EP3194869A1 - Refrigeration device having a plurality of storage chambers - Google Patents

Refrigeration device having a plurality of storage chambers

Info

Publication number
EP3194869A1
EP3194869A1 EP15756940.1A EP15756940A EP3194869A1 EP 3194869 A1 EP3194869 A1 EP 3194869A1 EP 15756940 A EP15756940 A EP 15756940A EP 3194869 A1 EP3194869 A1 EP 3194869A1
Authority
EP
European Patent Office
Prior art keywords
evaporator
refrigerating appliance
storage chamber
guide rib
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP15756940.1A
Other languages
German (de)
French (fr)
Other versions
EP3194869B1 (en
Inventor
Frank Cifrodelli
Renate Pradel
Rainer Weser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BSH Hausgeraete GmbH
Original Assignee
BSH Hausgeraete GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BSH Hausgeraete GmbH filed Critical BSH Hausgeraete GmbH
Priority to PL15756940T priority Critical patent/PL3194869T3/en
Publication of EP3194869A1 publication Critical patent/EP3194869A1/en
Application granted granted Critical
Publication of EP3194869B1 publication Critical patent/EP3194869B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • F25D17/065Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators with compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/063Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation with air guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/065Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air return
    • F25D2317/0654Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air return through the side
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/065Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air return
    • F25D2317/0655Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air return through the top

Definitions

  • the present invention relates to a refrigeration appliance, in particular a household refrigeration appliance, with a housing in which a plurality of storage chambers, in particular storage chambers for different operating temperatures such as a freezer compartment and a normal refrigeration compartment, are housed.
  • Such household refrigerators are often designed as full no-frost devices.
  • the individual storage chambers are cooled by a common finned evaporator, which is housed in a mostly divided from the coldest storage chamber evaporator chamber.
  • a common finned evaporator which is housed in a mostly divided from the coldest storage chamber evaporator chamber.
  • moisture entrained in the air settles on the fins of the evaporator to form a frost layer which impedes the heat exchange between the fins and the circulating air and obstructs the passageways between them narrows the fins of the evaporator, thereby making the air circulation difficult.
  • the frost layer must therefore be defrosted regularly.
  • An object of the invention is to provide a refrigeration device in NoFrost type, in which the evaporator is fast and energy efficient abtaubar.
  • the object is achieved by providing in a refrigerator with an evaporator arranged in an evaporator chamber and at least two cooled by air exchange with the evaporator chamber storage chambers, in which in the evaporator chamber upstream of an upstream side of the evaporator, an inlet volume is kept free, the first intake via the first storage chamber and communicates via second suction openings with the second storage chamber, a guide rib is in the Inlet volume in the longitudinal direction of the inflow side and extending from an upstream side of the upstream wall to the upstream side and by the first and second openings are arranged on different sides of this guide rib.
  • the guide rib ensures that air from both chambers can be distributed across the entire width of the evaporator, so that there are not different regions across the width of the evaporator which, being more exposed to the generally more moisture-carrying air from the warmer storage chamber are more mature than other regions. Moreover, by obstructing turbulent mixing of the airflows from the first and second storage chambers in the inlet volume, the guide rib provides a small pressure drop in the circulation of the air between the evaporator chamber and the storage chambers, such that a lower performance ventilator may be required to drive air circulation gets along.
  • the guide rib allows the inlet volume to perform the function of a jet pump in which the stronger of the two air currents pulls the weaker one instead of blocking it by turbulence. This also contributes to the fact that over the entire width of the inflow side, both air streams pass one above the other into the evaporator.
  • the limited turbulence in the intake volume causes the air streams from the first and second storage chambers to be largely intimately mixed, one above and the other below the guide rib, entering the evaporator.
  • this lack of or incomplete mixing may cause frost to form faster in the region of the inflow side which is exposed to the humid air than in the area exposed to the drier air flow, a resulting unequal distribution of the frost has only a slight influence on the defrost time, since the distance between the areas is small.
  • snow formation which may occur when the relatively warm, moist air from a storage chamber cools in contact with the colder air from the other storage chamber, remains on a small portion of the inlet volume, between the edge of the guide rib and Inflow side, limited. Therefore, any resulting snow does not fall to the bottom in the inlet volume, but is flushed into the evaporator, where it sticks and can then be easily defrosted.
  • vanes of the evaporator may be oriented transversely of the guide rib and, as each louver engages both the more frosted and the less frosted regions of the evaporator, ensure efficient heat transfer between the two regions during defrost.
  • the evaporator chamber can be accommodated in a space-saving manner in a partition between the first and the second storage chamber.
  • the longitudinal direction of the inflow side is then generally a horizontal direction; it typically corresponds to the width direction of the refrigeration device.
  • the evaporator chamber is expediently separated from the first storage chamber by a thermal barrier coating and by the second storage chamber through a shell whose thermal insulation effect is weaker than that of the thermal barrier coating.
  • the shell may form at least part of a wall of the inlet volume opposite the upstream side, wherein the second openings communicating with the second storage chamber may then be provided in the shell itself or between the shell and the insulating layer.
  • the second partial openings are expediently located in the second partial space, in order to permit an intensive flow of air from the second storage chamber to the evaporator with minimal change in direction, which has a jet pumping effect on the evaporator can exert air flow originating from the first storage chamber.
  • These first openings are preferably connected to the first storage chamber via conduits extending through the thermal barrier coating.
  • these pipes can each extend at least over part of their length in a side wall of the first storage chamber.
  • the guide rib may be formed integrally with the shell.
  • the guide rib is formed integrally with the thermal barrier coating.
  • a fan may be provided to simultaneously drive air exchange with both storage chambers. Length and passage cross sections of lines which connect the evaporator chamber with the first and the second storage chamber, can be designed according to the average refrigeration demand of the two storage chambers so that the cooling capacity of the evaporator is distributed as needed to both storage chambers. Costly flaps for controlling the air exchange with the two storage chambers can then be omitted.
  • the second storage chamber generally has a lower operating temperature than the first storage chamber, and accordingly occupies a larger proportion of the evaporator's cooling capacity, the airflow through the second openings should be stronger than through the first.
  • FIG. 2 is a detail cross-section along the line II-II of Fig. 1;
  • FIG. 3 is an enlarged detail of the refrigerator according to a second embodiment in section in the depth direction.
  • FIG. 4 shows a section analogous to FIG. 3 according to a third embodiment.
  • Fig. 1 shows a NoFrost combination refrigerator in a schematic section in the depth direction.
  • a body 1 of the refrigerator are two storage chambers 2, 3, here a normal refrigerated compartment and a freezer compartment, separated by a horizontal partition 4 from each other.
  • the body 1 comprises in a customary manner a one-piece deep-drawn plastic inner container 5, a composite of several plate-shaped elements outer skin 6 and a thermal barrier coating 7 between the inner container 5 and the outer skin 6 foamed plastic.
  • the two storage chambers 2, 3 may be formed as separate depressions, so that the intermediate wall 4 is an integral part of the inner container 5.
  • the inner container 5 only a single recess into which the intermediate wall 4 is inserted as a separate component.
  • the intermediate wall 4 here comprises a plate-shaped thermal insulation layer 8, preferably made of expanded polystyrene, which is covered by a plate at least on its upper side 9, a bearing chambers 2, 3 closing doors 10, 1 1 facing end face 12 and a front portion 13 of its underside which is made of the same plastic as the inner container 5.
  • a plastic injection-molded shell 14 is fixed, which separates an evaporator chamber 15 from the lower, second storage chamber 3.
  • the plate may be missing, so that the thermal barrier coating 8 immediately limits the evaporator chamber 15.
  • a flat block-shaped finned evaporator 16 fills the evaporator chamber 15 for the most part and subdivides it into an inlet volume 17 in front of a inflow side 18 of the finned evaporator 16 and an outlet volume 19 behind the opposite side of the finned evaporator 16.
  • a defrost heater 38 is mounted here in the form of an aluminum plate, the base area of which substantially equals that of the lamellar evaporator 16, and a hot gas line, which is fastened on the one hand on the aluminum plate and on the other hand is clamped in notches on the lower edges of the fins of the evaporator 16.
  • a fan 20 is housed to drive air circulation through the fin evaporator 16.
  • the expelled air from the fan 20 is distributed over a in the rear wall of the body 1 extending channel 21 and along the channel 21 on the inner container 5 distributed outlet openings 22 on the two storage chambers 2, 3rd
  • Air heated in the storage chamber 2 flows through passages 24 located in side walls 23 of the body 1, through pipes 25 extending in the side walls, through pipelines 26 of the intermediate wall 4 plugged into the latter and openings 27 at an upper side of the inlet volume 17 back into the evaporator chamber 15.
  • the passages 24 are placed on the side walls at a height in which they can not be blocked by a pull-out box 28 arranged in the usual way at the bottom of the storage chamber 2.
  • heated air passes back into the evaporator chamber 15 via openings 29 which are provided in one of the door 1 1 facing end wall 30 of the shell 14 and / or between an upper edge of the end wall 30 and the intermediate wall 4.
  • the openings 29 are distributed over the entire width of the shell 14 and accommodated therein evaporator 16, so that the air flow from the second storage chamber 2 is evenly distributed over the entire width of the inflow side 18.
  • the openings 27 communicating with the first storage chamber 2 are located respectively at the lateral ends of the inlet volume 17. If the air flows through the openings 27 and 29 in the inlet volume 17 were uncontrolled, then it would be expected that the relatively humid air flowing in via the openings 27 flows through the evaporator 16 essentially only in its lateral regions lying directly behind the openings 27 and therefore frosts them much faster than a central region of the evaporator 16 which is in the Essentially, only air from the storage chamber 3 flows through.
  • the inlet volume 17 is divided over its entire width by a guide rib 31 which extends in the width direction of the body 1, as seen in Fig. 2, horizontally from one side wall 23 of the body 1 to the other and in Depth direction extends from a front wall 32 of the inlet volume 17 to just before the inflow side 18.
  • the front wall 32 is here formed in a lower region by the end wall 30 of the shell 14, above the guide rib 31 it is formed by an edge of the thermal barrier coating 8.
  • the guide rib 31 divides the inlet volume 17 into an upper sub-space 33, in which the air flowing from the storage chamber 2 can be distributed unimpeded by the air flow originating from the second storage chamber 3 over the entire width of the intake volume 17, and a lower sub-space 35 between the guide rib 31 and a bottom plate 34 of the shell 14, in which the air flow from the second storage chamber 3 is guided substantially laminar horizontally and between the inflow side 18 and the opposite rear edge of the guide rib 31 generates a dynamic negative pressure, through the air from the upper Subspace 33 is sucked off and pulled through the evaporator 16 therethrough.
  • the fins 36 of the finned evaporator 16 are each oriented transversely to the guide rib 31.
  • Each individual blade 36 is therefore exposed in its upper region predominantly air from the storage chamber 2 and in its lower region air from the storage chamber 3. While this may cause the frost layer to grow somewhat faster at an upper portion of the fins 36 than at a lower portion during operation, such uneven tires will eventually result in a slight displacement of the airflows in the evaporator chamber 15 and therefore have none noticeable influence on the distribution of the cooling capacity on the two storage chambers 2, 3. Since also during defrosting heat from the Defrost heater 38 is transported quickly and efficiently within the individual blades 36, it comes when defrosting the evaporator 16, even if the fins 36 longer need in their upper regions for defrosting than in the lower, possibly too low temperature gradient. This ensures fast and energy-efficient defrosting.
  • the guide rib 31 is shown as an independent component which is fixed to the underside of the intermediate wall 4.
  • the guide rib 31 is a one-piece component of the shell 14, which protrudes from an upper edge of the end wall 30 into the inlet volume 17 and at which the thermal barrier coating 8 covering, here designated 37 plate anchored ,

Abstract

The invention relates to a refrigeration device, in particular a household refrigerator, comprising an evaporator (16) arranged in an evaporator chamber (15) and at least two storage chambers (2, 3) cooled by air exchange with the evaporator chamber (15). An inlet volume (17) is kept clear in the evaporator chamber (15) in front of an upstream side (18) of the evaporator (16) which communicates with the first storage chamber (2) via first intake openings (27) and with the second storage chamber (3) via second intake openings (29). A guide rib (31) extends in the inlet volume (17) in the longitudinal direction of the upstream side (18) and from a wall (32) opposite the upstream side (18) to the upstream side (18). The first and second intake openings (27, 29) are arranged on different sides of the guide rib (31).

Description

Kältegerät mit mehreren Lagerkammern  Refrigerating appliance with several storage chambers
Die vorliegende Erfindung betrifft ein Kältegerät, insbesondere ein Haushaltskältegerät, mit einem Gehäuse, in dem mehrere Lagerkammern, insbesondere Lagerkammern für unterschiedliche Betriebstemperaturen wie etwa ein Gefrierfach und ein Normalkühlfach, untergebracht sind. The present invention relates to a refrigeration appliance, in particular a household refrigeration appliance, with a housing in which a plurality of storage chambers, in particular storage chambers for different operating temperatures such as a freezer compartment and a normal refrigeration compartment, are housed.
Derartige Haushaltskältegeräte sind häufig als Full-NoFrost-Geräte ausgeführt. Bei Geräten dieses Typs sind die einzelnen Lagerkammern durch einen gemeinsamen Lamellenverdampfer gekühlt, der in einer meist von der kältesten Lagerkammer abgeteilten Verdampferkammer untergebracht ist. Wenn in den Lagerkammern erwärmte Luft durch den Lamellenverdampfer zirkuliert, schlägt sich die von der Luft mitgeführte Feuchtigkeit an den Lamellen des Verdampfers nieder und bildet darauf eine Reifschicht, die zum einen den Wärmeaustausch zwischen den Lamellen und der zirkulierenden Luft behindert und zum anderen die Durchgänge zwischen den Lamellen des Verdampfers verengt und dadurch auch die Luftzirkulation erschwert. Die Reifschicht muss deshalb regelmäßig abgetaut werden. Eine ungleichmäßige Verteilung des Reifs im Verdampfer führt dazu, dass dünn bereifte Bereiche des Verdampfers schneller eisfrei werden als dick bereifte und sich in der Zeit, die die dick bereiften Bereiche zum Abtauen brauchen, auf eine Temperatur deutlich oberhalb des Gefrierpunkts erwärmen. Dies führt zu hohem Energieverbrauch, einerseits wegen der langen Dauer des Abtauvorgangs und andererseits weil die unnötig aufgeheizten Teile des Verdampfers wieder heruntergekühlt werden müssen, bevor der Verdampfer wieder die Lagerkammern kühlen kann. Such household refrigerators are often designed as full no-frost devices. In devices of this type, the individual storage chambers are cooled by a common finned evaporator, which is housed in a mostly divided from the coldest storage chamber evaporator chamber. When heated air circulates through the finned evaporator in the storage chambers, moisture entrained in the air settles on the fins of the evaporator to form a frost layer which impedes the heat exchange between the fins and the circulating air and obstructs the passageways between them narrows the fins of the evaporator, thereby making the air circulation difficult. The frost layer must therefore be defrosted regularly. An uneven distribution of the frost in the evaporator causes frosted portions of the evaporator to become faster ice-free than thick frosted and to heat to a temperature well above freezing in the time that the thick frosted areas need defrosting. This leads to high energy consumption, on the one hand because of the long duration of the defrosting process and on the other hand because the unnecessarily heated parts of the evaporator must be cooled down again before the evaporator can cool the storage chambers again.
Eine Aufgabe der Erfindung ist, ein Kältegerät in NoFrost-Bauart zu schaffen, bei dem der Verdampfer schnell und energieeffizient abtaubar ist. An object of the invention is to provide a refrigeration device in NoFrost type, in which the evaporator is fast and energy efficient abtaubar.
Die Aufgabe wird gelöst, indem bei einem Kältegerät mit einem in einer Verdampferkammer angeordneten Verdampfer und wenigstens zwei durch Luftaustausch mit der Verdampferkammer gekühlten Lagerkammern, bei dem in der Verdampferkammer vor einer Anströmseite des Verdampfers ein Einlassvolumen freigehalten ist, das über erste Ansaugöffnungen mit der ersten Lagerkammer und über zweite Ansaugöffnungen mit der zweiten Lagerkammer kommuniziert, eine Führungsrippe sich in dem Einlassvolumen in Längsrichtung der Anströmseite und von einer der Anströmseite gegenüberliegenden Wand aus auf die Anströmseite zu erstreckt und indem die ersten und zweiten Öffnungen auf verschiedenen Seiten dieser Führungsrippe angeordnet sind. The object is achieved by providing in a refrigerator with an evaporator arranged in an evaporator chamber and at least two cooled by air exchange with the evaporator chamber storage chambers, in which in the evaporator chamber upstream of an upstream side of the evaporator, an inlet volume is kept free, the first intake via the first storage chamber and communicates via second suction openings with the second storage chamber, a guide rib is in the Inlet volume in the longitudinal direction of the inflow side and extending from an upstream side of the upstream wall to the upstream side and by the first and second openings are arranged on different sides of this guide rib.
Die Führungsrippe stellt sicher, dass Luft aus beiden Kammern sich über die gesamte Breite des Verdampfers verteilen kann, so dass nicht über die Breite des Verdampfers hinweg verschiedene Regionen existieren, die, da sie der im Allgemeinen mehr Feuchtigkeit mitführenden Luft aus der wärmeren Lagerkammer stärker ausgesetzt sind, stärker Reif ansetzen als andere Regionen. Indem die Führungsrippe eine turbulente Durchmischung der Luftströme aus der ersten und der zweiten Lagerkammer im Einlassvolumen behindert, sorgt sie überdies für einen geringen Druckverlust im Kreislauf der Luft zwischen der Verdampferkammer und den Lagerkammern, so dass ein erforderlichenfalls zum Antreiben der Luftzirkulation eingesetzter Ventilator mit geringerer Leistung auskommt. Die Führungsrippe ermöglicht es dem Einlassvolumen, die Funktion einer Strahlpumpe wahrzunehmen, in der die stärkere der beiden Luftströmungen die schwächere mitzieht, anstatt sie durch Verwirbelung zu blockieren. Auch dies trägt dazu bei, dass über die gesamte Breite der Anströmseite hinweg beide Luftströme übereinander in den Verdampfer eintreten. The guide rib ensures that air from both chambers can be distributed across the entire width of the evaporator, so that there are not different regions across the width of the evaporator which, being more exposed to the generally more moisture-carrying air from the warmer storage chamber are more mature than other regions. Moreover, by obstructing turbulent mixing of the airflows from the first and second storage chambers in the inlet volume, the guide rib provides a small pressure drop in the circulation of the air between the evaporator chamber and the storage chambers, such that a lower performance ventilator may be required to drive air circulation gets along. The guide rib allows the inlet volume to perform the function of a jet pump in which the stronger of the two air currents pulls the weaker one instead of blocking it by turbulence. This also contributes to the fact that over the entire width of the inflow side, both air streams pass one above the other into the evaporator.
Andererseits bewirkt die eingeschränkte Turbulenz in dem Einlassvolumen, dass die Luftströme aus der ersten und der zweiten Lagerkammer weitgehend undurchmischt, einer oberhalb und der andere unterhalb der Führungsrippe, in den Verdampfer eintreten. Diese fehlende bzw. unvollständige Durchmischung kann zwar dazu führen, dass sich in dem Bereich der Anströmseite, der der feuchteren Luft ausgesetzt ist, schneller Reif bildet als in dem dem trockeneren Luftstrom ausgesetzten Bereich, doch hat eine daraus resultierende Ungleichverteilung des Reifs nur einen geringen Einfluss auf die Abtauzeit, da der Abstand zwischen den Bereichen klein ist. Infolge der eingeschränkten Durchmischung bleibt Schneebildung, zu der es kommen kann, wenn sich die relativ warme, feuchte Luft aus einer Lagerkammer in Kontakt mit der kälteren Luft aus der anderen Lagerkammer abkühlt, auf einen kleinen Bereich des Einlassvolumens, zwischen der Kante der Führungsrippe und der Anströmseite, begrenzt. Daher fällt eventuell entstehender Schnee nicht in dem Einlassvolumen zu Boden, sondern wird in den Verdampfer hineingespült, wo er haftenbleibt und anschließend problemlos abgetaut werden kann. On the other hand, the limited turbulence in the intake volume causes the air streams from the first and second storage chambers to be largely intimately mixed, one above and the other below the guide rib, entering the evaporator. Although this lack of or incomplete mixing may cause frost to form faster in the region of the inflow side which is exposed to the humid air than in the area exposed to the drier air flow, a resulting unequal distribution of the frost has only a slight influence on the defrost time, since the distance between the areas is small. Due to the limited mixing, snow formation, which may occur when the relatively warm, moist air from a storage chamber cools in contact with the colder air from the other storage chamber, remains on a small portion of the inlet volume, between the edge of the guide rib and Inflow side, limited. Therefore, any resulting snow does not fall to the bottom in the inlet volume, but is flushed into the evaporator, where it sticks and can then be easily defrosted.
Außerdem können Lamellen des Verdampfers quer zu der Führungsrippe orientiert sein und, indem so jede Lamelle sowohl in den stärker bereiften als auch in den schwächer bereiften Bereich des Verdampfers eingreift, einen effizienten Wärmeübergang zwischen den beiden Bereichen beim Abtauen gewährleisten. In addition, vanes of the evaporator may be oriented transversely of the guide rib and, as each louver engages both the more frosted and the less frosted regions of the evaporator, ensure efficient heat transfer between the two regions during defrost.
Die Verdampferkammer kann platzsparend in einer Trennwand zwischen der ersten und der zweiten Lagerkammer untergebracht sein. Die Längsrichtung der Anströmseite ist dann im Allgemeinen eine horizontale Richtung; typischerweise entspricht sie der Breitenrichtung des Kältegeräts. The evaporator chamber can be accommodated in a space-saving manner in a partition between the first and the second storage chamber. The longitudinal direction of the inflow side is then generally a horizontal direction; it typically corresponds to the width direction of the refrigeration device.
Um unterschiedliche Betriebstemperaturen in den Lagerkammern energiesparend aufrecht zu erhalten, ist die Verdampferkammer zweckmäßigerweise von der ersten Lagerkammer durch eine Wärmedämmschicht und von der zweiten Lagerkammer durch eine Schale getrennt, deren Wärmedämmwirkung schwächer als die der Wärmedämmschicht ist. Die Schale kann wenigstens einen Teil einer der Anströmseite gegenüberliegenden Wand des Einlassvolumens bilden, wobei dann die mit der zweiten Lagerkammer kommunizierenden zweiten Öffnungen in der Schale selbst oder zwischen der Schale und der Dämmschicht vorgesehen sein können. Wenn die Führungsrippe das Einlassvolumen in zwei entlang der Anströmseite des Verdampfers langgestreckte Teilräume gliedert, liegen zweckmäßigerweise in dem zweiten Teilraum die zweiten Öffnungen der Anströmseite gegenüber, um eine intensive Luftströmung von der zweiten Lagerkammer zum Verdampfer mit minimaler Richtungsänderung zu ermöglichen, die eine Strahlpumpenwirkung auf die von der ersten Lagerkammer herrührende Luftströmung ausüben kann. Auf diese Weise gelingt es, auch die von der ersten Lagerkammer herrührende Luftströmung über die gesamte Breite des Verdampfers zu verteilen, selbst wenn die ersten Öffnungen, über die diese Luftströmung das Einlassvolumen erreicht, an Längsenden des ersten Teilraums angeordnet sind. Diese ersten Öffnungen sind vorzugsweise über Rohrleitungen, die sich durch die Wärmedämmschicht erstrecken, mit der ersten Lagerkammer verbunden. In order to maintain energy-saving different operating temperatures in the storage chambers, the evaporator chamber is expediently separated from the first storage chamber by a thermal barrier coating and by the second storage chamber through a shell whose thermal insulation effect is weaker than that of the thermal barrier coating. The shell may form at least part of a wall of the inlet volume opposite the upstream side, wherein the second openings communicating with the second storage chamber may then be provided in the shell itself or between the shell and the insulating layer. When the guide rib divides the inlet volume into two partial spaces which are elongated along the inflow side of the evaporator, the second partial openings are expediently located in the second partial space, in order to permit an intensive flow of air from the second storage chamber to the evaporator with minimal change in direction, which has a jet pumping effect on the evaporator can exert air flow originating from the first storage chamber. In this way it is also possible to distribute the air flow originating from the first storage chamber over the entire width of the evaporator, even if the first openings, via which this air flow reaches the inlet volume, are arranged at longitudinal ends of the first partial space. These first openings are preferably connected to the first storage chamber via conduits extending through the thermal barrier coating.
Zweckmäßigerweise, und um eine Blockierung durch am Boden der ersten Lagerkammer angeordnete Gegenstände, insbesondere durch einen Auszugkasten, zu vermeiden, können diese Rohrleitungen jeweils wenigstens auf einem Teil ihrer Länge in einer Seitenwand der ersten Lagerkammer verlaufen. Conveniently, and in order to avoid blockage by articles arranged at the bottom of the first storage chamber, in particular by a pull-out box, these pipes can each extend at least over part of their length in a side wall of the first storage chamber.
Um den Zusammenbau des Kältegeräts zu vereinfachen, kann die Führungsrippe einteilig mit der Schale ausgebildet sein. In order to simplify the assembly of the refrigeration device, the guide rib may be formed integrally with the shell.
Einer alternativen Ausgestaltung zu Folge ist die Führungsrippe einteilig mit der Wärmedämmschicht ausgebildet. Ein Ventilator kann vorgesehen sein, um einen Luftaustausch mit beiden Lagerkammern gleichzeitig anzutreiben. Länge und Durchlassquerschnitte von Leitungen, die die Verdampferkammer mit der ersten und der zweiten Lagerkammer verbinden, können entsprechend dem mittleren Kältebedarf der beiden Lagerkammern so ausgelegt sein, dass die Kühlleistung des Verdampfers sich bedarfsgerecht auf beide Lagerkammern verteilt. Kostenaufwändige Klappen zum Steuern des Luftaustauschs mit den beiden Lagerkammern können dann entfallen. According to an alternative embodiment, the guide rib is formed integrally with the thermal barrier coating. A fan may be provided to simultaneously drive air exchange with both storage chambers. Length and passage cross sections of lines which connect the evaporator chamber with the first and the second storage chamber, can be designed according to the average refrigeration demand of the two storage chambers so that the cooling capacity of the evaporator is distributed as needed to both storage chambers. Costly flaps for controlling the air exchange with the two storage chambers can then be omitted.
Da die zweite Lagerkammer im Allgemeinen eine niedrigere Betriebstemperatur als die erste Lagerkammer hat, und dementsprechend einen größeren Anteil an der Kühlleistung des Verdampfers beansprucht, sollte der Luftdurchsatz durch die zweiten Öffnungen stärker sein als durch die ersten. Since the second storage chamber generally has a lower operating temperature than the first storage chamber, and accordingly occupies a larger proportion of the evaporator's cooling capacity, the airflow through the second openings should be stronger than through the first.
Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen unter Bezugnahme auf die beigefügten Figuren. Es zeigen: Further features and advantages of the invention will become apparent from the following description of embodiments with reference to the accompanying figures. Show it:
Fig. 1 einen schematischen Schnitt in Tiefenrichtung durch ein erfindungsgemäßes 1 shows a schematic section in the depth direction through an inventive
Haushaltskältegerät; Fig. 2 einen Detailquerschnitt entlang der Linie II-II aus Fig. 1 ; Household refrigerator; Fig. 2 is a detail cross-section along the line II-II of Fig. 1;
Fig. 3 ein vergrößertes Detail des Kältegeräts gemäß einer zweiten Ausgestaltung im Schnitt in Tiefenrichtung; und 3 is an enlarged detail of the refrigerator according to a second embodiment in section in the depth direction. and
Fig. 4 einen zu Fig. 3 analogen Schnitt gemäß einer dritten Ausgestaltung. 4 shows a section analogous to FIG. 3 according to a third embodiment.
Fig. 1 zeigt ein NoFrost-Kombinationskältegerät in einem schematischen Schnitt in Tiefenrichtung. In einem Korpus 1 des Kältegeräts sind zwei Lagerkammern 2, 3, hier ein Normalkühlfach und ein Gefrierfach, durch eine horizontale Zwischenwand 4 voneinander getrennt. Der Korpus 1 umfasst in fachüblicher Weise einen aus Kunststoff einteilig tiefgezogenen Innenbehälter 5, eine aus mehreren plattenförmigen Elementen zusammengesetzte Außenhaut 6 und eine Wärmedämmschicht 7 aus zwischen dem Innenbehälter 5 und der Außenhaut 6 aufgeschäumten Kunststoff. In dem Innenbehälter 5 können die zwei Lagerkammern 2, 3 als voneinander getrennte Vertiefungen ausgebildet sein, so dass auch die Zwischenwand 4 einteiliger Bestandteil des Innenbehälters 5 ist. Fig. 1 shows a NoFrost combination refrigerator in a schematic section in the depth direction. In a body 1 of the refrigerator are two storage chambers 2, 3, here a normal refrigerated compartment and a freezer compartment, separated by a horizontal partition 4 from each other. The body 1 comprises in a customary manner a one-piece deep-drawn plastic inner container 5, a composite of several plate-shaped elements outer skin 6 and a thermal barrier coating 7 between the inner container 5 and the outer skin 6 foamed plastic. In the inner container 5, the two storage chambers 2, 3 may be formed as separate depressions, so that the intermediate wall 4 is an integral part of the inner container 5.
Im hier betrachteten Fall weist der Innenbehälter 5 nur eine einzige Vertiefung auf, in die die Zwischenwand 4 als separates Bauteil eingefügt ist. Die Zwischenwand 4 umfasst hier eine plattenförmige Wärmedämmschicht 8, vorzugsweise aus expandiertem Polystyrol, die wenigstens an ihrer Oberseite 9, einer die Lagerkammern 2, 3 verschließenden Türen 10, 1 1 zugewandten Stirnseite 12 und einem vorderen Bereich 13 ihrer Unterseite von einer Platte überdeckt ist, die aus demselben Kunststoff wie der Innenbehälter 5 gefertigt ist. An einem unteren hinteren Rand dieser Platte ist eine aus Kunststoff spritzgeformte Schale 14 befestigt, die eine Verdampferkammer 15 von der unteren, zweiten Lagerkammer 3 abtrennt. In dem von der Schale 14 überdeckten Bereich der Zwischenwand 4 kann die Platte fehlen, so dass die Wärmedämmschicht 8 unmittelbar die Verdampferkammer 15 begrenzt. Da die untere Lagerkammer 3 als Gefrierfach vorgesehen ist, wird zwischen ihr und der Verdampferkammer 15 keine starke Isolation benötigt. Die Schale 14 ist daher aus einem nicht aufgeschäumten Kunststoff mit im Vergleich zur Wärmedämmschicht 8 geringer Isolationswirkung gefertigt. Ein flach quaderförmiger Lamellenverdampfer 16 füllt die Verdampferkammer 15 zum großen Teil aus und unterteilt sie in ein Einlassvolumen 17 vor einer Anströmseite 18 des Lamellenverdampfers 16 und ein Auslassvolumen 19 hinter der gegenüberliegenden Seite des Lamellenverdampfers 16. Unter dem Lamellenverdampfer 16 ist eine Abtauheizung 38 angebracht, hier in Form einer Aluminiumplatte, deren Grundfläche im Wesentlichen der des Lamellenverdampfers 16 gleicht, und einer Heißgasleitung, die einerseits auf der Aluminiumplatte befestigt und andererseits in Kerben an den Unterkanten der Lamellen des Verdampfers 16 eingeklemmt ist. In the case considered here, the inner container 5 only a single recess into which the intermediate wall 4 is inserted as a separate component. The intermediate wall 4 here comprises a plate-shaped thermal insulation layer 8, preferably made of expanded polystyrene, which is covered by a plate at least on its upper side 9, a bearing chambers 2, 3 closing doors 10, 1 1 facing end face 12 and a front portion 13 of its underside which is made of the same plastic as the inner container 5. At a lower rear edge of this plate, a plastic injection-molded shell 14 is fixed, which separates an evaporator chamber 15 from the lower, second storage chamber 3. In the area covered by the shell 14 of the intermediate wall 4, the plate may be missing, so that the thermal barrier coating 8 immediately limits the evaporator chamber 15. Since the lower storage chamber 3 is provided as a freezer compartment, no strong insulation is required between it and the evaporator chamber 15. The shell 14 is therefore made of a non-foamed plastic with compared to the thermal barrier coating 8 low insulation effect. A flat block-shaped finned evaporator 16 fills the evaporator chamber 15 for the most part and subdivides it into an inlet volume 17 in front of a inflow side 18 of the finned evaporator 16 and an outlet volume 19 behind the opposite side of the finned evaporator 16. Below the finned evaporator 16, a defrost heater 38 is mounted here in the form of an aluminum plate, the base area of which substantially equals that of the lamellar evaporator 16, and a hot gas line, which is fastened on the one hand on the aluminum plate and on the other hand is clamped in notches on the lower edges of the fins of the evaporator 16.
In dem Auslassvolumen 19 ist ein Ventilator 20 untergebracht, um Luftzirkulation durch den Lamellenverdampfer 16 anzutreiben. Die vom Ventilator 20 ausgestoßene Luft verteilt sich über einen sich in der Rückwand des Korpus 1 erstreckenden Kanal 21 und entlang des Kanals 21 am Innenbehälter 5 verteilte Auslassöffnungen 22 auf die beiden Lagerkammern 2, 3. In the outlet volume 19, a fan 20 is housed to drive air circulation through the fin evaporator 16. The expelled air from the fan 20 is distributed over a in the rear wall of the body 1 extending channel 21 and along the channel 21 on the inner container 5 distributed outlet openings 22 on the two storage chambers 2, 3rd
In der Lagerkammer 2 erwärmte Luft fließt über sich in Seitenwänden 23 des Korpus 1 gegenüberliegende Durchgänge 24, über sich in den Seitenwänden erstreckende Rohrleitungen 25, über mit letzteren steckverbundene Rohrleitungen 26 der Zwischenwand 4 und Öffnungen 27 an einer Oberseite des Einlassvolumens 17 zurück in die Verdampferkammer 15. Die Durchgänge 24 sind an den Seitenwänden in einer Höhe platziert, in der sie von einem in üblicher Weise am Boden der Lagerkammer 2 angeordneten Auszugkasten 28 nicht blockiert werden können. In der zweiten Lagerkammer 3 erwärmte Luft gelangt zurück in die Verdampferkammer 15 über Öffnungen 29, die in einer der Tür 1 1 zugewandten Stirnwand 30 der Schale 14 und/oder zwischen einer Oberkante der Stirnwand 30 und der Zwischenwand 4 vorgesehen sind. Die Öffnungen 29 sind über die gesamte Breite der Schale 14 und des darin untergebrachten Verdampfers 16 verteilt, so dass auch die Luftströmung aus der zweiten Lagerkammer 2 gleichmäßig über die gesamte Breite der Anströmseite 18 verteilt ist. Wie aus dem Schnitt der Fig. 2 deutlich wird, befinden sich die mit der ersten Lagerkammer 2 kommunizierenden Öffnungen 27 jeweils an den seitlichen Enden des Einlassvolumens 17. Wenn die über die Öffnungen 27 und 29 verlaufenden Luftströmungen in dem Einlassvolumen 17 ungesteuert aufeinander treffen würden, dann wäre damit zu rechnen, dass die über die Öffnungen 27 zuströmende, relativ feuchte Luft deren Verdampfer 16 im Wesentlichen nur in dessen unmittelbar hinter den Öffnungen 27 liegenden seitlichen Bereichen durchströmt und diese daher deutlich schneller bereifen als ein mittlerer Bereich des Verdampfers 16, der im Wesentlichen nur von Luft aus der Lagerkammer 3 durchflössen wird. Um dies zu verhindern, ist das Einlassvolumen 17 auf seiner gesamten Breite durch eine Führungsrippe 31 unterteilt, die sich in Breitenrichtung des Korpus 1 , wie in Fig. 2 zu sehen, horizontal von einer Seitenwand 23 des Korpus 1 zur anderen erstreckt und die sich in Tiefenrichtung ausgehend von einer vorderen Wand 32 des Einlassvolumens 17 bis kurz vor die Anströmseite 18 erstreckt. Die vordere Wand 32 ist hier in einem unteren Bereich durch die Stirnwand 30 der Schale 14 gebildet, oberhalb der Führungsrippe 31 ist sie durch eine Flanke der Wärmedämmschicht 8 gebildet. Die Führungsrippe 31 unterteilt das Einlassvolumen 17 in einen oberen Teilraum 33, in dem sich die aus der Lagerkammer 2 zuströmende Luft, ungehindert durch die von der zweiten Lagerkammer 3 herrührende Luftströmung über die gesamte Breite des Einlassvolumens 17 verteilen kann, und einen unteren Teilraum 35 zwischen der Führungsrippe 31 und einer Bodenplatte 34 der Schale 14, in dem die Luftströmung aus der zweiten Lagerkammer 3 im Wesentlichen laminar horizontal geführt ist und zwischen der Anströmseite 18 und der ihr gegenüberliegenden Hinterkante der Führungsrippe 31 einen dynamischen Unterdruck erzeugt, durch den Luft aus dem oberen Teilraum 33 abgesaugt und durch den Verdampfer 16 hindurch gezogen wird. Wie ferner in Fig. 2 zu erkennen, sind die Lamellen 36 des Lamellenverdampfers 16 jeweils quer zu der Führungsrippe 31 orientiert. Jede einzelne Lamelle 36 ist daher in ihrem oberen Bereich überwiegend Luft aus der Lagerkammer 2 und in ihrem unteren Bereich Luft aus der Lagerkammer 3 ausgesetzt. Dies kann zwar dazu führen, dass im Betrieb die Reifschicht an einem oberen Teil der Lamellen 36 etwas schneller wächst als an einem unteren Teil, doch führt eine solche ungleichmäßige Bereifung allenfalls zu einer geringfügigen Verdrängung der Luftströmungen in der Verdampferkammer 15 nach unten und hat daher keinen merklichen Einfluss auf die Verteilung der Kühlleistung auf die beiden Lagerkammern 2, 3. Da außerdem während des Abtauens Wärme von der Abtauheizung 38 innerhalb der einzelnen Lamellen 36 schnell und effizient transportiert wird, kommt es beim Abtauen des Verdampfers 16 selbst dann, wenn die Lamellen 36 in ihren oberen Bereichen länger zum Abtauen benötigen als in den unteren, allenfalls zu geringen Temperaturgradienten. So ist eine schnelle und energieeffiziente Abtauung gewährleistet. Air heated in the storage chamber 2 flows through passages 24 located in side walls 23 of the body 1, through pipes 25 extending in the side walls, through pipelines 26 of the intermediate wall 4 plugged into the latter and openings 27 at an upper side of the inlet volume 17 back into the evaporator chamber 15. The passages 24 are placed on the side walls at a height in which they can not be blocked by a pull-out box 28 arranged in the usual way at the bottom of the storage chamber 2. In the second storage chamber 3 heated air passes back into the evaporator chamber 15 via openings 29 which are provided in one of the door 1 1 facing end wall 30 of the shell 14 and / or between an upper edge of the end wall 30 and the intermediate wall 4. The openings 29 are distributed over the entire width of the shell 14 and accommodated therein evaporator 16, so that the air flow from the second storage chamber 2 is evenly distributed over the entire width of the inflow side 18. As can be seen from the section of FIG. 2, the openings 27 communicating with the first storage chamber 2 are located respectively at the lateral ends of the inlet volume 17. If the air flows through the openings 27 and 29 in the inlet volume 17 were uncontrolled, then it would be expected that the relatively humid air flowing in via the openings 27 flows through the evaporator 16 essentially only in its lateral regions lying directly behind the openings 27 and therefore frosts them much faster than a central region of the evaporator 16 which is in the Essentially, only air from the storage chamber 3 flows through. To prevent this, the inlet volume 17 is divided over its entire width by a guide rib 31 which extends in the width direction of the body 1, as seen in Fig. 2, horizontally from one side wall 23 of the body 1 to the other and in Depth direction extends from a front wall 32 of the inlet volume 17 to just before the inflow side 18. The front wall 32 is here formed in a lower region by the end wall 30 of the shell 14, above the guide rib 31 it is formed by an edge of the thermal barrier coating 8. The guide rib 31 divides the inlet volume 17 into an upper sub-space 33, in which the air flowing from the storage chamber 2 can be distributed unimpeded by the air flow originating from the second storage chamber 3 over the entire width of the intake volume 17, and a lower sub-space 35 between the guide rib 31 and a bottom plate 34 of the shell 14, in which the air flow from the second storage chamber 3 is guided substantially laminar horizontally and between the inflow side 18 and the opposite rear edge of the guide rib 31 generates a dynamic negative pressure, through the air from the upper Subspace 33 is sucked off and pulled through the evaporator 16 therethrough. As can also be seen in FIG. 2, the fins 36 of the finned evaporator 16 are each oriented transversely to the guide rib 31. Each individual blade 36 is therefore exposed in its upper region predominantly air from the storage chamber 2 and in its lower region air from the storage chamber 3. While this may cause the frost layer to grow somewhat faster at an upper portion of the fins 36 than at a lower portion during operation, such uneven tires will eventually result in a slight displacement of the airflows in the evaporator chamber 15 and therefore have none noticeable influence on the distribution of the cooling capacity on the two storage chambers 2, 3. Since also during defrosting heat from the Defrost heater 38 is transported quickly and efficiently within the individual blades 36, it comes when defrosting the evaporator 16, even if the fins 36 longer need in their upper regions for defrosting than in the lower, possibly too low temperature gradient. This ensures fast and energy-efficient defrosting.
In der Ausgestaltung der Fig. 1 ist die Führungsrippe 31 als ein eigenständiges Bauteil dargestellt, das an der Unterseite der Zwischenwand 4 befestigt ist. Einer in Fig. 3 gezeigten bevorzugten Weiterbildung zu Folge ist die Führungsrippe 31 ein einteiliger Bestandteil der Schale 14, der von einer Oberkante der Stirnwand 30 in das Einlassvolumen 17 hinein vorspringt und an der die Wärmedämmschicht 8 überdeckenden, hier mit 37 bezeichneten Platte, verankert ist. In the embodiment of Fig. 1, the guide rib 31 is shown as an independent component which is fixed to the underside of the intermediate wall 4. A preferred development shown in Fig. 3, the guide rib 31 is a one-piece component of the shell 14, which protrudes from an upper edge of the end wall 30 into the inlet volume 17 and at which the thermal barrier coating 8 covering, here designated 37 plate anchored ,
Einer in Fig. 4 gezeigten alternativen Weiterentwicklung zu Folge ist die Führungsrippe 31 einteiliger Bestandteil der Wärmedämmschicht 8. An alternative development shown in FIG. 4 results in that the guide rib 31 is an integral part of the thermal barrier coating 8.
BEZUGSZEICHEN REFERENCE NUMBERS
Korpus 21 Kanal Body 21 channel
Lagerkammer 22 Auslassöffnung Bearing chamber 22 outlet opening
Lagerkammer 23 SeitenwandStorage chamber 23 side wall
Zwischenwand 24 DurchgangIntermediate wall 24 passage
Innenbehälter 25 RohrleitungInner container 25 Pipe
Außenhaut 26 RohrleitungOuter skin 26 pipe
Wärmedämmschicht 27 ÖffnungThermal insulation layer 27 opening
Wärmedämmschicht 28 AuszugkastenThermal insulation layer 28 Pull-out box
Oberseite 29 ÖffnungTop 29 opening
Tür 30 StirnwandDoor 30 front wall
Tür 31 FührungsrippeDoor 31 guide rib
Stirnseite 32 vordere WandFront 32 front wall
Vorderer Bereich 33 oberer TeilraumFront section 33 upper compartment
Schale 34 BodenplatteShell 34 base plate
Verdampferkammer 35 unterer TeilraumEvaporator chamber 35 lower subspace
Lamellenverdampfer 36 LamelleLamella evaporator 36 lamella
Einlassvolumen 37 Platte Intake volume 37 plate
Anströmseite 38 Abtauheizung Inflow side 38 defrost heater
Auslassvolumen discharge volume
Ventilator  fan

Claims

PATENTANSPRÜCHE
Kältegerät, insbesondere Haushaltskältegerät, mit einem in einer Verdampferkammer (15) angeordneten Verdampfer (16) und wenigstens zwei durch Luftaustausch mit der Verdampferkammer (15) gekühlten Lagerkammern (2, 3), wobei in der Verdampferkammer (15) vor einer Anströmseite (18) des Verdampfers (16) ein Einlassvolumen (17) freigehalten ist, das über erste Ansaugöffnungen (27) mit der ersten Lagerkammer (2) und über zweite Ansaugöffnungen (29) mit der zweiten Lagerkammer (3) kommuniziert, dadurch gekennzeichnet, dass eine Führungsrippe (31 ) sich in dem Einlassvolumen (17) in Längsrichtung der Anströmseite (18) und von einer der Anströmseite (18) gegenüberliegenden Wand (32) aus auf die Anströmseite (18) zu erstreckt und dass die ersten und zweiten Ansaugöffnungen (27, 29) auf verschiedenen Seiten der Führungsrippe (31 ) angeordnet sind. Refrigerating appliance, in particular household refrigerating appliance, with an evaporator (16) arranged in an evaporator chamber (15) and at least two storage chambers (2, 3) cooled by exchanging air with the evaporator chamber (15), wherein in the evaporator chamber (15) upstream of an inflow side (18) the evaporator (16) is kept free of an inlet volume (17) which communicates with the first storage chamber (2) via first suction openings (27) and with the second storage chamber (3) via second suction openings (29), characterized in that a guide rib ( 31) extends in the inlet volume (17) in the longitudinal direction of the inflow side (18) and from a wall (32) opposite the inflow side (18) to the inflow side (18) and in that the first and second intake openings (27, 29) are arranged on different sides of the guide rib (31).
Kältegerät nach Anspruch 1 , dadurch gekennzeichnet, dass Lamellen (36) des Verdampfers (16) quer zu der Führungsrippe (31 ) orientiert sind. Refrigerating appliance according to claim 1, characterized in that lamellae (36) of the evaporator (16) are oriented transversely to the guide rib (31).
Kältegerät nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Verdampferkammer (15) in einer Trennwand (4) zwischen der ersten und der zweiten Lagerkammer (2, 3) untergebracht ist und von der ersten Lagerkammer (2) durch eine Wärmedämmschicht (8) und von der zweiten Lagerkammer (3) durch eine Schale (14) getrennt ist, deren Wärmedämmwirkung schwächer als die der Wärmedämmschicht (8) ist. Refrigerating appliance according to claim 1 or 2, characterized in that the evaporator chamber (15) in a partition wall (4) between the first and the second storage chamber (2, 3) is housed and from the first storage chamber (2) by a thermal barrier coating (8) and is separated from the second storage chamber (3) by a shell (14) whose thermal insulation effect is weaker than that of the thermal barrier coating (8).
Kältegerät nach Anspruch 3, dadurch gekennzeichnet, dass die Schale (14) wenigstens einen Teil der einer Anströmseite (18) gegenüberliegenden Wand (32) des Einlassvolumens (17) bildet und die zweiten Öffnungen (30) in der Schale (14) oder zwischen der Schale (14) und der Dämmschicht (8) vorgesehen sind. Refrigerating appliance according to claim 3, characterized in that the shell (14) forms at least a part of the inlet wall (32) of the inlet volume (17) opposite an inflow side (18) and the second openings (30) in the bowl (14) or between the Shell (14) and the insulating layer (8) are provided.
Kältegerät nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass die Führungsrippe (31 ) das Einlassvolumen (17) in zwei entlang der Anströmseite (18) langgestreckte Teilräume (33, 35) gliedert, wobei in dem zweiten Teilraum (35) die zweiten Ansaugöffnungen (29) der Anströmseite (18) gegenüberliegen und die ersten Ansaugöffnungen (27) an Längsenden des ersten Teilraums (22) angeordnet sind. Refrigerating appliance according to claim 3 or 4, characterized in that the guide rib (31) the inlet volume (17) in two along the inflow side (18). elongate subspaces (33, 35) is divided, wherein in the second subspace (35), the second intake ports (29) of the inflow side (18) are opposite and the first intake ports (27) at longitudinal ends of the first subspace (22) are arranged.
Kältegerät nach Anspruch 5, dadurch gekennzeichnet, dass die ersten Ansaugöffnungen (27) über sich durch die Wärmedämmschicht (8) erstreckende Rohrleitungen (26) mit der ersten Lagerkammer (2) verbunden sind. Refrigerating appliance according to claim 5, characterized in that the first suction openings (27) are connected to the first storage chamber (2) via pipelines (26) extending through the thermal barrier coating (8).
Kältegerät nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, dass die Führungsrippe (31 ) einteilig mit der Schale (14) ausgebildet ist. Refrigerating appliance according to one of claims 3 to 6, characterized in that the guide rib (31) is formed integrally with the shell (14).
Kältegerät nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, dass die Führungsrippe (31 ) einteilig mit der Wärmedämmschicht (8) ausgebildet ist. Refrigerating appliance according to one of claims 3 to 6, characterized in that the guide rib (31) is formed integrally with the thermal barrier coating (8).
Kältegerät nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Ventilator (20) angeordnet ist, um einen Luftaustausch mit beiden Lagerkammern (2, 3) gleichzeitig anzutreiben. Refrigerating appliance according to one of the preceding claims, characterized in that a fan (20) is arranged to simultaneously drive an exchange of air with both storage chambers (2, 3).
Kältegerät nach Anspruch 9, dadurch gekennzeichnet, dass der Luftdurchsatz durch die zweiten Ansaugöffnungen (29) stärker ist als durch die ersten Ansaugöffnungen (27). Refrigerating appliance according to claim 9, characterized in that the air throughput through the second suction openings (29) is stronger than through the first suction openings (27).
EP15756940.1A 2014-09-15 2015-09-04 Refrigeration device having a plurality of storage chambers Active EP3194869B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL15756940T PL3194869T3 (en) 2014-09-15 2015-09-04 Refrigeration device having a plurality of storage chambers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014218411.8A DE102014218411A1 (en) 2014-09-15 2014-09-15 Refrigerating appliance with several storage chambers
PCT/EP2015/070289 WO2016041791A1 (en) 2014-09-15 2015-09-04 Refrigeration device having a plurality of storage chambers

Publications (2)

Publication Number Publication Date
EP3194869A1 true EP3194869A1 (en) 2017-07-26
EP3194869B1 EP3194869B1 (en) 2020-01-15

Family

ID=54014841

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15756940.1A Active EP3194869B1 (en) 2014-09-15 2015-09-04 Refrigeration device having a plurality of storage chambers

Country Status (5)

Country Link
EP (1) EP3194869B1 (en)
CN (1) CN106716030B (en)
DE (1) DE102014218411A1 (en)
PL (1) PL3194869T3 (en)
WO (1) WO2016041791A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102632585B1 (en) 2016-09-29 2024-02-02 엘지전자 주식회사 Refrigerator
KR102632586B1 (en) 2016-09-29 2024-02-02 엘지전자 주식회사 Refrigerator
KR102604833B1 (en) * 2016-09-29 2023-11-22 엘지전자 주식회사 Refrigerator
KR102261134B1 (en) * 2017-03-10 2021-06-07 엘지전자 주식회사 Refrigerator
DE102017219162A1 (en) * 2017-10-25 2019-04-25 BSH Hausgeräte GmbH Refrigerating appliance with vertical evaporator
CN110285095B (en) * 2019-05-21 2022-03-11 合肥美的电冰箱有限公司 Volute, refrigerating system and refrigerating equipment with same

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3310957A (en) * 1966-02-14 1967-03-28 Gen Motors Corp Keeping insulation dry
US3466891A (en) * 1967-09-06 1969-09-16 Amana Refrigeration Inc Combination freezer and refrigerator with fast freezing means
US3766976A (en) * 1971-11-01 1973-10-23 Gen Electric Integral fin evaporator
GB1482926A (en) * 1974-11-18 1977-08-17 Hotpoint Ltd Refrigerators
JPS5514457A (en) * 1978-07-14 1980-01-31 Sanyo Electric Co Refrigerator
JPS619332Y2 (en) * 1979-06-18 1986-03-24
US4569206A (en) * 1983-05-16 1986-02-11 Kabushiki Kaisha Toshiba Indirect cooling refrigerator with freezing and storage chambers and a forced air circulating path
JPS59212663A (en) * 1983-05-16 1984-12-01 株式会社東芝 Freezing refrigerator
GB2143015B (en) * 1983-05-16 1987-03-25 Toshiba Kk Refrigerator with a freezing chamber
US4527624A (en) * 1983-06-20 1985-07-09 Sanyo Electric Co., Ltd. Cooling device for refrigerator
JPS60117068A (en) * 1983-11-28 1985-06-24 三洋電機株式会社 Cooler for refrigerator, etc.
US4543799A (en) * 1984-08-23 1985-10-01 General Electric Company Household refrigerator with air circulating and cooling arrangement
JPS6189460A (en) * 1984-10-05 1986-05-07 株式会社東芝 Refrigerator
JPS61119968A (en) * 1984-11-15 1986-06-07 株式会社東芝 Refrigerator
JPS62124471U (en) * 1986-01-29 1987-08-07
JPH063341B2 (en) * 1986-06-02 1994-01-12 松下冷機株式会社 refrigerator
DE8909029U1 (en) * 1989-07-25 1989-09-07 Bosch Siemens Hausgeraete
DE8909402U1 (en) * 1989-08-03 1989-09-21 Bosch-Siemens Hausgeraete Gmbh, 8000 Muenchen, De
DE3932459A1 (en) * 1989-09-28 1991-04-11 Bosch Siemens Hausgeraete REFRIGERATOR, ESPECIALLY MULTI-TEMPERATURE REFRIGERATOR
US5156015A (en) * 1990-12-20 1992-10-20 Samsung Electronics Co., Ltd. Method and apparatus for circulating cold air for an indirect-cooling type refrigerator
KR970011047B1 (en) * 1992-02-21 1997-07-05 삼성전자 주식회사 Cooling equipment of refrigerators
KR940009644A (en) * 1992-10-09 1994-05-20 배순훈 Refrigeration temperature control method and device
KR100203983B1 (en) * 1995-04-06 1999-06-15 전주범 Refrigerator
KR970014645U (en) * 1995-09-26 1997-04-28 Refrigeration air conditioning structure
JPH11304335A (en) * 1998-04-20 1999-11-05 Fujitsu General Ltd Electric refrigerator

Also Published As

Publication number Publication date
DE102014218411A1 (en) 2016-03-17
WO2016041791A1 (en) 2016-03-24
EP3194869B1 (en) 2020-01-15
PL3194869T3 (en) 2020-07-13
CN106716030A (en) 2017-05-24
CN106716030B (en) 2020-03-06

Similar Documents

Publication Publication Date Title
EP3194869A1 (en) Refrigeration device having a plurality of storage chambers
EP1882136B1 (en) Refrigerator featuring recirculated air cooling
WO2006130886A1 (en) Cooler
WO2012136532A1 (en) Combination refrigerator
CH402906A (en) Freezer
EP1846707B1 (en) Refrigerator
DE10331518A1 (en) Heat exchanger for cooling air
WO2007115866A1 (en) Fan for a refrigeration device
EP2798285B1 (en) Domestic refrigeration device having a cold storage compartment
DE212014000178U1 (en) fridge
EP2593727A2 (en) Multichannel evaporator system
WO2012136618A1 (en) Evaporator assembly for a refrigeration appliance
EP3218659A1 (en) No-frost refrigeration device
EP3701204B1 (en) A refrigerator wherein the air flows vertically through the evaporator
DE102008044130A1 (en) Refrigerating appliance with several storage compartments
WO2016074893A1 (en) No-frost refrigeration device
EP1882134B1 (en) Refrigerating appliance with circulating air cooling
EP2461125B1 (en) Refrigeration and/or freezer device
DE102014212411A1 (en) Refrigeration unit with exposed evaporator
DE102020202173A1 (en) Refrigeration device with lamellar evaporator
DE102021212364A1 (en) Refrigeration device and method for defrosting an evaporator in a refrigeration device
WO2017215958A1 (en) Frost-free refrigeration appliance
DE212014000135U1 (en) fridge
DE102014226065A1 (en) COMBINATION COLD UNIT
DE102009000840A1 (en) Refrigeration unit with uniform temperature distribution

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170418

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

INTG Intention to grant announced

Effective date: 20190829

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20191009

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015011544

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1225503

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200215

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200115

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200607

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200416

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015011544

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20201016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200904

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200904

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200904

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1225503

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230504

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230829

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230823

Year of fee payment: 9

Ref country code: DE

Payment date: 20230930

Year of fee payment: 9