JP5636253B2 - Evaporator - Google Patents
Evaporator Download PDFInfo
- Publication number
- JP5636253B2 JP5636253B2 JP2010232416A JP2010232416A JP5636253B2 JP 5636253 B2 JP5636253 B2 JP 5636253B2 JP 2010232416 A JP2010232416 A JP 2010232416A JP 2010232416 A JP2010232416 A JP 2010232416A JP 5636253 B2 JP5636253 B2 JP 5636253B2
- Authority
- JP
- Japan
- Prior art keywords
- pipe
- heater
- defrosting
- evaporator
- straight pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010257 thawing Methods 0.000 claims description 63
- 230000020169 heat generation Effects 0.000 claims description 26
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical group [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 claims description 17
- 229920002379 silicone rubber Polymers 0.000 claims description 6
- 230000000149 penetrating effect Effects 0.000 claims description 4
- 230000002093 peripheral effect Effects 0.000 claims description 4
- 230000008020 evaporation Effects 0.000 claims 1
- 238000001704 evaporation Methods 0.000 claims 1
- 238000011144 upstream manufacturing Methods 0.000 description 20
- 230000015572 biosynthetic process Effects 0.000 description 12
- 239000011295 pitch Substances 0.000 description 10
- 238000005057 refrigeration Methods 0.000 description 9
- 230000007423 decrease Effects 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 239000000463 material Substances 0.000 description 2
- 239000000615 nonconductor Substances 0.000 description 2
- 239000003507 refrigerant Substances 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/047—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
- F28D1/0477—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/12—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
- F28F1/24—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
- F28F1/32—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F19/00—Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
- F28F19/006—Preventing deposits of ice
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Defrosting Systems (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
Description
この発明は蒸発器に関し、さらに詳しくは、たとえば冷蔵庫、冷蔵ショーケース、冷凍庫、冷凍ショーケースなどの冷凍・冷蔵装置に用いられる冷凍サイクルにおいて好適に使用される蒸発器に関する。 The present invention relates to an evaporator, and more particularly to an evaporator preferably used in a refrigeration cycle used in a refrigeration / refrigeration apparatus such as a refrigerator, a refrigerated showcase, a freezer, and a refrigerated showcase.
たとえば冷蔵庫の断熱箱体内には、圧縮機、凝縮器および蒸発器を備えた冷凍サイクルが設置されている。このような冷凍サイクルの蒸発器としては、並列状に配置された複数のプレートフィンからなり、かつ空気流れ方向に間隔をおいて複数設けられたフィン群と、各フィン群のすべてのプレートフィンに貫通状に固定された複数の直管部および隣り合う2つの直管部を接続しかつ直管部より1つ少ない数の屈曲管部よりなる熱交換管とを備えたものが広く用いられていた。 For example, a refrigeration cycle including a compressor, a condenser, and an evaporator is installed in a heat insulating box of a refrigerator. As an evaporator of such a refrigeration cycle, a plurality of fins arranged in parallel and spaced apart in the air flow direction, and all the plate fins of each fin group are provided. A pipe having a plurality of straight pipe portions fixed in a penetrating manner and two heat exchanger pipes connected to two adjacent straight pipe portions and having a number of bent pipe portions one less than the straight pipe portions is widely used. It was.
しかしながら、このような蒸発器においては、空気中の水分により各プレートフィンに着霜が発生する。このような着霜が発生すると、付着した霜が抵抗となって各フィン群のプレートフィン間を流れる空気量が急激に減少したり、あるいは空気と熱交換管内を流れる冷媒との間での伝熱量が急激に減少したりすることによって、比較的短時間で冷却効率が低下するという問題があった。したがって、着霜量が一定量以上になった場合には霜を融解して除去する必要があった。 However, in such an evaporator, frost forms on each plate fin due to moisture in the air. When such frost formation occurs, the adhering frost acts as a resistance and the amount of air flowing between the plate fins of each fin group decreases rapidly, or the air flows between the air and the refrigerant flowing in the heat exchange pipe. There has been a problem that the cooling efficiency decreases in a relatively short time due to a rapid decrease in the amount of heat. Therefore, when the amount of frost formation exceeds a certain amount, it is necessary to melt and remove the frost.
発生した霜を除霜しうる蒸発器として、たとえば、並列状に配置された複数のプレートフィンと、プレートフィンに貫通状に固定された複数の直管部および隣り合う2つの直管部を接続しかつ直管部より1つ少ない数の屈曲管部よりなる熱交換管と、プレートフィンの両側縁部に設けられた嵌入部内に嵌め入れられてプレートフィンに接触させられた複数の直管部および隣り合う2つの直管部を接続しかつ直管部より1つ少ない数の屈曲管部よりなる除霜用パイプヒータとを備えており、除霜用パイプヒータが、ヒータ線と、ヒータ線を収納するパイプと、ヒータ線の両端に接続された給電用リード線とを有しているものが知られている(特許文献1参照)
ところで、上述したような蒸発器のプレートフィンへの霜の付着量は、空気流れ方向の上流側、通常は下側で多くなり、空気流れ方向の下流側、通常は上側で少なくなる傾向を示す。しかしながら、特許文献1記載の蒸発器の除霜用パイプヒータの発熱量は全長にわたって一定であり、しかも除霜用パイプヒータの直管部の数は、プレートフィンへの着霜量の多い空気流れ方向上流側部分と着霜量の少ない空気流れ方向下流側部分とで均等になっているので、空気流れ方向上流側部分においてプレートフィンに付着した霜を短時間で除霜するには、除霜用パイプヒータ全体の発熱量を多くする必要があり、除霜用パイプヒータにおけるプレートフィンへの着霜量の少ない空気流れ方向下流側部分に配置された直管部および屈曲管部からの発熱量が余剰になって消費電力量が増加し、コストが高くなる。一方、除霜用パイプヒータからの発熱量を、空気流れ方向下流側部分において余剰にならないような量に設定すると、空気流れ方向上流側部分においてプレートフィンに付着した霜を融解するのに時間がかかり、やはり消費電力量が増加してコストが高くなる。
As an evaporator that can defrost generated frost, for example, a plurality of plate fins arranged in parallel, a plurality of straight pipe portions fixed in a penetrating manner to the plate fins, and two adjacent straight pipe portions are connected. And a plurality of straight pipe portions fitted into the fitting portions provided at both side edges of the plate fin and brought into contact with the plate fins. And a defrosting pipe heater that connects two adjacent straight pipe portions and includes a bent pipe portion that is one fewer than the straight pipe portions. The defrosting pipe heater includes a heater wire and a heater wire. Is known which has a pipe for storing the battery and power supply lead wires connected to both ends of the heater wire (see Patent Document 1).
By the way, the amount of frost attached to the plate fins of the evaporator as described above tends to increase on the upstream side in the air flow direction, usually on the lower side, and on the downstream side in the air flow direction, usually on the upper side. . However, the heat generation amount of the defrosting pipe heater of the evaporator described in
このような問題を解決するには、プレートフィンへの着霜量が多い空気流れ方向上流側部分に、着霜量が少ない空気流れ方向下流側部分よりも多くの直管部が存在するように除霜用パイプヒータを配置することも考えられるが、この場合、除霜用パイプヒータの全体の長さが長くなり、材料コストが高くなる。 In order to solve such a problem, in the upstream portion of the air flow direction where the amount of frost on the plate fin is large, more straight pipe portions are present than the downstream portion where the amount of frost is small. Although it is possible to arrange a pipe heater for defrosting, in this case, the entire length of the pipe heater for defrosting becomes long and material cost becomes high.
この発明の目的は、上記問題を解決し、プレートフィンに付着した霜を低コストで効率良く除霜しうる蒸発器を提供することにある。 An object of the present invention is to provide an evaporator that solves the above problems and can efficiently defrost frost adhering to a plate fin at low cost.
本発明は、上記目的を達成するために以下の態様からなる。 In order to achieve the above object, the present invention comprises the following aspects.
1)並列状に配置された複数のプレートフィンと、プレートフィンに貫通状に取り付けられた複数の直管部および隣り合う2つの直管部を接続しかつ直管部より1つ少ない数の屈曲管部よりなる熱交換管と、プレートフィンに接触させられた複数の直管部および隣り合う2つの直管部を接続しかつ直管部より1つ少ない数の屈曲管部よりなる除霜用パイプヒータとを備えており、除霜用パイプヒータが、ヒータ線と、ヒータ線を収納するパイプと、ヒータ線の両端に接続された給電用リード線とを有し、空気が下から上に流れるようになっている蒸発器において、
除霜用パイプヒータにおけるパイプの外周面の単位面積当たりの発熱量である発熱密度が、長さ方向の中間部分において両端寄り部分よりも高くなっており、除霜用パイプヒータのヒータ線がコイル状であり、発熱密度の高い部分のピッチが、低い部分のピッチよりも小さくなっており、除霜用パイプヒータの上端が蒸発器高さ方向の中間部に位置し、除霜用パイプヒータの前記中間部分が、蒸発器下端から1/3までの高さ部分に存在している蒸発器
2)除霜用パイプヒータの中間部分の一部が、最も風上側に位置する熱交換管の直管部よりも風上側に配置されている上記1)記載の蒸発器。
1) A plurality of plate fins arranged in parallel, a plurality of straight pipe portions attached to the plate fins in a penetrating manner, and two adjacent straight pipe portions are connected and bent by one less than the straight pipe portions. For defrosting comprising a heat exchange pipe comprising a pipe part, a plurality of straight pipe parts brought into contact with the plate fins and two adjacent straight pipe parts, and comprising one bent pipe part less than the straight pipe part. The defrosting pipe heater has a heater wire, a pipe for storing the heater wire, and a power supply lead wire connected to both ends of the heater wire, and the air flows from the bottom to the top. In an evaporator that is flowing ,
In the defrosting pipe heater, the heat generation density, which is the heat generation amount per unit area of the outer peripheral surface of the pipe, is higher in the middle part in the length direction than the parts near both ends, and the heater wire of the defrosting pipe heater is coiled The pitch of the part where the heat generation density is high is smaller than the pitch of the low part, and the upper end of the defrosting pipe heater is located in the middle of the evaporator height direction. The evaporator in which the intermediate portion exists at a height of 1/3 from the lower end of the evaporator
2) The evaporator according to 1) above, wherein a part of an intermediate portion of the defrosting pipe heater is arranged on the windward side of the straight pipe portion of the heat exchange pipe located on the furthest side.
3)除霜用パイプヒータのヒータ線と給電用リード線とが、パイプの両端部内に配置されたコネクタによって接続されており、コネクタの周囲がシリコンゴムによって覆われている上記1)〜3)のうちのいずれかに記載の蒸発器。 3) The heater wire of the defrosting pipe heater and the power supply lead wire are connected by connectors arranged in both ends of the pipe, and the periphery of the connector is covered with silicon rubber 1) to 3) above The evaporator according to any one of the above .
上記1)の蒸発器によれば、除霜用パイプヒータにおけるパイプの外周面の単位面積当たりの発熱量である発熱密度が、除霜用パイプヒータの長さ方向において部分的に異なっているので、除霜用パイプヒータにおけるプレートフィンへの着霜量の多い空気流れ方向上流側部分に配置される長さ部分の発熱密度を、同じく着霜量が少ない空気流れ方向下流側部分に配置される長さ部分の発熱密度よりも高くしておくことができる。したがって、除霜用パイプヒータにおける空気流れ方向下流側部分に配置される長さ部分の発熱密度を、特許文献1に記載の蒸発器の除霜用パイプヒータと同等にし、同じく空気流れ方向上流側部分に配置される長さ部分の発熱密度を、特許文献1記載の蒸発器の除霜用パイプヒータよりも高くすることによって、除霜用パイプヒータにおける空気流れ方向上流側に配置された長さ部分からの発熱量を多くし、空気流れ方向上流側においてプレートフィンに付着した霜の除霜時間を短縮することができるとともに、除霜用パイプヒータにおけるプレートフィンへの着霜量の少ない空気流れ方向下流側に配置された長さ部分からの発熱量が余剰になることを抑制し、消費電力量を減少することができる。
According to the evaporator of 1), the heat generation density, which is the heat generation amount per unit area of the pipe outer peripheral surface in the defrosting pipe heater, is partially different in the length direction of the defrosting pipe heater. The heat generation density of the length portion arranged in the upstream portion of the air flow direction with a large amount of frost formation on the plate fin in the defrosting pipe heater is also arranged in the downstream portion of the air flow direction with a small amount of frost formation. It can be made higher than the heat generation density of the length portion. Therefore, the heat generation density of the length portion arranged in the downstream portion of the defrosting pipe heater in the air flow direction is made equal to that of the defrosting pipe heater of the evaporator described in
一方、除霜用パイプヒータにおけるプレートフィンへの着霜量の多い空気流れ方向上流側部分に配置される長さ部分の発熱密度を、特許文献1に記載の蒸発器の除霜用パイプヒータと同等にし、同じく空気流れ方向下流側部分に配置される長さ部分の発熱密度を、特許文献1記載の蒸発器の除霜用パイプヒータよりも低くすると、空気流れ方向上流側においてプレートフィンに付着した霜の除霜時間は特許文献1の蒸発器と変わらないものの、除霜用パイプヒータにおけるプレートフィンへの着霜量の少ない空気流れ方向下流側に配置された長さ部分からの発熱量を減少させることが可能になり、消費電力量を減少することができる。
On the other hand, the heat generation density of the length part arrange | positioned in the air flow direction upstream part with much frosting amount to the plate fin in the defrosting pipe heater is the defrosting pipe heater of the evaporator described in
しかも、プレートフィンへの着霜量が多い空気流れ方向上流側部分に、同じく着霜量が少ない空気流れ方向下流側部分よりも多くの直管部が存在するように除霜用パイプヒータを配置する場合に比べて、除霜用パイプヒータの全体の長さを短くすることができ、材料コストが安くなる。 In addition, the pipe heater for defrosting is arranged so that there are more straight pipe parts in the upstream part of the air flow direction with a large amount of frost formation on the plate fin than in the downstream part of the air flow direction with a small amount of frost formation. Compared with the case where it does, the whole length of the pipe heater for defrosting can be shortened, and material cost becomes cheap.
上記1)の蒸発器によれば、除霜用パイプヒータの発熱密度が、長さ方向の中間部分において両端寄り部分よりも高くなっているので、除霜用パイプヒータの長さ方向の両端部からの発熱量を、ヒータ線とリード線を接続するコネクタの近傍でのリード線の損傷や、ヒータ線とリード線を接続するコネクタの周囲に配置されるシリコンゴムの損傷などを防止しうるような発熱量に設定することができる。 According to the evaporator of the above 1) , since the heat generation density of the defrosting pipe heater is higher in the middle portion in the length direction than in the portions near both ends, both end portions in the length direction of the defrosting pipe heater The amount of heat generated can be prevented from damage to the lead wire in the vicinity of the connector connecting the heater wire and the lead wire, or damage to the silicon rubber placed around the connector connecting the heater wire to the lead wire. It is possible to set the heat generation amount.
上記2)の蒸発器によれば、パイプの外周面の単位面積当たりの発熱量である発熱密度が長さ方向において部分的に異なっている除霜用パイプヒータを、比較的簡単につくることができる。 According to the evaporator of 2) , it is possible to relatively easily produce a defrosting pipe heater in which the heat generation density, which is the heat generation amount per unit area of the outer peripheral surface of the pipe, is partially different in the length direction. it can.
以下、この発明の実施形態を、図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.
以下の説明において、図1および図2の上下、左右を上下、左右といい、図2の紙面表側(図3の右側、図4の左側)を前、これと反対側を後というものとする。 In the following description, the top and bottom, left and right in FIGS. 1 and 2 are referred to as top and bottom, and left and right. The front side of the paper surface in FIG. 2 (the right side in FIG. 3 and the left side in FIG. 4) is the front. .
図1〜図4はこの発明の蒸発器の全体構成を示し、図5はその要部の構成を示す。また、図6および図7は蒸発器に用いられる除霜用パイプヒータの構成を示す。 1 to 4 show the overall configuration of the evaporator of the present invention, and FIG. 5 shows the configuration of the main part thereof. 6 and 7 show the configuration of a defrosting pipe heater used in the evaporator.
図1〜図4において、蒸発器(1)は、左右方向に並列状に配置された複数のアルミニウム製プレートフィン(2)からなりかつ上下方向(通風方向)に間隔をおいて複数設けられたフィン群(3)と、各フィン群(3)のプレートフィン(2)に貫通状に固定された左右方向にのびる複数の直管部(5)および隣り合う2つの直管部(5)を接続しかつ直管部(5)より1つ少ない数の屈曲管部(6)(7)よりなるアルミニウム製熱交換管(4)と、プレートフィン(2)に接触させられた左右方向にのびる複数の直管部(9)および隣り合う2つの直管部(9)を接続しかつ直管部(9)より1つ少ない数の屈曲管部(11)(12)よりなる除霜用パイプヒータ(8)と、すべてのフィン群(3)の左右方向外側に配置されたアルミニウム製側板(13)(14)とを備えており、図1に矢印Xで示すように、空気が下から上に流れるようになっている。 1 to 4, the evaporator (1) is composed of a plurality of aluminum plate fins (2) arranged in parallel in the left-right direction, and a plurality of evaporators (1) are provided at intervals in the vertical direction (ventilation direction). A fin group (3), a plurality of straight pipe parts (5) extending in the left-right direction fixed to the plate fins (2) of each fin group (3) and two adjacent straight pipe parts (5) Aluminum heat exchange pipe (4) consisting of bent pipe parts (6) and (7), one less than the straight pipe part (5) and extending in the left-right direction in contact with the plate fins (2) A defrosting pipe that connects a plurality of straight pipe portions (9) and two adjacent straight pipe portions (9) and has a number of bent pipe portions (11) and (12) that is one less than the straight pipe portions (9). A heater (8) and aluminum side plates (13) (14) arranged on the outer sides in the left-right direction of all the fin groups (3) are provided. As shown by an arrow X in FIG. Flow up It has become so.
プレートフィン(2)は、前後方向に長い方形の平板状であり、図5に示すように、その高さ方向の中央部に2つの貫通穴(15)が前後方向に間隔をおいて形成され、さらに各角部に切り欠き(16)が形成されている。そして、上下に隣接するフィン群(3)の近接した2つのプレートフィン(2)の切り欠き(16)により、除霜用パイプヒータ(8)の直管部(9)が嵌め入れられるヒータ用嵌入部(17)が形成されている。 The plate fin (2) has a rectangular flat plate shape that is long in the front-rear direction, and as shown in FIG. 5, two through holes (15) are formed at intervals in the front-rear direction at the center in the height direction. Further, a notch (16) is formed at each corner. And for the heater in which the straight pipe part (9) of the pipe heater (8) for defrosting is fitted by the notch (16) of the two plate fins (2) adjacent to the fin group (3) adjacent vertically A fitting portion (17) is formed.
空気流れ方向下流側(上側)のフィン群(3)の隣り合うプレートフィン(2)間のフィンピッチは、空気流れ方向上流側(下側)のフィン群(3)のフィンピッチよりも小さくなっている。図示の例では、フィン群(3)の隣り合うプレートフィン(2)間のフィンピッチは、下端のフィン群(3)が最も大きく、上方のフィン群(3)に向かうにつれて小さくなっている。 The fin pitch between adjacent plate fins (2) of the fin group (3) on the downstream side (upper side) in the air flow direction is smaller than the fin pitch of the fin group (3) on the upstream side (lower side) in the air flow direction. ing. In the illustrated example, the fin pitch between adjacent plate fins (2) of the fin group (3) is the largest at the lower end fin group (3) and decreases toward the upper fin group (3).
熱交換管(4)は、前後方向に間隔をおいた2つの垂直面内において、それぞれ上下方向に間隔をおいて設けられかつ左右方向にのびる複数の直管部(5)と、上下に隣り合う直管部(5)どうしを左右交互に接続する第1の屈曲管部(6)と、上端の2つの直管部(5)の右端部どうしを連結する第2の屈曲管部(7)とによって構成されている。熱交換管(4)の直管部(5)は、各フィン群(3)のプレートフィン(2)の各貫通穴(15)に通されてプレートフィン(2)に固定されている。 The heat exchange pipe (4) is vertically adjacent to a plurality of straight pipe sections (5) provided in the vertical direction and extending in the horizontal direction in two vertical planes spaced in the front-back direction. The first bent pipe part (6) for connecting the right and left straight pipe parts (5) alternately to the left and right, and the second bent pipe part (7 for connecting the right end parts of the two straight pipe parts (5) at the upper end) ) And. The straight pipe portion (5) of the heat exchange pipe (4) is passed through each through hole (15) of the plate fin (2) of each fin group (3) and fixed to the plate fin (2).
除霜用パイプヒータ(8)は、前後方向に間隔をおいた2つの垂直面内において、それぞれ上下方向に間隔をおいて設けられかつ左右方向にのびる複数の直管部(9)と、上下に隣り合う直管部(9)どうしを左右交互に接続する第1の屈曲管部(11)と、下端の2つの直管部(9)の左端部どうしを連結する第2の屈曲管部(12)とによって構成されている。除霜用パイプヒータ(8)の下端の直管部(9)を除いた直管部(9)は、上下に隣接するフィン群(3)の近接した2つのプレートフィン(2)の切り欠き(16)からなるヒータ用嵌入部(17)内に嵌め入れられており、これにより直管部(9)がプレートフィン(2)の前後両側縁部に接触している。また、除霜用パイプヒータ(8)の下端の直管部(9)は、下端のフィン群(3)のプレートフィン(2)における下側の切り欠き(16)内に嵌め入れられており、これにより直管部(9)がプレートフィン(2)の前後両側縁部に接触している。上端の2つの直管部(9)の右端部、すなわち除霜用パイプヒータ(8)の両端部は下方に屈曲させられており、ここにリード線(23)が接続されている。 The defrosting pipe heater (8) includes a plurality of straight pipe portions (9) provided in the vertical direction and spaced in the vertical direction in two vertical planes spaced in the front-rear direction, The first bent pipe part (11) that connects the straight pipe parts (9) adjacent to each other on the left and right alternately and the second bent pipe part that connects the left end parts of the two straight pipe parts (9) at the lower end (12). The straight pipe part (9), excluding the straight pipe part (9) at the lower end of the defrosting pipe heater (8), is a notch between two plate fins (2) adjacent to the fin group (3) adjacent vertically. (16) is inserted into the heater insertion portion (17), whereby the straight pipe portion (9) is in contact with the front and rear side edges of the plate fin (2). The straight pipe part (9) at the lower end of the defrosting pipe heater (8) is fitted into the lower notch (16) in the plate fin (2) of the fin group (3) at the lower end. Thus, the straight pipe portion (9) is in contact with the front and rear side edges of the plate fin (2). The right end portions of the two straight pipe portions (9) at the upper end, that is, both end portions of the defrosting pipe heater (8) are bent downward, and lead wires (23) are connected thereto.
図6および図7に示すように、除霜用パイプヒータ(8)は、ガラス製芯線(18)と、芯線(18)の周囲にコイル状に曲がれたヒータ線(19)と、芯線(18)およびヒータ線(19)の周囲を覆う電気絶縁体(21)と、芯線(18)、ヒータ線(19)および電気絶縁体(21)を収納するアルミニウム製パイプ(22)と、ヒータ線(19)の両端に接続された給電用リード線(23)とを有している。ヒータ線(19)とリード線(23)とは、パイプ(22)の両端部内に配置されたコネクタ(図示略)によって接続されており、コネクタの周囲はシリコンゴム(24)により覆われている。シリコンゴム(24)の一部はパイプ(22)の外部に突出している。 As shown in FIGS. 6 and 7, the defrosting pipe heater (8) includes a glass core wire (18), a heater wire (19) bent in a coil shape around the core wire (18), and a core wire (18 ) And the heater wire (19) and the electrical insulator (21), the core wire (18), the heater wire (19) and the aluminum pipe (22) that houses the electrical insulator (21), the heater wire ( 19) and a power supply lead wire (23) connected to both ends. The heater wire (19) and the lead wire (23) are connected by connectors (not shown) disposed in both ends of the pipe (22), and the periphery of the connector is covered with silicon rubber (24). . A part of the silicone rubber (24) protrudes outside the pipe (22).
除霜用パイプヒータ(8)におけるパイプ(22)の外周面の単位面積当たりの発熱量である発熱密度は、除霜用パイプヒータ(8)の長さ方向において部分的に異なっており、図6に範囲R1で示す中間部分(8a)の発熱密度は、範囲R2で示す両端寄り部分(8b)の発熱密度よりも高くなっている。ここでは、除霜用パイプヒータ(8)における範囲R1で示す中間部分(8a)のヒータ線(19)の巻ピッチ(P1)を、範囲R2で示す両端寄り部分(8b)のヒータ線(19)の巻ピッチ(P2)よりも小さくすることによって、除霜用パイプヒータ(8)における中間部分(8a)の発熱密度が、両端寄り部分(8b)の発熱密度よりも高くなっている。除霜用パイプヒータ(8)の中間部分(8a)の長さは、中間部分(8a)が蒸発器(1)の全高のうち下端(空気流れ方向上流端)から1/3までの高さ部分に存在するような長さであることが好ましい。 The heat generation density, which is the heat generation amount per unit area of the outer surface of the pipe (22) in the defrosting pipe heater (8), is partially different in the length direction of the defrosting pipe heater (8). In FIG. 6, the heat generation density of the intermediate portion (8a) indicated by the range R1 is higher than the heat generation density of the end portions (8b) indicated by the range R2. Here, the winding pitch (P1) of the heater wire (19) of the intermediate portion (8a) indicated by the range R1 in the defrosting pipe heater (8) is set to the heater wire (19 ) Is smaller than the winding pitch (P2), the heat generation density of the intermediate portion (8a) in the defrosting pipe heater (8) is higher than the heat generation density of the end portions (8b). The length of the middle part (8a) of the pipe heater (8) for defrosting is the height from the lower end (the upstream end in the air flow direction) to 1/3 of the total height of the evaporator (1). It is preferable that the length is present in the portion.
左側板(13)には、熱交換管(4)の第1屈曲管部(6)および各第1屈曲管部(6)により接続された上下に隣り合う直管部(5)の左端部を通す縦長貫通穴(25)、ならびに除霜用パイプヒータ(8)の各直管部(9)の左端部を嵌め入れる切り欠き(26)が形成されている。右側板(14)には、熱交換管(4)の第1屈曲管部(6)および各第1屈曲管部(6)により接続された上下に隣り合う直管部(5)の右端部を通す縦長貫通穴(25)、熱交換管(4)の第2屈曲管部(7)および第2屈曲管部(7)により接続された前後に隣り合う直管部(5)の右端部を通す横長貫通穴(27)、ならびに除霜用パイプヒータ(8)の各直管部(9)の右端部を嵌め入れる切り欠き(26)が形成されている。 The left side plate (13) has a first bent pipe part (6) of the heat exchange pipe (4) and a left end part of the straight pipe part (5) adjacent to each other connected by the first bent pipe parts (6). A vertically long through-hole (25) through which the pipe passes and a notch (26) into which the left end of each straight pipe part (9) of the defrosting pipe heater (8) is fitted are formed. The right side plate (14) includes a first bent pipe portion (6) of the heat exchange pipe (4) and a right end portion of the straight pipe portion (5) adjacent to each other connected by the first bent pipe portions (6). The right end of the straight pipe part (5) adjacent to the front and rear connected by the vertically long through hole (25) through which the second through pipe (7) and the second bent pipe part (7) of the heat exchange pipe (4) pass. A laterally long through hole (27) for passing through and a notch (26) into which the right end portion of each straight pipe portion (9) of the defrosting pipe heater (8) is fitted are formed.
蒸発器(1)は、圧縮機および凝縮器とともに冷凍サイクルを構成する。このような冷凍サイクルは、冷蔵装置の断熱箱体内に配置される。 The evaporator (1) constitutes a refrigeration cycle together with a compressor and a condenser. Such a refrigerating cycle is arrange | positioned in the heat insulation box of a refrigerator.
上記蒸発器(1)において、冷媒は、下端の後側の直管部(5)に流入して熱交換管(4)内を流れ、図1に矢印Xで示すように、下方から上方に流れる空気と熱交換をし、熱交換管(4)の下端の前側の直管部(5)から流出する。 In the evaporator (1), the refrigerant flows into the straight pipe section (5) on the rear side of the lower end and flows in the heat exchange pipe (4), and from below to above as indicated by an arrow X in FIG. It exchanges heat with the flowing air and flows out from the straight pipe part (5) on the front side at the lower end of the heat exchange pipe (4).
そして、各プレートフィン(2)における直管部(5)が貫通した貫通穴(15)の周囲の部分の近傍に着霜が発生する。プレートフィン(2)に付着する霜の量は、空気流れ方向の上流側(下側)で多くなり、空気流れ方向の下流側(上側)で少なくなる傾向を示す。しかしながら、除霜用パイプヒータ(8)における空気流れ方向上流側に位置する中間部分(8a)の発熱密度が、空気流れ方向下流側に位置する両端寄り部分(8b)の発熱密度よりも高くなっているので、着霜量が多い空気流れ方向上流側においてプレートフィン(2)に接触している除霜用パイプヒータ(8)の中間部分(8a)からの発熱量を多くし、同じく着霜量が少ない空気流れ方向下流側においてプレートフィン(2)に接触している両端寄り部分(8b)からの発熱量を少なくすることができる。したがって、空気流れ方向上流側においてプレートフィン(2)に付着した霜の除霜時間を短縮するとともに、除霜用パイプヒータ(8)の両端寄り部分(8b)からの発熱量が余剰になることを抑制し、消費電力量を減少することが可能になるか、あるいは空気流れ方向上流側においてプレートフィン(2)に付着した霜の除霜時間が長くなることを防止するとともに、除霜用パイプヒータ(8)の両端寄り部分(8b)からの発熱量を減少させることができる。その結果、いずれの場合も消費電力量が減少する。 Then, frost formation occurs in the vicinity of the portion around the through hole (15) through which the straight pipe portion (5) passes in each plate fin (2). The amount of frost adhering to the plate fin (2) tends to increase on the upstream side (lower side) in the air flow direction and decrease on the downstream side (upper side) in the air flow direction. However, the heat generation density of the intermediate portion (8a) located upstream in the air flow direction of the defrosting pipe heater (8) is higher than the heat generation density of the end portions (8b) located downstream in the air flow direction. Therefore, the amount of heat generated from the middle part (8a) of the defrosting pipe heater (8) in contact with the plate fin (2) on the upstream side in the air flow direction with a large amount of frost formation is increased, It is possible to reduce the amount of heat generated from the portion (8b) near both ends contacting the plate fin (2) on the downstream side in the air flow direction with a small amount. Therefore, the defrosting time of the frost adhering to the plate fin (2) on the upstream side in the air flow direction is shortened, and the amount of heat generated from the end portions (8b) near both ends of the defrosting pipe heater (8) is excessive. It is possible to reduce the amount of power consumption or to prevent the frost attached to the plate fin (2) on the upstream side in the air flow direction from being prolonged and the defrost pipe The amount of heat generated from both ends (8b) of the heater (8) can be reduced. As a result, the power consumption is reduced in any case.
しかも、除霜用パイプヒータ(8)の長さ方向の両端部からの発熱量を、ヒータ線(19)とリード線(23)を接続するコネクタの近傍でのリード線(23)の損傷や、ヒータ線(19)とリード線(23)を接続するコネクタの周囲に配置されるシリコンゴム(24)の損傷などを防止しうるような発熱量に設定することができる。 In addition, the amount of heat generated from both ends in the length direction of the defrosting pipe heater (8) can be determined by measuring whether the lead wire (23) is damaged near the connector connecting the heater wire (19) and the lead wire (23). The heating value can be set so as to prevent the silicon rubber (24) disposed around the connector connecting the heater wire (19) and the lead wire (23) from being damaged.
上記実施形態においては、空気流れ方向下流側(上側)のフィン群の隣り合うプレートフィン間のフィンピッチは、空気流れ方向上流側(下側)のフィン群のフィンピッチよりも小さくなっているが、これに限定されるものではなく、すべてのフィン群のフィンピッチが等しくなっていてもよい。 In the above embodiment, the fin pitch between adjacent plate fins in the air flow direction downstream (upper) fin group is smaller than the fin pitch of the air flow direction upstream (lower) fin group. However, the present invention is not limited to this, and the fin pitches of all the fin groups may be equal.
この発明による蒸発器は、冷蔵庫、冷蔵ショーケース、冷凍庫、冷凍ショーケースなどの冷凍・冷蔵装置に用いられる冷凍サイクルに好適に使用される。 The evaporator according to the present invention is suitably used for a refrigeration cycle used in a refrigeration / refrigeration apparatus such as a refrigerator, a refrigerated showcase, a freezer, and a refrigerated showcase.
(1):蒸発器
(2):プレートフィン
(3):フィン群
(4):熱交換管
(5):直管部
(6)(7):屈曲管部
(8):除霜用パイプヒータ
(9):直管部
(11)(12):屈曲管部
(19):ヒータ線
(22):パイプ
(23):給電用リード線
(1): Evaporator
(2): Plate fin
(3): Fin group
(4): Heat exchange pipe
(5): Straight pipe
(6) (7): Bent tube
(8): Pipe heater for defrosting
(9): Straight pipe
(11) (12): Bent tube
(19): Heater wire
(22): Pipe
(23): Lead wire for power supply
Claims (3)
除霜用パイプヒータにおけるパイプの外周面の単位面積当たりの発熱量である発熱密度が、長さ方向の中間部分において両端寄り部分よりも高くなっており、除霜用パイプヒータのヒータ線がコイル状であり、発熱密度の高い部分のピッチが、低い部分のピッチよりも小さくなっており、除霜用パイプヒータの上端が蒸発器高さ方向の中間部に位置し、除霜用パイプヒータの前記中間部分が、蒸発器下端から1/3までの高さ部分に存在している蒸発器。 A plurality of plate fins arranged in parallel, a plurality of straight pipe portions attached in a penetrating manner to the plate fins, and two adjacent straight pipe portions, and one less bent pipe portion than the straight pipe portions A pipe heater for defrosting comprising a heat exchange pipe comprising a plurality of straight pipe parts brought into contact with plate fins and two adjacent straight pipe parts and having one less bent pipe part than the straight pipe parts The defrosting pipe heater has a heater wire, a pipe for housing the heater wire, and a power supply lead wire connected to both ends of the heater wire so that air flows from the bottom to the top. In the evaporator
In the defrosting pipe heater, the heat generation density, which is the heat generation amount per unit area of the outer peripheral surface of the pipe, is higher in the middle part in the length direction than the parts near both ends, and the heater wire of the defrosting pipe heater is coiled The pitch of the part where the heat generation density is high is smaller than the pitch of the low part, and the upper end of the defrosting pipe heater is located in the middle of the evaporator height direction. The evaporator in which the intermediate portion exists in a height portion from the lower end of the evaporator to 1/3 .
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010232416A JP5636253B2 (en) | 2010-10-15 | 2010-10-15 | Evaporator |
CN2011203905657U CN202562138U (en) | 2010-10-15 | 2011-10-14 | Evaporator |
KR1020110105091A KR20120039488A (en) | 2010-10-15 | 2011-10-14 | Evaporator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010232416A JP5636253B2 (en) | 2010-10-15 | 2010-10-15 | Evaporator |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012087949A JP2012087949A (en) | 2012-05-10 |
JP5636253B2 true JP5636253B2 (en) | 2014-12-03 |
Family
ID=46139843
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010232416A Active JP5636253B2 (en) | 2010-10-15 | 2010-10-15 | Evaporator |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5636253B2 (en) |
KR (1) | KR20120039488A (en) |
CN (1) | CN202562138U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017003163A (en) * | 2015-06-08 | 2017-01-05 | 昭和電工株式会社 | Evaporator |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102840723A (en) * | 2012-10-12 | 2012-12-26 | 苏州金科信汇光电科技有限公司 | Anti-freezing device for cooling coil |
CN104567114B (en) * | 2013-10-28 | 2017-08-01 | 珠海格力电器股份有限公司 | Heat exchanger |
JP2015212587A (en) * | 2014-05-01 | 2015-11-26 | 昭和電工株式会社 | Evaporator |
DE102014222851A1 (en) * | 2014-11-10 | 2016-05-12 | BSH Hausgeräte GmbH | No-frost refrigerating appliance |
CN104612834A (en) * | 2014-11-27 | 2015-05-13 | 北京航空航天大学 | Spiral tube heat exchanger suitable for aviation engine |
CN104501478B (en) * | 2014-12-29 | 2016-09-28 | 苏州苏试试验仪器股份有限公司 | A kind of environmental test chamber vaporizer |
CN105758068A (en) * | 2016-04-19 | 2016-07-13 | 合肥太通制冷科技有限公司 | Six-layer stacked dense denoising and defrosting finned evaporator |
US11137194B2 (en) * | 2019-07-22 | 2021-10-05 | Electrolux Home Products, Inc. | Contact defrost heater for bottom mount to evaporator |
CN111765705A (en) * | 2020-06-28 | 2020-10-13 | 珠海格力电器股份有限公司 | Evaporator and heater assembling structure and refrigerator |
CN114076471B (en) * | 2020-08-18 | 2023-03-17 | 青岛海尔电冰箱有限公司 | Refrigerator with evaporator arranged at bottom of refrigerator body |
DE102020211910A1 (en) * | 2020-09-23 | 2022-03-24 | BSH Hausgeräte GmbH | Heat exchanger for a refrigeration device, method for producing a heat exchanger and refrigeration device |
CN112179016A (en) * | 2020-09-27 | 2021-01-05 | 海信容声(广东)冰箱有限公司 | Refrigerator with a door |
CN217636335U (en) * | 2022-04-29 | 2022-10-21 | 宁波韩电电器有限公司 | Heat exchange device with compensation heating function for refrigerator |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100445480B1 (en) * | 2001-12-21 | 2004-08-21 | 엘지전자 주식회사 | Heater assembly for refrigerator |
JP2007046868A (en) * | 2005-08-12 | 2007-02-22 | Showa Denko Kk | Evaporator |
-
2010
- 2010-10-15 JP JP2010232416A patent/JP5636253B2/en active Active
-
2011
- 2011-10-14 KR KR1020110105091A patent/KR20120039488A/en not_active Application Discontinuation
- 2011-10-14 CN CN2011203905657U patent/CN202562138U/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017003163A (en) * | 2015-06-08 | 2017-01-05 | 昭和電工株式会社 | Evaporator |
Also Published As
Publication number | Publication date |
---|---|
KR20120039488A (en) | 2012-04-25 |
JP2012087949A (en) | 2012-05-10 |
CN202562138U (en) | 2012-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5636253B2 (en) | Evaporator | |
US8887520B2 (en) | Heat exchanger and air conditioner having the heat exchanger mounted therein | |
JP4796800B2 (en) | Evaporator | |
US5186022A (en) | Evaporator structure for refrigerator-freezer | |
US20180100659A1 (en) | Heat exchanger and air-conditioning apparatus | |
JP2003194452A (en) | Device for defrosting evaporator for refrigerator | |
KR100308449B1 (en) | Refrigerator Condenser | |
US20110138834A1 (en) | Refrigerating apparatus and storge device using the same | |
CN103574994B (en) | Heat exchanger | |
JP2007046868A (en) | Evaporator | |
EP0479590B1 (en) | Refrigerator | |
JP2015212587A (en) | Evaporator | |
JP2007139278A (en) | Heat exchanger, and cold instrument using it | |
KR101468912B1 (en) | Rear wall condenser for domestic refrigerators and freezers | |
JP4995308B2 (en) | Air conditioner indoor unit | |
JP6491544B2 (en) | Evaporator | |
KR20110087917A (en) | Refrigerator | |
KR20140058911A (en) | Defrost heater arrangement structure | |
JPH11264632A (en) | Heat exchanger and manufacture thereof | |
JP6859093B2 (en) | Evaporator | |
CN219244005U (en) | Refrigerator with a refrigerator body | |
CN220206106U (en) | Evaporator, refrigerating device and refrigerating equipment | |
CN218523687U (en) | Air cooler | |
CN201688628U (en) | Wire tube type evaporator | |
EP2153140A1 (en) | A cooling device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130724 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140218 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140219 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140415 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140924 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141020 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5636253 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |