CO, R3 für Wasserstoff, R4 für eine Methylgruppe, m, n und p für 0 und X für Methylsulfat steht, haben sich als besonders vorteilhaft erwiesen.
  • Neben den quaternierten Carbonsäuretriethanolaminestersalzen kommen als Esterquats auch quaternierte Estersalze von Carbonsäuren mit Diethanolalkylaminen der Formel (V) in Betracht,
    Figure imgb0003
    in der R1CO für einen Acylrest mit 6 bis 22 Kohlenstoffatomen, R2 für Wasserstoff oder R1CO, R4 und R5 unabhängig voneinander für Alkylreste mit 1 bis 4 Kohlenstoffatomen, m und n in Summe für 0 oder Zahlen von 1 bis 12 und X für ein ladungsausgleichendes Anion wie Halogenid, Alkylsulfat oder Alkylphosphat steht.
  • Als weitere Gruppe geeigneter Esterquats sind schließlich die quaternierten Estersalze von Carbonsäuren mit 1,2-Dihydroxypropyldialkylaminen der Formel (VI) zu nennen,
    Figure imgb0004
    in der R1CO für einen Acylrest mit 6 bis 22 Kohlenstoffatomen, R2 für Wasserstoff oder R1CO, R4, R6 und R7 unabhängig voneinander für Alkylreste mit 1 bis 4 Kohlenstoffatomen, m und n in Summe für 0 oder Zahlen von 1 bis 12 und X für ein ladungsausgleichendes Anion wie Halogenid, Alkylsulfat oder Alkylphosphat steht.
  • Hinsichtlich der Auswahl der bevorzugten Fettsäuren und des optimalen Veresterungsgrades gelten die für (IV) genannten beispielhaften Angaben sinngemäß auch für die Esterquats der Formeln (V) und (VI). Üblicherweise gelangen die Esterquats in Form 50 bis 90 gewichtsprozentiger alkoholischer Lösungen in den Handel, die auch problemlos mit Wasser verdünnt werden können, wobei Ethanol, Propanol und Isopropanol die üblichen alkoholischen Lösungsmittel sind.
  • Esterquats werden vorzugsweise in Mengen von 5 Gew.-% bis 25 Gew.-%, insbesondere 8 Gew.-% bis 20 Gew.-%, jeweils bezogen auf gesamtes Wäschenachbehandlungsmittel, verwendet. Gewünschtenfalls können die erfindungsgemäß verwendeten Wäschenachbehandlungsmittel zusätzlich oben aufgeführte Waschmittelinhaltsstoffe enthalten, sofern sie nicht in unzumutbarer Weise negativ mit dem Esterquat wechselwirken. Bevorzugt handelt es sich um ein flüssiges, wasserhaltiges Mittel.
  • Beispiele Beispiel 1: Herstellung von Xylancarbamaten a) Synthese von N-(2-Ethoxyethyl)-xylancarbamat
  • 25 g Xylanphenylcarbonat (92,1 mmol, DS 1,17) in 750 ml trockenem DMF wurden mit 33,9 ml 2-Ethoxyethylamin (323,3 mmol) versetzt. Die Reaktionslösung wurde 30 Minuten bei Raumtemperatur gerührt. Anschließend wird die Mischung auf 60°C erwärmt und 20 Stunden auf dieser Temperatur gehalten. Das Produkt wurde durch Zugabe der Reaktionsmischung zu 4 I Diethylether gefällt und abgesaugt (G3-Fritte). Das Xylancarbamat wurde einmal mit 1,5 I Diethylether und dreimal mit je 1,5 I Ethylacetat gewaschen und ohne Trocknung in 700 ml destillierten Wasser gelöst. Die Lösung wurde durch azeotrope Destillation bei 80 mbar vom restlichen Ethylacetat befreit und anschließend gefriergetrocknet (4 Tage, -42°C, 0,25 mbar). Ausbeute: 16,84 g (69%)
    • FT-IR (KBr): 3411 cm-1 (OH); 2974 cm-1 (CH2); 2872 cm-1 (CH2); 1715 cm-1 (C=O); 1047 cm-1 (C-O-C)
    • 13C-NMR (250 MHz, DMSO-d6,): δ [ppm] 155,9; 155,6; 155,2 (C=O); 101,7 (C-1); 75,5; 74,1; 71,8; 70,9 (C-2 - C-4); 68,5 (CH2); 65,4 (CH2); 62,8 (C-5); 15,1 (CH3)
    • EA: C: 48,84%; H: 7,05%; N: 6,18%
    • DS: 1,18
    b) Synthese von N-(3-(N',N',N'-trimethylammoniumiodid)propyl)-xylancarbamat
  • N-(3-(N',N',N'-trimethylammoniumiodid)propyl)-xylancarbamat wurde analog zu dem unter a)
    • beschriebenen Verfahren aus Xylanphenylcarbonat (25 g; 130,2 mmol; DS 0,51) und 3-Amino-N,N,N-trimethylpropan-1-aminiumiodid (61,6 g; 252,6 mmol) hergestellt. Ausbeute: 22,67 g (67%)
    • FT-IR (KBr): 3443 cm-1 (OH); 2924 cm-1 (CH2); 2881 cm-1 (CH2); 1712 cm-1 (C=O); 1045 cm-1 (C-O-C
    • 13C-NMR (250 MHz, DMSO-d6,): δ [ppm] 156,0; 155,8; 155,4 (C=O); 101,6 (C-1); 75,4; 74,9; 72,3; (C-2 - C-4); 63,5 (CH2); 62,8 (C-5); 52,3 (CH3); 37,4 (CH2), 22,9 (CH2)
    • EA: C: 37,72%; H: 5,86%; N: 5,14%; I: 21,75%
    • DS: 0,48
    c) Synthese von N-(2-Ethoxyethyl)-xylancarbamat
  • N-(2-Ethoxyethyl)-xylancarbamat wurde analog zu dem unter a) beschriebenen Verfahren aus Xylanphenylcarbonat (25 g; 132,6 mmol; DS 0,48) und 2-Ethoxyethylamin (17,02 g; 190,9 mmol) hergestellt. Ausbeute: 21,86 g (86%)
    • FT-IR (KBr): 3414 cm-1 (OH); 2970 cm-1 (CH2); 2881 cm-1 (CH2); 1719 cm-1 (C=O); 1043 cm-1 (C-O-C)
    • 13C-NMR (250 MHz, DMSO-d6,): δ [ppm] 155,9; 155,6 (C=O); 101,8 (C-1); 77,5; 75,5; 74,1; 72,7; 72,1; 71,0 (C-2 - C-4); 68,6 (CH2); 65,4 (CH2); 62,9 (C-5); 15,1 (CH3)
    • EA: C: 46,29%; H: 6,66%; N: 3,81%;
    • DS: 0,52
    d) Synthese von N,N-(2-Methoxyethyl)methyl-xylancarbamat
  • N,N-(2-Methoxyethyl)methyl-xylancarbamat wurde analog zu dem unter a) beschriebenen Verfahren aus Xylanphenylcarbonat (30,8 g; 167,76; DS 0,43) und N-(2-Methoxyethyl)methylamin (19,3 g; 216,4 mmol) hergestellt. Ausbeute: 24,22 g (76%)
    • FT-IR (KBr): 3450 cm-1 (OH); 2926 cm-1 (CH2); 1797 cm-1 (C=O); 1051 cm-1 (C-O-C)
    • 13C-NMR (250 MHz, DMSO-d6,): δ [ppm] 155,3 (C=O); 101,8 (C-1); 75,6; 74,1; 72,9; 72,6 (C-2 - C-4); 69,94 (CH2); 63,2 (C-5); 62,8 (C-5); 58,1 (CH3); 47,6 (CH3), 36,8 (CH2)
    • EA: C: 46,11%; H: 6,35%; N: 2,89%;
    • DS: 0,36
    Beispiel 2
  • In Tabelle 1 ist die Zusammensetzung (Inhaltsstoffe in Gewichtsprozent, jeweils bezogen auf das gesamte Mittel) der erfindungsgemäßen Waschmittel M1 bis M4 und des von einem entsprechenden Wirkstoff freien Mittels V1 angegeben: Tabelle 1: Zusammensetzung
    V1 M1 M2 M3 M4
    C9-13 Alkylbenzolsulfonat, Na-Salz 5 5 5 5 5
    Natriumlaurylethersulfat mit 2 EO 6 6 6 6 6
    C12-14-Fettalkohol mit 7 EO 5 5 5 5 5
    C12-18-Fettsäure, Na-Salz 3 3 3 3 3
    NaOH 2 2 2 2 2
    Citronensäure 2 2 2 2 2
    Phosphonat 0,2 0,2 0,2 0,2 0,2
    Enzyme, Farbstoffe, opt. Aufheller, Alkohole, Borsäure, Parfüm 7 7 7 7 7
    Wirkstoff Ia) - 1,5 - - -
    Wirkstoff IIb) - - 1,5 - -
    Wirkstoff IIIc) - - - 1,5 -
    Wirkstoff IVd) - - - - 1,5
    Wasser auf 100
    a) N-(2-Ethoxyethyl)-xylancarbamat aus Beispiel 1 a)
    b) N-(3-(N',N',N'-trimethylammoniumiodid)propyl)-xylancarbamat aus Beispiel 1 b)
    c) N-(2-Ethoxyethyl)-xylancarbamat aus Beispiel 1 c)
    d) N,N-(2-Methoxyethyl)methyl-xylancarbamat aus Beispiel 1 d)
  • Saubere Textilien aus Baumwolle oder Polyester wurden in einer Waschmaschine Miele® W 1935 bei 40°C mit Wasser von 16°dH mit den Waschmitteln 3 Mal gewaschen und anschließend luftgetrocknet. Danach erfolgte die Applizierung der in Tabelle 2 angegebenen standardisierten Anschmutzungen auf die Testtextilien sowie eine Alterung der Anschmutzungen von 7 Tagen. Die so vorbereiteten Textilien wurden unter den oben genannten Bedingungen bei einer Füllmenge von 3,5 kg (saubere Füllwäsche plus Testtextilien) erneut mit dem jeweils zuvor eingesetzten Waschmittel gewaschen. Die Auswertung erfolgte colorimetrisch; in Tabelle 2 sind die Mittelwerte der Helligkeitswerte (Y-Werte) aus 6-fach-Bestimmungen angegeben. Tabelle 2: Helligkeitswert Y
    Anschmutzung / Mittel V1 M1 M2 M3 M4
    Schokoladeneis / Baumwolle 66,9 68,7 n.b. 67,9 68,7
    Make up / Baumwolle 35,4 36,8 39,7 36,4 n.d
    Lippenstift (rosa) / Baumwolle 36,1 37,8 39,2 n.b. 37,7
    Motoröl (gebraucht) / Baumwolle 66,3 67,8 n.b. 68,0 68,9
    Schwarze Schuhcreme / Polyester 28,4 32,7 37,9 30,9 n.b.

Claims (10)

  1. Verwendung von Xylanderivaten, die eine Einheit der allgemeinen Formel (I) enthalten,
    Figure imgb0005
    in der R1 und R2 unabhängig voneinander für H oder -C(=O)-NR3R4 stehen mit der Maßgabe, dass mindestens 1 der Reste R1 und R2 gleich -C(=O)-NR3R4 ist, und
    R3 und R4 unabhängig voneinander für -H, Aryl-, geradkettige oder verzweigte Alkyl-, Aryl-, Alkylaryl- oder Arylalkylgruppen stehen, die mit einer oder mehreren funktionellen Gruppen, wie Hydroxy-, Carboxy-, Oxy-, Amino- oder Ammoniumgruppen, substituiert sein können, und/oder die mit Heteroatomen, wie N, O oder S, unterbrochen sein können,
    zur Verstärkung der Reinigungsleistung von Waschmitteln beim Waschen von Textilien.
  2. Verfahren zum Waschen von Textilien, bei dem ein Waschmittel und ein Xylanderivat, das eine Einheit der allgemeinen Formel (I) enthält,
    Figure imgb0006
    n der R1 und R2 unabhängig voneinander für H oder -C(=O)-NR3R4 stehen mit der Maßgabe, dass mindestens 1 der Reste R1 und R2 gleich -C(=O)-NR3R4 ist, und
    R3 und R4 unabhängig voneinander für -H, Aryl-, geradkettige oder verzweigte Alkyl-, Aryl-, Alkylaryl- oder Arylalkylgruppen stehen, die mit einer oder mehreren funktionellen Gruppen, wie Hydroxy-, Carboxy-, Oxy-, Amino- oder Ammoniumgruppen, substituiert sein können, und/oder die mit Heteroatomen, wie N, O oder S, unterbrochen sein können,
    zum Einsatz kommen.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Einsatzkonzentration des Xylanderivats in der Waschflotte 0,001 g/l bis 1 g/l, insbesondere 0,005 g/l bis 0,2 g/l beträgt.
  4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass man es unter Einsatz eines Waschmittels, enthaltend das Xylanderivat, durchführt.
  5. Verfahren zum Waschen von Textilien nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass man es unter Einsatz eines Wäschenachbehandlungsmittels, insbesondere Weichspülmittels, enthaltend das Xylanderivat, durchführt.
  6. Waschmittel oder Wäschenachbehandlungsmittel, enthaltend ein Xylanderivat, das eine Einheit der allgemeinen Formel (I) enthält,
    Figure imgb0007
    n der R1 und R2 unabhängig voneinander für H oder -C(=O)-NR3R4 stehen mit der Maßgabe, dass mindestens 1 der Reste R1 und R2 gleich -C(=O)-NR3R4 ist, und
    R3 und R4 unabhängig voneinander für -H, Aryl-, geradkettige oder verzweigte Alkyl-, Aryl-, Alkylaryl- oder Arylalkylgruppen stehen, die mit einer oder mehreren funktionellen Gruppen, wie Hydroxy-, Carboxy-, Oxy-, Amino- oder Ammoniumgruppen, substituiert sein können, und/oder die mit Heteroatomen, wie N, O oder S, unterbrochen sein können.
  7. Verfahren nach Anspruch 4 oder 5 oder Mittel nach Anspruch 6, dadurch gekennzeichnet, dass das Mittel das Xylanderivat in Mengen von 0,01 Gew.-% bis 10 Gew.-%, insbesondere von 0,1 Gew.-% bis 3 Gew.-% enthält.
  8. Verwendung nach Anspruch 1 oder Verfahren nach einem der Ansprüche 2 bis 5 oder 7 oder Mittel nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass in der allgemeinen Formel (I) die Gruppen -NR3R4 sich ableiten von Aminoalkoholen, mehrfach alkoxylierten Aminen, α-Aminosäuren, β-Aminosäuren, ω-Aminosäuren, Anilin, das gewünschtenfalls am Ring substituiert sein kann, Benzylamin, das gewünschtenfalls am Ring substituiert sein kann, Morpholin, N-Amino-Morpholin, N-Aminoalkyl-Morpholin, Ethylendiamin, und Mischungen aus diesen.
  9. Verwendung, Verfahren oder Mittel nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Xylanderivat neben der substituierten Anhydroxyloseeinheit der allgemeinen Formel (I) weitere mit diesem verknüpfte Anhydroxyloseeinheiten, die unsubstituiert sein können oder der allgemeinen Formel (I) entsprechen, enthält.
  10. Verwendung, Verfahren oder Mittel nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im Xylanderivat auch Anhydroxylosereste mit anderen Substituenten, zu denen beispielsweise Alkylgruppen wie Methyl- oder Ethylgruppen, Hydroxyalkylgruppen wie Hydroxyethyl- oder Hydroxypropylgruppen, Carboxyalkylgruppen wie Carboxymethyl- oder Carboxyethylgruppen, Aminoalkylgruppen wie Aminoethyl- oder Trimethylammoniumethylgruppen, Sulfoalkylgruppen wie Sulfoethyl- oder Sulfopropylgruppen, Estergruppen wie Essigsäure-, ß-Aminopropionsäure-, Glykolsäure- oder Malonsäureestergruppen gehören, vorhanden sind, und/oder dass im Xylancarbamat der Substitutionsgrad, bezogen auf den Anteil an Carbamatgruppen, im Bereich von 0,1 bis 1,8, insbesondere im Bereich von 0,2 bis 1,2 liegt.
EP19730290.4A 2018-06-20 2019-06-06 Xylosecarbamate als schmutzablösevermögende wirkstoffe Active EP3810742B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018209990.1A DE102018209990A1 (de) 2018-06-20 2018-06-20 Xylosecarbamate als schmutzablösevermögende Wirkstoffe
PCT/EP2019/064814 WO2019243071A1 (de) 2018-06-20 2019-06-06 Xylosecarbamate als schmutzablösevermögende wirkstoffe

Publications (2)

Publication Number Publication Date
EP3810742A1 EP3810742A1 (de) 2021-04-28
EP3810742B1 true EP3810742B1 (de) 2022-08-03

Family

ID=66857873

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19730290.4A Active EP3810742B1 (de) 2018-06-20 2019-06-06 Xylosecarbamate als schmutzablösevermögende wirkstoffe

Country Status (4)

Country Link
US (1) US20210115358A1 (de)
EP (1) EP3810742B1 (de)
DE (1) DE102018209990A1 (de)
WO (1) WO2019243071A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021252558A1 (en) 2020-06-10 2021-12-16 The Procter & Gamble Company A laundry care or dish care composition comprising a poly alpha-1,6-glucan derivative
EP4134421A1 (de) 2021-08-12 2023-02-15 The Procter & Gamble Company Waschmittelzusammensetzung mit waschmitteltensid und pfropfpolymer
EP4134420A1 (de) 2021-08-12 2023-02-15 The Procter & Gamble Company Waschmittelzusammensetzung mit reinigendem tensid und biologisch abbaubaren pfropfpolymeren
WO2023064749A1 (en) 2021-10-14 2023-04-20 The Procter & Gamble Company A fabric and home care product comprising cationic soil release polymer and lipase enzyme
EP4321604A1 (de) 2022-08-08 2024-02-14 The Procter & Gamble Company Textil- und heimpflegezusammensetzung, die ein tensid und ein polyester umfasst

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT330930B (de) 1973-04-13 1976-07-26 Henkel & Cie Gmbh Verfahren zur herstellung von festen, schuttfahigen wasch- oder reinigungsmitteln mit einem gehalt an calcium bindenden substanzen
US4000093A (en) 1975-04-02 1976-12-28 The Procter & Gamble Company Alkyl sulfate detergent compositions
US4136038A (en) 1976-02-02 1979-01-23 The Procter & Gamble Company Fabric conditioning compositions containing methyl cellulose ether
JPS60226831A (ja) * 1984-04-02 1985-11-12 Daicel Chem Ind Ltd 分離剤
GB8519047D0 (en) 1985-07-29 1985-09-04 Unilever Plc Detergent composition
GB8519046D0 (en) 1985-07-29 1985-09-04 Unilever Plc Detergent compositions
US5889180A (en) * 1997-11-10 1999-03-30 Uop Llc Use of small pore silicas as a support for a chiral stationary phase
EP1520927B1 (de) 1998-09-30 2007-08-01 Unilever Plc Wäschebehandlung
GB9821217D0 (en) 1998-09-30 1998-11-25 Unilever Plc Treatment for substrates
EP1108726A1 (de) * 1999-12-14 2001-06-20 Tiense Suikerraffinaderij N.V. Grenzflächenaktive Glukosid Alkylurethane
GB2360791A (en) 2000-03-29 2001-10-03 Unilever Plc Softening treatment for fabrics
GB2360793A (en) 2000-03-29 2001-10-03 Unilever Plc Improving perfume deposition or retention on fabrics
GB0007654D0 (en) 2000-03-29 2000-05-17 Unilever Plc Laundry treatment for fabrics
EP2135933B1 (de) * 2008-06-20 2013-04-03 The Procter and Gamble Company Waschzusammensetzung

Also Published As

Publication number Publication date
US20210115358A1 (en) 2021-04-22
EP3810742A1 (de) 2021-04-28
WO2019243071A1 (de) 2019-12-26
DE102018209990A1 (de) 2019-12-24

Similar Documents

Publication Publication Date Title
EP3810742B1 (de) Xylosecarbamate als schmutzablösevermögende wirkstoffe
EP1888733B1 (de) Verstärkung der reinigungsleistung von waschmitteln durch polymer
DE102006039873B4 (de) Verstärkung der Reinigungsleistung von Waschmitteln durch baumwollaktives schmutzablösevermögendes Cellulosederivat
EP3414310B1 (de) 6-desoxy-6-amino-cellulosen als schmutzablösevermögende wirkstoffe
EP1592766B1 (de) Verstärkung der reinigungsleistung von waschmitteln durch eine kombination von cellulosederivaten
WO2019243108A1 (de) Chitosanderivate als schmutzablösevermögende wirkstoffe
EP3810740A1 (de) Pullulanderivate als schmutzablösende wirkstoffe
EP2836580B1 (de) Mikrofibrilläre cellulose als schmutzablösevermögender wirkstoff
EP1592763B1 (de) Bleichmittelhaltiges waschmittel mit baumwollaktivem schmutzablösevermögendem cellulosederivat
EP1888732B1 (de) Verstärkung der reinigungsleistung von waschmittel durch polymer
EP1592765B1 (de) Verstärkung der reinigungsleistung von waschmitteln durch cellulosederivat und hygroskopisches polymer
EP3049508B1 (de) Cellulosecarbamate als schmutzablösevermögende wirkstoffe
EP4100498B1 (de) Chitosanderivate als schmutzablösevermögende wirkstoffe
EP1592764B1 (de) Erhöhung der wasseraufnahmefähigkeit von textilien
EP3083918B1 (de) Siloxangruppen-haltige copolymere als schmutzablösevermögende wirkstoffe
EP2917319B1 (de) Polymere mit polaren gruppen als schmutzablösevermögende wirkstoffe
DE102022200882A1 (de) Polymere schmutzablösevermögende Wirkstoffe
EP3848441A1 (de) Carboxymethylierte poly(2-vinylpyridine) als schmutzablösevermögende wirkstoffe
DE102022200126A1 (de) Fucoidane als vergrauungsinhibierende Wirkstoffe
DE102022200127A1 (de) Ulvane als vergrauungsinhibierende Wirkstoffe
DE102022200269A1 (de) Saccharosederivate als vergrauungsinhibierende Wirkstoffe
DE10351322A1 (de) Bleichmittelhaltiges Waschmittel mit baumwollaktivem schmutzablösevermögendem Cellulosederivat
DE102015003483A1 (de) Polymere Ester aromatischer Dicarbonsäuren als schmutzablösevermögende Wirkstoffe

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201116

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220210

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1508763

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220815

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019005148

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221205

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221103

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221203

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019005148

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

26N No opposition filed

Effective date: 20230504

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230628

Year of fee payment: 5

Ref country code: DE

Payment date: 20230620

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230622

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230606

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230606