EP3217408B1 - Fokussierungsmodul für einen formfilter und formfilter zum einstellen einer räumlichen intensitätsverteilung eines röntgenstrahls - Google Patents

Fokussierungsmodul für einen formfilter und formfilter zum einstellen einer räumlichen intensitätsverteilung eines röntgenstrahls Download PDF

Info

Publication number
EP3217408B1
EP3217408B1 EP17173761.2A EP17173761A EP3217408B1 EP 3217408 B1 EP3217408 B1 EP 3217408B1 EP 17173761 A EP17173761 A EP 17173761A EP 3217408 B1 EP3217408 B1 EP 3217408B1
Authority
EP
European Patent Office
Prior art keywords
groove
continuous opening
frame
guide rail
pairs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17173761.2A
Other languages
English (en)
French (fr)
Other versions
EP3217408A2 (de
EP3217408A3 (de
Inventor
Sascha Manuel Huck
Karl Stierstorfer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Healthcare GmbH
Original Assignee
Siemens Healthcare GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Healthcare GmbH filed Critical Siemens Healthcare GmbH
Priority to EP17173761.2A priority Critical patent/EP3217408B1/de
Publication of EP3217408A2 publication Critical patent/EP3217408A2/de
Publication of EP3217408A3 publication Critical patent/EP3217408A3/de
Application granted granted Critical
Publication of EP3217408B1 publication Critical patent/EP3217408B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • G21K1/025Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using multiple collimators, e.g. Bucky screens; other devices for eliminating undesired or dispersed radiation
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/10Scattering devices; Absorbing devices; Ionising radiation filters

Definitions

  • the invention relates to a focusing module for a shape filter for setting a spatial intensity distribution of an X-ray beam.
  • the invention also relates to a shape filter for setting a spatial intensity distribution of an X-ray beam, an irradiation arrangement and a medical imaging device.
  • the spatial intensity distribution of the x-ray beam for example, as a function of physiological and / or anatomical parameters of the patient.
  • the X-ray source rotates around the patient, it can be taken into account that radiation striking the patient frontally travels a significantly shorter distance through the patient and consequently experiences significantly less absorption than radiation striking the patient from the side, which for example propagated from one shoulder to the opposite shoulder.
  • US 7403597 B2 discloses a diaphragm device for an X-ray device provided for scanning an object.
  • US 8218721 B2 discloses a diaphragm for the targeted influencing of X-rays which originate from an X-ray focus of a CT device and which is used to scan an object to be examined.
  • US 8873704 B2 discloses a filter for an x-ray device for forming an intensity profile of x-rays emanating from an x-ray source.
  • US 5099134 A discloses a collimator comprising a first array of a plurality of longitudinally extending radiation shielding plates arranged parallel to one another and each having a plurality of slots formed therein.
  • US 2010/239072 A1 discloses a collimator unit comprising a pair of retaining members each including a plurality of grooves formed in respective opposing surfaces. More examples are given in JPS58114800U and US2011 / 0096895 A1 disclosed.
  • US 2017/011815 A1 discloses an x-ray filter assembly comprising a plurality of x-ray attenuating layers arranged in a stack, the x-ray attenuating layers being angled to one another to have a focal point.
  • the invention has the object of enabling an improved setting of a spatial intensity distribution of an X-ray beam.
  • the focusing module has a first guide rail and a second guide rail.
  • the respective first grooves of the groove pairs are formed in the first guide rail.
  • the respective second grooves of the groove pairs are formed in the second guide rail.
  • the first guide rail and / or the second guide rail is made from a crystalline semiconductor material.
  • the different planes which each have the focal point can intersect in a straight line which has the focal point.
  • the focus line can in particular be a straight line and / or have the focus point.
  • the through opening can be essentially rectangular, for example square.
  • the through opening can have two long sides and two short sides.
  • the frame can have a first transverse beam which forms a first long side of the through opening.
  • the frame can have a second transverse beam which forms a second long side of the through opening.
  • the frame can have a first side part which forms a first short side of the through opening.
  • the frame can have a second side part which forms a second short side of the through opening.
  • the first crossbar and / or the second crossbar can be made of aluminum, for example.
  • a transverse beam can be, for example, a single component or a composite assembly that has several components.
  • a side part can, for example, be a single component or a composite assembly that has several components.
  • first transverse bar can be connected to the second transverse bar by means of the first side part and the second side part.
  • first transverse bar can be arranged at a predetermined distance relative to the second transverse bar by means of the first side part and the second side part.
  • a first stop means can be formed in an area of the first groove, the lamellar plate being insertable along the first groove up to a form fit of the lamella plate with the first stop means, the form fit of the lamella plate with the first stop means further insertion of the lamella plate along the first groove counteracts.
  • the first stop means can be designed based on an additive manufacturing process and / or an abrasive manufacturing process or can be connected to the frame, for example glued.
  • the first stop means can be designed, for example, in the form of a stop rail.
  • a second stop means can be formed in a region of the second groove, the lamellar plate being insertable along the second groove up to a form fit of the lamella plate with the second stop means, the form fit of the lamella plate with the second stop means further insertion of the lamella plate along the second groove counteracts.
  • the second stop means can be designed based on an additive manufacturing process and / or an abrasive manufacturing process or can be connected to the frame, for example glued.
  • the second stop means can be designed, for example, in the form of a rail which extends along the frame.
  • the first guide rail and / or the second guide rail can be produced, for example, in the form of a strip made of a dimensionally stable and radiation-resistant material. Grooves can be formed in this strip by structuring.
  • the material is a crystalline semiconductor such as silicon.
  • the groove pairs can be formed based on an abrasive manufacturing process.
  • the first groove and / or the The second groove can in particular be produced using an abrasive process such as wire eroding or etching, for example.
  • the arrangement of groove pairs has several groove pairs.
  • the focusing module can have a plurality of arrangements of pairs of grooves, each arrangement of pairs of grooves being able to be assigned a focus point and / or a focus line.
  • a first arrangement which is formed by pairs of grooves, which are arranged in the center of the focusing module, is assigned a first focus line
  • a second arrangement which is formed by pairs of grooves, is assigned to the outside of the center of the focusing module are arranged, a second focus line is assigned.
  • the second focus line can be located closer to the focusing module than the first focus line or vice versa.
  • the invention also relates to a shape filter for setting a spatial intensity distribution of an X-ray beam, having a focusing module according to the invention and a plurality of lamellar plates, which are each received in a groove pair of the arrangement of groove pairs and inserted into the through opening.
  • the arrangement of the lamellar plates i.e. the width, length and height of the lamellar plates as well as the distance and the angle between adjacent lamellar plates, can be freely selected over a wide range. In this way, for example, different shaft conditions for the tunnel-shaped opening or different line frequencies can be implemented, even along the same guide rail.
  • the material from which the lamellar plates are made can be freely selected within a wide range, in particular if it is strong enough to bridge the distance between the first groove and the second groove.
  • the lamellar plates can be made of tungsten and / or a tungsten alloy. With tungsten can have high absorption can be realized by X-rays. In this way, in particular, scattered radiation and a spectral hardening of the X-ray beam can be minimized.
  • the lamellar plates can be precisely and permanently aligned in the guide rails to the focal point and / or the focal line.
  • the lamellar plates can be fixed in the groove pairs to prevent wobbling and slipping out.
  • the lamellar plates can be fixed in the first groove and / or in the second groove, for example, by means of an adhesive or with the aid of stop rails.
  • a first stop rail can be provided which can be arranged on the frame and / or on the first guide rail in such a way that the first stop rail closes an open end of the first groove in each of the groove pairs.
  • a second stop rail can be provided which can be arranged on the frame and / or on the second guide rail in such a way that the second stop rail closes an open end of the second groove in each of the groove pairs.
  • the stop rails can, for example, be glued to the frame, to the first guide rail and / or to the second guide rail.
  • the invention also relates to a medical imaging device having an irradiation arrangement according to the invention.
  • the medical imaging device can be selected, for example, from the group of imaging modalities which consists of an X-ray machine, a C-arm X-ray machine, a computed tomography machine (CT machine), a single-photon emission computed tomography machine (SPECT-CT machine) combined with a computer tomography machine. and a positron emission tomography device (PET-CT device) combined with a computed tomography device.
  • the medical imaging device can furthermore have a combination of an imaging modality, which is selected, for example, from the group of imaging modalities, and an irradiation modality.
  • the irradiation modality can for example have an irradiation unit for therapeutic irradiation.
  • a computed tomography device is named as an example of a medical imaging device.
  • the invention further relates to an arrangement having a focusing module according to the invention, a shaped filter according to the invention, an irradiation arrangement according to the invention and / or a medical imaging device according to the invention.
  • the illustrated embodiment of a focusing module according to the invention has a frame R with a through opening H and an arrangement of groove pairs NP, which are arranged on the frame R on.
  • a focal point T can be defined relative to the arrangement of groove pairs NP, to which the through opening H faces.
  • the focal line TL runs through the focal point T and is essentially parallel to the axis of rotation AR.
  • the groove pairs NP are arranged next to one another along the through opening H in such a way that they are located in different planes E which each have the focal point T and intersect in the focal line TL.
  • the groove pairs NP each have a first groove N1 and a second groove N2 opposite the first groove N1 in relation to the through opening H.
  • the first groove N1 and the second groove N2 are designed such that a lamellar plate L can be received on two opposite edges of the lamellar plate L in the first groove N1 and the second groove N2 and along the first groove N1 and the second groove N2 in the continuous Opening H is insertable.
  • the through opening H is substantially rectangular.
  • the through opening H has two long sides HL1, HL2 and two short sides HS1, HS2.
  • the frame R has a first transverse beam RL1 which forms a first long side HL1 of the through opening H.
  • the frame R has a second transverse beam RL2 which forms a second long side HL2 of the through opening H.
  • the frame R has a first side part RS1, which forms a first short side HS1 of the through opening H.
  • the frame R has a second side part RS2, which forms a second short side HS2 of the through opening H.
  • the first crossbar RL1 is connected to the second crossbar RL2 by means of the first side part RS1 and the second side part RS2 and is arranged at a predetermined distance ZR relative to the second crossbar RL2.
  • the focusing module M also has a first guide rail RN1 and a second guide rail RN2.
  • the respective first grooves N1 of the groove pairs NP are formed in the first guide rail RN1.
  • the respective second grooves N2 of the groove pairs NP are formed in the second guide rail RN2.
  • the first guide rail RN1 is arranged on the first crossbar RL1, in particular glued to the first crossbar RL1.
  • the second guide rail RN2 is arranged on the second crossbar RL2, in particular glued to the second crossbar RL2.
  • an alternative embodiment of the invention provides that the guide rails are each arranged on the short sides of the through opening and / or that the guide rails each extend along the short sides of the through opening.
  • the alignment of the first groove N1 in the guide rail RN1 corresponds to the focusing direction of the lamellar plate L, which is inserted into the first groove N1.
  • the width and height of the first groove N1 are uniform according to the dimensions and tolerances of the lamellar plate L.
  • the illustrated embodiment of a shaped filter F according to the invention has the focusing module M and a plurality of lamellar plates L, which are each received in a groove pair of the arrangement of groove pairs NP and inserted into the through opening H.
  • a first stop means B1 is formed in an area of the first groove N1, the lamellar plate L being insertable along the first groove N1 up to a form fit of the lamellar plate L with the first stop means B1, the form fit of the lamella plate L to the first stop means B1 counteracts further insertion of the lamellar plate L along the first groove N1.
  • the first stop means B1 is formed by the closed end of the first groove N1, which does not extend over the entire extent of the lamellar plate L in the direction of the first groove N1.
  • the first groove N1 is only open from the front face of the guide rail RN1, so that lamellar plates L can be inserted from this direction but cannot slip out on the rear side.
  • the length of the lamellar plates L corresponds to the distance between the first guide rail RN1 and the second guide rail RN2 minus a suitable tolerance.
  • the distance YL between adjacent lamellar plates L can in particular be selected in such a way that the grid of the lamellar array formed by the lamellar plates L cannot be mapped by the grid of the detector 28. This can be implemented in particular with a rastering of the lamella array formed by the lamella plates L, which is finer than the resolution of the detector 28.
  • the distance YL between adjacent lamellar plates from one another can be between approximately 0.2 and approximately 0.5 millimeters, for example.
  • the illustrated embodiment example shows the distance between the centers of gravity of adjacent lamellar plates for the distance YL.
  • the width YN of the first groove N1 and / or of the second groove N2 can be between approximately 0.04 and approximately 0.08 millimeters, for example.
  • the depth ZN of the first groove N1 and / or the second groove N2 can be approximately 0.5 millimeters, for example.
  • the length XR of the first groove N1 and / or the second groove N2 can be approximately 3 millimeters, for example.
  • the extension of the frame R in the direction of the first groove N1 and / or in the direction of the second groove N2 can in particular be somewhat greater than the length XR.
  • the extension YR of the frame R in a direction along which the groove pairs NP are arranged one after the other in a row can be, for example, approximately 140 millimeters.
  • the distance ZR from the first groove N1 to the second groove N2 can be approximately 40 millimeters, for example.
  • the tolerances, in particular for the width YN and depth ZN can be, for example, approximately 10 micrometers.
  • the distance from the focal point T to the first groove N1 and / or to the second groove N2 can be approximately 220 millimeters, for example.
  • Fig. 4 shows a schematic view of an embodiment of a medical imaging device according to the invention with a radiation arrangement according to the invention.
  • a computed tomography device is shown as an example for the medical imaging device 1.
  • the medical imaging device 1 has the gantry 20, the tunnel-shaped opening 9, the patient support device 10 and the control device 30.
  • the gantry 20 has the stationary support frame 21 and the rotor 24.
  • the rotor 24 is arranged on the support frame 21 so as to be rotatable about an axis of rotation AR relative to the support frame 21 by means of a rotary bearing device.
  • the patient 13 can be introduced into the tunnel-shaped opening 9.
  • the acquisition area 4 is located in the tunnel-shaped opening 9.
  • an area of the patient 13 to be imaged can be positioned in such a way that the radiation 27 from the radiation source 26 can reach the area to be imaged and, after interacting with the area to be imaged, to the radiation detector 28 can reach.
  • the patient support device 10 has the support base 11 and the support plate 12 for positioning the patient 13.
  • the mounting plate 12 is arranged on the mounting base 11 so as to be movable relative to the mounting base 11 that the mounting plate 12 can be inserted into the acquisition area 4 in a longitudinal direction of the mounting plate 12, in particular along the axis of rotation AR.
  • the medical imaging device 1 is designed to acquire acquisition data based on electromagnetic radiation 27.
  • the medical imaging device 1 has an acquisition unit.
  • the acquisition unit is a projection data acquisition unit with the radiation source 26, e.g. B. an X-ray source, and the detector 28, z. B. an X-ray detector, in particular an energy-resolving X-ray detector.
  • the radiation source 26 is arranged on the rotor 24 and is used to emit radiation 27, e.g. B. X-rays, with radiation quanta 27 formed.
  • the detector 28 is arranged on the rotor 24 and is designed to detect the radiation quanta 27.
  • the radiation quanta 27 can pass from the radiation source 26 to the area of the patient 13 to be imaged and, after interacting with the area to be imaged, impinge on the detector 28. In this way, acquisition data of the area to be imaged can be recorded in the form of projection data by means of the acquisition unit.
  • the control device 30 is designed to receive the acquisition data acquired by the acquisition unit.
  • the control device 30 is designed to control the medical imaging device 1.
  • the control device 30 has the data processing unit 35, the computer-readable medium 32 and the processor system 36.
  • the control device 30, in particular the data processing unit 35 is formed by a data processing system which has a computer with a processor system.
  • the data processing unit 35 is designed in particular to control the positioning unit PF and is connected to the positioning unit PF by means of the positioning interface PFI.
  • the control device 30 has the image reconstruction device 34. Using the image reconstruction device 34, a medical image data set can be reconstructed based on the acquisition data.
  • the medical imaging device 1 has an input device 38 and an output device 39, which are each connected to the control device 30.
  • the input device 38 is for inputting control information, e.g. B. image reconstruction parameters, examination parameters or the like formed.
  • the output device 39 is in particular for outputting control information, Images and / or acoustic signals formed.
  • the parts of the frame R which hold the lamellar plates L in their respective position and specify the alignment of the lamellar plates L, are arranged outside the beam path in such a way that the X-ray beam 27 is not disturbed by these parts of the frame R.
  • the crossbeams RL1, RL2 can therefore be made solid and mechanically stable, without disadvantages with regard to the X-ray beam 27 arising as a result.
  • the side parts RS1, RS2 define the distance between the crossbars RL1, RL2 so that they do not protrude into the X-ray beam 27. Apart from the lamellar plates L and air, there is therefore no further material in the beam path that could influence the X-ray beam 27, for example through scattering or absorption.
  • holes RCS, RCM for example with threads, can be provided on the frame R, in particular in the crossbeams RL1, RL2.
  • the different parts of the frame R in particular the crossbars RL1, RL2 and the side parts RS1, RS2, can be connected to one another by means of the bores RCS.
  • the frame R can be connected to an actuator PFA of the positioning unit PF by means of the bores RCM.
  • the frame R can be made mechanically stable in such a way that the frame R can absorb relatively high forces and torques without being damaged or significantly deformed. In particular, rotations of the frame R relative to the X-ray source 26 can thus be carried out without damaging the sensitive and precise guide rails RN1, RN2.
  • the lamellar plates L are fixed and protected in the stable frame R. Strong acceleration forces due to a rotation of the rotor 24 are absorbed by the frame R and diverted. This can in particular prevent the acceleration forces which are due to the Rotation of the rotor 24 occur, the relative position and position of the lamellar plates L to one another is changed.
  • the lamellar plates L in the shaped filter F are aligned and fixed in such a way that each lamellar plate L is exactly aligned with the focal point T and / or the focal line TL.
  • the lamellar plates L are positioned in the beam path of the fan-shaped X-ray beam 27.
  • the shape filter F is positioned in a first position relative to the X-ray source 26, in which the focal point T corresponds to a starting point of the X-ray beam 27.
  • the lamellar plates L In the first position, the lamellar plates L have a minimal influence on the X-ray beam 27 and thus on the signal detected at the detector 28.
  • the area of the lamellar plates L on which the X-ray beam 27 can be absorbed is minimal in the first position.
  • the shaped filter F can be positioned relative to the X-ray source 26 by means of the positioning unit PF.
  • the shaped filter F can be rotated by means of the positioning unit PF about an axis which is essentially parallel to the axis of rotation AR and runs through the shaped filter 26, for example.
  • the shaped filter F can be rotated by means of the positioning unit PF about an axis which is perpendicular both to the axis of rotation AR and to a linear partial beam of the X-ray beam 27 impinging on the detector 28 and runs through the shaped filter 26, for example.
  • the shaped filter F can be shifted relative to the X-ray source 26.
  • the shaped filter F can be displaced along a linear partial beam of the x-ray beam 27 impinging on the detector 28 and / or perpendicular to this partial beam, in particular displaced substantially perpendicular to the axis of rotation AR.
  • a spatial intensity distribution of the X-ray beam 27 can be set.
  • a change in position and / or position of the lamellar plates L relative to the frame R would in particular affect the signal detected at the detector 28 and the reproducibility of examinations.
  • the invention enables in particular a precise and permanent arrangement of lamellar plates L in the respective plane E.
  • the positioning unit PF can have a cardanic suspension, for example.
  • the shaped filter F can be connected to the rotor 24 by means of the cardanic suspension and / or positioned relative to the X-ray source 26.
  • Fig. 5 shows a schematic view of an example of an anti-scatter grid M-5, which can be used in particular for 2D x-ray recordings.
  • the anti-scatter grid M-5 is made up of alternating strips of paper S-5 and lead lamellae L-5.
  • the paper-lead assembly cover C-5 can be made from materials such as carbon fiber reinforced carbon (CFC) and / or aluminum.
  • CFC carbon fiber reinforced carbon
  • the paper strips S-5 serve as placeholders between the lead lamellas L-5 and can cause additional absorption and scattering of an X-ray beam 27.
  • an additional Absorption and scattering of the X-ray beam 27 can be avoided since no placeholders are required between the lamellar plates L in the beam path of the X-ray beam 27.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Description

  • Die Erfindung betrifft ein Fokussierungsmodul für einen Formfilter zum Einstellen einer räumlichen Intensitätsverteilung eines Röntgenstrahls. Die Erfindung betrifft ferner einen Formfilter zum Einstellen einer räumlichen Intensitätsverteilung eines Röntgenstrahls, eine Bestrahlungsanordnung und eine medizinische Bildgebungsvorrichtung.
  • Insbesondere für eine Bildgebungsuntersuchung eines Patienten unter Verwendung eines Röntgenstrahls kann es vorteilhaft sein, die räumliche Intensitätsverteilung des Röntgenstrahls beispielsweise in Abhängigkeit von physiologischen und/oder anatomischen Parametern des Patienten einstellen zu können. Beispielsweise kann auf diese Weise bei einer Rotation der Röntgenquelle um den Patienten berücksichtigt werden, dass eine frontal auf den Patienten auftreffende Strahlung eine wesentlich kürzere Strecke durch den Patienten zurücklegt, und infolgedessen eine deutlich geringere Absorption erfährt, als seitlich auf den Patienten auftreffende Strahlung, welche beispielsweise von einer Schulter zur gegenüberliegenden Schulter propagiert.
  • US 7403597 B2 offenbart eine Blendenvorrichtung für eine zur Abtastung eines Objektes vorgesehene Röntgeneinrichtung.
  • US 8218721 B2 offenbart eine Blende zur gezielten Beeinflussung von Röntgenstrahlung, die von einem Röntgenfokus eines CT-Gerätes ausgeht und der Abtastung eines Untersuchungsobjektes dient.
  • US 8873704 B2 offenbart einen Filter für eine Röntgeneinrichtung zur Formung eines Intensitätsprofils von von einer Röntgenstrahlenquelle ausgehenden Röntgenstrahlung.
  • US 5099134 A offenbart einen Kollimator, umfassend eine erste Anordnung von mehreren sich in Längsrichtung erstreckenden, eine Strahlung abschirmenden Platten, die parallel zueinander angeordnet sind und jeweils mehrere darin ausgebildete Schlitze aufweisen.
  • US 2010/239072 A1 offenbart eine Kollimatoreinheit, umfassend ein Paar Halteelemente, die jeweils eine Vielzahl von Nuten umfassen, die in jeweiligen einander gegenüberliegenden Oberflächen ausgebildet sind. Weitere Beispiele werden in JPS58114800U und US2011/0096895 A1 offenbart.
  • US 2017/011815 A1 offenbart eine Röntgenfilteranordnung, umfassend eine Mehrzahl von Röntgenstrahldämpfungsschichten, die in einem Stapel angeordnet sind, wobei die Röntgenstrahldämpfungsschichten in einem Winkel zueinander angeordnet sind, um einen Fokuspunkt zu haben.
  • Die Erfindung hat die Aufgabe, ein verbessertes Einstellen einer räumlichen Intensitätsverteilung eines Röntgenstrahls zu ermöglichen.
  • Der Gegenstand des unabhängigen Anspruchs löst diese Aufgabe. In den abhängigen Ansprüchen sind weitere vorteilhafte Aspekte der Erfindung berücksichtigt.
  • Die Erfindung betrifft ein Fokussierungsmodul für einen Formfilter zum Einstellen einer räumlichen Intensitätsverteilung eines Röntgenstrahls, aufweisend
    • einen Rahmen mit einer durchgehenden Öffnung,
    • eine Anordnung von Nut-Paaren, welche an dem Rahmen angeordnet sind,
    • wobei relativ zu der Anordnung von Nut-Paaren ein Fokuspunkt definierbar ist, dem die durchgehende Öffnung zugewandt ist,
    • wobei die Nut-Paare entlang der durchgehenden Öffnung nebeneinander derart angeordnet sind, dass sie sich in verschiedenen Ebenen befinden, welche jeweils den Fokuspunkt aufweisen,
    • wobei die Nut-Paare jeweils eine erste Nut und eine der ersten Nut in Bezug auf die durchgehende Öffnung gegenüberliegende zweite Nut aufweisen, wobei die erste Nut und die zweite Nut derart ausgebildet sind, dass ein Lamellenblech an zwei einander gegenüberliegenden Rändern des Lamellenblechs in die erste Nut und in die zweite Nut aufnehmbar und entlang der ersten Nut und der zweiten Nut in die durchgehende Öffnung einführbar ist.
  • Das Fokussierungsmodul weist eine erste Führungsschiene und eine zweite Führungsschiene auf. Die jeweils ersten Nuten der Nut-Paare sind in der ersten Führungsschiene ausgebildet. Die jeweils zweiten Nuten der Nut-Paare sind in der zweiten Führungsschiene ausgebildet. Die erste Führungsschiene und/oder die zweite Führungsschiene ist aus einem kristallinen Halbleitermaterial hergestellt.
  • Insbesondere können sich die verschiedenen Ebenen, welche jeweils den Fokuspunkt aufweisen, in einer Geraden, welche den Fokuspunkt aufweist, schneiden.
  • Insbesondere ist hiermit ein Fokussierungsmodul für einen Formfilter zum Einstellen einer räumlichen Intensitätsverteilung eines Röntgenstrahls offenbart, aufweisend
    • einen Rahmen mit einer durchgehenden Öffnung,
    • eine Anordnung von Nut-Paaren, welche an dem Rahmen angeordnet sind,
    • wobei relativ zu der Anordnung von Nut-Paaren eine Fokuslinie definierbar ist, der die durchgehende Öffnung zugewandt ist,
    • wobei die Nut-Paare entlang der durchgehenden Öffnung nebeneinander derart angeordnet sind, dass sie sich in verschiedenen Ebenen befinden, welche sich in der Fokuslinie schneiden,
    • wobei die Nut-Paare jeweils eine erste Nut und eine der ersten Nut in Bezug auf die durchgehende Öffnung gegenüberliegende zweite Nut aufweisen, wobei die erste Nut und die zweite Nut derart ausgebildet sind, dass ein Lamellenblech an zwei einander gegenüberliegenden Rändern des Lamellenblechs in die erste Nut und in die zweite Nut aufnehmbar und entlang der ersten Nut und der zweiten Nut in die durchgehende Öffnung einführbar ist.
  • Die Fokuslinie kann insbesondere eine Gerade sein und/oder den Fokuspunkt aufweisen.
  • Insbesondere kann die durchgehende Öffnung im Wesentlichen rechteckig, beispielsweise quadratisch, sein. Insbesondere kann die durchgehende Öffnung zwei lange Seiten und zwei kurze Seiten aufweisen.
  • Insbesondere kann der Rahmen einen ersten Querbalken aufweisen, welcher eine erste lange Seite der durchgehenden Öffnung bildet. Insbesondere kann der Rahmen einen zweiten Querbalken aufweisen, welcher eine zweite lange Seite der durchgehenden Öffnung bildet. Insbesondere kann der Rahmen ein erstes Seitenteil aufweisen, welches eine erste kurze Seite der durchgehenden Öffnung bildet. Insbesondere kann der Rahmen ein zweites Seitenteil aufweisen, welches eine zweite kurze Seite der durchgehenden Öffnung bildet. Der erste Querbalken und/oder der zweite Querbalken können beispielsweise aus Aluminium hergestellt sein.
  • Bei einem Querbalken kann es sich beispielsweise um ein einzelnes Bauteil oder um eine zusammengesetzte Baugruppe, welche mehrere Bauteile aufweist, handeln. Bei einem Seitenteil kann es sich beispielsweise um ein einzelnes Bauteil oder um eine zusammengesetzte Baugruppe, welche mehrere Bauteile aufweist, handeln.
  • Insbesondere kann der erste Querbalken mittels des ersten Seitenteils und des zweiten Seitenteils mit dem zweiten Querbalken verbunden sein. Insbesondere kann der erste Querbalken mittels des ersten Seitenteils und des zweiten Seitenteils in einem vorgegebenen Abstand relativ zu dem zweiten Querbalken angeordnet sein.
  • Insbesondere kann in einem Bereich der ersten Nut ein erstes Anschlagmittel ausgebildet sein, wobei das Lamellenblech entlang der ersten Nut bis zu einem Formschluss des Lamellenblechs mit dem ersten Anschlagmittel einführbar ist, wobei der Formschluss des Lamellenblechs mit dem ersten Anschlagmittel einem weiteren Einführen des Lamellenblechs entlang der ersten Nut entgegenwirkt. Insbesondere kann das erste Anschlagmittel basierend auf einem additiven Fertigungsverfahren und/oder einem abtragenden Fertigungsverfahren ausgebildet sein oder mit dem Rahmen verbunden, beispielsweise verklebt, sein. Das erste Anschlagmittel kann beispielsweise in Form einer Anschlagschiene ausgebildet sein.
  • Insbesondere kann in einem Bereich der zweiten Nut ein zweites Anschlagmittel ausgebildet sein, wobei das Lamellenblech entlang der zweiten Nut bis zu einem Formschluss des Lamellenblechs mit dem zweiten Anschlagmittel einführbar ist, wobei der Formschluss des Lamellenblechs mit dem zweiten Anschlagmittel einem weiteren Einführen des Lamellenblechs entlang der zweiten Nut entgegenwirkt. Insbesondere kann das zweite Anschlagmittel basierend auf einem additiven Fertigungsverfahren und/oder einem abtragenden Fertigungsverfahren ausgebildet sein oder mit dem Rahmen verbunden, beispielsweise verklebt, sein. Das zweite Anschlagmittel kann beispielsweise in Form einer Schiene ausgebildet sein, welche sich entlang des Rahmens erstreckt.
  • Die erste Führungsschiene und/oder die zweite Führungsschiene kann beispielsweise in Form eines Streifens aus einem formstabilen und strahlresistenten Material hergestellt werden. In diesem Streifen können durch eine Strukturierung Nuten ausgebildet werden. In der vorliegenden Erfindung ist das Material ein kristalliner Halbleiter wie beispielsweise Silizium.
  • Insbesondere können die Nut-Paare basierend auf einem abtragenden Fertigungsverfahren ausgebildet sein. Die erste Nut und/oder die zweite Nut kann insbesondere unter Verwendung eines abtragenden Verfahrens wie beispielsweise Drahterodieren oder Ätzen gefertigt werden.
  • Die Anordnung von Nut-Paaren weist mehrere Nut-Paare auf. Insbesondere kann das Fokussierungsmodul eine Mehrzahl von Anordnungen von Nut-Paaren aufweisen, wobei jeder Anordnung von Nut-Paaren jeweils ein Fokuspunkt und/oder eine Fokuslinie zuordenbar ist. Beispielsweise kann vorgesehen sein, dass einer ersten Anordnung, welche von Nut-Paaren gebildet wird, die in der Mitte des Fokussierungsmoduls angeordnet sind, eine erste Fokuslinie zugeordnet ist und dass einer zweiten Anordnung, welche von Nut-Paaren gebildet wird, die außerhalb der Mitte des Fokussierungsmoduls angeordnet sind, eine zweite Fokuslinie zugeordnet ist. Beispielsweise kann sich die zweite Fokuslinie näher an dem Fokussierungsmodul befinden als die erste Fokuslinie oder umgekehrt.
    Die Erfindung betrifft ferner einen Formfilter zum Einstellen einer räumlichen Intensitätsverteilung eines Röntgenstrahls, aufweisend ein erfindungsgemäßes Fokussierungsmodul und eine Mehrzahl von Lamellenblechen, welche jeweils in ein Nut-Paar der Anordnung von Nut-Paaren aufgenommen und in die durchgehende Öffnung eingeführt sind. Die Anordnung der Lamellenbleche, also die Breite, Länge und Höhe der Lamellenbleche sowie der Abstand und der Winkel zwischen benachbarten Lamellenblechen, kann in weiten Bereichen frei gewählt werden. Damit lassen sich beispielsweise verschiedene Schachtverhältnisse für die tunnelförmige Öffnung oder verschiedene Linienfrequenzen, auch entlang derselben Führungsschiene, realisieren. Das Material, aus dem die Lamellenbleche hergestellt sind, kann in weiten Bereichen frei gewählt werden, insbesondere sofern es fest genug ist, um den Abstand zwischen der ersten Nut und der zweiten Nut zu überbrücken. Insbesondere können die Lamellenbleche aus Wolfram und/oder aus einer WolframLegierung hergestellt sein. Mit Wolfram kann eine hohe Absorption von Röntgenstrahlung realisiert werden. Dadurch kann insbesondere Streustrahlung und eine spektrale Strahlaufhärtung des Röntgenstrahls minimiert werden.
  • Durch die Wahl geeigneter Materialien und Techniken, können die Lamellenbleche präzise und dauerhaft in den Führungsschienen auf den Fokuspunkt und/oder die Fokuslinie ausgerichtet werden. Insbesondere können die Lamellenbleche gegen Wackeln und Herausrutschen in den Nut-Paaren fixiert werden. Das Fixieren der Lamellenbleche in der ersten Nut und/oder in der zweiten Nut kann beispielsweise durch einen Kleber oder mit Hilfe von Anschlagschienen erfolgen.
  • Insbesondere kann eine erste Anschlagschiene vorgesehen sein, die an dem Rahmen und/oder an der ersten Führungsschiene derart anordenbar ist, dass die erste Anschlagschiene bei den Nut-Paaren jeweils ein offenes Ende der ersten Nut verschließt. Insbesondere kann eine zweite Anschlagschiene vorgesehen sein, die an dem Rahmen und/oder an der zweiten Führungsschiene derart anordenbar ist, dass die zweite Anschlagschiene bei den Nut-Paaren jeweils ein offenes Ende der zweiten Nut verschließt. Die Anschlagschienen können beispielsweise mit dem Rahmen, mit der ersten Führungsschiene und/oder mit der zweiten Führungsschiene verklebt werden.
  • Die Erfindung betrifft ferner eine Bestrahlungsanordnung, aufweisend
    • einen erfindungsgemäßen Formfilter,
    • eine Röntgenquelle zur Erzeugung des Röntgenstrahls,
    • eine Positioniereinheit zum Positionieren des Formfilters relativ zu der Röntgenquelle,
    • wobei der Formfilter mittels der Positioniereinheit in einer ersten Position relativ zu der Röntgenquelle positionierbar ist, in welcher der Fokuspunkt einem Anfangspunkt des Röntgenstrahls entspricht und/oder in welcher der Anfangspunkt des Röntgenstrahls auf der Fokuslinie liegt.
  • Die Erfindung betrifft ferner eine medizinische Bildgebungsvorrichtung, aufweisend eine erfindungsgemäße Bestrahlungsanordnung.
  • Die medizinische Bildgebungsvorrichtung kann beispielsweise aus der Bildgebungsmodalitäten-Gruppe gewählt sein, welche aus einem Röntgengerät, einem C-Bogen-Röntgengerät, einem Computertomographiegerät (CT-Gerät), einem mit einem Computertomographiegerät kombinierten Einzelphotonen-Emissions-Computertomographiegerät (SPECT-CT-Gerät) und einem mit einem Computertomographiegerät kombinierten Positronen-Emissions-Tomographiegerät (PET-CT-Gerät) besteht. Die medizinische Bildgebungsvorrichtung kann ferner eine Kombination einer Bildgebungsmodalität, die beispielsweise aus der Bildgebungsmodalitäten-Gruppe gewählt ist, und einer Bestrahlungsmodalität aufweisen. Dabei kann die Bestrahlungsmodalität beispielsweise eine Bestrahlungseinheit zur therapeutischen Bestrahlung aufweisen.
  • Ohne Einschränkung des allgemeinen Erfindungsgedankens wird bei einigen der Ausführungsformen ein Computertomographiegerät beispielhaft für eine medizinische Bildgebungsvorrichtung genannt.
  • Die Erfindung betrifft ferner eine Anordnung, aufweisend ein erfindungsgemäßes Fokussierungsmodul, einen erfindungsgemäßen Formfilter, eine erfindungsgemäße Bestrahlungsanordnung und/oder eine erfindungsgemäße medizinische Bildgebungsvorrichtung.
  • Im Folgenden wird die Erfindung anhand von Ausführungsbeispielen unter Hinweis auf die beigefügten Figuren erläutert. Die Darstellung in den Figuren ist schematisch, stark vereinfacht und nicht zwingend maßstabsgetreu.
  • Es zeigen:
    • Fig. 1 eine schematische Ansicht eines Ausführungsbeispiels eines erfindungsgemäßen Fokussierungsmoduls,
    • Fig. 2 eine schematische Ansicht eines Ausführungsbeispiels eines erfindungsgemäßen Formfilters,
    • Fig. 3 eine weitere schematische Ansicht des Ausführungsbeispiels des erfindungsgemäßen Formfilters,
    • Fig. 4 eine schematische Ansicht eines Ausführungsbeispiels einer erfindungsgemäßen medizinischen Bildgebungsvorrichtung mit einer erfindungsgemäßen Bestrahlungsanordnung, und
    • Fig. 5 eine schematische Ansicht eines Beispiels für ein Streustrahlenraster.
  • Das in Fig. 1 gezeigte Ausführungsbeispiel eines erfindungsgemäßen Fokussierungsmoduls weist einen Rahmen R mit einer durchgehenden Öffnung H und eine Anordnung von Nut-Paaren NP, welche an dem Rahmen R angeordnet sind, auf. Relativ zu der Anordnung von Nut-Paaren NP ist ein Fokuspunkt T definierbar, dem die durchgehende Öffnung H zugewandt ist. Die Fokuslinie TL verläuft durch den Fokuspunkt T und ist im Wesentlichen parallel zu der Rotationsachse AR.
  • Die Nut-Paare NP sind entlang der durchgehenden Öffnung H nebeneinander derart angeordnet, dass sie sich in verschiedenen Ebenen E befinden, welche jeweils den Fokuspunkt T aufweisen und sich in der Fokuslinie TL schneiden. Die Nut-Paare NP weisen jeweils eine erste Nut N1 und eine der ersten Nut N1 in Bezug auf die durchgehende Öffnung H gegenüberliegende zweite Nut N2 auf. Die erste Nut N1 und die zweite Nut N2 sind derart ausgebildet, dass ein Lamellenblech L an zwei einander gegenüberliegenden Rändern des Lamellenblechs L in die erste Nut N1 und die zweite Nut N2 aufnehmbar und entlang der ersten Nut N1 und der zweiten Nut N2 in die durchgehende Öffnung H einführbar ist.
  • Die durchgehende Öffnung H ist im Wesentlichen rechteckig. Die durchgehende Öffnung H weist zwei lange Seiten HL1, HL2 und zwei kurze Seiten HS1, HS2 auf. Der Rahmen R weist einen ersten Querbalken RL1 auf, welcher eine erste lange Seite HL1 der durchgehenden Öffnung H bildet. Der Rahmen R weist einen zweiten Querbalken RL2 auf, welcher eine zweite lange Seite HL2 der durchgehenden Öffnung H bildet. Der Rahmen R weist ein erstes Seitenteil RS1 auf, welches eine erste kurze Seite HS1 der durchgehenden Öffnung H bildet. Der Rahmen R weist ein zweites Seitenteil RS2 auf, welches eine zweite kurze Seite HS2 der durchgehenden Öffnung H bildet. Der erste Querbalken RL1 ist mittels des ersten Seitenteils RS1 und des zweiten Seitenteils RS2 mit dem zweiten Querbalken RL2 verbunden und in einem vorgegebenen Abstand ZR relativ zu dem zweiten Querbalken RL2 angeordnet.
  • Das Fokussierungsmodul M weist ferner eine erste Führungsschiene RN1 und eine zweite Führungsschiene RN2 auf. Die jeweils ersten Nuten N1 der Nut-Paare NP sind in der ersten Führungsschiene RN1 ausgebildet. Die jeweils zweiten Nuten N2 der Nut-Paare NP sind in der zweiten Führungsschiene RN2 ausgebildet.
  • In dem in Fig. 1 gezeigten Ausführungsbeispiel ist die erste Führungsschiene RN1 an dem ersten Querbalken RL1 angeordnet, insbesondere mit dem ersten Querbalken RL1 verklebt. Die zweite Führungsschiene RN2 ist an dem zweiten Querbalken RL2 angeordnet, insbesondere mit dem zweiten Querbalken RL2 verklebt.
  • Eine zu dem in Fig. 1 gezeigten Ausführungsbeispiel alternative Ausführungsform der Erfindung sieht vor, dass die Führungsschienen jeweils an den kurzen Seiten der durchgehenden Öffnung angeordnet sind und/oder dass sich die Führungsschienen jeweils entlang der kurzen Seiten der durchgehenden Öffnung erstrecken.
  • Die Ausrichtung der ersten Nut N1 in der Führungsschiene RN1 entspricht der Fokussierungsrichtung des Lamellenblechs L, welche in die erste Nut N1 eingeführt ist. Die Breite und Höhe der ersten Nut N1 ist einheitlich entsprechend der Abmessungen und Toleranzen des Lamellenblechs L. Entsprechendes gilt für die zweite Nut N2 in der zweiten Führungsschiene RN2.
  • Das in der Fig. 2 und der Fig. 3 gezeigte Ausführungsbeispiel eines erfindungsgemäßen Formfilters F weist das Fokussierungsmodul M und eine Mehrzahl von Lamellenblechen L, welche jeweils in ein Nut-Paar der Anordnung von Nut-Paaren NP aufgenommen und in die durchgehende Öffnung H eingeführt sind, auf.
    In einem Bereich der ersten Nut N1 ist ein erstes Anschlagmittel B1 ausgebildet, wobei das Lamellenblech L entlang der ersten Nut N1 bis zu einem Formschluss des Lamellenblechs L mit dem ersten Anschlagmittel B1 einführbar ist, wobei der Formschluss des Lamellenblechs L mit dem ersten Anschlagmittel B1 einem weiteren Einführen des Lamellenblechs L entlang der ersten Nut N1 entgegenwirkt. In dem in Fig. 3 gezeigten Ausführungsbeispiel ist das erste Anschlagmittel B1 durch das geschlossene Ende der ersten Nut N1 gebildet, welche sich nicht über die gesamte Ausdehnung des Lamellenblechs L in Richtung der ersten Nut N1 erstreckt.
  • Insbesondere ist die erste Nut N1 lediglich von der vorderen Stirnseite der Führungsschiene RN1 offen, sodass Lamellenbleche L aus dieser Richtung eingesetzt werden können aber auf der Rückseite nicht herausrutschen können. Die Strukturierung der ersten Führungsschiene RN1, durch welche die erste Nut N1 ausgebildet ist, erstreckt sich also nicht über die gesamte Ausdehnung der ersten Führungsschiene RN1 in Richtung der ersten Nut N1. Entsprechendes gilt für die zweite Nut N2.
  • Die Länge der Lamellenbleche L entspricht dem Abstand der ersten Führungsschiene RN1 von der zweiten Führungsschiene RN2 abzüglich einer passenden Toleranz. Der Abstand YL zwischen benachbarten Lamellenblechen L kann insbesondere derart gewählt werden, dass die Rasterung des von den Lamellenblechen L gebildeten Lamellenarrays nicht durch die Rasterung des Detektors 28 abgebildet werden kann. Das kann insbesondere mit einer Rasterung des von den Lamellenblechen L gebildeten Lamellenarrays realisiert werden, die feiner ist als die Auflösung des Detektors 28.
  • Der Abstand YL benachbarter Lamellenbleche voneinander kann beispielsweise zwischen ca. 0,2 und ca. 0,5 Millimetern betragen. In dem in Fig. 1 gezeigten Ausführungsbeispiel ist für den Abstand YL beispielhaft der Abstand zwischen den Schwerpunkten benachbarter Lamellenbleche eingezeichnet. Die Breite YN der ersten Nut N1 und/oder der zweiten Nut N2 kann beispielsweise zwischen ca. 0,04 und ca. 0,08 Millimetern betragen. Die Tiefe ZN der ersten Nut N1 und/oder der zweiten Nut N2 kann beispielsweise ca. 0,5 Millimeter betragen.
  • Die Länge XR der ersten Nut N1 und/oder der zweiten Nut N2 kann beispielsweise ca. 3 Millimeter betragen. Die Ausdehnung des Rahmens R in Richtung der ersten Nut N1 und/oder in Richtung der zweiten Nut N2 kann insbesondere etwas größer sein als die Länge XR. Die Ausdehnung YR des Rahmens R in einer Richtung, entlang welcher die Nut-Paare NP nacheinander in einer Reihe angeordnet sind, kann beispielsweise ca. 140 Millimeter betragen. Der Abstand ZR von der ersten Nut N1 bis zu der zweiten Nut N2 kann beispielsweise ca. 40 Millimeter betragen.
    Dabei können die Toleranzen, insbesondere für die Breite YN und Tiefe ZN, beispielsweise ca. 10 Mikrometer betragen. Der Abstand von dem Fokuspunkt T bis zu der ersten Nut N1 und/oder bis zu der zweiten Nut N2 kann beispielsweise ca. 220 Millimeter betragen.
  • Fig. 4 zeigt eine schematische Ansicht eines Ausführungsbeispiels einer erfindungsgemäßen medizinischen Bildgebungsvorrichtung mit einer erfindungsgemäßen Bestrahlungsanordnung.
  • Ohne Beschränkung des allgemeinen Erfindungsgedankens ist für die medizinische Bildgebungsvorrichtung 1 beispielhaft ein Computertomographiegerät gezeigt. Die medizinische Bildgebungsvorrichtung 1 weist die Gantry 20, die tunnelförmige Öffnung 9, die Patientenlagerungsvorrichtung 10 und die Steuerungsvorrichtung 30 auf.
  • Die Gantry 20 weist den stationären Tragrahmen 21 und den Rotor 24 auf. Der Rotor 24 ist mittels einer Drehlagerungsvorrichtung an dem Tragrahmen 21 um eine Rotationsachse AR relativ zu dem Tragrahmen 21 drehbar angeordnet.
  • In die tunnelförmige Öffnung 9 ist der Patient 13 einführbar. In der tunnelförmigen Öffnung 9 befindet sich der Akquisitionsbereich 4. In dem Akquisitionsbereich 4 ist ein abzubildender Bereich des Patienten 13 derart positionierbar, dass die Strahlung 27 von der Strahlungsquelle 26 zu dem abzubildenden Bereich gelangen kann und nach einer Wechselwirkung mit dem abzubildenden Bereich zu dem Strahlungsdetektor 28 gelangen kann.
  • Die Patientenlagerungsvorrichtung 10 weist den Lagerungssockel 11 und die Lagerungsplatte 12 zur Lagerung des Patienten 13 auf. Die Lagerungsplatte 12 ist derart relativ zu dem Lagerungssockel 11 bewegbar an dem Lagerungssockel 11 angeordnet, dass die Lagerungsplatte 12 in einer Längsrichtung der Lagerungsplatte 12, insbesondere entlang der Rotationsachse AR, in den Akquisitionsbereich 4 einführbar ist.
    Die medizinische Bildgebungsvorrichtung 1 ist zur Akquisition von Akquisitionsdaten basierend auf einer elektromagnetischen Strahlung 27 ausgebildet. Die medizinische Bildgebungsvorrichtung 1 weist eine Akquisitionseinheit auf. Die Akquisitionseinheit ist eine Projektionsdaten-Akquisitionseinheit mit der Strahlungsquelle 26, z. B. einer Röntgenquelle, und dem Detektor 28, z. B. einem Röntgendetektor, insbesondere einem energieauflösenden Röntgendetektor.
  • Die Strahlungsquelle 26 ist an dem Rotor 24 angeordnet und zur Emission einer Strahlung 27, z. B. einer Röntgenstrahlung, mit Strahlungsquanten 27 ausgebildet. Der Detektor 28 ist an dem Rotor 24 angeordnet und zur Detektion der Strahlungsquanten 27 ausgebildet. Die Strahlungsquanten 27 können von der Strahlungsquelle 26 zu dem abzubildenden Bereich des Patienten 13 gelangen und nach einer Wechselwirkung mit dem abzubildenden Bereich auf den Detektor 28 auftreffen. Auf diese Weise können mittels der Akquisitionseinheit Akquisitionsdaten des abzubildenden Bereichs in Form von Projektionsdaten erfasst werden.
  • Die Steuerungsvorrichtung 30 ist zum Empfangen der von der Akquisitionseinheit akquirierten Akquisitionsdaten ausgebildet. Die Steuerungsvorrichtung 30 ist zum Steuern der medizinischen Bildgebungsvorrichtung 1 ausgebildet. Die Steuerungsvorrichtung 30 weist die Datenverarbeitungseinheit 35, das computerlesbare Medium 32 und das Prozessorsystem 36 auf. Die Steuerungsvorrichtung 30, insbesondere die Datenverarbeitungseinheit 35, wird von einem Datenverarbeitungssystem, welches einen Computer mit einem Prozessorsystem aufweist, gebildet. Die Datenverarbeitungseinheit 35 ist insbesondere zum Steuern der Positioniereinheit PF ausgebildet und mittels der Positionierungsschnittstelle PFI mit der Positioniereinheit PF verbunden.
  • Die Steuerungsvorrichtung 30 weist die Bildrekonstruktionseinrichtung 34 auf. Mittels der Bildrekonstruktionseinrichtung 34 kann basierend auf den Akquisitionsdaten ein medizinischer Bilddatensatz rekonstruiert werden.
  • Die medizinische Bildgebungsvorrichtung 1 weist eine Eingabevorrichtung 38 und eine Ausgabevorrichtung 39 auf, welche jeweils mit der Steuerungsvorrichtung 30 verbunden sind. Die Eingabevorrichtung 38 ist zum Eingeben von Steuerungs-Informationen, z. B. Bildrekonstruktionsparametern, Untersuchungsparametern oder ähnliches, ausgebildet. Die Ausgabevorrichtung 39 ist insbesondere zum Ausgeben von Steuerungs-Informationen, Bildern und/oder akustischen Signalen ausgebildet.
  • Die Teile des Rahmens R, welche die Lamellenbleche L in ihrer jeweiligen Position halten und die Ausrichtung der Lamellenbleche L vorgeben, sind derart außerhalb des Strahlengangs angeordnet, dass der Röntgenstrahl 27 durch diese Teile des Rahmens R nicht gestört wird. Insbesondere die Querbalken RL1, RL2 können daher massiv und mechanisch stabil ausgebildet werden, ohne dass dadurch Nachteile in Bezug auf den Röntgenstrahl 27 entstehen. Die Seitenteile RS1, RS2 geben den Abstand der Querbalken RL1, RL2 vor, sodass diese nicht in den Röntgenstrahl 27 hineinragen. Außer den Lamellenblechen L und Luft befindet sich somit kein weiteres Material im Strahlengang, das den Röntgenstrahl 27 beispielsweise durch Streuung oder Absorption beeinflussen könnte.
  • Ferner können an dem Rahmen R, insbesondere in den Querbalken RL1, RL2, Bohrungen RCS, RCM, beispielsweise mit Gewinden, vorgesehen sein. Beispielsweise können mittels der Bohrungen RCS die verschiedenen Teile des Rahmens R, insbesondere die Querbalken RL1, RL2 und die Seitenteile RS1, RS2, miteinander verbunden werden. Beispielsweise kann mittels der Bohrungen RCM der Rahmen R mit einem Aktor PFA der Positioniereinheit PF verbunden werden.
  • Der Rahmen R kann derart mechanisch stabil ausgebildet werden, dass der Rahmen R relativ hohe Kräfte und Drehmomente aufnehmen kann, ohne beschädigt oder signifikant verformt zu werden. Insbesondere können damit Drehungen des Rahmens R relativ zu der Röntgenquelle 26 durchgeführt werden, ohne die sensiblen und präzisen Führungsschienen RN1, RN2 zu beschädigen. Die Lamellenbleche L sind in dem stabilen Rahmen R fixiert und geschützt. Starke Beschleunigungskräfte durch eine Rotation des Rotors 24 werden von dem Rahmen R aufgenommen und abgeleitet. Damit kann insbesondere verhindert werden, dass durch die Beschleunigungskräfte, welche auf Grund der Rotation des Rotors 24 auftreten, die relative Lage und Position der Lamellenbleche L zueinander verändert wird.
  • Die Lamellenbleche L in dem Formfilter F sind so ausgerichtet und fixiert, dass jedes Lamellenblech L auf den Fokuspunkt T und/oder die Fokuslinie TL exakt ausgerichtet ist. Die Lamellenbleche L sind in dem Strahlengang des fächerförmigen Röntgenstrahls 27 positioniert.
  • In dem Betriebszustand der medizinischen Bildgebungsvorrichtung, der in der Fig. 4 gezeigt ist, ist der Formfilter F in einer ersten Position relativ zu der Röntgenquelle 26 positioniert, in welcher der Fokuspunkt T einem Anfangspunkt des Röntgenstrahls 27 entspricht. In der ersten Position haben die Lamellenbleche L einen minimalen Einfluss auf den Röntgenstrahl 27 und damit auf das am Detektor 28 detektierte Signal. Die Fläche der Lamellenbleche L, an welcher der Röntgenstrahl 27 absorbiert werden kann, ist in der ersten Position minimal. Unter der Annahme, dass der Röntgenstrahl 27 von dem Anfangspunkt ausgeht, werden in der ersten Position im Wesentlichen lediglich diejenigen linienförmigen Teilstrahlen des fächerförmigen Röntgenstrahls 27 abgeschwächt, welche in den Ebenen E der Lamellenbleche L verlaufen.
  • Mittels der Positioniereinheit PF kann der Formfilter F relativ zu der Röntgenquelle 26 positioniert werden. Insbesondere kann der Formfilter F mittels der Positioniereinheit PF um eine Achse, die zu der Rotationsachse AR im Wesentlichen parallel ist und beispielsweise durch den Formfilter 26 verläuft, gedreht werden. Alternativ oder zusätzlich dazu kann der Formfilter F mittels der Positioniereinheit PF um eine Achse, die sowohl zu der Rotationsachse AR als auch zu einem auf den Detektor 28 auftreffenden linienförmigen Teilstrahl des Röntgenstrahls 27 senkrecht ist und beispielsweise durch den Formfilter 26 verläuft, gedreht werden.
  • Alternativ oder zusätzlich dazu kann der Formfilter F relativ zu der Röntgenquelle 26 verschoben werden. Beispielsweise kann der Formfilter F entlang eines auf den Detektor 28 auftreffenden linienförmigen Teilstrahls des Röntgenstrahls 27 und/oder senkrecht zu diesem Teilstrahl verschoben werden, insbesondere im Wesentlichen senkrecht zu der Rotationsachse AR verschoben werden.
  • Durch eine Entfernung des Fokuspunkts T von dem Anfangspunkt des Röntgenstrahls 27 kann der Anteil derjenigen linienförmigen Teilstrahlen des fächerförmigen Röntgenstrahls 27, welche auf die Lamellenbleche L treffen und damit absorbiert werden, erhöht werden.
  • Auf diese Weise kann eine räumliche Intensitätsverteilung des Röntgenstrahls 27 eingestellt werden. Eine Lage- und/oder Positionsveränderung der Lamellenbleche L relativ zu dem Rahmen R würde insbesondere das am Detektor 28 detektierte Signal und die Reproduzierbarkeit von Untersuchungen beeinflussen. Die Erfindung ermöglicht insbesondere ein präzises und dauerhaftes Anordnen von Lamellenblechen L in der jeweiligen Ebene E.
  • Die Positioniereinheit PF kann beispielsweise eine kardanische Aufhängung aufweisen. Insbesondere kann der Formfilter F mittels der kardanischen Aufhängung mit dem Rotor 24 verbunden werden und/oder relativ zu der Röntgenquelle 26 positioniert werden.
  • Fig. 5 zeigt eine schematische Ansicht eines Beispiels für ein Streustrahlenraster M-5, welches insbesondere für 2D-Röntgenaufnahmen verwendet werden kann. Das Streustrahlenraster M-5 ist abwechselnd aus Papierstreifen S-5 und Blei-Lamellen L-5 aufgebaut. Die Abdeckung C-5 der Papier-Blei-Anordnung kann aus Materialien wie beispielsweise kohlenstofffaserverstärktem Kohlenstoff (CFC) und/oder Aluminium hergestellt werden. Die Papierstreifen S-5 dienen als Platzhalter zwischen den Blei-Lamellen L-5 und können zusätzliche Absorption und Streuung eines Röntgenstrahls 27 verursachen. Bei der erfindungsgemäßen Lösung kann insbesondere eine zusätzliche Absorption und Streuung des Röntgenstrahls 27 vermieden werden, da keine Platzhalter zwischen den Lamellenblechen L im Strahlengang des Röntgenstrahls 27 erforderlich sind.

Claims (10)

  1. Fokussierungsmodul (M) für einen Formfilter (F) zum Einstellen einer räumlichen Intensitätsverteilung eines Röntgenstrahls (27), aufweisend
    - einen Rahmen (R) mit einer durchgehenden Öffnung (H),
    - eine Anordnung von Nut-Paaren (NP), welche an dem Rahmen (R) angeordnet sind,
    - eine erste Führungsschiene (RN1) und eine zweite Führungsschiene (RN2),- wobei relativ zu der Anordnung von Nut-Paaren (NP) ein Fokuspunkt (T) definierbar ist, dem die durchgehende Öffnung (H) zugewandt ist,
    - wobei die Nut-Paare (NP) entlang der durchgehenden Öffnung (H) nebeneinander derart angeordnet sind, dass sie sich in verschiedenen Ebenen (E) befinden, welche jeweils den Fokuspunkt (T) aufweisen,
    - wobei die Nut-Paare (NP) jeweils eine erste Nut (N1) und eine der ersten Nut (N1) in Bezug auf die durchgehende Öffnung (H) gegenüberliegende zweite Nut (N2) aufweisen, wobei die erste Nut (N1) und die zweite Nut (N2) derart ausgebildet sind, dass ein Lamellenblech (L) an zwei einander gegenüberliegenden Rändern des Lamellenblechs (L) in die erste Nut (N1) und die zweite Nut (N2) aufnehmbar und entlang der ersten Nut (N1) und der zweiten Nut (N2) in die durchgehende Öffnung (H) einführbar ist,
    - wobei die jeweils ersten Nuten (N1) der Nut-Paare (NP) in der ersten Führungsschiene (RN1) ausgebildet sind,
    - wobei die jeweils zweiten Nuten (N2) der Nut-Paare (NP) in der zweiten Führungsschiene (RN2) ausgebildet sind,
    dadurch gekennzeichnet, dass
    die erste Führungsschiene (RN1) und/oder die zweite Führungsschiene (RN2) aus einem kristallinen Halbleitermaterial hergestellt ist.
  2. Fokussierungsmodul (M) nach Anspruch 1,
    - wobei die durchgehende Öffnung (H) im Wesentlichen rechteckig ist und zwei lange Seiten (HL1, HL2) und zwei kurze Seiten (HS1, HS2) aufweist.
  3. Fokussierungsmodul (M) nach Anspruch 2,
    - wobei der Rahmen (R) einen ersten Querbalken (RL1) aufweist, welcher eine erste lange Seite (HL1) der durchgehenden Öffnung (H) bildet,
    - wobei der Rahmen (R) einen zweiten Querbalken (RL2) aufweist, welcher eine zweite lange Seite (HL2) der durchgehenden Öffnung (H) bildet,
    - wobei der Rahmen (R) ein erstes Seitenteil (RS1) aufweist, welches eine erste kurze Seite (HS1) der durchgehenden Öffnung (H) bildet,
    - wobei der Rahmen (R) ein zweites Seitenteil (RS2) aufweist, welches eine zweite kurze Seite (HS2) der durchgehenden Öffnung (H) bildet.
  4. Fokussierungsmodul (M) nach Anspruch 3,
    - wobei der erste Querbalken (RL1) mittels des ersten Seitenteils (RS1) und des zweiten Seitenteils (RS2) mit dem zweiten Querbalken (RL2) verbunden und/oder in einem vorgegebenen Abstand (DZ) relativ zu dem zweiten Querbalken (RL2) angeordnet ist.
  5. Fokussierungsmodul (M) nach einem der Ansprüche 1 bis 4,
    - wobei in einem Bereich der ersten Nut (N1) ein erstes Anschlagmittel (B1) ausgebildet ist, wobei das Lamellenblech (L) entlang der ersten Nut (N1) bis zu einem Formschluss des Lamellenblechs (L) mit dem ersten Anschlagmittel (B1) einführbar ist, wobei der Formschluss des Lamellenblechs (L) mit dem ersten Anschlagmittel (B1) einem weiteren Einführen des Lamellenblechs (L) entlang der ersten Nut (N1) entgegenwirkt, und/oder
    - wobei in einem Bereich der zweiten Nut (N2) ein zweites Anschlagmittel (B2) ausgebildet ist, wobei das Lamellenblech (L) entlang der zweiten Nut (N2) bis zu einem Formschluss des Lamellenblechs (L) mit dem zweiten Anschlagmittel (B2) einführbar ist, wobei der Formschluss des Lamellenblechs (L) mit dem zweiten Anschlagmittel (B2) einem weiteren Einführen des Lamellenblechs (L) entlang der zweiten Nut (N2) entgegenwirkt.
  6. Fokussierungsmodul (M) nach einem der Ansprüche 1 bis 5,
    - wobei die Nut-Paare (NP) basierend auf einem abtragenden Fertigungsverfahren ausgebildet sind.
  7. Formfilter (F) zum Einstellen einer räumlichen Intensitätsverteilung eines Röntgenstrahls (27), aufweisend
    - ein Fokussierungsmodul (M) nach einem der Ansprüche 1 bis 6,
    - eine Mehrzahl von Lamellenblechen (L), welche jeweils in ein Nut-Paar der Anordnung von Nut-Paaren (NP) aufgenommen und in die durchgehende Öffnung (H) eingeführt sind.
  8. Bestrahlungsanordnung (3), aufweisend
    - einen Formfilter (F) nach Anspruch 7,
    - eine Röntgenquelle (26) zur Erzeugung des Röntgenstrahls (27),
    - eine Positioniereinheit (PF) zum Positionieren des Formfilters (F) relativ zu der Röntgenquelle (26),
    - wobei der Formfilter (F) mittels der Positioniereinheit (PF) in einer ersten Position relativ zu der Röntgenquelle (27) positionierbar ist, in welcher der Fokuspunkt (T) einem Anfangspunkt des Röntgenstrahls (27) entspricht.
  9. Medizinische Bildgebungsvorrichtung (1), aufweisend eine Bestrahlungsanordnung (3) nach Anspruch 8.
  10. Medizinische Bildgebungsvorrichtung (1) nach Anspruch 9, wobei die medizinische Bildgebungsvorrichtung (1) ein Computertomographiegerät ist.
EP17173761.2A 2017-05-31 2017-05-31 Fokussierungsmodul für einen formfilter und formfilter zum einstellen einer räumlichen intensitätsverteilung eines röntgenstrahls Active EP3217408B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17173761.2A EP3217408B1 (de) 2017-05-31 2017-05-31 Fokussierungsmodul für einen formfilter und formfilter zum einstellen einer räumlichen intensitätsverteilung eines röntgenstrahls

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP17173761.2A EP3217408B1 (de) 2017-05-31 2017-05-31 Fokussierungsmodul für einen formfilter und formfilter zum einstellen einer räumlichen intensitätsverteilung eines röntgenstrahls

Publications (3)

Publication Number Publication Date
EP3217408A2 EP3217408A2 (de) 2017-09-13
EP3217408A3 EP3217408A3 (de) 2017-12-27
EP3217408B1 true EP3217408B1 (de) 2021-07-21

Family

ID=59034446

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17173761.2A Active EP3217408B1 (de) 2017-05-31 2017-05-31 Fokussierungsmodul für einen formfilter und formfilter zum einstellen einer räumlichen intensitätsverteilung eines röntgenstrahls

Country Status (1)

Country Link
EP (1) EP3217408B1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018214311A1 (de) 2018-02-26 2019-08-29 Siemens Healthcare Gmbh Vorrichtung zum Verändern einer räumlichen Intensitätsverteilung eines Röntgenstrahls
EP3598949A1 (de) 2018-07-27 2020-01-29 Siemens Healthcare GmbH Computertomographiegerät mit lamellenformfilter und springfokus-röntgenquelle

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58114800U (ja) * 1982-01-29 1983-08-05 株式会社島津製作所 コリメ−タ
JPH03120500A (ja) * 1989-10-04 1991-05-22 Toshiba Corp 多孔コリメータ及びその製造方法
DE102005018811B4 (de) 2005-04-22 2008-02-21 Siemens Ag Blendenvorrichtung für eine zur Abtastung eines Objektes vorgesehene Röntgeneinrichtung und Verfahren für eine Blendenvorrichtung
JP4874755B2 (ja) * 2006-09-29 2012-02-15 富士フイルム株式会社 放射線画像撮影装置
DE102008049708B4 (de) 2008-09-30 2011-03-17 Siemens Aktiengesellschaft Blende und Blendenvorrichtung zur gezielten Beeinflussung von Röntgenstrahlung
JP5383266B2 (ja) * 2009-03-19 2014-01-08 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー コリメータユニット、放射線検出装置および放射線診断装置
JP5610461B2 (ja) * 2009-10-23 2014-10-22 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー コリメータモジュール、x線検出器及びx線ct装置
DE102011004742B4 (de) 2011-02-25 2015-02-12 Siemens Aktiengesellschaft Filter für eine Röntgeneinrichtung und Röntgeneinrichtung
US10082473B2 (en) * 2015-07-07 2018-09-25 General Electric Company X-ray filtration

Also Published As

Publication number Publication date
EP3217408A2 (de) 2017-09-13
EP3217408A3 (de) 2017-12-27

Similar Documents

Publication Publication Date Title
EP1089297B1 (de) Gitter zur Absorption von Röntgenstrahlung
DE102005010077B4 (de) Detektor mit einem Szintillator und bildgebendes Gerät, aufweisend einen derartigen Detektor
DE102014202330B3 (de) Single Source DualEnergy mit zwei Filtern zur Röntgenspektrumsdifferenzierung bei Strahlerblenden mit Schlitzplatte
DE102010062192B3 (de) 2D-Kollimator für einen Strahlendetektor und Verfahren zur Herstellung eines solchen 2D-Kollimators
DE102010011581A1 (de) Verfahren zur Herstellung eines 2D-Kollimatorelements für einen Strahlendetektor sowie 2D-Kollimatorelement
EP1107260B1 (de) Gitter zur Absorption von Röntgenstrahlen
DE602004012080T2 (de) Nachweis von ionisierender strahlung auf dual-energie-scanning-basis
DE102011056347A1 (de) Integrierte Röntgendetektoranordnung und Verfahren zur Herstellung derselben
DE10358866A1 (de) Gegossene Kollimatoren für CT Detektoren und Verfahren zu ihre Herstellung
DE102012214387B4 (de) Röntgendetektor und Verfahren zum Betrieb eines Röntgendetektors
DE102012101568A1 (de) Zweidimensionales Kollimatormodul, Röntgendetektor und Röntgen-CT-Vorrichtung
DE102008061487B4 (de) Verfahren zur Herstellung eines kammartigen Kollimatorelements für eine Kollimator-Anordnung sowie Kollimatorelement
DE102012107136A1 (de) Vorrichtung zum Vermindern des Streuens beim CT-Abbilden und Verfahren zu deren Herstellung
EP1691215B1 (de) Auslesevorrichtung und Verfahren zum Auslesen von in Speicherleuchtstoffschichten gespeicherten Röntgenaufnahmen
DE102009039345A1 (de) Vorrichtung zur Bestrahlungsfeldkontrolle bei radiologischen Strahlentherapiegeräten
DE102012105220A1 (de) Kollimationsverfahren und -vorrichtung für Detektoren
DE102005049228A1 (de) Detektor mit einem Array von Photodioden
DE102014218462A1 (de) Verfahren zur Herstellung eines Kollimatormoduls und Verfahren zur Herstellung einer Kollimatorbrücke sowie Kollimatormodul, Kollimatorbrücke, Kollimator und Tomographiegerät
DE102009053523B4 (de) Filter zur Filterung von Röntgenstrahlung und Röntgencomputertomograph
DE102016204870B4 (de) Blendenvorrichtung zur Kollimation eines Röntgenstrahlenbündels einer Röntgeneinrichtung
DE102018214311A1 (de) Vorrichtung zum Verändern einer räumlichen Intensitätsverteilung eines Röntgenstrahls
EP3217408B1 (de) Fokussierungsmodul für einen formfilter und formfilter zum einstellen einer räumlichen intensitätsverteilung eines röntgenstrahls
DE102019207899B4 (de) Röntgenbildgebungsvorrichtung umfassend eine Detektionseinheit mit einem Streustrahlenkollimator
DE10337935A1 (de) Vorrichtung für die Aufnahme von Strukturdaten eines Objekts
DE102014217569B4 (de) Kollimatormodul, Detektormodul und Verfahren zur Herstellung eines Kollimatormoduls

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: G21K 1/10 20060101ALI20171121BHEP

Ipc: G21K 1/02 20060101AFI20171121BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180205

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210401

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017010941

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1413353

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211021

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211122

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211021

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211022

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017010941

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

26N No opposition filed

Effective date: 20220422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1413353

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502017010941

Country of ref document: DE

Owner name: SIEMENS HEALTHINEERS AG, DE

Free format text: FORMER OWNER: SIEMENS HEALTHCARE GMBH, MUENCHEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240603

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240515

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240719

Year of fee payment: 8