EP3218659A1 - No-frost refrigeration device - Google Patents

No-frost refrigeration device

Info

Publication number
EP3218659A1
EP3218659A1 EP15786986.8A EP15786986A EP3218659A1 EP 3218659 A1 EP3218659 A1 EP 3218659A1 EP 15786986 A EP15786986 A EP 15786986A EP 3218659 A1 EP3218659 A1 EP 3218659A1
Authority
EP
European Patent Office
Prior art keywords
evaporator
frost
refrigerating appliance
accumulation area
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP15786986.8A
Other languages
German (de)
French (fr)
Other versions
EP3218659B1 (en
Inventor
Torsten Eschner
Panagiotis Fotiadis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BSH Hausgeraete GmbH
Original Assignee
BSH Hausgeraete GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BSH Hausgeraete GmbH filed Critical BSH Hausgeraete GmbH
Priority to PL15786986T priority Critical patent/PL3218659T3/en
Publication of EP3218659A1 publication Critical patent/EP3218659A1/en
Application granted granted Critical
Publication of EP3218659B1 publication Critical patent/EP3218659B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/08Removing frost by electric heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/10Sensors measuring the temperature of the evaporator

Definitions

  • the present invention relates to a no-frost refrigerator with a forced-air evaporator, which is arranged in an evaporator chamber.
  • the evaporator divides the evaporator chamber into an upstream portion and a downstream portion, such that the air, on its way through the evaporator chamber, is forced to flow through the evaporator over its entire length.
  • moisture carried by the air preferably precipitates as frost at the coldest point of the evaporator, i. adjacent to an injection point where refrigerant enters the evaporator.
  • frost can lead to a clogging of the evaporator after some time, so that the air flow through the evaporator chamber comes to a standstill and connected storage compartments of the refrigerator are no longer cooled.
  • the evaporator must be defrosted, with the problem of distributing the heat supplied to the evaporator so that it defrosts completely, but at the same time not unnecessarily overflowing parts of the evaporator that are earlier free of ice than others the freezing point to be heated, because the heat energy used for this brings no practical benefit, but must be expended after the defrosting operation again energy to cool these unnecessarily heated areas of the evaporator again.
  • An object of the present invention is to provide a no-frost refrigerator which enables energy-efficient defrosting.
  • the object is achieved by, in a no-frost refrigerator with a forced-air evaporator, which is arranged in an evaporator chamber, wherein at least a first part of the evaporator separates an upstream part and a downstream part of the evaporator chamber, one of the two parts of the evaporator chamber an accumulation region, which is fluidically arranged parallel to a second part of the evaporator and cooled by the second part of the evaporator.
  • This accumulation area offers by the Evaporator chamber circulating air a way with relatively low flow resistance, so that a majority of the air instead of through the entire evaporator flows only through the first part and the accumulation area, but it eliminates moisture in the accumulation area as a hoop.
  • this frost increases the flow resistance of the accumulation area, so that the air flow through the second part of the evaporator increases and there is also increasingly precipitate.
  • blockage only occurs when both the accumulation area and the second part of the evaporator are filled with frost. Since the frost, at least in the accumulation area, forms a body which extends in the direction of flow of the air, it can prevent local overheating of the evaporator, which is in direct thermal contact with the accumulation area, during defrosting, and thus enables defrosting with good energy efficiency.
  • the accumulation area provides additional space for the hoop, the time intervals between defrost cycles can be increased.
  • the second part of the evaporator In order to achieve efficient cooling of the accumulation area and a correspondingly high concentration of frost formation on the accumulation area, the second part of the evaporator must be able to reach temperatures lower than the first one. Therefore, an injection point for refrigerant is preferably provided on the second part.
  • the second part as a whole should be upstream of the first part of the evaporator, so that the refrigerant reaches the first part only after it has already been slightly warmed up in the second part.
  • the accumulation region may suitably to a first adjoin these flanks.
  • the evaporator is open at this first flank to allow passage of air between the accumulation area and the second part of the evaporator over the entire length of the accumulation area.
  • the first flank is preferably arranged in the current direction in a section adjacent to the accumulation region and a section adjacent to a wall of the evaporator chamber and delimiting the first part of the evaporator.
  • the section adjacent to the accumulation area can also be delimited transversely to the direction of flow on both sides by the section bearing against the wall of the evaporator chamber.
  • Such an arrangement may favor a uniform distribution of the air across the width of the evaporator chamber, especially when air inlets of the upstream part of the evaporator chamber are respectively arranged at lateral corners of the evaporator chamber.
  • a defrost heater may be disposed on a second flank opposite the first flank of the evaporator.
  • the defrost heater is preferably designed as a surface heating, which extends at least over the second part of the evaporator in order to defrost this and the accumulation area. It may extend over the entire second flank to defrost the first part of the evaporator as well, however, since the amount of frost in the first part is generally smaller than that in the accumulation area and in the second part of the evaporator, the defrosting heater may be at the level of the first part the evaporator have a smaller heating power per unit area than at the level of the second part.
  • the inflow side and the outflow side of the evaporator are preferably spaced in the depth direction of the refrigeration device.
  • the second flank of the evaporator may be a lower flank so that the heat released by the surface heating arranged there can rise in the evaporator and thus reach the accumulation area.
  • One of the first flank of the evaporator opposite wall of the evaporator chamber may have an infrared reflective surface layer to to throw back radiant heat emitted by the evaporator to this or the accumulation area and so make it usable for the defrost.
  • the accumulation area belongs to the upstream part of the evaporator chamber.
  • the air flowing through the accumulation area can already release a large part of its moisture there, which considerably reduces the rate of frost formation in the first part of the evaporator.
  • a further consequence of the feature is that when the forced ventilation is switched off, air which passes from a storage compartment to the evaporator chamber by convection also releases its moisture in the accumulation area or in the second part of the evaporator.
  • the distribution of the frost in the evaporator chamber is therefore essentially independent of whether the moisture has entered the evaporator chamber when forced ventilation is switched on or off.
  • the frost distribution is therefore well reproducible, and the defrost heater can be optimized in shape, arrangement, distribution of the heating or the like in order to achieve as uniform as possible for the entire evaporator defrost time.
  • a temperature sensor for monitoring the defrosting process is preferably arranged on the second part of the evaporator, preferably adjacent to the accumulation area, i.e. typically on the first flank of the evaporator. This ensures that the main frost accumulation is always present in the area of the probe.
  • the result is that if the frost has melted just above the sensor, the remaining frost will fall from above onto the sensor and cool it. Thus, the defrost heigh remains active until the accumulation zone is free of frost.
  • a refrigerant outlet may also be disposed on the second part of the evaporator, adjacent to the refrigerant inlet.
  • a suction line extending from the refrigerant outlet together with a capillary leading to the refrigerant inlet can form a heat exchanger.
  • the second part of the evaporator faces a front side of the no-frost refrigerating appliance and the first part of the evaporator faces a rear wall of the no-frost refrigerating appliance,
  • a portion of the suction line which runs in the evaporator chamber from the second part of the evaporator to the rear wall, form the above-mentioned heat exchanger.
  • FIG. 1 shows a schematic longitudinal section through the evaporator chamber of a refrigerator according to the invention.
  • Fig. 2 is a section along the plane II-II of Fig. 1;
  • FIG. 3 is a section along the plane III-III of Fig. 1; and FIG. 4 shows a plan view of a surface heating.
  • Fig. 1 shows an evaporator chamber 1 of a household refrigerator in a longitudinal section along a plane which extends vertically in the middle and in the depth direction through a body of the household refrigerator.
  • a wall bounding the evaporator chamber 1 upwards is formed by a rigid plate 2, for example of solid polystyrene, over which a thermal barrier coating 3 extends.
  • the plate 2 may be part of an inner container of the refrigeration device; then it is at the thermal barrier coating 3 is generally a layer of polyurethane foam, with the usual manner, a gap between the inner container and an outer skin of the refrigerator body is filled with foam.
  • the plate 2 and the thermal barrier coating 3 may also be parts of a horizontal partition between two storage compartments formed in the body of the refrigerator, here a freezer compartment 4 below the evaporator chamber 1 and a normal refrigeration compartment, not shown above the thermal barrier coating 3.
  • a thermal insulation panel 5 is attached expanded polystyrene.
  • an infrared reflecting layer 6 is formed, here in the form of a sheet, preferably made of aluminum, which closely conforms to the contour of the underside of the thermal insulation panel 5.
  • a bottom wall separating the evaporator chamber 1 from the freezer compartment 4 comprises a molded plastic shell 7 anchored to the plate 2 and possibly to a rear wall of the inner container, and another expanded polystyrene thermal insulation panel 8 placed in the shell 7 is glued.
  • a cuboid evaporator 9 is arranged in lamellar construction. Its fins 10 extend parallel to the sectional plane of Fig. 1 and are crossed by a meandering meandering refrigerant line 1 1 many times. At a lower edge 17 of the evaporator 9 lower edges of the fins 10 touch a surface heating 12, which rests flat on the thermal insulation board 8.
  • the surface heating 12 may be formed, for example, by a good heat-conducting plate, such as an aluminum sheet, to which a heating resistor, electrically insulated by an embedding in films, is glued.
  • the heat-insulating panel 5 and the IR-reflecting layer 6 attached thereto are subdivided in the depth direction of the body into a front portion 13 which, together with upper edges of the fins 10 on an upper flank 14 of the evaporator 9, bounds an accumulation area 15 elongated in the depth direction of the body, and a rear portion 16 which directly contacts the upper edges of the fins 10 of the evaporator 9.
  • a front part of the flank 14 which adjoins the accumulation area 15 is denoted by 18, a rear part which touches the rear section 16 is denoted by 19; Accordingly, a distinction is also made below between a front part 20 of the evaporator 9 below the accumulation area 15 and a rear part 21 of the evaporator 9.
  • the rear part 21 of the evaporator 9 touches the IR-reflecting layer 6 and on the other hand the surface heating 12, it divides the evaporator chamber l in an upstream part 22 and a downstream part 23. Air from a fan arranged in the downstream part 23 24 is sucked into the upstream part 22 via inlet openings 25 at the front edge of the shell 7 from the freezer compartment 4, can reach the downstream part 23 only by placing the rear part 21 of the evaporator 9, below the rear section 16 of the layer 6, goes through to a downstream side 26.
  • the air first enters the accumulation area 15 and, by passing over the front part 18 of the flank 14 in the evaporator 9, the front part 20 on at least part of its length bypasses.
  • Fig. 2 shows a horizontal section through the evaporator chamber 1 along the plane II-II of Fig. 1.
  • the sectional plane of Fig. 1 is designated in Fig. 2 with l-l.
  • air passages 28 each extend through side walls of the body and finally through the thermal barrier coating 3 to respectively open the right and left of the inlet openings 25 in the upstream part 18 of the evaporator chamber l.
  • the width of the accumulation region 15 is slightly less than that of the evaporator chamber 1, so that junctions 29 of the air ducts 28 in the evaporator chamber 1 in each case on a portion of their width of the accumulation region 15 is opposite, while on another part of the thermal insulation board 5 to directly on the inflow side 27th of the evaporator 9 protrudes. Some of the air flowing in via the air ducts 28 enters the evaporator 9 directly via the inflow side 27, but the predominant part is deflected sideways towards the middle of the evaporator chamber and first reaches the accumulation area 15.
  • Fig. 3 shows the evaporator 9 in a second horizontal section along the plane IIIIII of Fig. 1, which is lower than the level II-II.
  • the outlines of the thermal insulation panel 5 and the accumulation area 15, which lie outside the section plane III-III, are shown as a dashed line.
  • the density of the fins 10 is different in the rear part 21 and in the front part 20, below the accumulation area 15. In the case shown here, the density of the lamellae 10 in the rear part 21 is twice as high as in the front, every second lamella 10 ends at the boundary to the front part 20th
  • the course of the refrigerant line 1 1 in the evaporator 9 can be clearly seen in Fig. 3.
  • the refrigerant line 11 here forms an upper layer 30 (see Fig. 1), which, starting from an injection point 29 at a front right corner of the evaporator 9, top right in Fig. 3, in meanders to a rear right corner 32, and a lower layer 31 which, concealed from the upper layer, extends back to the front extends right corner.
  • the refrigerant line 1 1 passes into a suction line 33, which extends in addition to the rightmost lamella 10 forth in the direction of a rear wall of the refrigerator body and in this down to a (not shown) runs compressor.
  • a capillary 34 via which fresh refrigerant passes to the injection point 29, is guided here on part of its length within the suction line 33 in order to form a heat exchanger, and only emerges from this point shortly before the injection point 29.
  • the location of the injection point 29 adjacent to the upstream side 27 of the evaporator 9 has the result that, when refrigerant circulates in the refrigerant line 1 1, the front part 20 of the evaporator 9 reaches a much lower temperature than the rear part 21. Therefore, there is air, the is sucked by the fan 20 through the evaporator chamber 1 during this time, already from a considerable proportion of its moisture to the upper edges of the fins 10 of the front part 20 from, so that, starting from these upper edges, grows into the accumulation 15 maturity.
  • the flow resistance of the accumulation area 15 increases over time, and as the accumulation area 15 closes, the air is increasingly forced to enter the evaporator 9 via the inflow side 27 and also to pass through its front part 20.
  • the reduced compared to the rear portion 21 density of the fins 10 in the front part 21 causes the air when it enters the evaporator 9 via the inflow side 27, in this a relatively long way can go back until they completely release their moisture has, and the frost layer, which is reflected on the fins 10, starting from the inflow side 23 far into the interior of the evaporator 9 extends.
  • the frost layer which is reflected on the fins 10, starting from the inflow side 23 far into the interior of the evaporator 9 extends.
  • a large amount of frost can be stored before the flow resistance is increased so much that a defrost must occur.
  • a heating wire 35 extends in meanders on a heat-conducting base plate 36.
  • the density of the meander or the length of the heating wire 35 per unit area of the base plate 36 is below the front part 20 of the Evaporator 9 significantly higher than below the rear part 21 in order to provide the time required to defrost the frost in the front part 20 and the accumulation area 15 in a short time can and at the same time to avoid excessive heating of the slightly frosted rear part 21.
  • a fine-tuning of the area performance in the front and rear part of the surface heating 12 can take place in which the heating wire 35 has different cross sections in the front and rear part.
  • the defrosting process continues until a temperature sensor 37, which is placed centrally in the front part 18 of the upper flank 14 of the evaporator 9, detects a predetermined switch-off temperature just above 0 ° C.
  • the switch-off temperature is just above 0 ° C chosen so that it is achieved after a brief complete defrosting of the front part 20 and the accumulation area 15.
  • the amount of heat that emits the surface heating 12 during defrosting in the rear part 21 may be greater than the amount of heat required to defrost the rear part 21. If the rear part 21 is completely free of ice and even further heated before the end of the defrosting operation, the heat reaches the rear portion 16 of the infrared reflecting layer 6 via the lamellae 10 and spreads forward in the latter, so that the frost in the Accumulation 15 is defrosted from above. Thus, a close contact between the upper edges of the fins 10 and the layer 6 in the rear part 21 helps to avoid overheating of the rear part 21, which would have to be eliminated again after the end of the defrosting process.

Abstract

A no-frost refrigeration device includes a forced-air evaporator (9) in an evaporator compartment (1). At least a first component (21) of the evaporator (9) separates an upstream sector (22) and a downstream sector (23) of the evaporator compartment (1) from one another. One of the two sectors (22, 23) of the evaporator compartment (1) comprises an accumulation zone (15) that is fluidically parallel and adjacent to a second component (20) of the evaporator (9) and is cooled by said second component (20) of the evaporator (9).

Description

No-Frost-Kältegerät  No-frost refrigerating appliance
Die vorliegende Erfindung betrifft ein No-Frost-Kältegerät mit einem zwangsdurchlüfteten Verdampfer, der in einer Verdampferkammer angeordnet ist. Üblicherweise teilt der Verdampfer in einem No-Frost-Kältegerät die Verdampferkammer in einen stromaufwärtigen Teil und einen stromabwärtigen Teil, so dass die Luft auf ihrem Weg durch die Verdampferkammer gezwungen ist, den Verdampfer auf seiner gesamten Länge zu durchströmen. Wenn die Zwangsdurchlüftung des Verdampfers in Betrieb ist und Luft mit hoher Geschwindigkeit durch den Verdampfer strömt, schlägt sich von der Luft mitgeführte Feuchtigkeit bevorzugt als Reif an der kältesten Stelle des Verdampfers nieder, d.h. benachbart zu einer Einspritzstelle, an der Kältemittel in den Verdampfer eintritt. Die Reifbildung kann nach einiger Zeit zu einer Verstopfung des Verdampfers führen, so dass der Luftstrom durch die Verdampferkammer zum Erliegen kommt und angeschlossene Lagerfächer des Kältegeräts nicht mehr gekühlt werden. Bevor es so weit kommt, muss der Verdampfer abgetaut werden, wobei sich das Problem ergibt, die dabei dem Verdampfer zugeführte Wärme so zu verteilen, dass dieser zwar vollständig abtaut, gleichzeitig aber Teile des Verdampfers, die früher eisfrei sind als andere, nicht unnötig über den Gefrierpunkt erwärmt werden, denn die dafür eingesetzte Heizenergie bringt keinen praktischen Nutzen, vielmehr muss nach Ende des Abtaubetriebs erneut Energie aufgewandt werden, um diese unnötig erwärmten Bereiche des Verdampfers wieder abzukühlen. The present invention relates to a no-frost refrigerator with a forced-air evaporator, which is arranged in an evaporator chamber. Typically, in a no-frost refrigerator, the evaporator divides the evaporator chamber into an upstream portion and a downstream portion, such that the air, on its way through the evaporator chamber, is forced to flow through the evaporator over its entire length. When the forced ventilation of the evaporator is in operation and air flows through the evaporator at high speed, moisture carried by the air preferably precipitates as frost at the coldest point of the evaporator, i. adjacent to an injection point where refrigerant enters the evaporator. The formation of frost can lead to a clogging of the evaporator after some time, so that the air flow through the evaporator chamber comes to a standstill and connected storage compartments of the refrigerator are no longer cooled. Before this happens, the evaporator must be defrosted, with the problem of distributing the heat supplied to the evaporator so that it defrosts completely, but at the same time not unnecessarily overflowing parts of the evaporator that are earlier free of ice than others the freezing point to be heated, because the heat energy used for this brings no practical benefit, but must be expended after the defrosting operation again energy to cool these unnecessarily heated areas of the evaporator again.
Eine Aufgabe der vorliegenden Erfindung ist, ein No-Frost-Kältegerät anzugeben, das eine energieeffiziente Abtauung ermöglicht. An object of the present invention is to provide a no-frost refrigerator which enables energy-efficient defrosting.
Die Aufgabe wird gelöst, indem bei einem No-Frost-Kältegerät mit einem zwangsdurchlüfteten Verdampfer, der in einer Verdampferkammer angeordnet ist, wobei wenigstens ein erster Teil des Verdampfers einen stromaufwärtigen Teil und einen stromabwärtigen Teil der Verdampferkammer voneinander trennt, einer der beiden Teile der Verdampferkammer einen Akkumulationsbereich aufweist, der strömungstechnisch parallel zu einem zweiten Teil des Verdampfers angeordnet und durch den zweiten Teil des Verdampfers gekühlt ist. Dieser Akkumulationsbereich bietet der durch die Verdampferkammer zirkulierenden Luft einen Weg mit relativ niedrigem Strömungswiderstand, so dass ein Großteil der Luft anstatt durch den gesamten Verdampfer nur durch dessen ersten Teil und den Akkumulationsbereich fließt, dabei aber im Akkumulationsbereich Feuchtigkeit als Reif ausscheidet. Dieser Reif erhöht im Laufe der Zeit den Strömungswiderstand des Akkumulationsbereichs, so dass der Luftstrom durch den zweiten Teil des Verdampfers zunimmt und sich auch dort zunehmend Reif niederschlägt. Zu einer Verstopfung kommt es allerdings erst dann, wenn sowohl der Akkumulationsbereich als auch der zweite Teil des Verdampfers mit Reif angefüllt sind. Da der Reif zumindest im Akkumulationsbereich einen in Flussrichtung der Luft ausgedehnten Körper bildet, kann er beim Abtauen eine lokale Überhitzung zumindest des mit dem Akkumulationsbereich in direktem thermischem Kontakt stehenden zweiten Teils des Verdampfers verhindern und ermöglicht so eine Abtauung mit guter Energieeffizienz. Da mit dem Akkumulationsbereich zusätzlicher Platz für den Reif zur Verfügung steht, können außerdem die Zeitabstände zwischen Abtauzyklen vergrößert werden. Dies wirkt sich positiv auf den Energieverbrauch des Geräts aus, außerdem ist es auch für den Anwender komfortabel, wenn Zeiten, in denen keine Kühlleistung abgerufen werden kann, um frisch in das Gerät eingebrachtes Gut herunterzukühlen, selten sind. Um eine effiziente Kühlung des Akkumulationsbereichs und eine entsprechend starke Konzentration der Reifbildung auf den Akkumulationsbereich zu erreichen, muss der zweite Teil des Verdampfers niedrigere Temperaturen erreichen können als der erste. Deswegen ist eine Einspritzstelle für Kältemittel vorzugsweise am zweiten Teil vorgesehen. The object is achieved by, in a no-frost refrigerator with a forced-air evaporator, which is arranged in an evaporator chamber, wherein at least a first part of the evaporator separates an upstream part and a downstream part of the evaporator chamber, one of the two parts of the evaporator chamber an accumulation region, which is fluidically arranged parallel to a second part of the evaporator and cooled by the second part of the evaporator. This accumulation area offers by the Evaporator chamber circulating air a way with relatively low flow resistance, so that a majority of the air instead of through the entire evaporator flows only through the first part and the accumulation area, but it eliminates moisture in the accumulation area as a hoop. Over time, this frost increases the flow resistance of the accumulation area, so that the air flow through the second part of the evaporator increases and there is also increasingly precipitate. However, blockage only occurs when both the accumulation area and the second part of the evaporator are filled with frost. Since the frost, at least in the accumulation area, forms a body which extends in the direction of flow of the air, it can prevent local overheating of the evaporator, which is in direct thermal contact with the accumulation area, during defrosting, and thus enables defrosting with good energy efficiency. In addition, since the accumulation area provides additional space for the hoop, the time intervals between defrost cycles can be increased. This has a positive effect on the energy consumption of the device, and it is also convenient for the user when times when no cooling capacity can be called up to cool down freshly introduced material into the device are rare. In order to achieve efficient cooling of the accumulation area and a correspondingly high concentration of frost formation on the accumulation area, the second part of the evaporator must be able to reach temperatures lower than the first one. Therefore, an injection point for refrigerant is preferably provided on the second part.
Vorzugsweise sollte bezogen auf die Flussrichtung von Kältemittel in einer Kältemittelleitung des Verdampfers der zweite Teil als Ganzes stromaufwärts vom ersten Teil des Verdampfers liegen, so dass das Kältemittel den ersten Teil erst erreicht, nachdem es im zweiten Teil bereits etwas aufgewärmt worden ist. Preferably, based on the flow direction of refrigerant in a refrigerant line of the evaporator, the second part as a whole should be upstream of the first part of the evaporator, so that the refrigerant reaches the first part only after it has already been slightly warmed up in the second part.
Wenn der Verdampfer in an sich bekannter Weise im Wesentlichen quaderförmig mit einer Anströmseite und einer Abströmseite, die senkrecht zur Stromrichtung der Luft im ersten Teil des Verdampfers orientiert sind, und mit die Anströmseite und die Abströmseite verbindenden Flanken ist, kann der Akkumulationsbereich zweckmäßigerweise an eine erste dieser Flanken angrenzen. Vorzugsweise der Verdampfer an dieser ersten Flanke offen, um einen Übertritt von Luft zwischen dem Akkumulationsbereich und dem zweiten Teil des Verdampfers über die gesamte Länge des Akkumulationsbereichs hinweg zu ermöglichen. If the evaporator in a conventional manner substantially parallelepiped with an inflow side and a downstream side, which are oriented perpendicular to the flow direction of the air in the first part of the evaporator, and with the upstream side and the downstream side connecting flanks, the accumulation region may suitably to a first adjoin these flanks. Preferably, the evaporator is open at this first flank to allow passage of air between the accumulation area and the second part of the evaporator over the entire length of the accumulation area.
Die erste Flanke ist in der Stromrichtung vorzugsweise gegliedert in einen an den Akkumulationsbereich angrenzenden Abschnitt und einen an einer Wand der Verdampferkammer anliegenden, den ersten Teil des Verdampfers begrenzenden Abschnitt. The first flank is preferably arranged in the current direction in a section adjacent to the accumulation region and a section adjacent to a wall of the evaporator chamber and delimiting the first part of the evaporator.
Der an den Akkumulationsbereich angrenzende Abschnitt kann auch quer zur Stromrichtung beiderseits von dem an der Wand der Verdampferkammer anliegenden Abschnitt begrenzt sein. Eine solche Anordnung kann eine gleichmäßige Verteilung der Luft über die Breite der Verdampferkammer hinweg insbesondere dann begünstigen, wenn Lufteinlässe des stromaufwärtigen Teils der Verdampferkammer jeweils an seitlichen Ecken der Verdampferkammer angeordnet sind. The section adjacent to the accumulation area can also be delimited transversely to the direction of flow on both sides by the section bearing against the wall of the evaporator chamber. Such an arrangement may favor a uniform distribution of the air across the width of the evaporator chamber, especially when air inlets of the upstream part of the evaporator chamber are respectively arranged at lateral corners of the evaporator chamber.
Eine Abtauheizung kann an einer der ersten Flanke gegenüber liegenden zweiten Flanke des Verdampfers angeordnet sein. Die Abtauheizung ist vorzugsweise als eine Flächenheizung ausgebildet, die sich wenigstens über den zweiten Teil des Verdampfers erstreckt, um diesen und den Akkumulationsbereich abzutauen. Sie kann sich über die gesamte zweite Flanke ausdehnen, um auch den ersten Teil des Verdampfers abzutauen, allerdings kann, da die Reifmenge im ersten Teil im Allgemeinen kleiner ist als die im Akkumulationsbereich und im zweiten Teil des Verdampfers, die Abtauheizung in Höhe des ersten Teils des Verdampfers eine kleinere Heizleistung pro Flächeneinheit aufweisen als in Höhe des zweiten Teils. A defrost heater may be disposed on a second flank opposite the first flank of the evaporator. The defrost heater is preferably designed as a surface heating, which extends at least over the second part of the evaporator in order to defrost this and the accumulation area. It may extend over the entire second flank to defrost the first part of the evaporator as well, however, since the amount of frost in the first part is generally smaller than that in the accumulation area and in the second part of the evaporator, the defrosting heater may be at the level of the first part the evaporator have a smaller heating power per unit area than at the level of the second part.
Die Anströmseite und die Abströmseite des Verdampfers sind vorzugsweise in Tiefenrichtung des Kältegeräts beabstandet. So kann insbesondere die zweite Flanke des Verdampfers eine untere Flanke sein, so dass die von der dort angeordneten Flächenheizung freigesetzte Wärme im Verdampfer aufsteigen und so den Akkumulationsbereich erreichen kann. The inflow side and the outflow side of the evaporator are preferably spaced in the depth direction of the refrigeration device. Thus, in particular, the second flank of the evaporator may be a lower flank so that the heat released by the surface heating arranged there can rise in the evaporator and thus reach the accumulation area.
Eine der ersten Flanke des Verdampfers gegenüber liegende Wand der Verdampferkammer kann eine Infrarot reflektierende Oberflächenschicht aufweisen, um vom Verdampfer abgegebene Strahlungswärme zu diesem oder zum Akkumulationsbereich zurückzuwerfen und so für die Abtauung nutzbar zu machen. One of the first flank of the evaporator opposite wall of the evaporator chamber may have an infrared reflective surface layer to to throw back radiant heat emitted by the evaporator to this or the accumulation area and so make it usable for the defrost.
Besonders bevorzugt ist, dass der Akkumulationsbereich zum stromaufwärten Teil der Verdampferkammer gehört. So kann die durch den Akkumulationsbereich strömende Luft einen Großteil ihrer Feuchtigkeit bereits dort abgeben, was die Rate der Reifbildung im ersten Teil des Verdampfers erheblich reduziert. Eine weitere Folge des Merkmals ist, dass bei abgeschalteter Zwangsdurchlüftung Luft, die aus einem Lagerfach durch Konvektion in die Verdampferkammer gelangt, ihre Feuchtigkeit ebenfalls im Akkumulationsbereich oder im zweiten Teil des Verdampfers abgibt. Die Verteilung des Reifs in der Verdampferkammer ist daher im Wesentlichen unabhängig davon, ob die Feuchtigkeit bei ein- oder ausgeschalteter Zwangsdurchlüftung in die Verdampferkammer gelangt ist. Die Reifverteilung ist daher gut reproduzierbar, und die Abtauheizung kann in Form, Anordnung, Verteilung der Heizleitung oder dergleichen optimiert werden, um eine für den gesamten Verdampfer möglichst einheitliche Abtauzeit zu erreichen. It is particularly preferred that the accumulation area belongs to the upstream part of the evaporator chamber. Thus, the air flowing through the accumulation area can already release a large part of its moisture there, which considerably reduces the rate of frost formation in the first part of the evaporator. A further consequence of the feature is that when the forced ventilation is switched off, air which passes from a storage compartment to the evaporator chamber by convection also releases its moisture in the accumulation area or in the second part of the evaporator. The distribution of the frost in the evaporator chamber is therefore essentially independent of whether the moisture has entered the evaporator chamber when forced ventilation is switched on or off. The frost distribution is therefore well reproducible, and the defrost heater can be optimized in shape, arrangement, distribution of the heating or the like in order to achieve as uniform as possible for the entire evaporator defrost time.
Ein Temperaturfühler zum Überwachen des Abtauprozesses ist vorzugsweise am zweiten Teil des Verdampfers angeordnet, vorzugsweise angrenzend an den Akkumulationsbereich, d.h typischerweise an der ersten Flanke des Verdampfers. So ist sichergestellt, dass die hauptsächliche Reifanlagerung immer im Bereich des Fühlers vorhanden ist. A temperature sensor for monitoring the defrosting process is preferably arranged on the second part of the evaporator, preferably adjacent to the accumulation area, i.e. typically on the first flank of the evaporator. This ensures that the main frost accumulation is always present in the area of the probe.
Wenn sich die Akkumulationszone über dem Fühler befindet, so hat dies zur Folge, dass wenn der Reif kurz über dem Fühler geschmolzen ist, der verbleibende Reif wieder von oben auf den Fühler fällt und ihn kühlt. Somit bleibt die Abtauheizing aktiv, bis die Akkumulationszone frei von Reif ist. If the accumulation zone is above the sensor, the result is that if the frost has melted just above the sensor, the remaining frost will fall from above onto the sensor and cool it. Thus, the defrost heigh remains active until the accumulation zone is free of frost.
Ein Kältemittelauslass kann ebenfalls am zweiten Teil des Verdampfers, benachbart zum Kältemitteleinlass, angeordnet sein. So kann eine vom Kältemittelauslass ausgehende Saugleitung zusammen mit einer zum Kältemitteleinlass führenden Kapillare einen Wärmetauscher bilden. A refrigerant outlet may also be disposed on the second part of the evaporator, adjacent to the refrigerant inlet. Thus, a suction line extending from the refrigerant outlet together with a capillary leading to the refrigerant inlet can form a heat exchanger.
Wenn der zweite Teil des Verdampfers einer Vorderseite des No-Frost-Kältegeräts und der erste Teil des Verdampfers einer Rückwand des No-Frost-Kältegeräts zugewandt ist, kann insbesondere ein Abschnitt der Saugleitung, der in der Verdampferkammer vom zweiten Teil des Verdampfers zur Rückwand verläuft, den oben erwähnten Wärmetauscher bilden. If the second part of the evaporator faces a front side of the no-frost refrigerating appliance and the first part of the evaporator faces a rear wall of the no-frost refrigerating appliance, In particular, a portion of the suction line, which runs in the evaporator chamber from the second part of the evaporator to the rear wall, form the above-mentioned heat exchanger.
Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen unter Bezugnahme auf die beigefügten Figuren. Es zeigen: Further features and advantages of the invention will become apparent from the following description of embodiments with reference to the accompanying figures. Show it:
Fig. 1 einen schematischen Längsschnitt durch die Verdampferkammer eines erfindungsgemäßen Kältegeräts; 1 shows a schematic longitudinal section through the evaporator chamber of a refrigerator according to the invention.
Fig. 2 einen Schnitt entlang der Ebene II-II der Fig. 1 ; Fig. 2 is a section along the plane II-II of Fig. 1;
Fig. 3 einen Schnitt entlang der Ebene III-III aus Fig. 1 ; und Fig. 4 eine Draufsicht auf eine Flächenheizung. Fig. 3 is a section along the plane III-III of Fig. 1; and FIG. 4 shows a plan view of a surface heating.
Fig. 1 zeigt eine Verdampferkammer 1 eines Haushaltskältegeräts in einem Längsschnitt entlang einer Ebene, die sich vertikal mittig und in Tiefenrichtung durch einen Korpus des Haushaltskältegeräts erstreckt. Eine die Verdampferkammer 1 nach oben begrenzende Wand ist durch eine steife Platte 2, zum Beispiel aus massivem Polystyrol, gebildet, über der sich eine Wärmedämmschicht 3 erstreckt. Die Platte 2 kann Teil eines Innenbehälters des Kältegeräts sein; dann handelt es sich bei der Wärmedämmschicht 3 im Allgemeinen um eine Schicht aus Polyurethanschaum, mit der in fachüblicher Weise ein Zwischenraum zwischen dem Innenbehälter und einer Außenhaut des Kältegerätekorpus ausgeschäumt ist. Die Platte 2 und die Wärmedämmschicht 3 können aber auch Teile einer horizontalen Trennwand zwischen zwei im Korpus des Kältegeräts gebildeten Lagerfächern, hier einem Gefrierfach 4 unterhalb der Verdampferkammer 1 und einem nicht dargestellten Normalkühlfach oberhalb der Wärmedämmschicht 3 sein. Unter der Platte 2 ist eine Wärmedämmplatte 5 aus expandiertem Polystyrol befestigt. An einer Unterseite dieser Wärmedämmplatte 5 ist eine Infrarot reflektierende Schicht 6 gebildet, hier in Form eines Blechs, vorzugsweise aus Aluminium, das sich an die Kontur der Unterseite der Wärmedämmplatte 5 eng anschmiegt. Eine untere Wand, die die Verdampferkammer 1 von dem Gefrierfach 4 trennt, umfasst eine aus Kunststoff spritzgeformte Schale 7, die an der Platte 2 und eventuell an einer Rückwand des Innenbehälters verankert ist, sowie eine weitere Wärmedämmplatte 8 aus expandiertem Polystyrol, die in die Schale 7 eingeklebt ist. Fig. 1 shows an evaporator chamber 1 of a household refrigerator in a longitudinal section along a plane which extends vertically in the middle and in the depth direction through a body of the household refrigerator. A wall bounding the evaporator chamber 1 upwards is formed by a rigid plate 2, for example of solid polystyrene, over which a thermal barrier coating 3 extends. The plate 2 may be part of an inner container of the refrigeration device; then it is at the thermal barrier coating 3 is generally a layer of polyurethane foam, with the usual manner, a gap between the inner container and an outer skin of the refrigerator body is filled with foam. The plate 2 and the thermal barrier coating 3 may also be parts of a horizontal partition between two storage compartments formed in the body of the refrigerator, here a freezer compartment 4 below the evaporator chamber 1 and a normal refrigeration compartment, not shown above the thermal barrier coating 3. Under the plate 2, a thermal insulation panel 5 is attached expanded polystyrene. On an underside of this thermal insulation panel 5, an infrared reflecting layer 6 is formed, here in the form of a sheet, preferably made of aluminum, which closely conforms to the contour of the underside of the thermal insulation panel 5. A bottom wall separating the evaporator chamber 1 from the freezer compartment 4 comprises a molded plastic shell 7 anchored to the plate 2 and possibly to a rear wall of the inner container, and another expanded polystyrene thermal insulation panel 8 placed in the shell 7 is glued.
Zwischen den Wärmedämmplatten 5, 8 ist ein quaderförmiger Verdampfer 9 in Lamellenbauweise angeordnet. Seine Lamellen 10 erstrecken sich parallel zur Schnittebene der Fig. 1 und werden von einer in Mäandern verlaufenden Kältemittelleitung 1 1 vielfach gekreuzt. An einer unteren Flanke 17 des Verdampfers 9 berühren Unterkanten der Lamellen 10 eine Flächenheizung 12, die auf der Wärmedämmplatte 8 flächig aufliegt. Die Flächenheizung 12 kann zum Beispiel durch eine gut wärmeleitende Platte, etwa ein Aluminiumblech, gebildet sein, auf das ein Heizwiderstand, durch eine Einbettung in Folien elektrisch isoliert, aufgeklebt ist. Die Wärmedämmplatte 5 und die daran angebrachte IR-reflektierende Schicht 6 sind in Tiefenrichtung des Korpus unterteilt in einen vorderen Abschnitt 13, der zusammen mit Oberkanten der Lamellen 10 an einer oberen Flanke 14 des Verdampfers 9 einen in Tiefenrichtung des Korpus langgestreckten Akkumulationsbereich 15 begrenzt, und einen hinteren Abschnitt 16, der die Oberkanten der Lamellen 10 des Verdampfers 9 unmittelbar berührt. Ein an den Akkumulationsbereich 15 angrenzender vorderer Teil der Flanke 14 ist mit 18, ein den hinteren Abschnitt 16 berührender hinterer Teil mit 19 bezeichnet; entsprechend wird im Folgenden auch zwischen einem vorderen Teil 20 des Verdampfers 9 unterhalb des Akkumulationsbereichs 15 und einem hinteren Teil 21 des Verdampfers 9 unterschieden. Between the thermal insulation panels 5, 8 a cuboid evaporator 9 is arranged in lamellar construction. Its fins 10 extend parallel to the sectional plane of Fig. 1 and are crossed by a meandering meandering refrigerant line 1 1 many times. At a lower edge 17 of the evaporator 9 lower edges of the fins 10 touch a surface heating 12, which rests flat on the thermal insulation board 8. The surface heating 12 may be formed, for example, by a good heat-conducting plate, such as an aluminum sheet, to which a heating resistor, electrically insulated by an embedding in films, is glued. The heat-insulating panel 5 and the IR-reflecting layer 6 attached thereto are subdivided in the depth direction of the body into a front portion 13 which, together with upper edges of the fins 10 on an upper flank 14 of the evaporator 9, bounds an accumulation area 15 elongated in the depth direction of the body, and a rear portion 16 which directly contacts the upper edges of the fins 10 of the evaporator 9. A front part of the flank 14 which adjoins the accumulation area 15 is denoted by 18, a rear part which touches the rear section 16 is denoted by 19; Accordingly, a distinction is also made below between a front part 20 of the evaporator 9 below the accumulation area 15 and a rear part 21 of the evaporator 9.
Indem der hintere Teil 21 des Verdampfers 9 einerseits die IR-reflektierende Schicht 6 und andererseits die Flächenheizung 12 berührt, gliedert er die Verdampferkammer l in einen stromaufwärtigen Teil 22 und einen stromabwärtigen Teil 23. Luft, die von einem in dem stromabwärtigen Teil 23 angeordneten Ventilator 24 über Einlassöffnungen 25 am vorderen Rand der Schale 7 aus dem Gefrierfach 4 in den stromaufwärtigen Teil 22 eingesaugt wird, kann den stromabwärtigen Teil 23 nur erreichen, in dem sie den hinteren Teil 21 des Verdampfers 9, unterhalb des hinteren Abschnitts 16 der Schicht 6, bis zu einer Abströmseite 26 durchläuft. Um zu diesem hinteren Teil 21 zu gelangen, kann die Luft unmittelbar an einer den Einlassöffnungen 25 zugewandten Anströmseite 27 in den Verdampfer 9 eintreten und auch dessen vorderen Teil 20 durchlaufen; alternativ steht ein Weg zur Verfügung, auf dem die Luft zunächst in den Akkumulationsbereich 15 eintritt und, indem sie über den vorderen Teil 18 der Flanke 14 in den Verdampfer 9 übergeht, dessen vorderen Teil 20 auf wenigstens einem Teil seiner Länge umgeht. By the rear part 21 of the evaporator 9 on the one hand touches the IR-reflecting layer 6 and on the other hand the surface heating 12, it divides the evaporator chamber l in an upstream part 22 and a downstream part 23. Air from a fan arranged in the downstream part 23 24 is sucked into the upstream part 22 via inlet openings 25 at the front edge of the shell 7 from the freezer compartment 4, can reach the downstream part 23 only by placing the rear part 21 of the evaporator 9, below the rear section 16 of the layer 6, goes through to a downstream side 26. To get to this rear part 21, the Air directly at an inlet side 25 facing the inflow side 27 enter the evaporator 9 and also pass through the front part 20; Alternatively, there is a way in which the air first enters the accumulation area 15 and, by passing over the front part 18 of the flank 14 in the evaporator 9, the front part 20 on at least part of its length bypasses.
Fig. 2 zeigt einen Horizontalschnitt durch die Verdampferkammer 1 entlang der Ebene II-II aus Fig. 1. Die Schnittebene der Fig. 1 ist in Fig. 2 mit l-l bezeichnet. Von dem in Fig. 1 nicht dargestellten Kühlfach ausgehend, verlaufen jeweils Luftkanäle 28 durch Seitenwände des Korpus und schließlich durch die Wärmedämmschicht 3, um jeweils rechts und links von den Einlassöffnungen 25 in den stromaufwärtigen Teil 18 der Verdampferkammer l einzumünden. Die Breite des Akkumulationsbereichs 15 ist etwas geringer als die der Verdampferkammer 1 , so dass Einmündungen 29 der Luftkanäle 28 in die Verdampferkammer 1 jeweils auf einem Teil ihrer Breite der Akkumulationsbereich 15 gegenüberliegt, während auf einem anderen Teil die Wärmedämmplatte 5 bis unmittelbar über die Anströmseite 27 des Verdampfers 9 vorspringt. Ein Teil der über die Luftkanäle 28 zufließenden Luft tritt so unmittelbar über die Anströmseite 27 in den Verdampfer 9 ein, der überwiegende Teil jedoch wird seitwärts, zur Mitte der Verdampferkammer hin, abgelenkt und gelangt zunächst in den Akkumulationsbereich 15. Fig. 2 shows a horizontal section through the evaporator chamber 1 along the plane II-II of Fig. 1. The sectional plane of Fig. 1 is designated in Fig. 2 with l-l. Starting from the cooling compartment, not shown in FIG. 1, air passages 28 each extend through side walls of the body and finally through the thermal barrier coating 3 to respectively open the right and left of the inlet openings 25 in the upstream part 18 of the evaporator chamber l. The width of the accumulation region 15 is slightly less than that of the evaporator chamber 1, so that junctions 29 of the air ducts 28 in the evaporator chamber 1 in each case on a portion of their width of the accumulation region 15 is opposite, while on another part of the thermal insulation board 5 to directly on the inflow side 27th of the evaporator 9 protrudes. Some of the air flowing in via the air ducts 28 enters the evaporator 9 directly via the inflow side 27, but the predominant part is deflected sideways towards the middle of the evaporator chamber and first reaches the accumulation area 15.
Fig. 3 zeigt den Verdampfer 9 in einem zweiten horizontalen Schnitt entlang der Ebene IIIIII der Fig. 1 , die tiefer liegt als die Ebene II-II. Die Umrisse der Wärmedämmplatte 5 und des Akkumulationsbereichs 15, die außerhalb der Schnittebene III-III liegen, sind als gestrichelte Linie eingezeichnet. Die Dichte der Lamellen 10 ist im hinteren Teil 21 und im vorderen Teil 20, unter dem Akkumulationsbereich 15, unterschiedlich. Im hier dargestellten Fall ist die Dichte der Lamellen 10 im hinteren Teil 21 doppelt so hoch wie im vorderen, jede zweite Lamelle 10 endet an der Grenze zum vorderen Teil 20. Fig. 3 shows the evaporator 9 in a second horizontal section along the plane IIIIII of Fig. 1, which is lower than the level II-II. The outlines of the thermal insulation panel 5 and the accumulation area 15, which lie outside the section plane III-III, are shown as a dashed line. The density of the fins 10 is different in the rear part 21 and in the front part 20, below the accumulation area 15. In the case shown here, the density of the lamellae 10 in the rear part 21 is twice as high as in the front, every second lamella 10 ends at the boundary to the front part 20th
Der Verlauf der Kältemittelleitung 1 1 im Verdampfer 9 ist in Fig. 3 deutlich zu erkennen. Die Kältemittelleitung 1 1 bildet hier eine obere Lage 30 (s. Fig. 1 ), die sich, ausgehend von einer Einspritzstelle 29 an einer vorderen rechten Ecke des Verdampfers 9, oben rechts in Fig. 3, in Mäandern bis zu einer hinteren rechten Ecke 32 erstreckt, und eine untere Lage 31 , die, von der oberen Lage kongruent verdeckt, zurück bis zu der vorderen rechten Ecke erstreckt. Dort geht die Kältemittelleitung 1 1 in eine Saugleitung 33 über, die sich neben der äußersten rechten Lamelle 10 her in Richtung einer Rückwand des Kältegerätekorpus erstreckt und in dieser abwärts zu einem (nicht dargestellten) Verdichter verläuft. Eine Kapillare 34, über die frisches Kältemittel zur Einspritzstelle 29 gelangt, ist hier auf einem Teil ihrer Länge innerhalb der Saugleitung 33 geführt, um einen Wärmetauscher zu bilden, und tritt erst kurz vor der Einspritzstelle 29 aus dieser heraus. The course of the refrigerant line 1 1 in the evaporator 9 can be clearly seen in Fig. 3. The refrigerant line 11 here forms an upper layer 30 (see Fig. 1), which, starting from an injection point 29 at a front right corner of the evaporator 9, top right in Fig. 3, in meanders to a rear right corner 32, and a lower layer 31 which, concealed from the upper layer, extends back to the front extends right corner. There, the refrigerant line 1 1 passes into a suction line 33, which extends in addition to the rightmost lamella 10 forth in the direction of a rear wall of the refrigerator body and in this down to a (not shown) runs compressor. A capillary 34, via which fresh refrigerant passes to the injection point 29, is guided here on part of its length within the suction line 33 in order to form a heat exchanger, and only emerges from this point shortly before the injection point 29.
Die Lage der Einspritzstelle 29 benachbart zur Anströmseite 27 des Verdampfers 9 hat zur Folge, dass, wenn Kältemittel in der Kältemittelleitung 1 1 zirkuliert, der vordere Teil 20 des Verdampfers 9 eine deutlich tiefere Temperatur erreicht als der hintere Teil 21. Deswegen gibt Luft, die in dieser Zeit vom Ventilator 20 durch die Verdampferkammer 1 gesaugt wird, bereits einen beträchtlichen Anteil ihrer Feuchtigkeit an die Oberkanten der Lamellen 10 des vorderen Teils 20 ab, so dass, ausgehend von diesen Oberkanten, Reif in den Akkumulationsbereich 15 hineinwächst. So wird der Strömungswiderstand des Akkumulationsbereichs 15 im Laufe der Zeit größer, und in dem Maße, wie sich der Akkumulationsbereich 15 verschließt, wird die Luft zunehmend gezwungen, über die Anströmseite 27 in den Verdampfer 9 einzutreten und auch dessen vorderen Teil 20 zu durchlaufen. The location of the injection point 29 adjacent to the upstream side 27 of the evaporator 9 has the result that, when refrigerant circulates in the refrigerant line 1 1, the front part 20 of the evaporator 9 reaches a much lower temperature than the rear part 21. Therefore, there is air, the is sucked by the fan 20 through the evaporator chamber 1 during this time, already from a considerable proportion of its moisture to the upper edges of the fins 10 of the front part 20 from, so that, starting from these upper edges, grows into the accumulation 15 maturity. Thus, the flow resistance of the accumulation area 15 increases over time, and as the accumulation area 15 closes, the air is increasingly forced to enter the evaporator 9 via the inflow side 27 and also to pass through its front part 20.
Die im Vergleich zum hinteren Teil 21 verringerte Dichte der Lamellen 10 im vorderen Teil 21 führt dazu, dass die Luft, wenn sie über die Anströmseite 27 in den Verdampfer 9 eintritt, in diesem einen relativ langen Weg zurücklegen kann, bis sie ihre Feuchtigkeit vollständig abgegeben hat, und die Reifschicht, die sich dabei auf den Lamellen 10 niederschlägt, ausgehend von der Anströmseite 23 weit ins Innere des Verdampfers 9 hineinreicht. Im Verdampfer 9 und dem Akkumulationsbereich 15 kann daher eine große Menge Reif gespeichert werden, bevor der Strömungswiderstand so stark erhöht ist, dass ein Abtauen erfolgen muss. The reduced compared to the rear portion 21 density of the fins 10 in the front part 21 causes the air when it enters the evaporator 9 via the inflow side 27, in this a relatively long way can go back until they completely release their moisture has, and the frost layer, which is reflected on the fins 10, starting from the inflow side 23 far into the interior of the evaporator 9 extends. In the evaporator 9 and the accumulation area 15, therefore, a large amount of frost can be stored before the flow resistance is increased so much that a defrost must occur.
Fig. 4 zeigt eine schematische Draufsicht auf eine Ausgestaltung der Flächenheizung 12. Ein Heizdraht 35 erstreckt sich in Mäandern auf einer wärmeleitenden Grundplatte 36. Die Dichte der Mäander bzw. die Länge des Heizdrahts 35 pro Flächeneinheit der Grundplatte 36 ist unterhalb des vorderen Teils 20 des Verdampfers 9 deutlich höher als unterhalb des hinteren Teils 21 , um die zum Abtauen des Reifs im vorderen Teil 20 und dem Akkumulationsbereich 15 erforderliche Wärmemenge in kurzer Zeit bereitstellen zu können und gleichzeitig eine übermäßige Erwärmung des gering bereiften hinteren Teils 21 zu vermeiden. Eine Feinabstimmung der Flächenleistung im vorderen und hinteren Teil der Flächenheizung 12 kann erfolgen, in dem der Heizdraht 35 im vorderen und hinteren Teil unterschiedliche Querschnitte aufweist. Der Abtauvorgang dauert an, bis ein Temperaturfühler 37, der zentral im vorderen Teil 18 der oberen Flanke 14 des Verdampfers 9 platziert ist, eine vorgegebene Ausschalttemperatur knapp über 0°C erfasst. Die Ausschalttemperatur ist knapp über 0°C so gewählt, dass sie nach kurz vollständigem Abtauen des vorderen Teils 20 und des Akkumulationsbereichs 15 erreicht wird. A heating wire 35 extends in meanders on a heat-conducting base plate 36. The density of the meander or the length of the heating wire 35 per unit area of the base plate 36 is below the front part 20 of the Evaporator 9 significantly higher than below the rear part 21 in order to provide the time required to defrost the frost in the front part 20 and the accumulation area 15 in a short time can and at the same time to avoid excessive heating of the slightly frosted rear part 21. A fine-tuning of the area performance in the front and rear part of the surface heating 12 can take place in which the heating wire 35 has different cross sections in the front and rear part. The defrosting process continues until a temperature sensor 37, which is placed centrally in the front part 18 of the upper flank 14 of the evaporator 9, detects a predetermined switch-off temperature just above 0 ° C. The switch-off temperature is just above 0 ° C chosen so that it is achieved after a brief complete defrosting of the front part 20 and the accumulation area 15.
Die Wärmemenge, die die Flächenheizung 12 während des Abtauens in den hinteren Teil 21 abgibt, kann größer sein als die zum Abtauen des hinteren Teils 21 benötigte Wärmemenge. Wenn der hintere Teil 21 bereits vor Ende des Abtauvorgangs vollständig eisfrei ist und er noch weiter beheizt wird, erreicht die Wärme über die Lamellen 10 den hinteren Abschnitt 16 der Infrarot reflektierenden Schicht 6 und breitet sich in dieser nach vorn aus, so dass der Reif im Akkumulationsbereich 15 auch von oben her abgetaut wird. So trägt ein enger Kontakt zwischen den Oberkanten der Lamellen 10 und der Schicht 6 im hinteren Teil 21 dazu bei, eine Überhitzung des hinteren Teils 21 zu vermeiden, die nach Ende des Abtauvorgangs wieder beseitigt werden müsste. The amount of heat that emits the surface heating 12 during defrosting in the rear part 21 may be greater than the amount of heat required to defrost the rear part 21. If the rear part 21 is completely free of ice and even further heated before the end of the defrosting operation, the heat reaches the rear portion 16 of the infrared reflecting layer 6 via the lamellae 10 and spreads forward in the latter, so that the frost in the Accumulation 15 is defrosted from above. Thus, a close contact between the upper edges of the fins 10 and the layer 6 in the rear part 21 helps to avoid overheating of the rear part 21, which would have to be eliminated again after the end of the defrosting process.
BEZUGSZEICHEN REFERENCE NUMBERS
1 Verdampferkammer 1 evaporator chamber
2 Platte  2 plate
3 Wärmedämmschicht  3 thermal barrier coating
4 Gefrierfach  4 freezer
5 Wärmedämmplatte  5 thermal insulation board
6 reflektierende Schicht  6 reflective layer
7 Schale  7 bowl
8 Wärmedämmplatte  8 thermal insulation board
9 Verdampfer  9 evaporator
10 Lamelle  10 lamella
1 1 Kältemittelleitung  1 1 refrigerant line
12 Flächenheizung  12 surface heating
13 vorderer Abschnitt (der Schicht 6)  13 front section (layer 6)
14 obere Flanke  14 upper flank
15 Akkumulationsbereich  15 accumulation area
16 hinterer Abschnitt (der Schicht 6)  16 rear section (layer 6)
17 untere Flanke  17 lower flank
18 vorderer Teil (der Flanke 14)  18 front part (the flank 14)
19 hinterer Teil (der Flanke 14)  19 rear part (the flank 14)
20 vorderer Teil (des Verdampfers9)  20 front part (the evaporator9)
21 hinterer Teil (des Verdampfers9)  21 rear part (of the evaporator9)
22 stromaufwärtiger Teil (der Verdampferkammer 1 ) 22 upstream part (the evaporator chamber 1)
23 stromabwärtiger Teil (der Verdampferkammer 1 )23 downstream part (the evaporator chamber 1)
24 Ventilator 24 fans
25 Einlassöffnung  25 inlet opening
26 Abströmseite  26 outflow side
27 Anströmseite  27 upstream side
28 Luftkanal  28 air duct
29 Einspritzstelle  29 injection point
30 obere Lage  30 upper layer
31 untere Lage Ecke 31 lower position corner
Saugleitung suction
Kapillare capillary
Heizdraht heating wire
Grundplattebaseplate
Temperaturfühler temperature sensor

Claims

PATENTANSPRÜCHE
No-Frost-Kältegerät mit einem zwangsdurchlüfteten Verdampfer (9), der in einer Verdampferkammer (1 ) angeordnet ist, wobei wenigstens ein erster Teil (21 ) des Verdampfers (9) einen bezogen auf die Flussrichtung der Luft durch die Verdampferkammer (1 ) stromaufwärtigen Teil (22) und einen stromabwärtigen Teil (23) der Verdampferkammer (1 ) voneinander trennt, dadurch gekennzeichnet, dass einer der beiden Teile (22, 23) der Verdampferkammer (1 ) einen Akkumulationsbereich (15) umfasst, der strömungstechnisch parallel und angrenzend zu einem zweiten Teil (20) des Verdampfers (9) angeordnet und durch den zweiten Teil (20) des Verdampfers (9) gekühlt ist, und dass der zweite Teil (20) des Verdampfers (1 ) eine Einspritzstelle (29) für Kältemittel umfasst. A no-frost refrigerating appliance having a forced-air evaporator (9) arranged in an evaporator chamber (1), wherein at least a first part (21) of the evaporator (9) is upstream of the evaporator chamber (1) relative to the direction of flow of the air Part (22) and a downstream part (23) of the evaporator chamber (1) separated from each other, characterized in that one of the two parts (22, 23) of the evaporator chamber (1) comprises an accumulation region (15), the fluidically parallel and adjacent to a second part (20) of the evaporator (9) and is cooled by the second part (20) of the evaporator (9), and that the second part (20) of the evaporator (1) comprises a injection point (29) for refrigerant.
No-Frost-Kältegerät nach Anspruch 1 , dadurch gekennzeichnet, dass bezogen auf die Flussrichtung von Kältemittel in einer Kältemittelleitung (1 1 ) des Verdampfers der zweite Teil (20) stromaufwärts vom ersten Teil (21 ) des Verdampfers (9) liegt. No-frost refrigerating device according to claim 1, characterized in that relative to the flow direction of refrigerant in a refrigerant line (1 1) of the evaporator, the second part (20) upstream of the first part (21) of the evaporator (9).
No-Frost-Kältegerät nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Verdampfer (9) im wesentlichen quaderförmig mit einer Anströmseite (27) und einer Abströmseite (26), die senkrecht zur Stromrichtung der Luft im ersten Teil (20) des Verdampfers (9) orientiert sind, und mit die Anströmseite (27) und die Abströmseite (26) verbindenden Flanken (14, 17) ist, und dass der Akkumulationsbereich (15) an eine erste (14) der Flanken angrenzt. No-frost refrigerator according to claim 1 or 2, characterized in that the evaporator (9) is substantially cuboid with an inflow side (27) and an outflow side (26) perpendicular to the flow direction of the air in the first part (20) of the evaporator (9) are oriented, and flanks (14, 17) connecting to the inflow side (27) and the outflow side (26), and that the accumulation region (15) adjoins a first (14) of the flanks.
No-Frost-Kältegerät nach Anspruch 3, dadurch gekennzeichnet, dass die erste Flanke (14) in der Stromrichtung gegliedert ist in einen an den Akkumulationsbereich (15) angrenzenden Teil (18) und einen an einer Wand der Verdampferkammer (1 ) anliegenden Teil (19). No-frost refrigerating appliance according to claim 3, characterized in that the first flank (14) is divided in the flow direction into a part (18) adjoining the accumulation area (15) and a part resting against a wall of the evaporator chamber (1) ( 19).
No-Frost-Kältegerät nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass der an den Akkumulationsbereich (15) angrenzende Teil (18) der Flanke (14) quer zur Stromrichtung beiderseits von dem an der Wand der Verdampferkammer (1 ) anliegenden Teil (19) begrenzt ist. No-frost refrigerating appliance according to claim 3 or 4, characterized in that the part (18) of the flank (14) adjoining the accumulation area (15) transversely to the Current direction on both sides of the on the wall of the evaporator chamber (1) adjacent part (19) is limited.
6. No-Frost-Kältegerät nach Anspruch 3, 4 oder 5, dadurch gekennzeichnet, dass an einer der ersten Flanke (14) gegenüberliegenden zweiten Flanke (17) des Verdampfers (1 ) eine Abtauheizung (12) angeordnet ist. 6. No-frost refrigerating appliance according to claim 3, 4 or 5, characterized in that on one of the first flank (14) opposite the second flank (17) of the evaporator (1) a defrost heater (12) is arranged.
7. No-Frost-Kältegerät nach Anspruch 6, dadurch gekennzeichnet, dass die Abtauheizung (12) eine Flächenheizung ist, die sich wenigstens über den zweiten Teil (20) des Verdampfers (9) ausdehnt. 7. no-frost refrigerator according to claim 6, characterized in that the defrost heater (12) is a surface heating, which extends at least over the second part (20) of the evaporator (9).
8. No-Frost-Kältegerät nach einem der Ansprüche 3 bis 7, dadurch gekennzeichnet, dass die Anströmseite (27) und die Abströmseite (26) in Tiefenrichtung des Kältegeräts beabstandet sind. 8. No-frost refrigerating appliance according to one of claims 3 to 7, characterized in that the inflow side (27) and the outflow side (26) are spaced in the depth direction of the refrigerator.
9. No-Frost-Kältegerät nach einem der Ansprüche 3 bis 8, dadurch gekennzeichnet, dass eine der ersten Flanke (14) gegenüberliegende Wand der Verdampferkammer eine IR-reflektierende Oberflächenschicht (6) aufweist. 9. no-frost refrigerator according to one of claims 3 to 8, characterized in that one of the first edge (14) opposite wall of the evaporator chamber has an IR-reflecting surface layer (6).
10. No-Frost-Kältegerät nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Akkumulationsbereich (15) zum stromaufwärtigen Teil (22) der Verdampferkammer (1 ) gehört. 10. No-frost refrigerating appliance according to one of the preceding claims, characterized in that the accumulation area (15) belongs to the upstream part (22) of the evaporator chamber (1).
1 1 . No-Frost-Kältegerät nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Temperaturfühler (37) am zweiten Teil (20) des Verdampfers (9) angeordnet ist. 1 1. No-frost refrigerating appliance according to one of the preceding claims, characterized in that a temperature sensor (37) is arranged on the second part (20) of the evaporator (9).
12. No-Frost-Kältegerät nach Anspruch 1 1 , dadurch gekennzeichnet, dass der Temperaturfühler (37) an den Akkumulationsbereich (15) angrenzend positioniert ist. 12. No-frost refrigerator according to claim 1 1, characterized in that the temperature sensor (37) is positioned adjacent to the accumulation area (15).
13. No-Frost-Kältegerät nach Anspruch 12, dadurch gekennzeichnet, dass der Akkumulationsbereich (15) sich über dem Temperaturfühler (37) erstreckt. No-Frost-Kältegerät nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Kaltemittelauslass am zweiten Teil (20) des Verdampfers (1 ) angeordnet ist. 13. no-frost refrigerating appliance according to claim 12, characterized in that the accumulation area (15) extends over the temperature sensor (37). No-frost refrigerator according to one of the preceding claims, characterized in that a Kaltemittelauslass on the second part (20) of the evaporator (1) is arranged.
No-Frost-Kältegerät nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der zweite Teil (20) des Verdampfers (9) einer Vorderseite des No-Frost-Kältegeräts und der erste Teil des Verdampfers einer Rückwand des No- Frost-Kältegeräts zugewandt ist, und dass eine Saugleitung (33) vom zweiten Teil (20) des Verdampfers (1 ) zur Rückwand verläuft und mit einer zum Kältemitteleinlass (29) führenden Kapillare (34) einen Wärmetauscher bildet. No-frost refrigerating appliance according to one of the preceding claims, characterized in that the second part (20) of the evaporator (9) faces a front side of the no-frost refrigerating appliance and the first part of the evaporator faces a rear wall of the no-frost refrigerating appliance in that a suction line (33) runs from the second part (20) of the evaporator (1) to the rear wall and forms a heat exchanger with a capillary (34) leading to the refrigerant inlet (29).
EP15786986.8A 2014-11-10 2015-10-29 No-frost refrigerator Active EP3218659B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL15786986T PL3218659T3 (en) 2014-11-10 2015-10-29 No-frost refrigerator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014222851.4A DE102014222851A1 (en) 2014-11-10 2014-11-10 No-frost refrigerating appliance
PCT/EP2015/075143 WO2016074941A1 (en) 2014-11-10 2015-10-29 No-frost refrigeration device

Publications (2)

Publication Number Publication Date
EP3218659A1 true EP3218659A1 (en) 2017-09-20
EP3218659B1 EP3218659B1 (en) 2020-04-15

Family

ID=54360482

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15786986.8A Active EP3218659B1 (en) 2014-11-10 2015-10-29 No-frost refrigerator

Country Status (6)

Country Link
US (1) US10371434B2 (en)
EP (1) EP3218659B1 (en)
CN (1) CN107076495B (en)
DE (1) DE102014222851A1 (en)
PL (1) PL3218659T3 (en)
WO (1) WO2016074941A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200370816A1 (en) * 2019-05-20 2020-11-26 Pepsico, Inc. Defrosting system for a cold plate and method of defrosting a cold plate
DE102020202172A1 (en) * 2020-02-20 2021-08-26 BSH Hausgeräte GmbH Refrigeration device with lamellar evaporator
EP3885680B1 (en) * 2020-03-24 2024-03-13 Electrolux Appliances Aktiebolag A refrigeration appliance equipped with a fan assembly and a method for manufacturing said appliance

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3638449A (en) * 1970-04-15 1972-02-01 Whirlpool Co Refrigeration apparatus
DE2123646A1 (en) * 1971-05-12 1972-11-23 Linde Ag, 6200 Wiesbaden Procedure for operating an open refrigerated cabinet
JP4559229B2 (en) * 2002-05-15 2010-10-06 キャボット コーポレイション Heat resistant insulating composite and method of manufacturing the same
JP4620663B2 (en) * 2003-07-04 2011-01-26 エレクトロラックス ホーム プロダクツ コーポレイション ナームロゼ フェンノートシャップ Cabinet refrigeration system
JP2007071487A (en) * 2005-09-09 2007-03-22 Hitachi Appliances Inc Refrigerator
DE102005057155A1 (en) * 2005-11-30 2007-05-31 BSH Bosch und Siemens Hausgeräte GmbH A method for distributing chilled air into the chambers of a two temperature refrigeration appliance has a pivotable baffle blocking the air flow from one or other of the chambers according to a temperature sensor
DE102005057142A1 (en) * 2005-11-30 2007-06-06 BSH Bosch und Siemens Hausgeräte GmbH Refrigeration unit with modular control and evaporator design
DE102006015994A1 (en) * 2006-04-05 2007-10-11 BSH Bosch und Siemens Hausgeräte GmbH Refrigerating appliance with defrost heating
EP2397800B1 (en) * 2009-02-12 2017-06-28 Panasonic Corporation Refrigerator
CN101846479B (en) * 2009-03-25 2012-02-22 三花丹佛斯(杭州)微通道换热器有限公司 Fins for heat exchanger and heat exchanger using same
DE102009003263A1 (en) * 2009-05-20 2010-11-25 BSH Bosch und Siemens Hausgeräte GmbH No-frost refrigerating appliance
DE102009028778A1 (en) 2009-08-21 2011-02-24 BSH Bosch und Siemens Hausgeräte GmbH Refrigerating appliance, in particular domestic refrigeration appliance, and method for operating such a refrigeration appliance
JP5636253B2 (en) * 2010-10-15 2014-12-03 昭和電工株式会社 Evaporator
DE102012213644A1 (en) * 2012-08-02 2014-02-20 BSH Bosch und Siemens Hausgeräte GmbH Refrigeration unit with automatic defrost
DE102014222850A1 (en) * 2014-11-10 2016-05-12 BSH Hausgeräte GmbH Frost-free refrigerating appliance

Also Published As

Publication number Publication date
US20170314840A1 (en) 2017-11-02
EP3218659B1 (en) 2020-04-15
CN107076495A (en) 2017-08-18
DE102014222851A1 (en) 2016-05-12
PL3218659T3 (en) 2020-09-21
WO2016074941A1 (en) 2016-05-19
CN107076495B (en) 2021-06-29
US10371434B2 (en) 2019-08-06

Similar Documents

Publication Publication Date Title
US3289432A (en) Display case
DE4143254C2 (en) Defrosting device
WO2007115876A2 (en) Refrigeration device comprising a defrost heater
EP2694894B1 (en) Combination device for refrigeration
EP1888987A1 (en) Cooler
EP3194869B1 (en) Refrigeration device having a plurality of storage chambers
EP2218987A2 (en) Cooling device with bottle cooling function
EP3218659B1 (en) No-frost refrigerator
EP3359891B1 (en) A cooling apparatus with a siphon in the condensate drain
DE212014000178U1 (en) fridge
WO2015128164A1 (en) Refrigerator
EP2984426A1 (en) Refrigerator with two storage chambers
DE212015000136U1 (en) fridge
EP2372277A2 (en) Cooling device with condensate atomiser
WO2010121940A2 (en) Refrigeration appliance comprising a fan
EP2113059B1 (en) Refrigeration device having a water tank
EP3701204B1 (en) A refrigerator wherein the air flows vertically through the evaporator
DE212015000137U1 (en) fridge
DE102010038384A1 (en) Refrigerating appliance with defrosting device
DE102010038381A1 (en) Cold apparatus i.e. household cold apparatus, has storage chambers arranged between inner container and insulation layer, and thermal mass thermally contacted with vaporizer, where thermal mass is designed as plate-like solid body
DE102014212411A1 (en) Refrigeration unit with exposed evaporator
DE212014000135U1 (en) fridge
DE1751732B2 (en) Refrigeration units
WO2011104093A2 (en) Refrigeration device
DD295012A5 (en) ELECTRIC EVAPORATOR DEFROSTING OF COOL FREEZER COMBINATIONS AND FREEZERS WITH REFRIGERATED COOLING

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170612

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190613

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191118

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015012309

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1257793

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200515

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200415

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200817

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200815

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015012309

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

26N No opposition filed

Effective date: 20210118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201029

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201029

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201029

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1257793

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20221017

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231018

Year of fee payment: 9

Ref country code: DE

Payment date: 20231031

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231018

Year of fee payment: 9