EP3199869B1 - Illumination device - Google Patents
Illumination device Download PDFInfo
- Publication number
- EP3199869B1 EP3199869B1 EP17161523.0A EP17161523A EP3199869B1 EP 3199869 B1 EP3199869 B1 EP 3199869B1 EP 17161523 A EP17161523 A EP 17161523A EP 3199869 B1 EP3199869 B1 EP 3199869B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- reflector
- shell
- facade
- illuminated
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005286 illumination Methods 0.000 title claims description 13
- 238000009826 distribution Methods 0.000 claims description 15
- 230000007704 transition Effects 0.000 claims description 6
- 238000001228 spectrum Methods 0.000 claims description 4
- 239000011248 coating agent Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- 230000007423 decrease Effects 0.000 claims description 2
- 230000001788 irregular Effects 0.000 claims description 2
- 230000000873 masking effect Effects 0.000 claims 3
- 235000014443 Pyrus communis Nutrition 0.000 claims 1
- 230000002093 peripheral effect Effects 0.000 claims 1
- 238000009827 uniform distribution Methods 0.000 claims 1
- 230000005855 radiation Effects 0.000 description 14
- 238000009434 installation Methods 0.000 description 12
- 230000004313 glare Effects 0.000 description 11
- 238000002156 mixing Methods 0.000 description 4
- 238000013459 approach Methods 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- YJPIGAIKUZMOQA-UHFFFAOYSA-N Melatonin Natural products COC1=CC=C2N(C(C)=O)C=C(CCN)C2=C1 YJPIGAIKUZMOQA-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000006059 cover glass Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- DRLFMBDRBRZALE-UHFFFAOYSA-N melatonin Chemical compound COC1=CC=C2NC=C(CCNC(C)=O)C2=C1 DRLFMBDRBRZALE-UHFFFAOYSA-N 0.000 description 1
- 229960003987 melatonin Drugs 0.000 description 1
- 230000000414 obstructive effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V7/00—Reflectors for light sources
- F21V7/04—Optical design
- F21V7/09—Optical design with a combination of different curvatures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V7/00—Reflectors for light sources
- F21V7/0008—Reflectors for light sources providing for indirect lighting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V7/00—Reflectors for light sources
- F21V7/04—Optical design
- F21V7/048—Optical design with facets structure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
- F21Y2115/00—Light-generating elements of semiconductor light sources
- F21Y2115/10—Light-emitting diodes [LED]
Definitions
- the present invention relates to a lighting device with at least one row of spotlights, a spotlight for such a lighting device for illuminating a surface piece, and a reflector for such a spotlight, the reflector for essentially completely capturing the light of a point-shaped light source radiating into a half space overall is approximately half-shell-shaped and is formed by at least two shell halves.
- Facade spotlights that use an LED as a light source have recently been proposed.
- a large number of such LEDs can be arranged next to one another in the form of a light band in order to illuminate the facade over its entire width or at least a part thereof.
- Such light strips are regularly arranged at a distance from the facade at the upper end of the facade or at the upper end of a facade piece to be illuminated, so that they illuminate the facade of the building obliquely downwards towards the floor.
- the facades to be illuminated can in this case be external facades or internal facades, for example of inner or light courtyards, but also walls of interior rooms, halls, inner courtyards or the like, or also ceilings and floors, for example by close to the floor Wall-mounted spotlights can be flooded, or generally at least approximately flat surfaces can be illuminated in a corresponding manner.
- approximately flat surfaces are uniformly illuminated with a row of spotlights that are arranged at a small distance from the illuminated surface at an edge region of the illuminated surface, with obliquely grinding radiation.
- Facade spotlight arrangements of this type with LEDs appear light and elegant. Since they can be made small, they hardly interfere with the facade, wall or ceiling. In addition, interesting optical effects can be achieved through the large number of spotlights, for example LEDs of different colors can illuminate different sections of the facade differently. It is also possible in a simple manner to vary the lighting color over time. LEDs are also easy to maintain and energy efficient.
- facade spotlight arrangements with point light sources can be improved with regard to the uniformity of the facade illumination and the lack of glare, the challenge being in particular to achieve this with spotlights arranged very close to the facade and illuminating comparatively large pieces of facade.
- the ratio of the height of the facade or wall piece to be illuminated to the facade spacing of the spotlights should often be 4: 1 or more, often even 10: 1 or more, with typical ratios being in the range from 5: 1 to 15: 1, which is a great challenge in terms of the mentioned uniformity with simultaneous glare-free.
- a projection device with a reflector which is designed in the form of a half shell overall and is composed of three shell parts, so that the reflector has a three-shell curvature overall, a constriction being provided between each of the three shell parts.
- the light source inside the reflector shell emits in all directions, so that the emitter emits partly reflected light and partly direct light.
- the writings show more spotlights JP H10 261302 A , GB00506 A and WO 2011/036340 .
- the US 2007/0171631 shows a wallwasher in which the emitters are assigned a reflector, with the aid of which the light is to be homogenized. Furthermore shows the DE 20 2005 011 747 a wallwasher with LEDs as light sources, with a good color mixing of the different light colors of the LEDs being achieved by means of a diffuser element. By means of a reflector, the light from the LEDs is reflected on a side wall before the light rays strike the diffuser element, which is designed as a sandblasted glass plate.
- EP 21 16 761 A1 facade lighting with "angular" radiating spotlights.
- the light emitted by the light sources of the spotlights is transformed into a square, pyramid-shaped beam of rays by means of free-form lenses in order to illuminate square pieces of facade surface.
- Notice also shows EP 22 16 588 A1 a spotlight with a bell-shaped reflector, which is made up of several reflector segments.
- the publication also shows US 2004/0114366 A1 an LED spotlight, to which a reflector is assigned, which comprises three reflector areas.
- a reflector In order to radiate around the LEDs and their operating circuit board located in the reflector and to block any reflected light from the LEDs and their operating circuit board, the inner reflector region located below the LEDs throws the reflected light onto an edge region the reflector, from which the light is then emitted by redirection.
- the object of the present invention is to create an improved facade / wall / floor lighting device of the type mentioned which avoids the disadvantages of the prior art and advantageously develops the latter.
- bright facade / wall lighting with high uniformity and little, ideally no glare in directions parallel to the facade / wall should be achieved, which allows a high installation position above the illuminated facade / wall piece or sunk into an overlying cornice or ceiling piece.
- this object is achieved by a reflector according to claim 1 and a spotlight with such a reflector according to claim 5 and a lighting device with such a spotlight according to claim 10.
- Advantageous embodiments of the invention are the subject of the dependent claims.
- all or some of the reflectors of the lighting device are each approximately double-bulb-shaped or twin-shell-shaped with a transition ridge between the two shell halves that is convexly curved or tapering on the reflector surface.
- the reflector surface and / or each of its shell-shaped halves can in particular be designed as a free-form surface.
- the two shell halves of a respective reflector together form an approximately double pear-shaped half shell, which has an essentially gap-shaped constriction formed by the transition region of the two shell halves.
- the reflectors can each be formed in one piece and the shell halves can be connected in one piece. Depending on the light distribution or deflection to be achieved, the mentioned constriction can extend in different directions or planes of the reflector shell.
- constriction forms the connection area or the connection between the two shell halves.
- the said constriction extends over the reflector shell and has a depth or height that decreases from one side of the reflector to the opposite side of the reflector.
- the two shell halves merge into one another more harmoniously and are less separated from one another or have a less pronounced or less pronounced transition.
- a suitable optic assigned to the light source instead of a rotationally symmetrical or orange-section-like light cone to give the light intensity distribution of the punctiform light source a particularly oblique, pyramid-like asymmetry in order to illuminate a preferably rectangular facade piece on the facade as evenly as possible.
- the multiple light sources can hereby complement each other much better, since geometrically regular, in particular rectangular, illuminated facade pieces can be placed on top of one another or evenly blended.
- the facade radiators can be aligned essentially parallel to one another, ie it is not necessary to achieve the desired uniformity by tilting the radiator axes.
- the emitters each have a previously mentioned approximately half-shell-shaped reflector, which essentially completely captures the light from the associated light source and throws it onto a particularly approximately rectangular area piece, the reflectors each being composed of two shell halves, each of which shell halves reflects the light captured in each case can distribute the entire area illuminated by the reflector. Due to the double-shelled curvature of the reflectors, the illuminated area is irradiated twice, so to speak, from each reflector, resulting in a high degree of uniformity the illumination of the entire area illuminated by a reflector is achieved without light-dark edges.
- the light source does not cast a shadow, but rather that the light around the light source is essentially completely thrown onto the facade or wall, ceiling or floor surface, as a result of which a high lighting efficiency with efficiencies of preferably more than 80%, in particular more than 90% can also be achieved.
- a very compact, in particular flat, arrangement of the reflectors can be achieved, which ensures a light, unobtrusive appearance and enables space-saving installation under or in cornices or adjacent ceiling or wall sections.
- the contouring of the half-shell or shell-shaped reflectors or their curvature halves is such that the beam path is reflected and converged by the deflection on the reflector surface or a reflector section irradiated by the light source, which - when viewed through the light source - is perpendicular the facade piece to be illuminated - offset to one side by the light source, throws the captured light onto a surface piece that is on the opposite side of the light source.
- Each of the shell halves of the reflector is designed to work in double convergence, so that the beam path emanating from one shell half - roughly speaking, roughly - is a particularly oblique double pyramid or, depending on the circumferential contour of the area to be illuminated, a particularly oblique double cone or a similarly double convergent Radiation body forms.
- Such a double convergent design of the reflector shell sections enables the light emitted by the light source, in particular emitted in a half-space, to be captured essentially completely with only one overall half-shell-shaped reflector and to radiate essentially completely past the light source onto a predetermined area.
- the light can be radiated through the plurality of shell halves on different sides of the light source, so that the light source in an at least approximately recessed area of the reflected beam path sits and generates no losses due to shadowing.
- a high degree of efficiency can be achieved, since the light rays emitted by the light source only have to be reflected once and, in this respect, reflection losses occur only once.
- the position of the spotlight can be used almost without restriction, since the light source can sit more or less directly between the reflector and the surface to be illuminated.
- the different shell halves of a reflector do not have to form "halves" in the sense of 50% of the total reflector surface, but can form different surface parts, for example smaller and larger surface parts of the approximately half-shell-shaped reflector.
- rectangular facade pieces in particular in the manner mentioned, but alternatively also differently contoured, limited area pieces such as, for example, polygons such as hexagons, ovals or almost any contoured area pieces of a surface to be illuminated, at least approximately flat, are uniform and glare-free be illuminated.
- the shell halves of a reflector can in each case in particular be contoured in such a way that a lower shell half edge portion illuminates an upper edge portion of the illuminated facade piece and / or an upper shell half edge portion illuminates a lower edge portion of the illuminated facade piece.
- an elevated installation position of the facade emitters can be achieved essentially completely above the facade / wall section to be illuminated, so that the facade emitters do not impair the view of the illuminated facade section.
- the aforementioned radiation reversal or mirroring can also be used for recessed installation of the facade emitters, for example in a cornice or a ceiling above the piece of facade to be illuminated, and yet the facade or wall up to the cornice or the Illuminated ceiling.
- a corresponding reflection or convergence in the horizontal direction can also be provided and the reflector or each of its shell halves can be contoured in such a way that a right shell edge section illuminates a left edge section of the illuminated facade piece and / or a left shell edge section illuminated a right edge section of the illuminated facade piece.
- the reflector or each of its shell halves can be contoured in such a way that a right shell edge section illuminates a left edge section of the illuminated facade piece and / or a left shell edge section illuminated a right edge section of the illuminated facade piece.
- the reflector can advantageously be designed such that the beam cones or pyramids or lobes emitted by the shell halves each have a beam path constriction, at least approximately in a common plane, in particular at least approximately in the region of the opening cross section of the reflector or have their focus point (in the sense of the conical tips of a double cone standing on top of each other).
- These constrictions of the beam paths of the reflected light in a common plane can be used to implement a largely concealed installation of the radiators and / or to place an aperture in front of the reflector, which lies in the common plane mentioned and in the area of the beam path constrictions , for example, has slit or hole-shaped light passage openings, the diameter or width of which is only a fraction, for example less than 1/3 or less than 1 ⁇ 4, of the diameter or the maximum width of the reflector.
- the above-mentioned diaphragm can be formed by a tube housing, which is closed per se and encloses the light source-reflector arrangement, and which has the hole-shaped or slot-shaped light outlet openings mentioned
- the shell halves can be of approximately the same size, but can also be of different sizes, for example when the aforementioned Constriction does not run centrally over the reflector body.
- the term shell half therefore does not have to be understood in the sense of 50% half of the surface, but can also denote different sized surface or body pieces or shell sections.
- the said constriction can extend in a plane that is perpendicular to the area piece to be illuminated on the one hand and perpendicular to the longitudinal direction along which the spotlights are lined up. If the spotlights are lined up approximately horizontally along an upper edge section of a facade piece to be illuminated, the reflectors can be contoured in such a way that the said constriction extends in a vertical plane. If the facade radiators are lined up approximately vertically along one side of the facade piece to be illuminated, the above-mentioned constriction can extend in a horizontal plane.
- the reflectors are each contoured such that the light captured by the associated light source is not transformed into a circular or round light cone, but into a preferably oblique light pyramid, i.e. viewed in its entirety, the beam of rays emanating from the reflector has a polygonal, preferably approximately rectangular cross-section, so that the illuminated area piece is also polygonal or rectangular.
- each of the two shell halves mentioned, from which an overall half-shell-shaped reflector is composed can be designed such that each shell half transforms the light captured by the associated light source into such a pyramid-shaped light bundle, the two beam pyramids emanating from the shell halves overlay in such a way that a polygonal, in particular rectangular, area piece is illuminated on the facade or surface to be illuminated.
- the reflector / light source arrangement can be such that the respective light source is the light it emits radiates essentially completely into a half-space at least largely facing away from the surface piece to be illuminated and is arranged such that the half-space faces the reflector, the half-shell-shaped bwz. shell-shaped reflector encloses the light source to such an extent that the said half-space is covered by the reflector.
- An axis of symmetry of the half space mentioned can be oriented exactly at right angles to the facade or wall, but can also be tilted slightly, for example at an angle of approximately 90 ° ⁇ 30 °, so that the half space is still predominantly facing away from the facade or wall is.
- the reflectors are each contoured in such a way that the reflectors essentially direct the captured light around the associated light source and throw it onto the area to be illuminated.
- the reflectors can be designed in such a way that the light is deflected only once at the reflector surface. The reflector can be easily redirected so that scattering losses due to multiple redirection are avoided.
- the light sources can each be arranged in the area of the opening cross-section of the respective associated reflector within the spatial area enclosed by the reflector edge.
- the reflector edge can at least approximately define a plane, wherein the light source assigned to the reflector can advantageously be arranged in this plane or can be positioned only slightly below or above this plane.
- the entire half-space, in which a punctiform light source such as an LED is emitted can be enclosed and the emitted light can be essentially completely captured by the reflector.
- an overall flat design of the light source / reflector arrangement can be achieved.
- the light source can be arranged in the region of the longitudinal center plane of the reflector, but not exactly in the center, but to one side offset of the reflector shell.
- the light source can be arranged offset from the constriction of the reflector from the center of the reflector to the side on which the constriction has a smaller depth.
- the light source is offset to the side in which the said constriction is less pronounced.
- faceting can be provided on the shell-shaped reflector surfaces.
- Such a surface structuring with a multitude of facets can only be provided for one of the half- or quarter-shell-shaped reflector surfaces or generally only for a part of the reflector, for example in such a way that one reflector quarter-shell is faceted and the other reflector quarter-shell is smooth, which already results in a certain Uniformity can be achieved since both reflector quarter shells essentially completely irradiate the same area piece.
- both reflector quarter shells or the entire reflector surface can be structured with such a large number of facets.
- both halves of the reflector shell essentially completely irradiate or illuminate the common area piece can achieve a beautiful homogenization of the illuminated area.
- the facets mentioned are advantageously made small relative to the reflector surface, preferably more than a hundred, in particular also more than two hundred facets can be arranged distributed over the reflector surface, possibly also in the form of a microfaceted surface structure.
- the faceting can advantageously be distributed in the form of a matrix or in a cloud-shaped manner, ie the facets do not all have to be of the same size and can be arranged differently according to a cloud distribution, but overall uniformly cover the reflector surface.
- the facets can both in the longitudinal direction as well as in the transverse direction - based on the previously explained division of the reflector surface - be formed in several rows and columns, for example in such a way that both in the longitudinal direction and in the transverse direction more than ten, in particular more than twenty rows and columns of such facets are provided .
- the shape of the faceting can also vary, advantageously polygonal, in particular rectangular and approximately square facets or generally regularly geometrically shaped facet pieces, the extent of which in the longitudinal and transverse directions is approximately the same size, can be provided.
- irregularly shaped surface structure shaped surface pieces can also be formed in the reflector surface, for example in the form of an orange peel structure, as can be obtained, for example, by etching the surface, or a silk matt surface structure, as is the case, for example, by sandblasting the surface is available.
- the microfacetted surface can also improve the light mixing and make the light source / reflector system less sensitive to position and shape tolerances while improving the uniformity of the illumination.
- the reflectors are shaped in such a way that the spotlights have a longitudinal blanking or a blanking parallel to the illuminated surface, i.e. the light intensity more or less in the direction parallel to the facade or illuminated surface goes to zero.
- the blanking is in particular such that in a plane parallel to the facade, which passes through the row of facade radiators or is at the same distance from the facade as the facade radiators, the light intensity in a region close to the ground approaches zero.
- Dimming is also provided in planes that lie parallel to the illuminated area between the spotlights and the illuminated area, so that, for example, people who are closer to the illuminated wall than the facade spotlights with normal viewing direction - i.e. not exactly vertically upwards - do not experience glare.
- a glare can only occur if you approach the facade more or less directly and look upwards into the facade spotlight row.
- the longitudinal or facade parallel blanking ensures that there is no glare.
- the blanking on the individual spotlights can be different.
- the facade radiators viewed in a vertical plane perpendicular to the facade, can have a blanking area of more than 270 °, preferably approximately 270 ° to 280 °, the non-masked area at the upper end of the illuminated facade piece approximately is directed at an angle of 90 ° to the facade, while at the lower end of the illuminated piece of facade the non-masked area can enclose an angle of preferably 3 ° to 10 ° with the facade.
- the facade radiator can have a blanking area of at least 200 °, preferably 240 ° or more, in particular approximately 240 ° to 270 °, which can depend on the LED distance and the desired lighting effects, such as color fades.
- the facade radiators can be arranged in an approximately horizontal row at the upper end of the facade piece to be illuminated, wherein the facade radiators can be arranged at a distance of approximately 0.5 to 2 m from the facade.
- a row of facade emitters can advantageously be placed at a distance of about 1 m of the facade and illuminate the facade down to the floor, i.e. about 15 m high.
- the ratio of the height of the facade or wall piece to be illuminated to the facade spacing of the spotlights can be 4: 1 or more, preferably 5: 1 or more, in particular also 10: 1 or more, with typical ratios to be achieved in Range from 5: 1 to 15: 1.
- the aspect ratio mentioned cannot be determined by the height of the wall piece to be illuminated, but rather, for example, its width, namely, for example, when a wall, for example of a long corridor, is to be illuminated with spotlights arranged on the side.
- the above-mentioned ratio is regularly determined from the extent of the illuminated area in a direction perpendicular to the direction along which the usually several emitters are lined up, and the emitter distance perpendicular to the area to be illuminated.
- the facade radiators or their reflectors which are arranged closer to the edge of a facade surface, are designed with regard to their radiation angle or blanking spaces in order to prevent radiation beyond the lateral end of the facade.
- the facade emitters or their reflectors arranged towards the edge of the facade are designed such that the facade piece illuminated by them is laterally approximately flush with the vertical facade edge.
- the from the facade radiator belt i.e. The illuminated room created as a whole closes, so to speak, flush with the right and left edge of the facade, or possibly ended earlier, so that it is guaranteed in any case that there is no glare on the adjacent building facade.
- the facade radiators therefore do not radiate beyond the edges of the facade surface assigned to them.
- the half-shell-shaped reflectors in an advantageous further development of the invention are contoured in particular in such a way that each facade spotlight illuminates an approximately rectangular facade piece and generates an illuminance distribution thereon that runs along vertical lines over the entire facade height or entire Considered the height of the illuminated facade or surface piece is an illuminance ratio of minimum illuminance E min to maximum illuminance E max of 1:10, ie 0.1 or greater.
- the illuminated facade piece does not have to go all the way to the floor, but can end a bit far above or a certain transition area to the floor can be provided to avoid bright radiation edges on the floor - or an adjacent wall - which are otherwise due to Assembly tolerances, but also the "radiation brush", which arises from the real expansion of the light source, which in the mathematical sense is not really punctiform, with a light source that cannot be positioned as far from the reflector as possible.
- an illuminance ratio of minimum illuminance E min to maximum illuminance E max can advantageously be used - when viewed along vertical and / or horizontal lines over the entire facade height and / or width - of 1: 2.5, ie 0.4 or larger.
- the aforementioned illuminance ratio even with spotlights arranged very close to the wall with the aforementioned ratio of spotlight-wall distance to extend, in particular height, the illuminated area piece from 1: 4 to 1:20, in particular 1: 5 to 1:15.
- the reflectors of the facade emitters are advantageously designed asymmetrically in a development of the invention in such a way that the illuminance distribution of a respective facade emitter, viewed individually, has approximately semi-oval or slightly pear-shaped isoluxes on the facade piece illuminated by it, i.e. Lines along which the illuminance is the same. The course of these isoluxes clearly determines the free-form surface of the reflector, which is assigned to the light source.
- a certain Isoluxen image is generated via the geometric relationships of the facade emitter arrangement and the free-form surface of the reflector, which characterizes the distribution of illuminance on the illuminated piece of facade, so that the shape of the reflector surface with respect to its geometry is clearly determined from the course of the Isoluxen.
- facade lighting which is uniform for the human eye can be achieved if a plurality of facade spotlights are arranged in a row in parallel in front of the facade or wall.
- the isoluxes mentioned can in principle be contoured differently.
- the oval or semi-oval isoluxes of the facade piece illuminated by a facade spotlight have a ratio of height to width of at least 2: 1, the ratio mentioned advantageously also 3 : 1 or 4: 1 can be. Due to the generally elongated, slim design of the Isoluxen one can be too high illuminance at least approximately constant in the facade.
- the light sources can each be mounted on a support arm which projects from an edge of the respective reflector over its opening cross-section, the light sources being arranged on the side of the respective support arm facing the reflector.
- Said support arm can have an elongated, slim contour to block as little area as possible for the reflection of the light rays, for example the shape of a longitudinal web.
- said support arms, on which the light sources are arranged can be part of a common printed circuit board which extends along the row of radiators and in the region of the reflectors each have a reflector cutout, preferably adapted to the reflector contour, the edge of which surrounds and through the respective reflector through which the reflectors can throw the captured light onto the facade or wall piece.
- each facade spotlight can be assigned its own circuit board, although all or some of the facade spotlights can also have a common circuit board along which the light sources are lined up in order to form a common light band.
- the facade lighting device 1 shown in the figures comprises in front of each facade 2, 3 of the building 4 a light band 5, which is essentially horizontal is arranged approximately parallel to the facade at the upper end of the respective facade 2 and 3 and - roughly speaking - is approximately as long as the facade is wide or slightly shorter.
- Each light band 5 comprises a plurality of facade spotlights 6, each of which comprises a point-shaped light source in the form of an LED 7 and a reflector 8 assigned to the LED 7, as is the case here Fig. 7 shows.
- the LEDs 7 can in this case be arranged on a light source support 9, which can advantageously be designed as an LED circuit board, and can be pivoted about a lying axis, so that the radiation angle of the respective facade radiator 6 relative to the facade 2 or 3 can be adjusted.
- the reflector 8 can also be pivoted together with the LED 7.
- the light source together with the optics in the form of the reflector 8 can advantageously be arranged in an approximately tubular housing 10 which has a slot-shaped radiation opening which can be closed with a cover glass in order to avoid contamination of the optics.
- the housing 10 can also have other cross sections, for example round pipe cross sections.
- the housing 10 can also act as a diaphragm and have hole-shaped or slit-shaped light passage openings 51 in the plane of constrictions 50 of the reflected light pyramids, but are otherwise designed to be closed.
- the light source or LED 7 can be attached to a support arm 9a, which forms part of the aforementioned light source carrier board 9 and extends from the edge of the associated reflector 8 and protrudes into the opening cross section 8q of the reflector 8. Accordingly, the LED 7 arranged on the support arm 9a is arranged approximately in the plane defined by the edges of the reflector 8, the LED 7 being located within the spatial area enclosed by the said edge of the reflector.
- Said light source carrier board 9 advantageously comprises a reflector cutout 9b, which is adapted to the circumferential contour of the reflector 8, so that the aforementioned cutout surrounds the reflector 8.
- the reflector 8 can also be mounted or fastened on the light source carrier board 9, in particular in such a way that at least part of the reflector edge is seated on the light source carrier board 9 or extends directly above or along said carrier board 9, wherein if necessary, fastening means can be provided, for example in the form of the holding pins shown.
- the light strip 5 is arranged at a facade height of 15 m at a distance of about 1 m in front of the facade.
- the distance of the LEDs 7 in the light strip 5 from one another can in principle be selected differently, advantageously a more or less seamless stringing of as many LEDs as possible is provided, since this enables high illuminance on the facade to be achieved with LEDs of low intensity.
- the LEDs or the spotlights do not emit any rotationally symmetrical light cone. Rather, the contouring of the reflectors 8 illuminates an approximately rectangular facade piece 12 from each LED 7.
- the reflectors 8 can each be designed such that an approximately rectangular, for example approximately 15 m high and 3 m wide facade piece 12 of a single LED 7 according to FIG Fig. 4 is illuminated.
- the radiation angle ⁇ is provided, which in the illustrated embodiment is approximately 87 ° and is oriented such that the upper edge of the radiation sector is approximately perpendicular to the facade, while on the lower edge between the facade and an angle of approximately 3 ° is provided at the edge of the radiation area, cf.
- FIG. 3 A blanking space of 360 ° - ⁇ is thus provided in the vertical plane mentioned, cf. Fig. 3 .
- an area with the angle ⁇ is also illuminated in a horizontal plane perpendicular to the facade, cf. Fig. 4 , which can vary depending on the distance between the facades and the density of the LEDs and is advantageous Execution can be approximately 2 x 45 ° to 2 x 60 °. Accordingly, a range of 360 ° - ⁇ is hidden in the horizontal plane mentioned.
- each of the reflectors 8 comprises a roughly half-shell-shaped reflector body, which has an approximately - roughly speaking - round or rounded edge contour, from which the reflector body bulges in a shell-like manner to one side, so that the edge contour mentioned defines the opening cross section of the shell. More precisely, the half-shell-shaped reflector body is formed by two shell halves 8a and 8b, which are connected to one another and between them has a transition area in the form of a constriction 8c, which connects the two shell halves 8a and 8b to one another. As a result, the reflector 8 has an overall double-bulb-shaped or twin-jaw-shaped contouring, cf. Figures 9 and 10th .
- constriction 8c forms - when the inside of the shell forming the reflector surface is viewed - a ridge-shaped elevation which extends along the central longitudinal plane of the reflector 8.
- Figures 9 (a) and 10 (c) clarify, takes the depth or height of the constriction 8c from one side of the reflector 9 slightly towards an opposite side, and in particular towards the side which, in the installation situation, points to the surface to be illuminated, that is to say, in the case of facade radiators arranged above a facade to be illuminated, is at the bottom or forms the lower edge section 8u of the reflector 8.
- the shell halves 8a and 8b of the reflector 8 which in total forms a half shell, can be contoured such that the light captured by each shell half 8a and 8b onto the entire surface illuminated by the reflector 8, ie the surface piece 12, according to FIG Fig. 5 can be rectangular, is distributed.
- the beam paths of the two shell halves 8a and 8b thus essentially overlap completely, so that there are no light-dark lines or edges on the surface piece 12 to be illuminated.
- each of the shell halves 8a and 8b is double-converging.
- the rays deflected by an upper shell half edge 8o are directed onto a lower edge region of the facade piece 12 to be illuminated, while the rays deflected by a lower shell half edge 8u illuminate the upper edge region of the illuminated facade piece 12.
- a right edge section of each shell half 8a and 8b illuminates a left edge section of the facade piece 12, while the left shell edge 8l irradiates a right edge section of the facade piece 12, cf. 11 (a) and 11 (b) .
- the shell halves are each contoured in such a way that there is a unambiguous assignment, i.e. each point of the illuminated surface 12 is illuminated by exactly one point of the shell half.
- the convergence of the beam path can on the one hand achieve that, despite uniform illumination of the facade piece 12, the light of the light source 7 captured by the reflector 8 is completely directed around the light source 7 is so that the light source 7 or its support arm 9a does not cast a shadow.
- a very favorable, space-saving installation situation can be realized, like it is Fig. 8 shows.
- the beam of rays generated is emitted essentially completely below - or, in the case of lateral installation, essentially completely laterally or, in the case of installation at the bottom, essentially completely above the reflector 8, so that the reflector 8 or the entire facade emitter 6 is also flush-mounted or in an adjacent ceiling or cornice can be recessed.
- the facade piece 12 illuminated by the respective facade radiator 6 thus remains free from being covered by the facade radiator itself, as a result of which no obstructive visual barriers arise for the viewer on the illuminated wall or facade piece.
- the reflector surfaces of the reflectors 8 can be designed to be highly reflective, advantageously have a reflectance of more than 80%, in particular more than 90%.
- the reflector surfaces can be made slightly matt in order to make the reflector less sensitive to manufacturing shape tolerances or to achieve the desired uniformity of the illumination of the area piece even with larger shape tolerances of the reflector.
- the reflectors 8 can have filters and / or mirror layers, for example in order to filter the captured light with regard to specific wavelength ranges, for example in order to filter out melatonin light.
- the reflectors 8 can be provided with a surface structuring in the form of a faceting 80, which comprises a multiplicity of facets 81, which are distributed in a regular pattern over the entire reflector surface and can adjoin one another essentially so that essentially the entire surface effective reflector surface is faceted.
- the facets 81 can be distributed both in the longitudinal direction and in the transverse direction of the reflector 8 in a plurality of rows and columns, for example in more than ten columns and ten rows per quarter shell.
- the Facets 81 can be contoured differently, for example they can be approximately provided with rectangular circumferential contours.
- the facet surface of a facet 81 itself can also be contoured differently, for example essentially flat or also slightly concave, for example in the sense of a flat depression in the manner of the impression of a lens.
- FIG. 5 shows, the rectangular facade pieces 12 illuminated by an LED 7 or the associated reflectors 8 are superimposed, ie the facade pieces illuminated by one LED overlap along a vertical strip.
- the LEDs arranged at a distance from each other and at a distance from b from the facade like this Figures 5 and 6 show, the illuminated facade pieces 12 overlap in a strip, since the width of the illuminated facade pieces 12 is greater than the distance a.
- Said overlap strip can be quite narrow, but can also correspond to the entire facade section 12, ie each radiator 6 can illuminate the entire facade section 12.
- the illuminance of the light strip 5 shows only a very slight variation over the entire facade height.
- the minimum illuminance, according to Fig. 3 occurs at the lower end of the facade, the maximum illuminance E max , which is in the range of about a quarter to three quarters of the facade height, in the drawn version Fig. 3 occurs at about three quarters of the facade height, in a ratio of 1:10 or more, ie preferably 1: 5 or 1: 2.5 or even greater.
- the radiation space of the light band 5 has lateral tear-off edges, which are advantageously approximately flush with the edges of the facade, so that glare around the corner of the building 4 is excluded.
- FIG. 12 shows advantageous distributions of illuminance.
- the facade height "0" which corresponds to the height of the light band 5 gives a relative illuminance of approximately 60%, which then rises up to approximately 6 m below the light band 5 up to approximately 100%, ie reaches its maximum value there .
- the lux number then drops again to the bottom of the facade, with 10% of the maximum lux strength still being present on the floor.
- the ratio of minimum illuminance E min to maximum illuminance E max is defined as 1:10.
- the reflector 8 of an individual facade radiator or an individual LED 7 can be defined by an illuminance distribution as it is Fig. 13 shows.
- the said Fig. 13 shows the isoluxes, ie the lines along which the illuminance in the facade section 12 illuminated by an LED is the same.
- the is on the vertical axis Fig. 13 the height of the facade, more precisely the height under the respective LED, while the horizontal axis indicates the width of the illuminated facade section.
- the isoluxes have an approximately semi-oval contour or an oval shape flattened on one end face.
- the facade point directly opposite an LED 7 is, so to speak, the center of the Isoluxen mentioned.
- the Isoluxen extend approximately oval-shaped or semi-oval-shaped or in the form of an oval flattened on one side, in particular on one end face, the Isoluxe indicating the highest illuminance lying in the center and being enclosed in an onion-shell shape by Isoluxen, which indicate ever lower illuminance levels.
- the ratio of the longitudinal extent of the Isoluxen in the vertical direction to the width of the Isoluxen is more than 2: 1, ie the Isoluxen are generally quite long and slim, cf. Figure 13 .
- the reflector 8 of one or more, possibly all of the emitters can be provided with a coating which changes the spectrum of the reflected light, so that the reflected light has a different spectrum than the light captured by the reflector and coming from the light source .
- a coating which changes the spectrum of the reflected light, so that the reflected light has a different spectrum than the light captured by the reflector and coming from the light source .
- melatonin-promoting or suppressing light can be generated.
- Such a spectrally changing coating is particularly advantageous in connection with the simple reflection of the entire captured or all of the light emitted by the light source on the reflector, so that the desired spectrum change is not falsified or is not uncontrollable due to multiple reflections.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
Description
Die vorliegende Erfindung betrifft eine Beleuchtungsvorrichtung mit zumindest einer Reihe von Strahlern, einen Strahler für eine solche Beleuchtungsvorrichtung zum Beleuchten eines Flächenstücks, sowie einen Reflektor für einen solchen Strahler, wobei der Reflektor zum im Wesentlichen vollständigen Einfangen des Lichts einer in einen Halbraum strahlenden, punktförmigen Lichtquelle insgesamt etwa halbschalenförmig ausgebildet ist und von zumindest zwei Schalenhälften gebildet ist.The present invention relates to a lighting device with at least one row of spotlights, a spotlight for such a lighting device for illuminating a surface piece, and a reflector for such a spotlight, the reflector for essentially completely capturing the light of a point-shaped light source radiating into a half space overall is approximately half-shell-shaped and is formed by at least two shell halves.
In jüngerer Zeit wurden Fassadenstrahler vorgeschlagen, die mit einer LED als Lichtquelle arbeiten. Dabei können eine Vielzahl solcher LEDs in Form eines Lichtbandes nebeneinander angeordnet werden, um die Fassade über ihre gesamte Breite oder zumindest ein Stück hiervon zu beleuchten. Derartige Lichtbänder werden dabei regelmäßig am oberen Ende der Fassade bzw. am oberen Ende eines zu beleuchtenden Fassadenstücks ein Stück weit von der Fassade beabstandet angeordnet, so dass sie schräg nach unten zum Boden hin gerichtet die Fassade des Gebäudes beleuchten. Die zu beleuchtenden Fassaden können hierbei Außenfassaden oder Innenfassaden beispielsweise von Innen- oder Lichthöfen sein, wobei jedoch auch Wände von Innenräumen, Sälen, Innenhöfen oder dergleichen, oder auch Decken und Fußböden, die beispielsweise durch bodennah an einer Wand montierte Strahler geflutet werden können, bzw. allgemein zumindest näherungsweise ebene Flächen in entsprechender Weise beleuchtet werden können. Insbesondere werden näherungsweise ebene Flächen mit einer Reihe von Strahlern, die in geringem Abstand von der beleuchteten Fläche an einem Randbereich der beleuchteten Fläche angeordnet sind, gleichmäßig mit schräg schleifender BEstrahlung gleichmäßig ausgeleuchtet.Facade spotlights that use an LED as a light source have recently been proposed. A large number of such LEDs can be arranged next to one another in the form of a light band in order to illuminate the facade over its entire width or at least a part thereof. Such light strips are regularly arranged at a distance from the facade at the upper end of the facade or at the upper end of a facade piece to be illuminated, so that they illuminate the facade of the building obliquely downwards towards the floor. The facades to be illuminated can in this case be external facades or internal facades, for example of inner or light courtyards, but also walls of interior rooms, halls, inner courtyards or the like, or also ceilings and floors, for example by close to the floor Wall-mounted spotlights can be flooded, or generally at least approximately flat surfaces can be illuminated in a corresponding manner. In particular, approximately flat surfaces are uniformly illuminated with a row of spotlights that are arranged at a small distance from the illuminated surface at an edge region of the illuminated surface, with obliquely grinding radiation.
Derartige Fassadenstrahleranordnungen mit LEDs wirken leicht und elegant. Da sie kleinbauend ausgebildet werden können, stören sie das Fassaden- bzw. Wand oder Deckenbild kaum. Zudem können durch die Vielzahl der Strahler interessante optische Effekte erzielt werden, beispielsweise können verschiedenfarbige LEDs verschiedene Abschnitte der Fassade unterschiedlich beleuchten. Ebenso wird es in einfacher Weise möglich, die Beleuchtungsfarbe zeitlich zu variieren. Zudem sind LEDs wartungsfreundlich und energieeffizient.Facade spotlight arrangements of this type with LEDs appear light and elegant. Since they can be made small, they hardly interfere with the facade, wall or ceiling. In addition, interesting optical effects can be achieved through the large number of spotlights, for example LEDs of different colors can illuminate different sections of the facade differently. It is also possible in a simple manner to vary the lighting color over time. LEDs are also easy to maintain and energy efficient.
Verbesserungsfähig sind derartige Fassadenstrahleranordnungen mit punktförmigen Lichtquellen jedoch hinsichtlich der Gleichmäßigkeit der Fassadenausleuchtung und der Blendungsfreiheit, wobei die Herausforderung insbesondere darin besteht, dies bei sehr nahe an der Fassade angeordneten Strahlern, die vergleichsweise große Fassadenstücke beleuchten, zu erreichen. Das Verhältnis von Höhe des zu beleuchtenden Fassaden- bzw. Wandstücks zu Fassadenabstand der Strahler soll oft 4:1 oder mehr, oft sogar 10:1 oder mehr betragen, wobei typischerweise zu erreichende Verhältnisse im Bereich von 5:1 bis 15:1 liegen, was eine große Herausforderung hinsichtlich der genannten Gleichmäßigkeit bei gleichzeitiger Blendungsfreiheit darstellt.However, such facade spotlight arrangements with point light sources can be improved with regard to the uniformity of the facade illumination and the lack of glare, the challenge being in particular to achieve this with spotlights arranged very close to the facade and illuminating comparatively large pieces of facade. The ratio of the height of the facade or wall piece to be illuminated to the facade spacing of the spotlights should often be 4: 1 or more, often even 10: 1 or more, with typical ratios being in the range from 5: 1 to 15: 1, which is a great challenge in terms of the mentioned uniformity with simultaneous glare-free.
Um trotz der üblicherweise rotationssymmetrischen Lichtkegel bzw. - bei linearen Reflektoren - linearen Lichtkeilen eine einigermaßen gleichmäßige Fassadenbeleuchtung zu erzielen, wurde bereits vorgeschlagen, die Fassadenstrahler mit ihrer Strahlungskegelachse unterschiedlich zu verkippen, so dass sich die Lichtkegel bzw. die auf der Fassade ausgeleuchteten Bereiche überlagern bzw. einander ergänzen, um die Fassadenfläche möglichst vollständig auszuleuchten. Dabei wurde auch bereits vorgeschlagen, vor der Fassade mehrere Reihen von Fassadenstrahiern anzuordnen, die in unterschiedlichen Winkeln ausgerichtet sind und auf die Fassade strahlen. Die hierdurch erzielten Erfolge sind jedoch begrenzt. Es verbleiben meist ungleichmäßig ausgeleuchtete Bereiche, was gerade bei modernen, glatten Fassaden deren Optik verzerrt. Vor allen Dingen jedoch wird die angestrebte Gleichmäßigkeit der Ausleuchtung regelmäßig durch eine erhöhte Blendungswirkung erkauft. Die verschieden verkippten Fassadenstrahler bewirken oftmals an vielerlei Stellen in der Fassadenumgebung eine Blendung, da sich von vielerlei Beobachtungspunkten aus jeweils zumindest ein Fassadenstrahler findet, der dorthin strahlt.In order to achieve somewhat uniform facade lighting despite the usually rotationally symmetrical light cones or - in the case of linear reflectors - linear light wedges, it has already been proposed to tilt the facade emitters differently with their radiation cone axis, so that the light cones or the areas illuminated on the facade overlap or complement each other in order to illuminate the facade surface as completely as possible. It was also already proposed to arrange several rows of facade radiators in front of the facade, which are aligned at different angles and shine on the facade. However, the success achieved is limited. There are usually unevenly illuminated areas, which distorts their appearance, particularly in modern, smooth facades. Above all, however, the desired uniformity of illumination is regularly bought through an increased glare effect. The differently tilted facade emitters often cause glare in many places in the facade environment, since at many observation points there is at least one facade emitter that radiates there.
Aus der Schrift
Die
Ferner zeigt die
Ferner zeigt die Druckschrift
Hiervon ausgehend liegt der vorliegenden Erfindung die Aufgabe zugrunde, eine verbesserte Fassaden-/Wand-/Bodenbeleuchtungsvorrichtung der genannten Art zu schaffen, die Nachteile des Standes der Technik vermeidet und Letzteren in vorteilhafter Weise weiterbildet. Insbesondere soll eine lichtstarke Fassaden-/Wandbeleuchtung mit hoher Gleichmäßigkeit und geringer, idealerweise keiner Blendungswirkung in Richtungen parallel zur Fassade/Wand erzielt werden, die eine hohe Einbaulage oberhalb des beleuchteten Fassaden-/Wandstücks bzw. versenkt in ein darüber liegendes Gesims oder Deckenstück erlaubt.Proceeding from this, the object of the present invention is to create an improved facade / wall / floor lighting device of the type mentioned which avoids the disadvantages of the prior art and advantageously develops the latter. In particular, bright facade / wall lighting with high uniformity and little, ideally no glare in directions parallel to the facade / wall should be achieved, which allows a high installation position above the illuminated facade / wall piece or sunk into an overlying cornice or ceiling piece.
Erfindungsgemäß wird diese Aufgabe durch einen Reflektor gemäß Anspruch 1 sowie einen Strahler mit einem solchen Reflektor gemäß Anspruch 5 sowie eine Beleuchtungsvorrichtung mit einem solchen Strahler gemäß Anspruch 10 gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der abhängigen Ansprüche.According to the invention, this object is achieved by a reflector according to
Es wird also vorgeschlagen, dass alle oder einige der Reflektoren der Beleuchtungsvorrichtung jeweils etwa doppelbirnenförmig bzw. zwillingsschalenförmig mit einem auf der Reflektorfläche konvex gewölbten bzw. spitz zulaufenden Übergangsgrat zwischen den beiden Schalenhälften ausgebildet sind. Die Reflektorfläche und/oder jede ihrer schalenförmigen Hälften kann insbesondere als Freiformfläche ausgebildet sein. Die beiden Schalenhälften eines jeweiligen Reflektors bilden zusammen eine etwa doppelbirnenförmige Halbschale, die eine vom Übergangsbereich der beiden Schalenhälften gebildete im Wesentlichen spaltförmige Einschnürung besitzt. Die Reflektoren können jeweils einstückig ausgebildet sein und die Schalenhälften einstückig miteinander verbunden sein. Die genannte Einschnürung kann sich hierbei je nach zu erreichender Lichtverteilung bzw. - umlenkung in verschiedenen Richtungen bzw. Ebenen der Reflektorschale erstrecken. Für eine Vielzahl von Anwendungen kann es vorteilhaft sein, die genannte spaltförmige Einschnürung zwischen den Schalenhälften in einer Längsmittelebene des jeweiligen Reflektors anzuordnen, so dass sich die beiden Schalenhälften rechts und links von der genannten Einschnürung aus wegwölben. Die genannte Einschnürung bildet den Verbindungsbereich bzw. die Verbindung zwischen den beiden Schalenhälften.It is therefore proposed that all or some of the reflectors of the lighting device are each approximately double-bulb-shaped or twin-shell-shaped with a transition ridge between the two shell halves that is convexly curved or tapering on the reflector surface. The reflector surface and / or each of its shell-shaped halves can in particular be designed as a free-form surface. The two shell halves of a respective reflector together form an approximately double pear-shaped half shell, which has an essentially gap-shaped constriction formed by the transition region of the two shell halves. The reflectors can each be formed in one piece and the shell halves can be connected in one piece. Depending on the light distribution or deflection to be achieved, the mentioned constriction can extend in different directions or planes of the reflector shell. For a large number of applications, it can be advantageous for the aforementioned gap-like constriction between the shell halves in a longitudinal center plane to arrange the respective reflector so that the two shell halves bulge to the right and left of the constriction mentioned. The named constriction forms the connection area or the connection between the two shell halves.
Die genannte Einschnürung erstreckt sich über die Reflektorschale hinweg und besitzt dabei eine Tiefe bzw. Höhe, die von einer Seite des Reflektors aus zur gegenüberliegenden Seite des Reflektors hin abnimmt. Auf der Seite der Reflektorschale, an der die Einschnürung die geringere Tiefe bzw. Höhe besitzt, gehen die beiden Schalenhälften sozusagen harmonischer ineinander über und sind weniger stark voneinander separiert bzw. besitzen einen weniger starken bzw. weniger stark ausgeprägten Übergang.The said constriction extends over the reflector shell and has a depth or height that decreases from one side of the reflector to the opposite side of the reflector. On the side of the reflector shell on which the constriction has the lower depth or height, the two shell halves merge into one another more harmoniously and are less separated from one another or have a less pronounced or less pronounced transition.
Es wird weiterhin vorgeschlagen, mittels einer geeigneten, der Lichtquelle zugeordneten Optik anstelle eines rotationssymmetrischen oder orangenschnittartigen Lichtkegels der Lichtstärkeverteilung der punktförmigen Lichtquelle eine insbesondere schräge, pyramidenartige Asymmetrie zu geben, um auf der Fassade ein vorzugsweise rechteckiges Fassadenstück möglichst gleichmäßig auszuleuchten. Die mehreren Lichtquellen können hierdurch einander wesentlich besser ergänzen, da auf der Fassade geometrisch regelmäßige, insbesondere rechteckige, beleuchtete Fassadenstücke aneinandergesetzt bzw. gleichmäßig überblendet werden können. Gleichzeitig können die Fassadenstrahler im Wesentlichen parallel zueinander ausgerichtet werden, d.h. es ist nicht notwendig, durch Verkippen der Strahlerachsen die gewünschte Gleichmäßigkeit zu erzielen. Dabei besitzen die Strahler jeweils einen vorgenannten etwa halbschalenförmigen Reflektor, der das Licht der zugeordneten Lichtquelle im Wesentlichen vollständig einfängt und auf ein insbesondere etwa rechteckiges Flächenstück wirft, wobei die Reflektoren jeweils aus zwei Schalenhälften zusammengesetzt sind, von welchen Schalenhälften jede das jeweils eingefangene Licht auf das gesamte von dem Reflektor beleuchtete Flächenstück verteilen kann. Durch die doppelschalige Wölbung der Reflektoren wird dabei von jedem Reflektor das beleuchtete Flächenstück sozusagen doppelt bestrahlt, wodurch eine hohe Gleichmäßigkeit der Ausleuchtung des gesamten, von einem Reflektor beleuchteten Flächenstücks ohne Hell-Dunkel-Ränder erreicht wird. Gleichzeitig kann sichergestellt werden, dass die Lichtquelle keinen Schatten wirft, sondern das Licht um die Lichtquelle herum im Wesentlichen vollständig auf die Fassade bzw. Wand, Decke oder Bodenfläche geworfen wird, wodurch eine hohe lichttechnische Effizienz mit Wirkungsgraden von vorzugsweise mehr als 80%, insbesondere auch mehr als 90% erreicht werden kann. Gleichzeitig kann eine sehr kompakte, insbesondere flach bauende Anordnung der Reflektoren erzielt werden, die ein leichtes, wenig störendes Erscheinungsbild sicherstellt und einen Platz sparenden Einbau unter bzw. in Gesimsen oder angrenzenden Decken- oder Wandabschnitten ermöglicht.It is further proposed to use a suitable optic assigned to the light source instead of a rotationally symmetrical or orange-section-like light cone to give the light intensity distribution of the punctiform light source a particularly oblique, pyramid-like asymmetry in order to illuminate a preferably rectangular facade piece on the facade as evenly as possible. The multiple light sources can hereby complement each other much better, since geometrically regular, in particular rectangular, illuminated facade pieces can be placed on top of one another or evenly blended. At the same time, the facade radiators can be aligned essentially parallel to one another, ie it is not necessary to achieve the desired uniformity by tilting the radiator axes. The emitters each have a previously mentioned approximately half-shell-shaped reflector, which essentially completely captures the light from the associated light source and throws it onto a particularly approximately rectangular area piece, the reflectors each being composed of two shell halves, each of which shell halves reflects the light captured in each case can distribute the entire area illuminated by the reflector. Due to the double-shelled curvature of the reflectors, the illuminated area is irradiated twice, so to speak, from each reflector, resulting in a high degree of uniformity the illumination of the entire area illuminated by a reflector is achieved without light-dark edges. At the same time, it can be ensured that the light source does not cast a shadow, but rather that the light around the light source is essentially completely thrown onto the facade or wall, ceiling or floor surface, as a result of which a high lighting efficiency with efficiencies of preferably more than 80%, in particular more than 90% can also be achieved. At the same time, a very compact, in particular flat, arrangement of the reflectors can be achieved, which ensures a light, unobtrusive appearance and enables space-saving installation under or in cornices or adjacent ceiling or wall sections.
Die Konturierung der insgesamt halbschaligen bzw. muschelförmigen Reflektoren bzw. deren Wölbungshälften ist hierbei derart beschaffen, dass der Strahlengang durch die Umlenkung an der Reflektorfläche eine Spiegelung erfährt und konvergiert bzw. ein von der Lichtquelle bestrahlter Reflektorabschnitt, der - bei Blickrichtung durch die Lichtquelle senkrecht auf das zu beleuchtende Fassadenstück - zu einer Seite von der Lichtquelle versetzt liegt, das eingefangene Licht auf ein Flächenstück wirft, das auf der gegenüberliegenden Seite der Lichtquelle liegt.The contouring of the half-shell or shell-shaped reflectors or their curvature halves is such that the beam path is reflected and converged by the deflection on the reflector surface or a reflector section irradiated by the light source, which - when viewed through the light source - is perpendicular the facade piece to be illuminated - offset to one side by the light source, throws the captured light onto a surface piece that is on the opposite side of the light source.
Dabei ist jede der Schalenhälften des Reflektors doppelt konvergent arbeitend ausgebildet so dass der von einer Schalenhälfte abgehende Strahlengang - näherungsweise, grob gesprochen - eine insbesondere schiefe Doppelpyramide oder, je nach Umfangskontur des zu beleuchtenden Flächenstücks, einen insbesondere schiefen Doppelkegel oder einen in ähnlicher Weise doppelt konvergenten Strahlenkorpus bildet. Eine solche doppelt konvergente Ausbildung der Reflektorschalenabschnitte ermöglicht es, das von der Lichtquelle abgegebene, insbesondere in einen Halbraum abgestrahlte Licht im wesentlichen vollständig mit nur einem insgesamt halbschalenförmigen Reflektor einzufangen und im wesentlichen vollständig an der Lichtquelle vorbei auf ein vorbestimmtes Flächenstück zu strahlen. Das Licht kann dabei durch die mehreren Schalenhälften auf verschiedenen Seiten der Lichtquelle an dieser vorbei gestrahlt werden, so dass die Lichtquelle in einem zumindest näherungsweise ausgesparten Bereich des reflektierten Strahlengangs sitzt und keine Verluste durch Abschattungen erzeugt. Dabei kann ein hoher Wirkungsgrad erzielt werden, da die von der Lichtquelle abgegebenen Lichtstrahlen nur einmal reflektiert werden müssen und insofern nur einmal Reflexionsverluste auftreten. Gleichzeitig ist der Strahler hinsichtlich seiner Positionierbarkeit nahezu unbeschränkt einsetzbar, da die Lichtquelle mehr oder minder unmittelbar zwischen Reflektor und zu beleuchtender Fläche sitzen kann.Each of the shell halves of the reflector is designed to work in double convergence, so that the beam path emanating from one shell half - roughly speaking, roughly - is a particularly oblique double pyramid or, depending on the circumferential contour of the area to be illuminated, a particularly oblique double cone or a similarly double convergent Radiation body forms. Such a double convergent design of the reflector shell sections enables the light emitted by the light source, in particular emitted in a half-space, to be captured essentially completely with only one overall half-shell-shaped reflector and to radiate essentially completely past the light source onto a predetermined area. The light can be radiated through the plurality of shell halves on different sides of the light source, so that the light source in an at least approximately recessed area of the reflected beam path sits and generates no losses due to shadowing. A high degree of efficiency can be achieved, since the light rays emitted by the light source only have to be reflected once and, in this respect, reflection losses occur only once. At the same time, the position of the spotlight can be used almost without restriction, since the light source can sit more or less directly between the reflector and the surface to be illuminated.
Die verschiedenen Schalenhälften eines Reflektors müssen dabei keine "Hälften" im Sinne von jeweils 50% der Gesamtreflektorfläche bilden, sondern können hiervon abweichende Flächenteile, beispielsweise kleinere und größere Flächenteile des insgesamt etwa halbschalenförmigen Reflektors bilden. Mit einer solchen doppelt konvergenten Ausbildung der Schalenteile des Reflektors können insbesondere in der genannten Weise rechteckige Fassadenstücke, alternativ aber auch anders konturierte, begrenzte Flächenstücke wie beispielsweise Mehrecke wie Sechsecke, Ovale oder nahezu beliebig konturierte Flächenstücke einer zu beleuchtenden, zumindest näherungsweise ebenen Fläche gleichmäßig und blendungsfrei beleuchtet werden.The different shell halves of a reflector do not have to form "halves" in the sense of 50% of the total reflector surface, but can form different surface parts, for example smaller and larger surface parts of the approximately half-shell-shaped reflector. With such a double convergent design of the shell parts of the reflector, rectangular facade pieces, in particular in the manner mentioned, but alternatively also differently contoured, limited area pieces such as, for example, polygons such as hexagons, ovals or almost any contoured area pieces of a surface to be illuminated, at least approximately flat, are uniform and glare-free be illuminated.
Die Schalenhälften eines Reflektors können hierbei insbesondere jeweils derart konturiert sein, dass ein unterer Schalenhälftenrandabschnitt einen oberen Randabschnitt des beleuchteten Fassadenstücks beleuchtet und/oder ein oberer Schalenhälftenrandabschnitt einen unteren Randabschnitt des beleuchteten Fassadenstücks beleuchtet. Hierdurch kann eine erhöhte Einbaulage der Fassadenstrahler im Wesentlichen vollständig oberhalb des zu beleuchtenden Fassaden-/Wandstücks erreicht werden, so dass die Fassadenstrahler nicht die Sicht auf das beleuchtete Fassadenstück beeinträchtigen. Insbesondere kann durch die genannte Strahlenumkehr bzw. -spiegelung auch ein versenkter Einbau der Fassadenstrahler beispielsweise in ein oberhalb des zu beleuchtenden Fassadenstücks liegendes Gesims bzw. eine darüber liegende Decke vorgenommen werden und dennoch die Fassade bzw. Wand bis nach oben an das Gesims bzw. die Decke beleuchtet werden.The shell halves of a reflector can in each case in particular be contoured in such a way that a lower shell half edge portion illuminates an upper edge portion of the illuminated facade piece and / or an upper shell half edge portion illuminates a lower edge portion of the illuminated facade piece. As a result, an elevated installation position of the facade emitters can be achieved essentially completely above the facade / wall section to be illuminated, so that the facade emitters do not impair the view of the illuminated facade section. In particular, the aforementioned radiation reversal or mirroring can also be used for recessed installation of the facade emitters, for example in a cornice or a ceiling above the piece of facade to be illuminated, and yet the facade or wall up to the cornice or the Illuminated ceiling.
In Weiterbildung der Erfindung kann in vertikaler Richtung kann auch eine entsprechende Spiegelung bzw. Konvergenz in horizontaler Richtung vorgesehen sein und der Reflektor bzw. jede seiner Schalenhälften derart konturiert sein, dass ein rechter Schalenrandabschnitt einen linken Randabschnitt des beleuchteten Fassadenstücks beleuchtet und/oder ein linker Schalenrandabschnitt einen rechten Randabschnitt des beleuchteten Fassadenstücks beleuchtet. Hierdurch kann eine Einbausituation mit bis an den Randbereich des zu beleuchtenden Flächenstücks gerückten Strahlern realisiert werden.In a further development of the invention, a corresponding reflection or convergence in the horizontal direction can also be provided and the reflector or each of its shell halves can be contoured in such a way that a right shell edge section illuminates a left edge section of the illuminated facade piece and / or a left shell edge section illuminated a right edge section of the illuminated facade piece. In this way, an installation situation can be realized with spotlights moved up to the edge area of the area to be illuminated.
Der Reflektor kann hierbei in Weiterbildung der Erfindung vorteilhafterweise derart ausgebildet sein, dass die von den Schalenhälften abgestrahlten Strahlenkegel bzw. -pyramiden bzw. -keulen zumindest näherungsweise in einer gemeinsamen Ebene, insbesondere zumindest näherungsweise im Bereich des Öffnungsquerschnitts des Reflektors, jeweils eine Strahlengang-Einschnürung bzw. ihren Fokussierpunkt (im Sinne der aufeinander stehenden Kegelspitzen eines Doppelkegels) besitzen.In a further development of the invention, the reflector can advantageously be designed such that the beam cones or pyramids or lobes emitted by the shell halves each have a beam path constriction, at least approximately in a common plane, in particular at least approximately in the region of the opening cross section of the reflector or have their focus point (in the sense of the conical tips of a double cone standing on top of each other).
Diese Einschnürungen der Strahlengänge des reflektierten Lichts in einer gemeinsamen Ebene können dazu genutzt werden, einen größtenteils verdeckten Einbau der Strahler zu realisieren und/oder eine Blende vor den Reflektor zu setzen, die in der genannten gemeinsamen Ebene liegt und im Bereich der Strahlengang-Einschnürungen Auspaarungen, beispielsweise schlitz- oder lochförmige Lichtdurchtrittsöffnungen besitzt, deren Durchmesser bzw. Weite nur einen Bruchteil, bspw. weniger als 1/3 oder weniger als ¼, des Durchmessers bzw. der maximalen Weite des Reflektors beträgt. Die genannte Blende kann hierbei von einem an sich geschlossenen, die Lichtquellen-Reflektor-Anordnung umschließenden, beispielsweise rohrförmigen Gehäuse gebildet werden, welches die genannten loch- bzw. schlitzförmigen Lichtaustrittsöffnungen besitztThese constrictions of the beam paths of the reflected light in a common plane can be used to implement a largely concealed installation of the radiators and / or to place an aperture in front of the reflector, which lies in the common plane mentioned and in the area of the beam path constrictions , for example, has slit or hole-shaped light passage openings, the diameter or width of which is only a fraction, for example less than 1/3 or less than ¼, of the diameter or the maximum width of the reflector. The above-mentioned diaphragm can be formed by a tube housing, which is closed per se and encloses the light source-reflector arrangement, and which has the hole-shaped or slot-shaped light outlet openings mentioned
Die Schalenhälften können etwa gleich groß ausgebildet sein, können jedoch auch unterschiedlich groß ausgebildet sein, beispielsweise dann, wenn die vorgenannte Einschnürung nicht mittig über den Reflektorkorpus läuft. Der Term Schalenhälfte muß also nicht im Sinne von 50%iger Flächenhälfte verstanden werden, sondern kann auch verschieden große Flächen- bzw. Korpusstücke oder Schalenabschnitte bezeichnen.The shell halves can be of approximately the same size, but can also be of different sizes, for example when the aforementioned Constriction does not run centrally over the reflector body. The term shell half therefore does not have to be understood in the sense of 50% half of the surface, but can also denote different sized surface or body pieces or shell sections.
In vorteilhafter Weiterbildung der Erfindung kann sich die genannte Einschnürung in einer Ebene erstrecken, die einerseits senkrecht zu dem zu beleuchtenden Flächenstück und andererseits senkrecht zu der Längsrichtung ist, entlang derer die Strahler aufgereiht sind. Sind die Strahler entlang einem oberen Randabschnitt eines zu beleuchtenden Fassadenstücks insbesondere etwa horizontal aufgereiht, können die Reflektoren derart konturiert sein, dass sich die genannte Einschnürung in einer vertikalen Ebene erstreckt. Sind die Fassadenstrahler entlang einer Seite des zu beleuchtenden Fassadenstücks insbesondere etwa vertikal aufgereiht, kann sich die genannte Einschnürung in einer horizontalen Ebene erstrecken.In an advantageous development of the invention, the said constriction can extend in a plane that is perpendicular to the area piece to be illuminated on the one hand and perpendicular to the longitudinal direction along which the spotlights are lined up. If the spotlights are lined up approximately horizontally along an upper edge section of a facade piece to be illuminated, the reflectors can be contoured in such a way that the said constriction extends in a vertical plane. If the facade radiators are lined up approximately vertically along one side of the facade piece to be illuminated, the above-mentioned constriction can extend in a horizontal plane.
Insbesondere sind die Reflektoren jeweils derart konturiert, dass das von der zugehörigen Lichtquelle eingefangene Licht nicht in einen kreisförmigen bzw. runden Lichtkegel, sondern in eine vorzugsweise schiefe Lichtpyramide transformiert wird, d.h. das vom Reflektor abgehende Strahlenbündel besitzt in seiner Gesamtheit betrachtet einen mehreckigen, vorzugsweise näherungsweise rechteckigen Querschnitt, so dass das beleuchtete Flächenstück ebenfalls mehr- bzw. rechteckig ist. Insbesondere kann hierbei jede der beiden genannten Schalenhälften, aus denen ein insgesamt halbschalenförmiger Reflektor zusammengesetzt ist, derart beschaffen sein, dass jede Schalenhälfte für sich das von der zugehörigen Lichtquelle eingefangene Licht in ein solches pyramidenförmiges Lichtbündel transformiert, wobei sich die beiden von den Schalenhälften abgehenden Strahlenpyramiden so überlagern, dass auf der zu beleuchtenden Fassade bzw. Fläche ein mehreckiges, insbesondere rechteckiges Flächenstück ausgeleuchtet wird.In particular, the reflectors are each contoured such that the light captured by the associated light source is not transformed into a circular or round light cone, but into a preferably oblique light pyramid, i.e. viewed in its entirety, the beam of rays emanating from the reflector has a polygonal, preferably approximately rectangular cross-section, so that the illuminated area piece is also polygonal or rectangular. In particular, each of the two shell halves mentioned, from which an overall half-shell-shaped reflector is composed, can be designed such that each shell half transforms the light captured by the associated light source into such a pyramid-shaped light bundle, the two beam pyramids emanating from the shell halves overlay in such a way that a polygonal, in particular rectangular, area piece is illuminated on the facade or surface to be illuminated.
In Weiterbildung der Erfindung kann die Reflektor-/Lichtquellenanordnung dabei derat beschaffen sein, dass die jeweilige Lichtquelle das von ihr abgegebene Licht im wesentlichen vollständig in einen vom zu beleuchtenden Flächenstück zumindest größtenteils abgewandten Halbraum abstrahlt und derart angeordnet ist, dass der Halbraum dem Reflektor zugewandt ist, wobei der halbschalenförmige bwz. muschelförmige Reflektor die Lichtquelle soweit umschließt, dass der genannte Halbraum vom Reflektor abgedeckt ist. Eine Symmetrieachse des genannten Halbraums kann dabei exakt rechtwinklig zur Fassade bzw. Wand ausgerichtet, aber hierzu auch leicht verkippt, beispielsweise unter einem Winkel von etwa 90° ± 30°, sein, so dass der Halbraum immer noch überwiegend von der Fassade bzw. Wand abgewandt ist.In a further development of the invention, the reflector / light source arrangement can be such that the respective light source is the light it emits radiates essentially completely into a half-space at least largely facing away from the surface piece to be illuminated and is arranged such that the half-space faces the reflector, the half-shell-shaped bwz. shell-shaped reflector encloses the light source to such an extent that the said half-space is covered by the reflector. An axis of symmetry of the half space mentioned can be oriented exactly at right angles to the facade or wall, but can also be tilted slightly, for example at an angle of approximately 90 ° ± 30 °, so that the half space is still predominantly facing away from the facade or wall is.
Um eine hohe lichttechnische Effizienz zu erreichen, sind die Reflektoren jeweils derart konturiert, dass die Reflektoren das eingefangene Licht im Wesentlichen vollständig um die zugehörige Lichtquelle herum lenken und auf das zu beleuchtende Flächenstück werfen. Vorteilhafterweise können die Reflektoren hierbei derart ausgebildet sein, dass das Licht jeweils nur einmal an der Reflektorfläche umgelenkt wird. Der Reflektor kann einfach umlenkend arbeiten, so dass Streuverluste durch Mehrfachumlenkung vermieden werden.In order to achieve a high level of lighting efficiency, the reflectors are each contoured in such a way that the reflectors essentially direct the captured light around the associated light source and throw it onto the area to be illuminated. Advantageously, the reflectors can be designed in such a way that the light is deflected only once at the reflector surface. The reflector can be easily redirected so that scattering losses due to multiple redirection are avoided.
In vorteilhafter Weiterbildung der Erfindung können die Lichtquellen jeweils im Bereich des Öffnungsquerschnitts des jeweils zugehörigen Reflektors innerhalb des vom Reflektorrand umschlossenen Raumbereichs angeordnet sein. Der Reflektorrand kann zumindest näherungsweise eine Ebene definieren, wobei die dem Reflektor zugeordnete Lichtquelle vorteilhafterweise in dieser Ebene angeordnet sein kann bzw. nur relativ geringfügig unter oder über dieser Ebene positioniert sein kann. Hierdurch kann einerseits der gesamte Halbraum, in der eine punktförmige Lichtquelle wie beispielsweise eine LED strahlt, umschlossen und das abgestrahlte Licht im Wesentlichen vollständig vom Reflektor eingefangen werden. Gleichzeitig kann eine insgesamt flache Bauweise der Lichtquellen-/Reflektoranordnung erzielt werden.In an advantageous further development of the invention, the light sources can each be arranged in the area of the opening cross-section of the respective associated reflector within the spatial area enclosed by the reflector edge. The reflector edge can at least approximately define a plane, wherein the light source assigned to the reflector can advantageously be arranged in this plane or can be positioned only slightly below or above this plane. In this way, on the one hand, the entire half-space, in which a punctiform light source such as an LED is emitted, can be enclosed and the emitted light can be essentially completely captured by the reflector. At the same time, an overall flat design of the light source / reflector arrangement can be achieved.
In Weiterbildung der Erfindung kann die Lichtquelle im Bereich der Längsmittelebene des Reflektors angeordnet sein, jedoch nicht exakt mittig, sondern zu einer Seite der Reflektorschale hin versetzt. Insbesondere kann die Lichtquelle gegenüber der Einschnürung des Reflektors aus der Reflektormitte heraus zu der Seite hin versetzt angeordnet sein, an der die Einschnürung eine kleinere Tiefe besitzt. In vorteilhafter Weiterbildung der Erfindung ist die Lichtquelle zu der Seite hin versetzt, in der die genannte Einschnürung weniger stark ausgeprägt ist.In a further development of the invention, the light source can be arranged in the region of the longitudinal center plane of the reflector, but not exactly in the center, but to one side offset of the reflector shell. In particular, the light source can be arranged offset from the constriction of the reflector from the center of the reflector to the side on which the constriction has a smaller depth. In an advantageous development of the invention, the light source is offset to the side in which the said constriction is less pronounced.
Um die Lichtdurchmischung auf dem von einem Strahler beleuchteten Flächenstück weiter zu verbessern und die Konturierung der Reflektorschale bzw. die Positionierung der Lichtquelle relativ hierzu unkritischer zu gestalten, kann in Weiterbildung der Erfindung eine Facettierung an den schalenförmigen Reflektorflächen vorgesehen sein. Eine solche Oberflächenstrukturierung mit einer Vielzahl von Facetten kann nur für eine der halb- bzw. viertelschalenförmigen Reflektorflächen oder allgemein nur für einen Teil des Reflektors vorgesehen sein, beispielsweise dergestalt, dass eine Reflektorviertelschale facettiert ist und die andere Reflektorviertelschale glatt ausgebildet ist, wodurch bereits eine gewisse Vergleichmäßigung erzielt werden kann, da beide Reflektorviertelschalen das gleiche Flächenstück im Wesentlichen vollständig bestrahlen. In vorteilhafter Weiterbildung der Erfindung können beide Reflektorviertelschalen bzw. die gesamte Reflektorfläche mit einer solchen Vielzahl von Facetten strukturiert sein. Insbesondere zusammen mit dem zuvor erläuterten Bestrahlungsprinzip, dass beide Hälften der Reflektorschale das gemeinsame Flächenstück im Wesentlichen vollständig bestrahlen bzw. ausleuchten, kann mit einer solchen Facettierung eine schöne Vergleichmäßigung der beleuchteten Fläche erzielt werden.In order to further improve the mixing of light on the surface area illuminated by a spotlight and to make the contouring of the reflector shell or the positioning of the light source less critical relative to this, in a further development of the invention faceting can be provided on the shell-shaped reflector surfaces. Such a surface structuring with a multitude of facets can only be provided for one of the half- or quarter-shell-shaped reflector surfaces or generally only for a part of the reflector, for example in such a way that one reflector quarter-shell is faceted and the other reflector quarter-shell is smooth, which already results in a certain Uniformity can be achieved since both reflector quarter shells essentially completely irradiate the same area piece. In an advantageous development of the invention, both reflector quarter shells or the entire reflector surface can be structured with such a large number of facets. In particular, together with the previously explained irradiation principle, that both halves of the reflector shell essentially completely irradiate or illuminate the common area piece, such a faceting can achieve a beautiful homogenization of the illuminated area.
Die genannten Facetten sind hierbei vorteilhafterweise relativ zur Reflektorfläche klein ausgebildet, wobei vorzugsweise mehr als hundert, insbesondere auch mehr als zweihundert Facetten über die Reflektorfläche verteilt angeordnet sein können, ggf. auch in Form einer mikrofacettierten Oberflächenstruktur. Die Facettierung kann hierbei vorteilhafterweise matrizenförmig verteilt oder wolkenförmit verteilt ausgebildet sein, d. h. die Facetten müssen nicht alle gleich groß sein und können gemäß einer Wolkenverteilung unterschiedlich angeordnet sein, überdecken insgesamt aber gleichmäßig die Reflektorfläche. Insbesondere können die Facetten sowohl in Längsrichtung als auch in Querrichtung - bezogen auf die zuvor erläuterte Teilung der Reflektorfläche - in mehreren Reihen und Spalten ausgebildet sein, beispielsweise dergestalt, dass sowohl in Längsrichtung als auch in Querrichtung mehr als zehn, insbesondere mehr als zwanzig Reihen und Spalten solcher Facetten vorgesehen sind.The facets mentioned are advantageously made small relative to the reflector surface, preferably more than a hundred, in particular also more than two hundred facets can be arranged distributed over the reflector surface, possibly also in the form of a microfaceted surface structure. The faceting can advantageously be distributed in the form of a matrix or in a cloud-shaped manner, ie the facets do not all have to be of the same size and can be arranged differently according to a cloud distribution, but overall uniformly cover the reflector surface. In particular, the facets can both in the longitudinal direction as well as in the transverse direction - based on the previously explained division of the reflector surface - be formed in several rows and columns, for example in such a way that both in the longitudinal direction and in the transverse direction more than ten, in particular more than twenty rows and columns of such facets are provided .
Die Formgebung der Facettierung kann ebenfalls variieren, wobei vorteilhafterweise mehreckige, insbesondere rechteckige und näherungsweise quadratische Facetten oder allgemein regelmäßig geometrisch geformte Facettenstücke, deren Erstreckung in Längsrichtung und Querrichtung etwa gleich groß ist, vorgesehen sein können.The shape of the faceting can also vary, advantageously polygonal, in particular rectangular and approximately square facets or generally regularly geometrically shaped facet pieces, the extent of which in the longitudinal and transverse directions is approximately the same size, can be provided.
Alternativ zu geometrisch regelmäßigen Facetten können auch unregelmäßig geformte Oberflächenstruktur-Formflächenstücke in der Reflektoroberfläche ausgebildet sein, beispielsweise in Form einer Orangenhaut-Struktur, wie sie bspw. durch Ätzen der Oberfläche erhältlich ist oder einer Seidenmatt-Oberflächenstruktur, wie sie bspw. durch Sandstrahlen der Oberfläche erhältlich ist. Auch durch eine mikrofacettierte Oberfläche können die Lichtdurchmischung verbessert und das Lichtquellen-/Reflektorsystem unsensibler gegen Lage- und Formtoleranzen bei gleichzeitiger Verbesserung der Gleichmäßigkeit der Ausleuchtung gemacht werden.As an alternative to geometrically regular facets, irregularly shaped surface structure shaped surface pieces can also be formed in the reflector surface, for example in the form of an orange peel structure, as can be obtained, for example, by etching the surface, or a silk matt surface structure, as is the case, for example, by sandblasting the surface is available. The microfacetted surface can also improve the light mixing and make the light source / reflector system less sensitive to position and shape tolerances while improving the uniformity of the illumination.
Um trotz hoher Beleuchtungsstärken an der Fassade bzw. beleuchteten Fläche eine weitgehende Blendungsfreiheit zu erzielen, sind die Reflektoren derart geformt, dass die Strahler eine Längsausblendung bzw. eine leuchtflächenparallele Ausblendung besitzen, d.h. in Richtung parallel zur Fassade bzw. beleuchteten Fläche die Lichtstärke mehr oder minder gegen null geht. Die Ausblendung ist dabei insbesondere derart beschaffen, dass in einer fassadenparallelen Ebene, die durch die Fassadenstrahlerreihe geht bzw. von der Fassade denselben Abstand wie die Fassadenstrahler hat, die Lichtstärke in einem bodennahen Bereich gegen null geht. Auch in Ebenen, die parallel zur beleuchteten Fläche zwischen Strahlern und beleuchteter Fläche liegen, ist eine Abblendung gegeben, so daß beispielsweise Personen, die näher an der beleuchteten Wand stehen als die Fassadenstrahler, bei normaler Blickrichtung - also nicht gerade senkrecht nach oben - keine Blendung erfahren. Nur wenn man mehr oder minder unmittelbar an die Fassade herantritt und nach oben in die Fassadenstrahlerreihe blickt, kann eine Blendungswirkung eintreten. Sobald ein Passant jedoch nur ein kleines Stück weit von der Fassade wegtritt - wie es im normalen Fußgängerverkehr auf einem Trottoir üblich ist -, oder ein Nachbar die beleuchtete Fassade beispielsweise von einem auf derselben Straßenseite liegenden Haus aus, bspw. aus einem Erker oder von einem Balkon aus, betrachtet, wird durch die Längs- bzw. fassadenparalle Ausblendung eine Blendungsfreiheit erzielt.In order to achieve extensive freedom from glare despite high illuminance levels on the facade or illuminated surface, the reflectors are shaped in such a way that the spotlights have a longitudinal blanking or a blanking parallel to the illuminated surface, i.e. the light intensity more or less in the direction parallel to the facade or illuminated surface goes to zero. The blanking is in particular such that in a plane parallel to the facade, which passes through the row of facade radiators or is at the same distance from the facade as the facade radiators, the light intensity in a region close to the ground approaches zero. Dimming is also provided in planes that lie parallel to the illuminated area between the spotlights and the illuminated area, so that, for example, people who are closer to the illuminated wall than the facade spotlights with normal viewing direction - i.e. not exactly vertically upwards - do not experience glare. A glare can only occur if you approach the facade more or less directly and look upwards into the facade spotlight row. However, as soon as a passer-by steps a short distance away from the facade - as is usual in pedestrian traffic on a sidewalk - or a neighbor sees the illuminated facade from a house on the same side of the street, e.g. from a bay window or from one Looking out from the balcony, the longitudinal or facade parallel blanking ensures that there is no glare.
Je nach den geometrischen Verhältnissen an der zu beleuchtenden Fläche kann die Ausblendung an den einzelnen Strahlern unterschiedlich beschaffen sein. Bei üblichen Fassaden mit Fassadenhöhen von 10 bis 20 m können die Fassadenstrahler in einer vertikalen Ebene senkrecht zur Fassade betrachtet einen Ausblendbereich von mehr als 270°, vorzugsweise etwa 270° bis 280° besitzen, wobei der nicht ausgeblendete Bereich am oberen Ende des beleuchteten Fassadenstücks etwa unter einem Winkel von 90° auf die Fassade gerichtet ist, während am unteren Ende des beleuchteten Fassadenstücks der nicht ausgeblendete Bereich mit der Fassade einen Winkel von vorzugsweise 3° bis 10° einschließen kann. In einer horizontalen Ebene ebenfalls senkrecht zur Fassade betrachtet kann der Fassadenstrahler einen Ausblendbereich von zumindest 200°, vorzugsweise 240° oder mehr, insbesondere etwa 240° bis 270° besitzen, was vom LED-Abstand und den erwünschten Beleuchtungseffekten wie beispielsweise farblichen Überblendungen abhängen kann.Depending on the geometric conditions on the surface to be illuminated, the blanking on the individual spotlights can be different. In conventional facades with facade heights of 10 to 20 m, the facade radiators, viewed in a vertical plane perpendicular to the facade, can have a blanking area of more than 270 °, preferably approximately 270 ° to 280 °, the non-masked area at the upper end of the illuminated facade piece approximately is directed at an angle of 90 ° to the facade, while at the lower end of the illuminated piece of facade the non-masked area can enclose an angle of preferably 3 ° to 10 ° with the facade. In a horizontal plane, also viewed perpendicular to the facade, the facade radiator can have a blanking area of at least 200 °, preferably 240 ° or more, in particular approximately 240 ° to 270 °, which can depend on the LED distance and the desired lighting effects, such as color fades.
Die Anordnung der Fassadenstrahler relativ zur Fassade bzw. Wand kann grundsätzlich in verschiedener Art und Weise erfolgen. Nach einer vorteilhaften Ausführung der Erfindung können die Fassadenstrahler in einer etwa horizontalen Reihe am oberen Ende des zu beleuchtenden Fassadenstücks angeordnet werden, wobei die Fassadenstrahler von der Fassade in einem Abstand von etwa 0,5 bis 2 m angeordnet sein können. Bei üblichen Fassadenhöhen von beispielsweise 15 m kann vorteilhafterweise eine Fassadenstrahlerreihe in einem Abstand von etwa 1 m vor der Fassade angeordnet werden und die Fassade bis zum Boden, also über etwa 15 m Höhe ausleuchten. In vorteilhafter Weiterbildung der Erfindung kann das Verhältnis von Höhe des zu beleuchtenden Fassaden- bzw. Wandstücks zu Fassadenabstand der Strahler 4:1 oder mehr, vorzugsweise 5:1 oder mehr, insbesondere auch 10:1 oder mehr betragen, wobei typischerweise zu erreichende Verhältnisse im Bereich von 5:1 bis 15:1 liegen. Je nach Einbausituation kann das genannte Aspekt-Verhältnis nicht von der Höhe des zu beleuchtenden Wandstücks, sondern beispielsweise dessen Breite bestimmt sein, nämlich beispielsweise dann, wenn mit seitlich angeordneten Strahlern eine Wand beispielsweise eines langen Gangs beleuchtet werden soll. Regelmäßig bestimmt sich das genannte Verhältnis aus der Erstreckung des beleuchteten Flächenstücks in einer Richtung senkrecht zur Richtung, entlang derer die üblicherweise mehreren Strahler aufgereiht sind, und dem Strahlerabstand senkrecht zur zu beleuchteten Fläche.The arrangement of the facade radiators relative to the facade or wall can in principle be done in different ways. According to an advantageous embodiment of the invention, the facade radiators can be arranged in an approximately horizontal row at the upper end of the facade piece to be illuminated, wherein the facade radiators can be arranged at a distance of approximately 0.5 to 2 m from the facade. With conventional facade heights of, for example, 15 m, a row of facade emitters can advantageously be placed at a distance of about 1 m of the facade and illuminate the facade down to the floor, i.e. about 15 m high. In an advantageous development of the invention, the ratio of the height of the facade or wall piece to be illuminated to the facade spacing of the spotlights can be 4: 1 or more, preferably 5: 1 or more, in particular also 10: 1 or more, with typical ratios to be achieved in Range from 5: 1 to 15: 1. Depending on the installation situation, the aspect ratio mentioned cannot be determined by the height of the wall piece to be illuminated, but rather, for example, its width, namely, for example, when a wall, for example of a long corridor, is to be illuminated with spotlights arranged on the side. The above-mentioned ratio is regularly determined from the extent of the illuminated area in a direction perpendicular to the direction along which the usually several emitters are lined up, and the emitter distance perpendicular to the area to be illuminated.
Vorteilhafterweise sind dabei die näher zum Rand einer Fassadenfläche angeordneten Fassadenstrahler bzw. deren Reflektoren hinsichtlich ihrer Abstrahlwinkel bzw. Ausblendräumen derart ausgebildet, um ein Hinausstrahlen über das seitliche Ende der Fassade hinaus zu verhindern. Insbesondere sind die zum Rand der Fassade hin angeordneten Fassadenstrahler bzw. deren Reflektoren derart ausgebildet, dass das von ihnen jeweils beleuchtete Fassadenstück seitlich etwa bündig mit der vertikalen Fassadenkante abschließt. Der von dem Fassadenstrahlerband, d.h. der Gesamtheit der Fassadenstrahler erzeugte beleuchtete Raum schließt sozusagen bündig mit der rechten und linken Fassadenkante ab bzw. endete ggf. auch schon vorher, so dass in jedem Fall gewährleistet ist, dass an der dazu benachbarten Gebäudefassade keine Blendung eintritt. Die Fassadenstrahler strahlen also nicht über die Ränder der ihr zugeordneten Fassadenfläche hinaus.Advantageously, the facade radiators or their reflectors, which are arranged closer to the edge of a facade surface, are designed with regard to their radiation angle or blanking spaces in order to prevent radiation beyond the lateral end of the facade. In particular, the facade emitters or their reflectors arranged towards the edge of the facade are designed such that the facade piece illuminated by them is laterally approximately flush with the vertical facade edge. The from the facade radiator belt, i.e. The illuminated room created as a whole closes, so to speak, flush with the right and left edge of the facade, or possibly ended earlier, so that it is guaranteed in any case that there is no glare on the adjacent building facade. The facade radiators therefore do not radiate beyond the edges of the facade surface assigned to them.
Um eine möglichst gleichmäßige Fassaden- bzw. Wandbeleuchtung zu erreichen, sind die halbschalenförmigen Reflektoren in vorteilhafter Weiterbildung der Erfindung insbesondere derart konturiert, dass jeder Fassadenstrahler ein etwa rechteckiges Fassadenstück beleuchtet und darauf eine Beleuchtungsstärkeverteilung erzeugt, die entlang vertikaler Linien über die gesamte Fassadenhöhe bzw. die gesamte Höhe des beleuchteten Fassaden- oder Flächenstücks betrachtet ein Beleuchtungsstärkeverhältnis von minimaler Beleuchtungsstärke Emin zu maximaler Beleuchtungsstärke Emax von 1:10, d.h. 0,1 oder größer besitzt. Das beleuchtete Fassadenstück muß hierbei nicht bis ganz zum Boden gehen, sondern kann ein Stück weit oberhalb enden bzw. kann ein gewisser Übergangsbereich zum Boden hin vorgesehen werden, um helle Strahlungsränder am Boden - bzw. einer angrenzenden Wand - zu vermeiden, die ansonsten aufgrund von Montagetoleranzen, aber auch dem "Strahlungspinsel", der durch die reale Ausdehnung der im mathematischen Sinne nicht wirklich punktförmigen Lichtquelle bei nicht beliebig weit vom Reflektor positionierbaren Lichtquelle entsteht, auftreten würden.In order to achieve facade or wall lighting that is as uniform as possible, the half-shell-shaped reflectors in an advantageous further development of the invention are contoured in particular in such a way that each facade spotlight illuminates an approximately rectangular facade piece and generates an illuminance distribution thereon that runs along vertical lines over the entire facade height or entire Considered the height of the illuminated facade or surface piece is an illuminance ratio of minimum illuminance E min to maximum illuminance E max of 1:10, ie 0.1 or greater. The illuminated facade piece does not have to go all the way to the floor, but can end a bit far above or a certain transition area to the floor can be provided to avoid bright radiation edges on the floor - or an adjacent wall - which are otherwise due to Assembly tolerances, but also the "radiation brush", which arises from the real expansion of the light source, which in the mathematical sense is not really punctiform, with a light source that cannot be positioned as far from the reflector as possible.
In entsprechender Weise ist dabei vorteilhafterweise nicht nur eine vertikale, sondern auch horizontale Gleichmäßigkeit der Beleuchtungsstärke mit einem entsprechenden Beleuchtungsstärkeverhältnis vorgesehen.In a corresponding manner, not only a vertical, but also a horizontal uniformity of the illuminance with a corresponding illuminance ratio is advantageously provided.
Durch das genannte Beleuchtungsstärkeverhältnis kann eine über das gesamte Fassaden- bzw. Flächenstück für das menschliche Auge mehr oder minder vollständig gleichmäßige Fassaden- bzw. Wandbeleuchtung erzielt werden. Durch die bezüglich einer Rotationsachse asymmetrischen Lichtstärkeverteilung an jedem einzelnen Fassadenstrahler kann insgesamt eine sehr gleichmäßige Fassaden- bzw. Wandbeleuchtung mit weitgehender Blendungsfreiheit erzielt werden.By means of the aforementioned illuminance ratio, a more or less completely uniform facade or wall lighting can be achieved for the human eye over the entire facade or area piece. Due to the asymmetrical light intensity distribution on each individual façade spotlight with respect to a rotation axis, very uniform façade or wall lighting with largely no glare can be achieved.
Auch wenn das genannte Beleuchtungsstärkeverhältnis von 1:10 bereits schön gleichmäßige Fassadenbeleuchtungsverhältnisse ergibt, kann in Weiterbildung der Erfindung vorteilhafterweise ein Beleuchtungsstärkeverhältnis von minimaler Beleuchtungsstärke Emin zu maximaler Beleuchtungsstärke Emax - bei Betrachtung entlang einer vertikalen und/oder horizontaler Linien über die gesamte Fassadenhöhe und/oder Breite - von 1:2,5, d.h. 0,4 oder größer vorgesehen sein. Hierdurch können mehr oder minder perfekt gleichmäßig ausgeleuchtete Fassaden erzielt werden, wobei das genannte Beleuchtungsstärkeverhältnis auch bei sehr nahe an der Wand angeordneten Strahlern mit den vorgenannten Verhältnissen von Strahler-Wandabstand zu Erstreckung, insbesondere Höhe, des beleuchteten Flächenstücks von 1:4 bis 1:20, insbesondere 1:5 bis 1:15 vorgesehen sein kann.Even if the aforementioned illuminance ratio of 1:10 already results in beautifully uniform facade lighting conditions, in a further development of the invention an illuminance ratio of minimum illuminance E min to maximum illuminance E max can advantageously be used - when viewed along vertical and / or horizontal lines over the entire facade height and / or width - of 1: 2.5, ie 0.4 or larger. In this way, more or less perfectly evenly illuminated facades can be achieved, the aforementioned illuminance ratio even with spotlights arranged very close to the wall with the aforementioned ratio of spotlight-wall distance to extend, in particular height, the illuminated area piece from 1: 4 to 1:20, in particular 1: 5 to 1:15.
Die Reflektoren der Fassadenstrahler sind dabei vorteilhafterweise in Weiterbildung der Erfindung derart asymmetrisch ausgebildet, dass die Beleuchtungsstärkeverteilung eines jeweiligen Fassadenstrahlers einzeln betrachtet auf dem von diesem beleuchteten Fassadenstück etwa halbovalförmige oder leicht birnenförmige Isoluxen besitzt, d.h. Linien, entlang derer die Beleuchtungsstärke gleich groß ist. Der Verlauf dieser Isoluxen bestimmt dabei eindeutig die Freiformfläche des Reflektors, welcher der Lichtquelle zugeordnet ist. Über die geometrischen Verhältnisse der Fassadenstrahleranordnung und der Freiformfläche des Reflektors wird ein bestimmtes Isoluxenbild erzeugt, das die Beleuchtungsstärkeverteilung auf dem beleuchteten Fassadenstück charakterisiert, so dass aus dem Verlauf der Isoluxen die Reflektorflächenform hinsichtlich ihrer Geometrie eindeutig bestimmt ist.The reflectors of the facade emitters are advantageously designed asymmetrically in a development of the invention in such a way that the illuminance distribution of a respective facade emitter, viewed individually, has approximately semi-oval or slightly pear-shaped isoluxes on the facade piece illuminated by it, i.e. Lines along which the illuminance is the same. The course of these isoluxes clearly determines the free-form surface of the reflector, which is assigned to the light source. A certain Isoluxen image is generated via the geometric relationships of the facade emitter arrangement and the free-form surface of the reflector, which characterizes the distribution of illuminance on the illuminated piece of facade, so that the shape of the reflector surface with respect to its geometry is clearly determined from the course of the Isoluxen.
Durch den genannten halbovalförmigen bzw. U-förmigen Isoluxenverlauf kann trotz an sich asymmetrischer Fassadenstrahleranordnung, d.h. insbesondere Anordnung einer Fassadenstrahlerreihe am oberen Ende des zu beleuchtenden Fassaden- bzw. Wandstücks, eine für das menschliche Auge gleichmäßige Fassadenbeleuchtung erzielt werden, wenn eine Vielzahl von Fassadenstrahlern in einer Reihe parallel vor der Fassade bzw. Wand angeordnet werden.Due to the above-mentioned semi-oval or U-shaped Isoluxen course, despite the asymmetrical facade radiator arrangement, i.e. in particular arrangement of a row of facade spotlights at the upper end of the facade or wall piece to be illuminated, facade lighting which is uniform for the human eye can be achieved if a plurality of facade spotlights are arranged in a row in parallel in front of the facade or wall.
Je nach den geometrischen Gegebenheiten der Fassade und der Fassadenstrahleranordnung an der Fassade, d.h. insbesondere Höhe und Breite der Fassade sowie Abstand der Fassadenstrahler von der Fassade sowie Anzahl der Fassadenstrahler in einer Reihe können die genannten Isoluxen grundsätzlich verschieden konturiert sein. Um eine besonders gleichmäßig Fassadenbeleuchtung zu erzielen, ist in Weiterbildung der Erfindung jedoch vorgesehen, dass die genannten ovalen bzw. halbovalen Isoluxen des von einem Fassadenstrahler beleuchteten Fassadenstücks ein Verhältnis von Höhe zu Breite von mindestens 2:1 besitzen, wobei das genannte Verhältnis vorteilhafterweise auch 3:1 oder 4:1 sein kann. Durch die generell langgestreckte, schlanke Ausbildung der Isoluxen kann eine über die Höhe der Fassade zumindest annähernd gleich bleibende Beleuchtungsstärke erzielt werden.Depending on the geometric conditions of the facade and the arrangement of the facade emitters on the facade, in particular the height and width of the facade as well as the distance of the facade emitters from the facade and the number of facade emitters in a row, the isoluxes mentioned can in principle be contoured differently. In order to achieve particularly uniform facade lighting, it is provided in a further development of the invention that the oval or semi-oval isoluxes of the facade piece illuminated by a facade spotlight have a ratio of height to width of at least 2: 1, the ratio mentioned advantageously also 3 : 1 or 4: 1 can be. Due to the generally elongated, slim design of the Isoluxen one can be too high illuminance at least approximately constant in the facade.
In vorteilhafter Weiterbildung der Erfindung können die Lichtquellen jeweils auf einem Tragarm montiert sein, der von einem Rand des jeweiligen Reflektors aus über dessen Öffnungsquerschnitt ragt, wobei die Lichtquellen jeweils auf der dem Reflektor zugewandten Seite des jeweiligen Tragarms angeordnet sind. Der genannte Tragarm kann länglich schlank konturiert sein, um möglichst wenig Fläche für das Zurückwerfen der Lichtstrahlen zu blockieren, beispielsweise die Form eines Längsstegs besitzen.In an advantageous development of the invention, the light sources can each be mounted on a support arm which projects from an edge of the respective reflector over its opening cross-section, the light sources being arranged on the side of the respective support arm facing the reflector. Said support arm can have an elongated, slim contour to block as little area as possible for the reflection of the light rays, for example the shape of a longitudinal web.
Insbesondere können die besagten Tragarme, auf denen die Lichtquellen angeordnet sind, Teil einer gemeinsamen Leiterplatte sein, die sich entlang der Reihe von Strahlern erstreckt und im Bereich der Reflektoren jeweils eine vorzugsweise an die Reflektorkontur angepasste Reflektoraussparungen besitzen, deren Rand den jeweiligen Reflektor umgreift und durch die hindurch die Reflektoren das eingefangene Licht auf das Fassaden- bzw. Wandstück werfen können. Grundsätzlich kann jedem Fassadenstrahler hierbei eine eigene Leiterplatte zugeordnet sein, wobei jedoch auch alle bzw. einige der Fassadenstrahler eine gemeinsame Leiterplatte aufweisen können, entlang derer die Lichtquellen aufgereiht sind, um ein gemeinsames Lichtband zu bilden.In particular, said support arms, on which the light sources are arranged, can be part of a common printed circuit board which extends along the row of radiators and in the region of the reflectors each have a reflector cutout, preferably adapted to the reflector contour, the edge of which surrounds and through the respective reflector through which the reflectors can throw the captured light onto the facade or wall piece. In principle, each facade spotlight can be assigned its own circuit board, although all or some of the facade spotlights can also have a common circuit board along which the light sources are lined up in order to form a common light band.
Die Erfindung wird nachfolgend anhand bevorzugter Ausführungsbeispiele und zugehöriger Zeichnungen näher erläutert. In den Zeichnungen zeigen:
- Fig. 1:
- eine perspektivische, schematische Darstellung eines im Wesentlichen kubischen Gebäudes, bei dem die zwei zu sehenden Fassaden mit einer Fassadenbeleuchtungsvorrichtung umfassend eine Vielzahl von in Reihe angeordneten Fassadenstrahlern zugeordnet ist,
- Fig. 2:
- eine perspektivische, schematische und vergrößerte Ansicht einer Fassadenstrahlerreihe, die am oberen Ende der zu beleuchtenden Fassade von dieser beabstandet angeordnet ist, wobei die Fassadenstrahler nach Art eines Lichtbandes ausgebildet sind und eine Vielzahl von nebeneinander angeordneten LED-Lichtquellen umfassen,
- Fig. 3:
- eine schematische Darstellung der Anordnung der Fassadenstrahler in einem Aufriss parallel zur beleuchtenden Fassade sowie eine grafische Darstellung der Beleuchtungsstärkeverteilung über die Fassadenhöhe, die von dem Lichtband erzeugt wird,
- Fig. 4:
- eine schematische, perspektivische Darstellung der Ausstrahlcharakteristik eines einzelnen Fassadenstrahlers umfassend ein LED, die die klaren Abrisskanten des beleuchteten Fassadenstücks und die rechteckige Form des beleuchteten Fassadenstücks zeigt,
- Fig. 5:
- eine perspektivische, schematische Darstellung der Ausstrahlcharakteristik mehrerer nebeneinander angeordneter LEDs der Fassadenbeleuchtungsvorrichtung aus den vorhergehenden Figuren, die die Überblendung der Ausstrahlbereiche zeigt,
- Fig. 6:
- eine Darstellung der Überblendungsverhältnisse in einer fassadenparallelen Draufsicht,
- Fig. 7:
- eine perspektivische Ansicht eines Fassadenstrahlers der Beleuchtungsvorrichtung nach einer vorteilhaften Ausführung der Erfindung, die die Anordnung einer LED auf einer Leiterplatte und den zugeordneten Reflektor in einer Anordnung innerhalb eines rohrförmigen Gehäuses mit einer schlitzförmigen Austrittsöffnung zeigt,
- Fig. 8:
- eine schematische Schnittansicht des Fassadenstrahlers aus
Fig. 8 in einer Einbausituation, - Fig. 9:
- eine perspektivische Darstellung des Reflektors eines Strahlers nach einer vorteilhaften Ausführung der Erfindung, wobei in der Teilansicht (a) die Rückseite und in der Teilansicht (b) die Reflexionsseite des Reflektors dargestellt sind,
- Fig. 10:
- eine schematische Darstellung des Reflektors aus
Fig. 9 , wobei die Teilansicht (a) eine Draufsicht, die Teilansicht (b) eine Schnittansicht entlang der Linie H-H in der Teilansicht (a) und die Teilansicht (c) einen Schnitt entlang der Linie G-G in der Teilansicht (a) zeigt, - Fig. 11:
- eine schematische Darstellung des von dem Reflektor erzeugten Strahlengangs, wobei die Teilansicht (a) den erzeugten Strahlengang in einer vertikalen Ebene und die Teilansicht (b) den erzeugten Strahlengang in einer horizontalen Ebene zeigt,
- Fig. 12:
- eine grafische Darstellung der von der Beleuchtungsvorrichtung erzeugten Beleuchtungsstärke über der Fassadenhöhe mit einem Beleuchtungsstärkeverhältnis von minimaler Beleuchtungsstärke Emin zu maximaler Beleuchtungsstärke Emax von 1:10,
- Fig. 13:
- eine grafische Darstellung der Beleuchtungsstärkeverteilung in einem von einer Einzel-LED beleuchteten, rechteckigen Fassadenstück, in der die Isolux-Linien, d.h. die Linien, entlang derer die Beleuchtungsstärke gleich bleibt, eingetragen sind und etwa halbovalförmig sind, und
- Fig. 14:
- eine schematische, perspektivische Draufsicht auf den Reflektor eines Strahlers nach einer weiteren vorteilhaften Ausführung der Erfindung, gemäß der die Reflektorflächen mit einer Vielzahl von Facetten versehen sind.
- Fig. 1:
- 1 shows a perspective, schematic representation of an essentially cubic building, in which the two facades to be seen are associated with a facade lighting device comprising a large number of facade spotlights arranged in a row,
- Fig. 2:
- a perspective, schematic and enlarged view of a facade spotlight row, the top of the facade to be illuminated is arranged at a distance from it, the facade spotlights being designed in the manner of a light band and comprising a multiplicity of LED light sources arranged next to one another,
- Fig. 3:
- a schematic representation of the arrangement of the facade spotlights in an elevation parallel to the illuminating facade and a graphic representation of the illuminance distribution over the facade height, which is generated by the light band,
- Fig. 4:
- 1 shows a schematic, perspective illustration of the emission characteristic of a single facade spotlight comprising an LED, which shows the clear tear-off edges of the illuminated facade piece and the rectangular shape of the illuminated facade piece,
- Fig. 5:
- 2 shows a perspective, schematic representation of the emission characteristic of a plurality of LEDs of the facade lighting device from the previous figures arranged next to one another, which shows the blending of the emission regions,
- Fig. 6:
- a representation of the cross-fading conditions in a facade-parallel top view,
- Fig. 7:
- 2 shows a perspective view of a facade spotlight of the lighting device according to an advantageous embodiment of the invention, which shows the arrangement of an LED on a printed circuit board and the associated reflector in an arrangement within a tubular housing with a slot-shaped outlet opening,
- Fig. 8:
- is a schematic sectional view of the facade radiator
Fig. 8 in an installation situation, - Fig. 9:
- 2 shows a perspective view of the reflector of a radiator according to an advantageous embodiment of the invention, the rear side being shown in partial view (a) and the reflection side of the reflector being shown in partial view (b),
- Fig. 10:
- a schematic representation of the reflector
Fig. 9 , the partial view (a) being a plan view, the partial view (b) being a sectional view along the line HH in the partial view (a) and the partial view (c) being a section along the line GG in the partial view (a), - Fig. 11:
- 2 shows a schematic illustration of the beam path generated by the reflector, partial view (a) showing the generated beam path in a vertical plane and partial view (b) showing the generated beam path in a horizontal plane,
- Fig. 12:
- a graphical representation of the illuminance generated by the illuminating device above the facade height with an illuminance ratio of minimum illuminance E min to maximum illuminance E max of 1:10,
- Fig. 13:
- a graphical representation of the illuminance distribution in a rectangular facade piece illuminated by a single LED, in which the Isolux lines, ie the lines along which the illuminance remains the same, are entered and are approximately semi-oval, and
- Fig. 14:
- is a schematic, perspective top view of the reflector of a radiator according to a further advantageous embodiment of the invention, according to which the reflector surfaces are provided with a variety of facets.
Die in den Figuren gezeichnete Fassadenbeleuchtungsvorrichtung 1 umfasst vor jeder Fassade 2, 3 des Gebäudes 4 ein Lichtband 5, das im Wesentlichen horizontal etwa am oberen Ende der jeweiligen Fassade 2 bzw. 3 fassadenparallel angeordnet ist und - grob gesprochen - etwa so lang ist wie die Fassade breit ist bzw. geringfügig kürzer.The
Jedes Lichtband 5 umfasst dabei eine Vielzahl von Fassadenstrahlern 6, die jeweils eine punktförmige Lichtquelle in Form einer LED 7 sowie einen der LED 7 zugeordneten Reflektor 8 umfasst, wie dies
Wie
Wie
Die genannte Lichtquellen-Trägerplatine 9 umfasst vorteilhafterweise eine Reflektoraussparung 9b, die an die Umfangskontur des Reflektors 8 angepasst ist, so dass der Reflektor 8 von der genannten Aussparung umgriffen wird. Vorteilhafterweise kann der Reflektor 8 ebenfalls an der Lichtquellen-Trägerplatine 9 montiert bzw. befestigt sein, insbesondere derart, dass zumindest ein Teil des Reflektorrands an der Lichtquellen-Trägerplatine 9 aufsitzt bzw. sich unmittelbar über bzw. an der genannten Trägerplatine 9 entlang erstreckt, wobei ggf. Befestigungsmittel beispielsweise in Form der dargestellten Haltestifte vorgesehen sein können.Said light
Wie
Wie
Durch diese fassadenparalle Längsausblendung durch die Reflektoren 8 wird eine mehr oder minder vollständige Blendungsfreiheit erzielt. Steht beispielsweise ein Betrachter in einer durch das Lichtband 5 gehenden, fassadenparallelen Ebene, wird er nicht geblendet, da in etwa 2 m Höhe über dem Boden in der besagten fassadenparallelen Ebene durch das Lichtband 5 die Lichtstärke gegen null geht. Selbst wenn ein nahe am Gebäude stehender Mensch nach oben blickt, sieht er deshalb selbst bei nur geringerem Abstand von der Fassade die Lichtquelle selbst nicht, da diese entsprechend ausgeblendet ist. Auch ein auf dem Balkon eines angrenzenden Hauses im selben Straßenzug stehender Nachbar wird nicht geblendet.Through this facade parallel parallel blanking by the
Wie die
Die genannte Einschnürung 8c bildet - bei Betrachtung der die Reflektorfläche bildenden Schaleninnenseite - eine gratförmige Erhöhung, die sich entlang der Mittellängsebene des Reflektors 8 erstreckt. Wie die
Wie
Wie die
In vorteilhafter Weiterbildung der Erfindung sind die Schalenhälften dabei jeweils derart konturiert, daß eine ein-eindeutige Zuordnung erfolgt, d.h. jeder Punkt der beleuchtete Fläche 12 wird von genau einem Punkt der Schalenhälfte beleuchtet.In an advantageous development of the invention, the shell halves are each contoured in such a way that there is a unambiguous assignment, i.e. each point of the illuminated
Durch die Konvergenz des Strahlengangs kann einerseits erreicht werden, dass trotz gleichmäßiger Ausleuchtung des Fassadenstücks 12 das von dem Reflektor 8 eingefangene Licht der Lichtquelle 7 vollständig um die Lichtquelle 7 herum gelenkt wird, so dass die Lichtquelle 7 bzw. deren Tragarm 9a keinen Schatten wirft. Zum anderen kann eine sehr günstige, Platz sparende Einbausituation realisiert werden, wie sie
Um eine effiziente Beleuchtung zu erzielen, können die Reflektoroberflächen der Reflektoren 8 hoch reflektierend ausgebildet sein, vorteilhafterweise einen Reflexionsgrad von mehr als 80%, insbesondere mehr als 90% besitzen. Alternativ oder zusätzlich können die Reflektoroberflächen leicht mattiert ausgebildet sein, um den Reflektor unempfindlicher gegenüber Herstellungsformtoleranzen zu machen bzw. auch bei größeren Formtoleranzen des Reflektors die gewünschte Gleichmäßigkeit der Beleuchtung des Flächenstücks zu erzielen.In order to achieve efficient lighting, the reflector surfaces of the
Alternativ oder zusätzlich können die Reflektoren 8 Filter und/oder Spiegelschichten aufweisen, beispielsweise um das eingefangene Licht hinsichtlich spezieller Wellenlängenbereiche zu filtern, beispielsweise um Melatoninlicht herauszufiltern.Alternatively or additionally, the
Wie
Wie
Insgesamt kann hierdurch eine sehr gleichmäßige Fassadenbeleuchtung erzielt werden. Wie
Wie
Die
Bei einer solchen Beleuchtungsstärkeverteilung des gesamten Lichtbandes 5 kann in Weiterbildung der Erfindung der Reflektor 8 eines einzelnen Fassadenstrahlers bzw. einer einzelnen LED 7 durch eine Beleuchtungsstärkeverteilung definiert werden, wie sie
In Weiterbildung der Erfindung kann der Reflektor 8 eines oder mehrerer, ggf. aller Strahler mit einer das Spektrum des reflektierten Licht verändernden Beschichtung versehen sein, so daß das reflektierte Licht ein anderes Spektrum aufweist als das von dem Relfektor eingefangene, von der Lichtquelle her kommende Licht. Hierdurch kann beispielswesie melatoninförderliches oder -unterdrückendes Licht erzeugt werden. Eine solche spektralverändernde Beschichtung ist besonders vorteilhaft in Verbindung mit der nur einfachen Reflexion des gesamten eingefangenen bzw. gesamten von der Lichtquelle abgegebenen Lichts am Reflektor, so daß die gewünschte Spektrumsveränderung nicht verfälscht bzw. durch Mehrfachreflexionen nicht unkontrollierbar wird.In a further development of the invention, the
Claims (15)
- Reflector for a spotlight for illuminating a surface portion, wherein the reflector (8), as a whole, is formed approximately in the shape of a half-shell for essentially completely capturing the light of a point-shaped light source (7) that radiates into a half-space, and is formed by two shell halves (8a, 8b) each of which is configured to be double-convergent and single-reflecting, such that the total light captured is substantially completely radiated past the light source at different sides of the light source (7), characterized in that the shell halves (8a, 8b) of a respective reflector (8) together form a half-shell of approximately double pear shape and with a double-shell curvature that has a constriction (8c) formed by the transition region of the two shell halves (8a, 8b) and is of approximately gap shape, wherein the constriction (8c) extends beyond the reflector shell and has a depth that decreases from one side of the reflector toward the opposite side of the reflector, so that the constriction (8c) has a larger depth at an edge portion (8u) of the reflector shell than on an opposite edge portion (8o) of the reflector shell.
- Reflector according to the preceding claim, wherein the shell-halves (8a, 8b) are contoured such that the beams irradiated by the two shell halves (8a, 8b) have beam path constrictions (50) that are at least approximately disposed in a common plane in the region of the opening cross-section of the reflector (8).
- Reflector according to any one of the preceding claims, wherein each shell half (8a, 8b) is contoured in such a way that the light captured by the respective shell half (8a, 8b) is transformed by the light source (7) into an approximately pyramid-shaped, in particular slanted pyramid-shaped beam and each shell half (8a, 8b) distributes the respectively captured light with single reflection onto the entire surface portion illuminated by the reflector (8).
- Reflector according to any one of the preceding claims, wherein the reflector (8) is at least partially provided with a facet design (80) that comprises a plurality of facets (81) at the reflector surface of the respective reflector (8), wherein the facet design (80) is provided at both shell halves (8a, 8b) of the respective reflector, in particular at the entire reflector surface and/or comprises more than fifty, preferably more than a hundred facets (81) per shell half and/or comprises an approximately uniform distribution of the facets (81) in more than ten rows and columns in the longitudinal direction and transverse direction of the reflector surface and/or at least a portion of the reflector surface of the reflectors (8) is provided with a geometrically irregular or regular microstructure design and/or orange peel design.
- Spotlight with a point-shaped light source (7), preferably in the shape of an LED, as well as a reflector (8) assigned to the light source (7) which is configured in accordance with any one of claims 1 to 4, and captures the light of the associated light source (7) essentially completely, wherein the light source (7) radiates the light emitted essentially completely into a half space and is arranged in such a way that the half space faces the reflector (8), wherein the reflector (8) which has the shape of a half-shell surrounds the light source (7) so far that said half space is covered by the reflector (8).
- Spotlight in accordance with the preceding claim in connection with claim 2, wherein the light source (7) is arranged in a region left free by the radiated beam path between the beams, and/or a cover superimposed on the reflector (8) comprises, in the region of the beam path constriction, cut-outs in the shape of slit-shaped or hole-shaped light passage holes (51), which cover is formed by a housing (10) closed except for the said cut-outs.
- Spotlight according to claim 5 or 6, wherein a left shell edge portion (81) of each shell half (8a; 8b) illuminates a right edge portion (12r) of the illuminated surface portion (12), a right shell edge portion (8r) of the mentioned shell half illuminates a left edge portion (121) of the illuminated surface portion (12), a lower shell edge portion (8u) of the mentioned shell half illuminates an upper edge portion (12o) of the illuminated surface portion (12), and an upper shell edge portion (8o) illuminates a lower edge portion (12u) of the illuminated surface portion (12).
- Spotlight in accordance with any one of claims 5 to 7, wherein the light source (7) is arranged offset from the reflector center relative to the constriction (8c) of the associated reflector (8) towards the side where the constriction has a smaller depth, in particular in the region of the opening cross-section (8q) of the reflector (8) inside the spatial area enclosed by the reflector edge.
- Spotlight according to any one of claims 5 to 8, wherein the reflector (8) is provided with a coating that changes the spectrum of the light.
- Illumination apparatus having at least one row of spotlights (6) that are each configured in accordance with one of the claims 5 to 9 and that are arranged next to one another and spaced apart from the surface portion (2, 3) to be illuminated.
- Illumination apparatus in accordance with the preceding claim, wherein the light sources (7) are each arranged on a support arm (9a) that projects from an edge of the reflector (8) beyond the opening cross-section (8q) of the reflector (8), wherein the light sources (7) each are arranged on the side of the respective support arm (9a) facing the reflector (8).
- Illumination apparatus according to the preceding claim, wherein the support arm (9a) is a part of a printed circuit board (9) that has a respective reflector cut-out (9b) which is preferably adapted to the peripheral reflector contour in the region of the reflectors (8), whose edge engages around the associated reflector (8) and through which the reflectors (8) cast the respective captured light onto the illuminated façade/wall portion (12).
- Illumination apparatus in accordance with any one of claims 10 to 12, wherein the spotlights (6) are arranged so closely to the surface portion to be illuminated, in particular the façade/wall/ceiling/floor portion (12), that the ratio b/h of the spotlight spacing (b) from the surface portion (12) to the longitudinal extent, in particular the height (h) or width, of the surface portion (12) amounts to 1:4 or less, preferably 1:5 or less, in particular 1:8 to 1:25, and the reflectors (8) generate an illuminance distribution that has an illuminance ratio of minimal illuminance (Emin) to maximum illuminance (Emax) of 1:10, i.e. 0.1 or more, in particular 1:2.5 or more, along said longitudinal extent, in particular the height (h), of the surface portion (12) of parallel lines over the total longitudinal extent of the illuminated surface portion, wherein the reflectors (8) are contoured such that the illuminance distribution over the illuminated façade/wall portion (12) has semi-oval isolux curves, wherein the semi-oval isolux curves preferably have a ratio of height to width of at least 2:1.
- Illumination apparatus in accordance with one of the preceding claims 10 to 13, wherein the illuminated façade/wall portion (12) substantially extends from the floor up to the height of the row of spotlights (6) and/or the illuminated façade/wall portion (12) has an upper edge at approximately the level of the spotlight row and a lower edge at approximately the level of the floor and/or approximately a little beneath the spotlight row corresponding to four to twenty times the spacing of the spotlight row from the façade (2, 3), wherein the reflectors (8) are contoured around the associated light source (7) such that the spotlights (6) have a masking parallel with the façade and in parallel with the illuminated surface portion (12) and/or the luminosity tends toward zero in a plane that is in parallel with the surface portion (12) and that passes through the spotlight row in a region close to the floor and/or in a lateral region next to the illuminated surface portion (12), wherein the spotlights (6) each have a masking angle (360°-α) viewed in a vertical plane perpendicular to the façade/wall (2, 3) of more than 270°, preferably between 270° and 280° and having a masking angle (360°-β) of more than 200°, preferably between 240° and 270°, in a horizontal plane perpendicular to the façade/wall (2, 3).
- Illumination apparatus in accordance with one of the preceding claims 10 to 14, wherein the surface portions (12) illuminated by a respective spotlight (6) overlap one another.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102012015394.5A DE102012015394A1 (en) | 2012-08-03 | 2012-08-03 | Facade and / or wall lighting device |
PCT/EP2013/002312 WO2014019703A1 (en) | 2012-08-03 | 2013-08-02 | Illumination system |
EP13750264.7A EP2880361B1 (en) | 2012-08-03 | 2013-08-02 | Illumination system |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13750264.7A Division-Into EP2880361B1 (en) | 2012-08-03 | 2013-08-02 | Illumination system |
EP13750264.7A Division EP2880361B1 (en) | 2012-08-03 | 2013-08-02 | Illumination system |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3199869A1 EP3199869A1 (en) | 2017-08-02 |
EP3199869B1 true EP3199869B1 (en) | 2020-06-24 |
Family
ID=48998564
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17161523.0A Active EP3199869B1 (en) | 2012-08-03 | 2013-08-02 | Illumination device |
EP13750264.7A Active EP2880361B1 (en) | 2012-08-03 | 2013-08-02 | Illumination system |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13750264.7A Active EP2880361B1 (en) | 2012-08-03 | 2013-08-02 | Illumination system |
Country Status (4)
Country | Link |
---|---|
EP (2) | EP3199869B1 (en) |
DE (1) | DE102012015394A1 (en) |
DK (1) | DK3199869T3 (en) |
WO (1) | WO2014019703A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3217070B1 (en) | 2016-03-11 | 2018-06-27 | Prolicht GmbH | Illumination device |
DE202016106648U1 (en) | 2016-11-29 | 2018-03-01 | Erco Gmbh | wallwashers |
DE102016123006A1 (en) * | 2016-11-29 | 2018-05-30 | Erco Gmbh | wallwashers |
DE202017103077U1 (en) * | 2017-03-03 | 2018-06-05 | Bartenbach Holding Gmbh | lighting device |
CN113007638B (en) * | 2021-03-11 | 2023-02-17 | 苏州欧普照明有限公司 | Wall washing lamp |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB191200506A (en) * | 1912-01-06 | 1912-10-17 | Joseph Tizsa Roffy | Improvements in and relating to Light Projecting Apparatus and the like. |
JPS6465701A (en) * | 1987-09-04 | 1989-03-13 | Koito Mfg Co Ltd | Vehicle head light |
JPH10261302A (en) * | 1997-01-17 | 1998-09-29 | Stanley Electric Co Ltd | Projector lamp |
EP1146572A3 (en) * | 2000-03-14 | 2005-03-23 | Toyoda Gosei Co., Ltd. | Light source device |
JP2002111070A (en) * | 2000-09-28 | 2002-04-12 | Toyoda Gosei Co Ltd | Reflective light-emitting diode |
JP4094366B2 (en) * | 2002-07-24 | 2008-06-04 | 株式会社小糸製作所 | Vehicle lighting |
US6851835B2 (en) * | 2002-12-17 | 2005-02-08 | Whelen Engineering Company, Inc. | Large area shallow-depth full-fill LED light assembly |
DE202005011747U1 (en) | 2005-07-22 | 2006-11-30 | Erco Leuchten Gmbh | Light especially for fastening to building or surface has at least first side wall and opposite lying second side wall provided in each case with at least one section orientated along plane upon which are arranged several LEDs |
US7850345B2 (en) * | 2005-08-17 | 2010-12-14 | Illumination Management Solutions Inc. | Optic for LEDs and other light sources |
US20070171631A1 (en) | 2006-01-25 | 2007-07-26 | Lsi Graphic Solutions Plus | LED cove lighting for exterior fascia |
US20070258233A1 (en) * | 2006-05-04 | 2007-11-08 | Intense Lighting, Llc | Single piece dual coating reflector recessed wall wash luminaire |
DE102008022738A1 (en) * | 2008-05-08 | 2009-11-12 | Christian Bartenbach | Façade lighting device and facade spotlights for this purpose |
DE102008056103A1 (en) * | 2008-11-06 | 2010-05-12 | Erco Gmbh | lamp |
DE102009007490A1 (en) | 2009-02-05 | 2010-08-12 | Zumtobel Lighting Gmbh | Reflector Modular System |
FI123457B (en) * | 2009-09-24 | 2013-05-15 | Oversol Oy | Reflector and this utilizing lighting device |
-
2012
- 2012-08-03 DE DE102012015394.5A patent/DE102012015394A1/en not_active Withdrawn
-
2013
- 2013-08-02 WO PCT/EP2013/002312 patent/WO2014019703A1/en active Application Filing
- 2013-08-02 EP EP17161523.0A patent/EP3199869B1/en active Active
- 2013-08-02 DK DK17161523.0T patent/DK3199869T3/en active
- 2013-08-02 EP EP13750264.7A patent/EP2880361B1/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP2880361B1 (en) | 2017-05-10 |
EP2880361A1 (en) | 2015-06-10 |
DE102012015394A1 (en) | 2014-02-06 |
WO2014019703A1 (en) | 2014-02-06 |
DK3199869T3 (en) | 2020-09-28 |
EP3199869A1 (en) | 2017-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1154200B1 (en) | Light distributor for a lighting assembly, lighting assembly and use of a lighting assembly | |
EP2678603B1 (en) | Lighting device | |
EP3199869B1 (en) | Illumination device | |
DE2925456A1 (en) | LIGHTING BODY FOR STREET LIGHTING | |
DE102010014520A1 (en) | lamp | |
DE10011304A1 (en) | Luminaire with inhomogeneous light radiation | |
DE4414742A1 (en) | Luminaire with at least one ring-shaped illuminant | |
DE4222705C2 (en) | Reflector element, reflector element arrangement and room lighting arrangement | |
EP2258978B1 (en) | Lighting device with a transparent glass cover | |
EP1608909B1 (en) | Light influencing element | |
DE9403361U1 (en) | Luminaires and light control panels for it | |
EP0638764B2 (en) | Indoor lamp for mainly direct lighting | |
DE102010048125A1 (en) | lighting device | |
DE102010037630A1 (en) | Lamp e.g. pendulum lamp attached to ceiling, has primary reflector that is arranged as perforated plate or slotted sheet in central light region below lighting unit at lamp housing | |
EP3408587B1 (en) | Optical system for influencing the light output of a light source | |
DE102006030646A1 (en) | Indoor light for e.g. illuminating wall, has expansion reflector arranged between light source and light discharge opening or after opening based on direction from light source to light discharge opening to reflect light from light source | |
EP1496308A2 (en) | Interior Light with a refractive element | |
EP1900998B1 (en) | Reflector with a structure featuring light | |
EP3919808B1 (en) | Lamp | |
EP1411294B1 (en) | Reflector having a structured surface and luminaire or indirect lighting system including such a reflector | |
EP2716963B1 (en) | Reflector device | |
DE10213536B4 (en) | Secondary lighting system and luminaire with such a Sekundärbeleuchtungssystem | |
DE10301257B4 (en) | Luminaire with a cover with reduced reflection | |
DE102009013811A1 (en) | LED mirror cascade | |
DE4420815A1 (en) | Luminaire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AC | Divisional application: reference to earlier application |
Ref document number: 2880361 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180201 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 502013014849 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: F21V0007100000 Ipc: F21V0007090000 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F21V 7/04 20060101ALN20191126BHEP Ipc: F21V 7/09 20060101AFI20191126BHEP Ipc: F21Y 115/10 20160101ALN20191126BHEP Ipc: F21V 7/00 20060101ALN20191126BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200120 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AC | Divisional application: reference to earlier application |
Ref document number: 2880361 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502013014849 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1284249 Country of ref document: AT Kind code of ref document: T Effective date: 20200715 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: KELLER AND PARTNER PATENTANWAELTE AG, CH |
|
REG | Reference to a national code |
Ref country code: FI Ref legal event code: FGE |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20200921 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: BARTENBACH HOLDING GMBH, AT Free format text: FORMER OWNER: BARTENBACH HOLDING GMBH, AT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200925 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200924 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200924 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20200624 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201026 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201024 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502013014849 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200802 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200831 |
|
26N | No opposition filed |
Effective date: 20210325 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200831 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200802 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20230818 Year of fee payment: 11 Ref country code: CH Payment date: 20230902 Year of fee payment: 11 Ref country code: AT Payment date: 20230824 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240829 Year of fee payment: 12 Ref country code: FI Payment date: 20240828 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20240822 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240822 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240820 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240901 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20240801 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240826 Year of fee payment: 12 |