EP3189939A1 - Perfectionnements pour un outil de fixation a gaz - Google Patents

Perfectionnements pour un outil de fixation a gaz Download PDF

Info

Publication number
EP3189939A1
EP3189939A1 EP17157756.2A EP17157756A EP3189939A1 EP 3189939 A1 EP3189939 A1 EP 3189939A1 EP 17157756 A EP17157756 A EP 17157756A EP 3189939 A1 EP3189939 A1 EP 3189939A1
Authority
EP
European Patent Office
Prior art keywords
piston
fuel
chamber
combustion chamber
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP17157756.2A
Other languages
German (de)
English (en)
Other versions
EP3189939B1 (fr
Inventor
Pierre Cordeiro
Patrick Herelier
Frédéric Nayrac
Christian Ricordi
Alain Vettoretti
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Illinois Tool Works Inc
Original Assignee
Illinois Tool Works Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Illinois Tool Works Inc filed Critical Illinois Tool Works Inc
Publication of EP3189939A1 publication Critical patent/EP3189939A1/fr
Application granted granted Critical
Publication of EP3189939B1 publication Critical patent/EP3189939B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25CHAND-HELD NAILING OR STAPLING TOOLS; MANUALLY OPERATED PORTABLE STAPLING TOOLS
    • B25C1/00Hand-held nailing tools; Nail feeding devices
    • B25C1/08Hand-held nailing tools; Nail feeding devices operated by combustion pressure

Definitions

  • the invention relates to improvements for a gas fastening tool and a gas fastening tool comprising at least one of these improvements.
  • the state of the art includes the documents EP-B1-123 717 , EP-B1-1 243 383 and EP-B1-2 087 220 .
  • Sealing or fixing tools are tools comprising an internal combustion engine operating by firing a fuel-air mixture in a combustion chamber, the fuel being injected into the chamber by a device injection from a fuel cartridge. Such tools are intended to drive fasteners in support materials (such as wood, concrete or steel) to fix parts. Gas tools are now widespread and can be used to install fasteners such as staple, nail, point, pin, etc.
  • fuel for an internal combustion engine there may be mentioned for example gasoline, alcohol, in liquid form and / or gas.
  • such a tool is portable and comprises a housing in which is mounted the propulsion internal combustion engine of a driving piston of a fastener.
  • a tool may also include a battery power supply and a handle, handling and shooting on which is mounted a detent actuating the tool.
  • the present invention provides improvements to this technology.
  • the invention relates to a combustion or pre-combustion chamber for a gas fixation tool, comprising a casing defining a combustion cavity having a generally elongate shape of longitudinal axis X, characterized in that said cavity has a variable cross section along said axis X.
  • the invention can thus reduce the size of the chamber, for example by reducing its length. This reduction in length can reduce the travel time required for the flame to cross the chamber longitudinally, thereby reducing the time of a firing cycle by the tool.
  • the invention can further optimize the spatial distribution of the mass of the chamber inside the tool, for example to move the center of gravity of the tool in a predetermined area.
  • the invention relates to a combustion chamber or pre-combustion chamber for a gas fixation tool, comprising a casing defining a combustion cavity, characterized in that said cavity has at least partly a spherical or ovoid shape.
  • the invention is advantageous because it reduces the edges and sharp edges inside the cavity, the inventors having found that these elements create dead zones of combustion and flow, which reduce the efficiency of combustion and filling (and purging) and therefore the performance of the tool.
  • the invention relates to a working chamber for a gas fastening tool, comprising a housing defining a housing in which is mounted and can slide a piston for driving a fastener, said piston being configured to be displaced in translation in said housing from a rest position to a working position, the chamber further comprising dynamic sealing means between said piston and said casing for sealing during said movement, characterized in that it further comprises static sealing means between said piston and said casing to ensure a seal when said piston is in its rest position, said means static sealing being independent of said dynamic sealing means.
  • the sealing means thus have distinct functions.
  • the chamber is equipped with static sealing means, that is to say they are designed to ensure a seal between the piston and the housing of the chamber apart from all relative motion between them. This sealing is ensured when the piston is in its rest position, which makes it possible to ensure a tight closure of the combustion chamber, which communicates with the internal displacement cavity of the piston, and to optimize the combustion of the air-to-air mixture. fuel in the combustion chamber.
  • the complex evaporation means of the prior art are replaced by a plane filter and evaporation spaces, which simplifies the evaporator block and reduce the cost.
  • the present invention also relates to a gas fastening tool, comprising a chamber or several chambers as described above, and / or a device as defined above.
  • the tool 10 shown on the figure 1 comprises a housing 12 in which there is an internal combustion engine 14, with a combustion chamber for containing a mixture of air and fuel whose ignition causes the propulsion of a piston intended to drive a fastener element extracted from a feed magazine 16, the fastener being adapted to be anchored in a support material, at the outlet of a guide-tip 18 extending to the front of the housing 12. All these components gas fastening tools are well known to those skilled in the art and therefore they have not all been represented in the drawing.
  • the tool housing has an axis 20 along which the drive piston moves and in the tip guide 18 the fasteners.
  • the tool comprises a handle 22 for gripping and handling the tool. It extends, from the housing and outside thereof, substantially perpendicular to the axis 20, slightly inclined on it according to the application of the tool and the ergonomics during use.
  • the handle 22 is also used for firing, by an actuation trigger 24 mounted on it, in the zone 26 of its connection to the housing 12.
  • the fuel supply to the combustion chamber of the engine 14 is effected by means of an injection device 28 from a cartridge 30 of combustible gas.
  • the injection device 28 and the cartridge 30 are housed in an arm 32 connected to the housing 12, which extends substantially perpendicularly to the axis 20, in front of the handle 22, and in which the store is also provided. 16.
  • Another arm 34 extends substantially parallel to the axis 20, between the handle 22 and the arm 32, so as to form a bridge between the two, the (lower) side opposite the housing 12.
  • An aspect of the invention illustrated by the figure 2 relates to the device 28 for injecting fuel into the engine from a fuel cartridge 30.
  • the fuel is in the liquid state in the cartridge and must be evaporated, the fuel gas being intended to be mixed with air before being burned in the combustion chamber of the engine.
  • An injection device of a gas fixation tool must thus allow the evaporation of the fuel.
  • the document EP-B1-2 087 220 discloses a liquid fuel supply and evaporation system for converting a liquid fuel to a gaseous fuel.
  • This system comprises an evaporator element associated with a heated casing for heating the evaporator element.
  • the evaporator element is made of sintered metal and has a generally conical or frustoconical shape.
  • This technology is complex and relatively bulky, in particular because of the particular shape of the evaporator element. This technology is also relatively expensive.
  • this evaporator element is relatively fragile and has a low resistance to vibrations and shocks generated during the operation of a fixing tool.
  • the fuel used to operate these tools may contain lubricants, additives, or even impurities, the evaporator element can become clogged thereby blocking the passage of fuel therethrough. The result of this situation is the malfunction of the tool, which requires disassembly and cleaning of the evaporator element and possibly its replacement because the cleaning operation can damage this element.
  • the filters consist essentially of a screen, a lattice, a grid, a fabric, a fabric, a foam, or fibers. These filters are made of metal or plastic, or from mineral or natural fibers. The purpose of these filters is to trap the particles contained in the fuel while allowing the fuel to flow through the filter.
  • the evaporator element is removed.
  • the use of a filter arranged in the simplified injection device, combined with an evaporation cavity makes it possible to optimally vaporise the fuel with a view to supplying the combustion chamber of the tool.
  • the figure 2 represents an embodiment of the injection device 28.
  • a valve 40 for calibrating a quantity of liquid fuel is interposed between the liquid fuel cartridge 30 and the simplified evaporator unit 42.
  • a filter 44 is disposed in a housing or bore 46 provided in the block 42.
  • a predetermined quantity of liquid fuel is discharged from the cartridge 30 through the valve 40 into the block 42, passing through the filter 44, and arrives in the evaporation cavity 47.
  • the block 42 is made of a heat-conducting material, such as metal.
  • the liquid fuel flowing through the filter 44 is at least partially converted to gaseous fuel by the heat input of the ambient medium, which transmits calories to the evaporator block 42.
  • the at least partially vaporized fuel continues to circulate in the block 42, and absorbs additional heat from the environment.
  • the downstream portion of the block 42 includes an evaporation line 48, acting as a distribution manifold, to the combustion chamber 50 of the attachment tool.
  • the sizing parameters of the device 28, and in particular of the cavity 47 and the pipe 48, such as the length, the diameter, the thickness, etc., are designed so that the fuel is entirely converted into the outlet of a downstream discharge orifice 51 of the pipe 48.
  • the block 42 and / or the pipe 48 may optionally comprise one or more fins 52 disposed at least on one of their surfaces. .
  • the gaseous fuel can be directly injected into the combustion chamber 50.
  • the gaseous fuel leaving the discharge orifice 51 can supply one or more fuel outlet nozzles 54 and feeding room
  • the fuel gas may alternatively supply a jet pump 56 of the venturi type, into which ambient air is entrained in the jet pump 56, and mixed with the gaseous fuel injected through the nozzle (s) 54, in order to form an air-fuel mixture for supplying the combustion chamber 50.
  • This evaporator block 42 is therefore easier to manufacture and less expensive.
  • the filter is flat and therefore relatively simple. It extends substantially in a plane parallel to the axis Z of the cartridge 30. It has for example a form of pellet, disk or block. It is much simpler and less fragile than the complex parts used in the prior art. Therefore, the simplified evaporator block is also easier to maintain when needed, although the need for maintenance of such a block is also significantly reduced.
  • the figure 3 is a schematic perspective view of device 28 of the figure 2 and shows in particular that the pipe 48 is formed in one piece with a part of the evaporator block 42.
  • the pipe 48 has a general shape of S or L.
  • the cavity 47 has a T-shaped section whose upstream portion of larger transverse dimension forms the housing 46 for receiving the filter.
  • the cavity 47 communicates with a rectilinear end portion of the pipe 48.
  • the pipe comprises another rectilinear end portion which defines the discharge orifice 51. These two portions are parallel and connected to each other by a median rectilinear portion of the duct, which extends substantially parallel to the longitudinal axis Z of the cartridge 30. This rectilinear portion may be closed sealingly by a screw at its connection to the straight end portion which defines the discharge port 51.
  • the evaporator block 42 comprises a bore in which is mounted and slidable, along the longitudinal axis Z of the cartridge 30, an actuating member 58.
  • This actuating member has a rectilinear elongated shape and comprises an internal bore. 60 in the form of T or L.
  • This bore comprises a first axial portion which extends along the member 58 and opens out at the lower end thereof, and a radial portion extending between the upper end of the axial portion and the periphery of the member. The outlet of this radial portion is located next to the filter 44.
  • the member 58 is movable between two positions: a high position or rest represented at the figure 4a and a low or working position represented at the figure 4b . In both cases, the aforementioned radial outlet of the bore is located opposite the filter 44. Seals are provided between the member 58 and the bore in which it is mounted.
  • the lower end of the member 58 is configured to cooperate by interlocking with a connecting end of the cartridge 30.
  • the displacement of the member 58, from its rest position to its working position, causes the release of a calibrated quantity of fuel from the cartridge 30.
  • This fuel in liquid form, circulates in the bore 60 of the member 58 and passes through the filter 44, which retains any impurities, before entering the cavity 47 in which is initiated the conversion of the liquid fuel gaseous fuel.
  • the fuel circulates in the pipe 48 to complete its evaporation and arrives in the gaseous state at the nozzle 54. It is then sprayed into the jet pump 56 and mixed with air which enters the pump by venturi effect. the air-fuel mixture is then injected into the chamber 50 of the engine.
  • the block 42 is located above the cartridge 30, the pipe 48 extends partly on one side of the cartridge, and the jet pump 56 has an orientation substantially perpendicular to the longitudinal axis Z of the or cartridge 48.
  • the cartridge 30, the block 42 and the pipe 48 are housed in the arm 32 and the jet pump extends in the arm 34, the combustion chamber 50 then being housed in the handle 22 of the tool of the figure 1 .
  • the filter 44 has for example a permeability less than 50 darcy and preferably between 10 to 33 darcy, which allows to filter particles with a diameter of between 7 .mu.m and 14 .mu.m, with an efficiency of 98 to 99.9%.
  • a heat engine of a gas fastening tool comprises a combustion chamber and a working chamber in which a driving piston of a fastener is able to move under the effect of the explosion of the air mixture. -combustible in the combustion chamber.
  • the engine comprises a pre-combustion chamber 60 and a combustion chamber 50.
  • the first combustion chamber or pre-combustion chamber 60 initiates the combustion of the air-fuel mixture.
  • This chamber 60 comprises a housing 62 which defines a combustion cavity 64 in which ignition means such as a spark plug 65 are mounted.
  • the chambers 60, 50 are separated from one another by a valve 66. Pre-combustion of the mixture in the chamber 60 causes an increase in pressure in the cavity 64. When this pressure exceeds a certain threshold, the valve opens and passes the fuel mixture through the chamber 50.
  • the chamber 50 comprises a casing 68 defining a combustion cavity 70.
  • the mixture arrives in the chamber 50 with a relatively high pressure.
  • the flame from the chamber 60 reaches the chamber 50, the combustion at high pressure in the chamber 50 to improve the performance of the tool.
  • the combustion 50 in the chamber causes an increase in pressure in the cavity 70, which forces the piston 78 to move in the working chamber 80.
  • a pre-combustion chamber 60 of elongated shape a longitudinal end of which is connected to the combustion chamber 50, and whose opposite longitudinal end comprises the spark plug 64.
  • the output power of the combustion chamber 50 can be increased up to fifty percent (50%) simply by extending the precombustion chamber 60.
  • the precombustion chamber 60 has a predetermined length B and a predetermined width A, in which the length B is substantially greater than the width A. More particularly, the ratio of the length B to the width A, known as the ratio or ratio the appearance of the precombustion chamber 60, is at least 2: 1, and can be much larger with an optimum around 10: 1 according to the same document.
  • a pre-combustion chamber may have a round, oval, rectangular, or other shape, in cross section, as long as its length is greater than its width.
  • the pre-combustion chamber 60 of the prior art has a relative elongation B which is detrimental for the tool in terms of size.
  • Another disadvantage of this pre-combustion chamber 60 is that the longer the precombustion chamber, the longer the delay between the ignition of the spark and the ignition of the combustion chamber 50 is important. This can increase the duration of the firing cycle of the tool, which is problematic for some fastening applications.
  • the design of the pre-combustion chamber 60 is not optimal in terms of ergonomics.
  • the inventors have kept the total volume of the chambers 50, 60 constant.
  • the total quantities of air mixture -combustible are comparable, and therefore the same total amounts of raw energy are available.
  • the volume of the pre-combustion chamber 60 is designated V1, and the main volume of the combustion chamber 50 is V2.
  • V1 + V2 is constant for all the tests.
  • the object of the invention is to improve the performance of the pre-combustion chamber 60, the inventors have kept V1 the same for all embodiments.
  • the inventors have found that, by keeping V1 constant, an interesting effect has been achieved by changing the configuration of the precombustion chamber 60 from an elongated form of constant cross-section to an elongated shape whose cross section varies along the longitudinal axis of the chamber. It may have a cross section that is staggered or has a frustoconical shape.
  • the pre-combustion chamber has, from the spark plug 65, in the direction of the combustion chamber 50, an increasing section.
  • the pre-combustion chamber 60 has two parts, the first part having the spark plug 65 and having a first maximum inside diameter which is smaller than the minimum inside diameter of the second part.
  • At least one diameter, and preferably both diameters of the first and second portions are constant.
  • the elongate chamber of constant cross section is replaced by two portions, one upper, has a larger cross section S2 than S1 of the other, lower.
  • the chamber 60 thus has a generally T-shaped longitudinal section. Consequently, while keeping the volume V1 constant, this mode of embodiment has a length less than the length B of the prior art. As a result, the size of the tool can be reduced.
  • the reduction of the length of the pre-combustion chamber 60 makes it possible to reduce the distance between the spark plug 65 and the combustion chamber 50, which has the advantage of reducing the ignition time of the chamber 50, as well as the overall duration of the a shooting cycle.
  • the invention thus provides an effective precombustion chamber for a tool that is less bulky and can operate faster than those of the prior art.
  • the figure 7 shows an alternative embodiment of the precombustion chamber 60.
  • This figure shows a precombustion chamber 60 which has a portion having a horizontal extension component forward, so that the shortest fluid flow line between the spark plug 65 and the connection to the combustion chamber 50a (at least partly) a horizontal component inclined towards the rear of the tool, coming from the spark plug.
  • the pre-combustion chamber is no longer located entirely on one side of the tool so that the combustion chamber and the working chamber 80 do not necessarily form a conventional L-shaped architecture, that is, say a tool similar to a "gun".
  • the pre-combustion chamber 60 comprises at least two parts, the first of these parts being the one connected to the combustion chamber 50 and the second part being the furthest away from the combustion chamber 50.
  • the lateral wall 82 of the pre-combustion chamber 60 in the first part is closer to the rear end of the tool, than is the side wall of the pre-combustion chamber in the second part.
  • the second portion comprises the spark plug 65.
  • the tool is configured such that the tool is clamped around the precombustion chamber.
  • At least one diameter, and preferably both diameters of the first and second portions are constant.
  • the elongate chamber of constant cross section is replaced by two portions, one upper, has a larger cross section S2 than S1 of the other, lower.
  • the chamber 60 thus has a generally L-shaped longitudinal section. Consequently, while keeping the volume V1 constant, this embodiment has a length less than the length B of the prior art. As a result, the size of the tool can be reduced.
  • the pre-combustion chamber 60 is no longer rectilinear, but includes a curvature to move the handle of the tool (which contains the pre-combustion chamber) closer to the center of gravity of the 'tool.
  • a horizontal part is present.
  • the side wall 83 (left) of the pre-combustion chamber in the portion with the spark plug is positioned closer to the side wall (right) 84 of the portion connected to the combustion chamber.
  • V1 While keeping constant V1 with respect to the prior art, the invention makes it possible to keep a level of performance comparable, or even identical, in terms of energy production, in a tool that is much better balanced.
  • the combustion chamber 50 of a tool is generally adjacent to the working chamber 80 in which the piston 78 is displaced by the combustion of the air-fuel mixture.
  • the combustion chamber 50 has a generally cylindrical shape on the side of the working chamber 80.
  • this combustion chamber 50 has the shape of a flat cylinder having a diameter D and a height H, and its cavity 70 has a volume V2.
  • This chamber 50 does not lead to an optimal energy output. They found an improved form for the combustion chamber that improves energy production.
  • FIG. 8 A preferred embodiment is presented at figure 8 wherein the combustion chamber defines a spherical or ovoid combustion cavity.
  • This spherical / ovoid shape leads to better mixing, and proper fuel distribution and flue gas scavenging.
  • the inventors have indeed discovered that this form does not have dead zones because of the presence of edges in the cavity. These edges affect both the flow and the combustion flame. The flow tends to stop as the edges approach, resulting in dead zones. The flame is also affected by these edges because it tends to go out when approaching the edges.
  • the new form removes most, if not all, of the damaging dead spots that exist in the prior art. Even if the combustion volume is not a perfect sphere, any edge that can be removed from the volume of the combustion chamber optimizes the inlet and outlet flows of the chamber for optimal feeding with the air-fuel mixture and the optimal flushing of the combustion gases.
  • a partially spherical shape may also be replaced by a partially ovoid shape or any other shape that does not have or has a minimal number of edges, for example a shape where the radius of curvature of the upper part of the bottom wall (left) of the combustion chamber 50 is greater than or equal to 25%, preferably 50% smaller than the smallest diameter of the prior art combustion chamber (for example, H).
  • the combustion chamber 50 comprises a casing 68 defining three openings, two of which 50a, 50b are aligned on the same axis U, which corresponds to the longitudinal axis of the pre-combustion chamber or part thereof, and a third 50c is aligned on a Y axis substantially perpendicular to the axis U.
  • the casing 68 comprises a first half-shell 68a having a first wall 68aa in sphere portion.
  • This first wall 68aa is a median wall which is located between two end walls 68ab each in cylinder portion.
  • the end walls 68ab partially define the openings 50a, 50b of axis U.
  • the casing 68 comprises a second half-shell 68b having two end walls 68bb each in cylinder portion and defining the rest of the axis openings. U, and a cylindrical wall 68ba defining the Y axis opening.
  • the opening 50a provides fluid communication with the cavity of the pre-combustion chamber.
  • the opening 50c provides fluid communication with the internal cavity of the working chamber, and the opening 50b provides fluid communication with the atmosphere.
  • the opening 50a can be closed by the said valve 66 and the opening 50b can be closed by a valve 84 whose moving body is carried by a rod which also carries the valve 66.
  • the performance of a combustion-powered fastener tool is based in particular on the ability of the piston to effectively convert the pressure energy generated by the combustion of the explosive mixture into kinetic energy transferred to the fastener. This efficient conversion is affected by leaks that occur between the piston and the housing of the working chamber.
  • pistons and housings are very well known because they are used in all tools.
  • the combustion chamber design and combustion technology may vary from tool to tool, but the reciprocating piston in the crankcase will remain essentially the same for the different fasteners.
  • the piston used in such a tool conventionally comprises dynamic sealing means, that is to say means used to ensure a seal between the piston and the housing of the working chamber during the displacement stroke of the piston. This stroke results from a pressure difference between the two sides of the piston (combustion for driving and vacuum for return).
  • the seals according to the prior art are configured to provide a dynamic seal.
  • the piston In its initial retracted position, the piston must first be kept sealed to contain the pressure generated by the combustion of the air-fuel mixture. As mentioned above, whenever the mixture is supercharged, or when the combustion technology uses a pre-combustion chamber, the resulting pre-pressure generated by the pre-combustion chamber, prior to ignition of the combustion chamber, must remain tight and maintain the combustion chamber without leakage. During this preliminary phase, the piston must therefore be watertight as much as possible. Ideally, the piston should also remain stable to keep the volume of the firebox low to maximize pressure until combustion is almost complete. Ideally also, in this preliminary phase, the piston should be maintained until a peak pressure occurs and combustion ends. This requirement to maintain the piston in a preliminary phase has been addressed in the prior art using magnets or mechanisms, including balls, springs and / or cams. All of these piston retention mechanisms are generally bulky, complex and expensive.
  • the requirement is to ensure maximum sealing between the piston and the housing of the working chamber and therefore to have a maximum static seal when the piston is in the rest position.
  • the piston should be held in this position, in a sealed manner, until the pressure peak is reached to maximize the transfer of energy in the form of combustion pressure to the driving kinetic energy of the fuel. piston.
  • static seals are generally flexible seals (O-rings, etc.) made of flexible materials such as rubber, silicone, etc. These are effective when there is no relative movement between the parts or if the movements are limited and slow.
  • dynamic seals are more capable of sealing between two moving parts, even though the seal as such is not as good as with a gasket.
  • dynamic piston seals can be metal segments such as steel, which operate efficiently at high speeds and at high temperatures.
  • Other dynamic seals also exist, such as lip seals, or composite seals, for example, although they are generally not as effective as steel rings because of the high temperatures in the combustion engines.
  • the working chamber comprises a casing for example cylindrical, a piston and a first seal to seal the piston in the retracted position or rest position of the piston (static seal), and a second seal - which is different from the first seal - to seal the piston during its movement (dynamic seal).
  • each seal can be optimally matched to the required sealing function and no compromise has to be found between dynamic and static sealing.
  • the second seal is attached to the piston (for example, housed in a groove of the piston).
  • the first seal and the second seal are both attached to the piston and the housing has a sealing surface for the first seal which is radially inside the sealing surface for sealing. the second seal.
  • the casing thus has a radial projection inwardly of the inner cylindrical surface opposite to the first seal before / during the rest position.
  • the first seal is attached to the housing (eg, housed within a groove of the housing).
  • no radially inward protrusion which holds the seal or serves as a radial sealing surface (for example in the form of a cylindrical lateral surface) is present.
  • a working chamber 80 comprising a casing 90 inside which is slidably mounted a piston 78, the internal cavity 92 of the working chamber communicating with the internal cavity of a combustion chamber such as that described in the foregoing.
  • the piston 78 is shown in its retracted or rest position, as is known in the art and has already been explained above, and moves (downward from the orientation of the figures) in the housing 90 to drive a fastener. During its stroke, the piston may eventually pass to the right of an exhaust port 94.
  • the figure 10a refers to the first embodiment of the invention.
  • the piston 78 comprises a static seal 96 used to seal the piston in the preliminary phase of the actuation of the tool.
  • the gasket 96 is carried by the piston and housed in a groove of the piston.
  • the piston also comprises a dynamic seal 98 housed in a groove of the piston.
  • the piston is designed so that the sealing surfaces for the seals are different.
  • the diameter of the sealing surface of the static seal 96 is smaller than the diameter of the sealing surface of the dynamic seal 98.
  • the dynamic seal remains in position. contact with its sealing surface throughout the race.
  • the dynamic seal is able to withstand repeated passages at the exhaust port 94, there is no resistance problem for this seal.
  • the seal 96 seals at the beginning of the race, until it emerges from its surface more small sealing diameter in the housing 90. Therefore, while the piston continues its course, the gasket is no longer in contact with its surface or with any other surface of the housing.
  • the gasket 96 is never in contact with the exhaust port 94 and therefore not very stressed by friction.
  • the gasket therefore ensures a seal that during the first phase of the operation. This situation makes it possible to use the static seal as effectively as possible without requiring compromise because it is not exposed to dynamic stresses.
  • the gasket may be made of flexible material, such as rubber, because it will never be in contact with the exhaust port 94 and therefore will not suffer damage by friction.
  • the static seal can be adjusted tight so that the seal is optimized. The other advantage of this tight fit is that the gasket participates in maintaining the piston in its rest position.
  • the static seal also acts as a piston retaining mechanism according to the needs of optimal combustion performance.
  • the figure 10c is another embodiment of the invention. It represents a simplification of the structure.
  • the gasket 96 is held in place in a groove in the housing of the tool, not in the piston. There is no need for the sealing surfaces of the seals to be different. As the gasket does not follow the piston along its stroke, the gasket will not meet the exhaust port, even if the sealing surfaces are the same. In other words, the diameter of the surface of the static seals and dynamic may be the same, and the piston 78 may be designed with a single diameter. Therefore, this simplified embodiment also provides all the advantages of the invention in terms of static sealing, dynamic sealing and retention of the piston in its rest position.
  • the Figures 10d and 10e are other embodiments of the invention. They are actually another design of the embodiments of the Figures 10a and 10b .
  • the piston uses two different sealing surfaces for static sealing and dynamic sealing. The difference being that in the Figures 10a and 10b , the piston is the male part of the sealing surface of the static seal, while in the Figures 10d and 10e , the piston is the female part of the sealing surface of the static seal.
  • the advantages of the invention are the static sealing, the dynamic sealing and the retention of the piston in its rest position.
  • the piston 78 has an elongated shape and comprises a coaxial head and a rod.
  • the static seal 96 is located in a region of the piston head, near a longitudinal end thereof, which is opposite the rod.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Portable Nailing Machines And Staplers (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

La présente invention concerne des perfectionnements pour un outil (10) de fixation à gaz. Elle concerne notamment une chambre de combustion ou de précombustion pour un outil de fixation à gaz, une chambre de travail pour un outil de fixation à gaz, un dispositif d'injection d'un gaz combustible pour un outil de fixation à gaz, et un outil de fixation à gaz comportant un ou plusieurs de ces éléments.

Description

    DOMAINE TECHNIQUE
  • L'invention concerne des perfectionnements pour un outil de fixation à gaz ainsi qu'un outil de fixation à gaz comportant au moins un de ces perfectionnements.
  • ETAT DE L'ART
  • L'état de l'art comprend notamment les documents EP-B1-123 717 , EP-B1-1 243 383 et EP-B1-2 087 220 .
  • Les outils de scellement ou de fixation, dits à gaz, sont des outils comprenant un moteur à combustion interne fonctionnant par la mise à feu dans une chambre de combustion d'un mélange air-combustible, le combustible étant injecté dans la chambre par un dispositif d'injection depuis une cartouche de combustible. De tels outils sont destinés à entraîner des éléments de fixation dans des matériaux supports (tels qu'en bois, en béton ou en acier) pour y fixer des pièces. Les outils à gaz sont aujourd'hui très répandus et permettent de poser des éléments de fixation du type agrafe, clou, point, épingle, etc. Comme combustible pour moteur à combustion interne, on peut citer par exemple l'essence, l'alcool, sous forme liquide et/ou gaz.
  • En général, un tel outil est portatif et comprend un boîtier dans lequel est monté le moteur à combustion interne de propulsion d'un piston d'entraînement d'un élément de fixation. Un tel outil peut comporter également une batterie d'alimentation électrique ainsi qu'une poignée de préhension, de manipulation et de tir sur laquelle est montée une détente d'actionnement de l'outil.
  • La présente invention propose des perfectionnements à cette technologie.
  • EXPOSE DE L'INVENTION
  • Selon un premier aspect, l'invention concerne une chambre de combustion ou de précombustion pour un outil de fixation à gaz, comportant un carter définissant une cavité de combustion présentant une forme générale allongée d'axe longitudinal X, caractérisée en ce que ladite cavité a une section transversale variable le long dudit axe X.
  • L'invention peut ainsi permettre de réduire l'encombrement de la chambre, en réduisant par exemple sa longueur. Cette réduction de longueur peut réduire le temps de parcours nécessaire à la flamme pour traverser longitudinalement la chambre, ce qui réduit d'autant le temps d'un cycle de tir par l'outil. L'invention peut en outre permettre d'optimiser la répartition spatiale de la masse de la chambre à l'intérieur de l'outil, afin par exemple de déplacer le centre de gravité de l'outil dans une zone prédéterminée.
  • La chambre selon l'invention peut comprendre une ou plusieurs des caractéristiques suivantes, prises isolément les unes des autres ou en combinaison les unes avec les autres :
    • ladite cavité a une forme générale étagée et comprend au moins une première portion de section transversale S1 et une seconde portion de section transversale S2, avec S1 différente de S2,
    • le ratio S2/S1 est par exemple compris entre 1,1 et 3,0 voire plus ; dans un cas particulier, il peut être compris entre 1,1 et 1,5, et de préférence entre 1,2 et 1,5,
    • des moyens d'allumage, tels qu'une bougie, sont situés à une extrémité longitudinale de ladite cavité,
    • lesdits moyens d'allumage sont situés dans une portion de plus petite section transversale de ladite cavité,
    • ladite cavité comprend une extrémité longitudinale opposée auxdits moyens d'allumage, qui est en communication fluidique avec une seconde cavité de combustion,
    • ladite cavité a en section longitudinale une forme générale en L ou T.
  • Selon un second aspect, l'invention concerne une chambre de combustion ou de précombustion pour un outil de fixation à gaz, comportant un carter définissant une cavité de combustion, caractérisée en ce que ladite cavité a au moins en partie une forme sphérique ou ovoïde.
  • L'invention est avantageuse car elle permet de réduire les bords et arêtes francs à l'intérieur de la cavité, les inventeurs ayant constaté que ces éléments créent des zones mortes de combustion et d'écoulement, qui réduisent l'efficacité de la combustion et du remplissage (et de la purge) et donc les performances de l'outil.
  • La chambre selon l'invention peut comprendre une ou plusieurs des caractéristiques suivantes, prises isolément les unes des autres ou en combinaison les unes avec les autres :
    • ledit carter définit trois ouvertures dont deux sont alignées sur un même axe U et une troisième est alignée sur un axe Y sensiblement perpendiculaire à l'axe U,
    • ledit carter comprend une première demi-coque comportant une première paroi en portion de sphère,
    • ladite première paroi est une paroi médiane qui est située entre deux parois d'extrémité chacune en portion de cylindre,
    • lesdites parois d'extrémité définissent en partie lesdites ouvertures d'axe U,
    • ledit carter comprend une seconde demi-coque comportant deux parois d'extrémité chacune en portion de cylindre et définissant en partie lesdites ouvertures d'axe U, et une paroi cylindrique définissant ladite ouverture d'axe Y.
  • Selon un troisième aspect, l'invention concerne une chambre de travail pour un outil de fixation à gaz, comportant un carter définissant un logement dans lequel est monté et peut coulisser un piston pour l'entraînement d'un élément de fixation, ledit piston étant configuré pour être déplacé en translation dans ledit logement depuis une position de repos jusqu'à une position de travail, la chambre comportant en outre des moyens d'étanchéité dynamique entre ledit piston et ledit carter pour assurer une étanchéité lors dudit déplacement, caractérisée en ce qu'elle comprend en outre des moyens d'étanchéité statique entre ledit piston et ledit carter pour assurer une étanchéité lorsque ledit piston est dans sa position de repos, lesdits moyens d'étanchéité statique étant indépendants desdits moyens d'étanchéité dynamique.
  • Les moyens d'étanchéité ont ainsi des fonctions distinctes. En plus des moyens d'étanchéité dynamique connus, la chambre est équipée de moyens d'étanchéité statique, c'est-à-dire qu'ils sont conçus pour assurer une étanchéité entre le piston et le carter de la chambre en dehors de tout mouvement relatif entre eux. Cette étanchéité est assurée lorsque le piston est dans sa position de repos, ce qui permet d'assurer une fermeture étanche de la chambre de combustion, qui communique avec la cavité interne de déplacement du piston, et d'optimiser la combustion du mélange air-combustible dans la chambre de combustion.
  • La chambre selon l'invention peut comprendre une ou plusieurs des caractéristiques suivantes, prises isolément les unes des autres ou en combinaison les unes avec les autres :
    • les moyens d'étanchéité dynamique sont configurés pour être opérationnels/fonctionnels (pour coopérer avec une surface d'étanchéité par exemple) lorsque le piston est dans ses positions de repos et de travail, et les moyens d'étanchéité statique sont configurés pour être opérationnels/fonctionnels lorsque le piston est dans sa position de repos et pour ne pas l'être lorsqu'il est dans sa position de travail,
    • lesdits moyens d'étanchéité statique sont portés par ledit carter,
    • lesdits moyens d'étanchéité statique sont portés par ledit piston,
    • lesdits moyens d'étanchéité dynamique sont portés par ledit piston,
    • ledit piston comprend une première surface cylindrique externe comportant une gorge annulaire de logement d'un joint d'étanchéité dynamique,
    • ledit piston comprend une seconde surface cylindrique interne ou externe comportant une gorge annulaire de logement d'un joint d'étanchéité statique,
    • ledit piston a une forme allongée et comprend une tête et une tige coaxiales, et dans laquelle ladite seconde surface est située à une extrémité longitudinale de ladite tête, qui est opposée à ladite tige.
  • Selon un quatrième aspect, l'invention concerne un dispositif d'injection d'un gaz combustible pour un outil de fixation à gaz, caractérisé en ce qu'il comprend un bloc évaporateur comportant :
    • une cavité d'évaporation du combustible,
    • une conduite d'évaporation du combustible sortant de ladite cavité, et
    • un logement, de préférence en amont de ladite cavité, dans lequel est monté un filtre sensiblement plan (par exemple légèrement incurvé) configuré pour retenir des impuretés dudit combustible.
  • Les moyens d'évaporation complexes de la technique antérieure sont remplacés par un filtre plan et des espaces d'évaporation, ce qui permet de simplifier le bloc évaporateur et d'en réduire le coût.
  • Le dispositif selon l'invention peut comprendre une ou plusieurs des caractéristiques suivantes, prises isolément les unes des autres ou en combinaison les unes avec les autres :
    • ledit bloc évaporateur comprend un logement de réception d'un organe d'actionnement d'un cartouche de combustible, ledit organe ayant une forme allongée d'axe Z et étant configuré pour être déplacé en translation le long dudit axe entre une position de repos et une position de libération de combustible depuis ladite cartouche, ledit organe comportant un alésage interne de passage de combustible qui comprend une forme générale en L ou en T dont une première partie axiale débouche à une extrémité longitudinale dudit organe et dont une seconde partie radiale débouche sur une surface périphérique externe dudit organe et est destinée à être située en regard dudit filtre au moins lorsque ledit organe est dans ladite position de libération,
    • ladite conduite a une forme générale en L ou S,
    • ladite conduite est formée d'une seule pièce avec au moins une partie dudit bloc évaporateur.
  • La présente invention concerne encore un outil de fixation à gaz, comportant une chambre ou plusieurs chambres telles que décrites ci-dessus, et/ou un dispositif tel que défini ci-dessus.
  • BREVE DESCRIPTION DES FIGURES
  • L'invention sera mieux comprise et d'autres détails, caractéristiques et avantages de la présente invention apparaîtront plus clairement à la lecture de la description qui suit, faite à titre d'exemple non limitatif et en référence aux dessins annexés, dans lesquels :
    • la figure 1 est une vue schématique d'un outil de fixation à gaz selon l'invention,
    • la figure 2 est une vue schématique d'un dispositif d'injection d'un gaz combustible selon l'invention,
    • la figure 3 est une vue schématique en perspective du dispositif de la figure 2,
    • les figures 4a et 4b sont des vues schématiques correspondant à la figure 2 et montrant respectivement deux positions d'un organe d'actionnement du dispositif,
    • la figure 5 est une vue schématique en coupe axiale de chambres d'un outil de fixation à gaz selon l'art antérieur,
    • les figures 6 à 8 sont des vues schématiques en coupe axiale de chambres d'un outil de fixation à gaz selon l'invention,
    • les figures 9a à 9c sont des vues schématiques en perspective et/ou en coupe axiale d'une chambre de combustion selon l'invention,
    • les figures 10a à 10e sont des vues schématiques en coupe axiale d'une chambre de travail selon l'invention.
    DESCRIPTION DETAILLEE
  • L'outil 10 représenté sur la figure 1 comporte un boîtier 12 dans lequel se trouve un moteur à combustion interne 14, avec une chambre de combustion destinée à contenir un mélange d'air et de combustible dont la mise à feu provoque la propulsion d'un piston prévu pour entraîner un élément de fixation extrait d'un magasin d'alimentation 16, l'élément de fixation étant destiné à s'ancrer dans un matériau support, à la sortie d'un guide-pointe 18 s'étendant à l'avant du boîtier 12. Tous ces composants des outils de fixation à gaz sont parfaitement connus de l'homme du métier et ils n'ont donc pas tous été représentés au dessin.
  • Le boîtier de l'outil possède un axe 20, le long duquel se déplacent le piston d'entraînement et, dans le guide-pointe 18, les éléments de fixation.
  • L'outil comporte une poignée 22 de préhension et de manipulation de l'outil. Elle s'étend, depuis le boîtier et à l'extérieur de celui-ci, sensiblement perpendiculairement à l'axe 20, légèrement incliné sur lui selon l'application de l'outil et l'ergonomie lors de son utilisation. La poignée 22 sert également au tir, par une détente d'actionnement 24 montée sur elle, dans la zone 26 de son raccordement au boîtier 12.
  • L'alimentation en combustible de la chambre de combustion du moteur 14 s'effectue, par l'intermédiaire d'un dispositif d'injection 28 à partir d'une cartouche 30 de gaz combustible.
  • Avantageusement, le dispositif d'injection 28 et la cartouche 30 sont logés dans un bras 32 relié au boîtier 12, qui s'étend sensiblement perpendiculairement à l'axe 20, en avant de la poignée 22, et dans lequel est prévu également le magasin 16.
  • Un autre bras 34 s'étend sensiblement parallèlement à l'axe 20, entre la poignée 22 et le bras 32, de façon à former un pont entre les deux, du côté (inférieur) opposé au boîtier 12.
  • On va maintenant décrire les différents aspects de l'invention qui peuvent être intégrés, indépendamment les uns des autres ou en combinaison les uns avec les autres, dans l'outil 10 de la figure 1.
  • Dispositif d'injection
  • Un aspect de l'invention illustré par la figure 2 concerne le dispositif 28 d'injection de combustible dans le moteur depuis une cartouche de combustible 30.
  • Le combustible est à l'état liquide dans la cartouche et doit être évaporé, le gaz combustible étant destiné à être mélangé à de l'air avant d'être brûlé dans la chambre de combustion du moteur thermique.
  • Un dispositif d'injection d'un outil de fixation à gaz doit ainsi permettre l'évaporation du combustible.
  • Le document EP-B1-2 087 220 décrit un système d'alimentation et d'évaporation de combustible liquide pour convertir un combustible liquide en combustible gazeux. Ce système comporte un élément évaporateur associé à un boîtier chauffé en vue du chauffage de l'élément évaporateur. L'élément évaporateur est réalisé en métal fritté et a une forme générale conique ou tronconique.
  • Cette technologie est complexe et relativement encombrante du fait notamment de la forme particulière de l'élément évaporateur. Cette technologie est également relativement coûteuse.
  • De plus, cet élément évaporateur est relativement fragile et a une faible tenue aux vibrations et aux chocs générés pendant le fonctionnement d'un outil de fixation. En outre, comme le combustible utilisé pour faire fonctionner ces outils peut contenir des lubrifiants, des additifs, voire même des impuretés, l'élément évaporateur peut se boucher bloquant ainsi le passage du combustible à travers lui. Le résultat de cette situation est le défaut de fonctionnement de l'outil, ce qui nécessite le démontage et le nettoyage de l'élément évaporateur et éventuellement son remplacement car l'opération de nettoyage peut endommager cet élément.
  • Tous les problèmes mentionnés ci-dessus peuvent être résolus par l'invention. Tout en essayant de gérer le colmatage de l'élément évaporateur, les inventeurs ont proposé un élément filtrant ayant notamment pour but de piéger les différents matériaux contenus dans le combustible sortant de la cartouche.
  • Différents filtres ont été testés. Les filtres sont constitués essentiellement d'un écran, d'un treillis, d'une grille, d'une toile, d'un tissu, d'une mousse, ou de fibres. Ces filtres sont réalisés en métal ou en plastique, ou à partir de fibres minérales ou naturelles. Le but de ces filtres est de piéger les particules contenues dans le combustible tout en permettant au combustible de circuler à travers le filtre.
  • Dans le but de simplifier le dispositif d'injection de la technique antérieure, l'élément évaporateur est supprimé. De manière surprenante, l'utilisation d'un filtre disposé dans le dispositif d'injection simplifié, combiné à une cavité d'évaporation, permet de vaporiser de manière optimale le combustible en vue de l'alimentation de la chambre de combustion de l'outil.
  • La figure 2 représente un mode de réalisation du dispositif d'injection 28.
  • Une vanne 40 destinée à calibrer une quantité de combustible liquide est interposée entre la cartouche 30 de combustible liquide et le bloc évaporateur simplifié 42. Un filtre 44 est disposé dans un logement ou alésage 46 prévu dans le bloc 42. Une quantité prédéterminée de combustible liquide est déchargée à partir de la cartouche 30 par l'intermédiaire de la vanne 40 dans le bloc 42, passant à travers le filtre 44, et arrive dans la cavité d'évaporation 47. Le bloc 42 est réalisé en un matériau conducteur de chaleur, tel qu'en métal. Le combustible liquide circulant à travers le filtre 44 est au moins partiellement converti en combustible gazeux grâce à l'apport de chaleur du milieu ambiant, qui transmet des calories au bloc évaporateur 42.
  • En aval du filtre 44 et de la cavité 47, le combustible au moins partiellement vaporisé continue de circuler dans le bloc 42, et absorbe de la chaleur additionnelle à partir de l'environnement. La partie aval du bloc 42 comprend une conduite d'évaporation 48, agissant comme un collecteur de distribution, vers la chambre de combustion 50 de l'outil de fixation.
  • Les paramètres de dimensionnement du dispositif 28, et en particulier de la cavité 47 et de la conduite 48, tels que la longueur, le diamètre, l'épaisseur, etc., sont conçus de telle sorte que le combustible est entièrement converti en gaz à la sortie d'un orifice de décharge aval 51 de la conduite 48. Pour aider à transférer la chaleur du milieu environnant, le bloc 42 et/ou la conduite 48 peuvent éventuellement comprendre une ou plusieurs ailettes 52 disposées au moins sur une de leurs surfaces.
  • En sortant de l'orifice de décharge 51, le combustible gazeux peut être directement injecté dans la chambre de combustion 50. En option, le combustible gazeux sortant de l'orifice de décharge 51 peut alimenter une ou plusieurs buses 54 de sortie de combustible et d'alimentation de la chambre de combustion 50. Le gaz combustible peut en variante alimenter une pompe à jet 56 du type venturi, dans lequel de l'air ambiant est entraîné dans la pompe à jet 56, et mélangé au combustible gazeux injecté par la ou les buses 54, de manière à former un mélange air-combustible pour l'alimentation de la chambre de combustion 50.
  • Ce bloc évaporateur 42 est donc plus facile à fabriquer et moins coûteux. Le filtre est plan et donc relativement simple. Il s'étend sensiblement dans un plan parallèle à l'axe Z de la cartouche 30. Il a par exemple une forme de pastille, disque ou bloc. Il est beaucoup plus simple et moins fragile que les pièces complexes utilisés dans l'art antérieur. Par conséquent, le bloc évaporateur simplifié est également plus facile à entretenir en cas de besoin, bien que la nécessité de maintenance d'un tel bloc est également réduite de manière significative.
  • La figure 3 est une vue schématique en perspective du dispositif 28 de la figure 2 et montre notamment que la conduite 48 est formée d'une seule pièce avec une partie du bloc évaporateur 42.
  • Comme on le voit à la figure 2, la conduite 48 a une forme générale en S ou L. La cavité 47 a en section une forme en T dont la partie amont de plus grande dimension transversale forme le logement 46 de réception du filtre. La cavité 47 communique avec une portion rectiligne d'extrémité de la conduite 48. La conduite comprend une autre portion rectiligne d'extrémité qui définit l'orifice de décharge 51. Ces deux portions sont parallèles et reliées l'une à l'autre par une portion rectiligne médiane du conduit, qui s'étend sensiblement parallèlement à l'axe longitudinal Z de la cartouche 30. Cette portion rectiligne peut être obturé de manière étanche par une vis au niveau de sa liaison à la portion rectiligne d'extrémité qui définit l'orifice de décharge 51.
  • Le bloc évaporateur 42 comprend un alésage dans lequel est monté et peut coulisser, le long de l'axe longitudinal Z de la cartouche 30, un organe d'actionnement 58. Cet organe d'actionnement a une forme allongée rectiligne et comprend un alésage interne 60 en forme de T ou L. Cet alésage comprend une première portion axiale qui s'étend le long de l'organe 58 et débouche à l'extrémité inférieure de celui-ci, et une portion radiale qui s'étend entre l'extrémité supérieure de la portion axiale et la périphérie de l'organe. Le débouché de cette portion radiale est situé en regard du filtre 44.
  • L'organe 58 est mobile entre deux positions : une position haute ou de repos représentée à la figure 4a et une position basse ou de travail représentée à la figure 4b. Dans les deux cas, le débouché radial précité de l'alésage est situé en regard du filtre 44. Des joints d'étanchéité sont prévus entre l'organe 58 et l'alésage dans lequel il est monté.
  • L'extrémité inférieure de l'organe 58 est configurée pour coopérer par emboîtement avec un embout de connexion de la cartouche 30.
  • Le déplacement de l'organe 58, de sa position de repos à sa position de travail, provoque la libération d'une quantité calibrée de combustible de la cartouche 30. Ce combustible, sous forme liquide, circule dans l'alésage 60 de l'organe 58 et traverse le filtre 44, qui retient les éventuelles impuretés, avant de pénétrer dans la cavité 47 dans laquelle est initiée la transformation du combustible liquide en combustible gazeux. Le combustible circule dans la conduite 48 pour compléter son évaporation et arrive à l'état gazeux au niveau de la buse 54. Il est alors pulvérisé dans la pompe à jet 56 et mélangé à de l'air qui pénètre dans la pompe par effet venturi, le mélange air-combustible étant ensuite injecté dans la chambre 50 du moteur thermique.
  • Avantageusement, et comme représenté à la figure 2, le bloc 42 est situé au-dessus de la cartouche 30, la conduite 48 s'étend en partie sur un côté de la cartouche, et la pompe à jet 56 a une orientation sensiblement perpendiculaire par rapport à l'axe longitudinal Z de la cartouche ou à la conduite 48. Idéalement, la cartouche 30, le bloc 42 et la conduite 48 sont logés dans le bras 32 et la pompe à jet s'étend dans le bras 34, la chambre de combustion 50 étant alors logée dans la poignée 22 de l'outil de la figure 1.
  • Le filtre 44 a par exemple une perméabilité inférieure à 50 darcy et de préférence comprise entre 10 à 33 darcy, ce qui permet de filtrer des particules de diamètre compris entre 7µm et 14µm environ, avec une efficacité de 98 à 99,9%.
  • Chambre de précombustion
  • Un moteur thermique d'un outil de fixation à gaz comprend une chambre de combustion et une chambre de travail dans lequel un piston d'entraînement d'un élément de fixation est apte à se déplacer sous l'effet de l'explosion du mélange air-combustible dans la chambre de combustion.
  • Avantageusement, comme cela est représenté à la figure 5 qui représente l'art antérieur décrit dans le document EP-B1-1 243 383 , le moteur comprend une chambre de précombustion 60 et une chambre de combustion 50. La première chambre de combustion ou chambre de précombustion 60 permet d'initier la combustion du mélange air-combustible. Cette chambre 60 comprend un carter 62 qui définit une cavité de combustion 64 dans laquelle sont montés des moyens d'allumage tels qu'une bougie 65.
  • Les chambres 60, 50 sont séparées l'une des l'autre par un clapet 66. La précombustion du mélange dans la chambre 60 provoque une augmentation de pression dans la cavité 64. Lorsque cette pression dépasse un certain seuil, le clapet s'ouvre et laisse passer le mélange combustible dans la chambre 50.
  • La chambre 50 comprend un carter 68 définissant une cavité de combustion 70. Le mélange arrive dans la chambre 50 avec une pression relativement élevée. La flamme issue de la chambre 60 atteint la chambre 50, la combustion à pression élevée dans la chambre 50 permettant d'améliorer les performances de l'outil. La combustion 50 dans la chambre provoque une augmentation de pression dans la cavité 70, qui force le piston 78 à se déplacer dans la chambre de travail 80.
  • Comme on peut le constater à la figure 5, il est connu de prévoir une chambre de précombustion 60 de forme allongée, dont une extrémité longitudinale est reliée à la chambre de combustion 50, et dont l'extrémité longitudinale opposée comprend la bougie 64.
  • La puissance de sortie de la chambre de combustion 50 peut être augmentée jusqu'à cinquante pour cent (50%) simplement par l'allongement de la chambre de précombustion 60.
  • Dans le document EP-B1-1 243 383 , la chambre de précombustion 60 a une longueur B prédéterminée et une largeur A prédéterminée, dans laquelle la longueur B est sensiblement supérieure à la largeur A. Plus particulièrement, le rapport de la longueur B sur la largeur A, connu sous le rapport ou ratio d'aspect de la chambre de précombustion 60, est d'au moins 2:1, et peut être beaucoup plus grand avec un optimum autour de 10:1 selon le même document.
  • Il a également été indiqué dans le document EP-B1-1 243 383 que des discontinuités ou irrégularités présentes dans ou sur les surfaces internes de la chambre de précombustion doivent être évitées en raison du fait que de telles structures ont tendance à dégrader la puissance du moteur. De plus, une chambre de précombustion peut avoir une forme ronde, ovale, rectangulaire, ou autre, en coupe transversale, tant que sa longueur est supérieure à sa largeur.
  • Par conséquent, la chambre de précombustion 60 de l'art antérieur présente un allongement relatif B qui est préjudiciable pour l'outil en termes d'encombrement.
  • Un autre inconvénient de cette chambre de précombustion 60 est que plus la chambre de précombustion est longue, plus le retard entre l'allumage de l'étincelle et l'allumage de la chambre de combustion 50 est important. Ceci peut augmenter la durée du cycle de tir de l'outil, ce qui est problématique pour certaines applications de fixation.
  • Enfin, la conception de la chambre de précombustion 60 n'est pas optimale en termes d'ergonomie.
  • Les perfectionnements ci-dessous permettent d'optimiser l'encombrement de l'outil, d'optimiser son fonctionnement, et/ou de raccourcir la durée d'un cycle de tir et en particulier la durée entre l'allumage de la chambre de précombustion 60 et la combustion dans la chambre 50 tout en conservant de bonnes performances de la chambre de combustion.
  • Pour être en mesure de comparer l'effet de la nouvelle conception de chambre de précombustion vis-à-vis de l'art antérieur, les inventeurs ont maintenu constant le volume total des chambres 50, 60. Ainsi, les quantités totales de mélange air-combustible sont comparables, et par conséquent les mêmes quantités totales d'énergie brute sont disponibles.
  • On appelle V1 le volume de la chambre de précombustion 60, et V2 le volume principal de la chambre de combustion 50. V1 + V2 est constant pour tous les essais. En outre, comme le but de l'invention est d'améliorer les performances de la chambre de précombustion 60, les inventeurs ont gardé V1 le même pour tous les modes de réalisation.
  • Les inventeurs ont constaté que, en gardant V1 constant, un effet intéressant a été atteint en changeant la configuration de la chambre de précombustion 60 à partir d'une forme allongée de section transversale constante à une forme allongée dont la section transversale varie le long de l'axe longitudinal de la chambre. Elle peut avoir une section transversale qui est étagée ou qui a une forme tronconique.
  • Cela signifie de préférence que la chambre de précombustion présente, à partir de la bougie d'allumage 65, dans la direction de la chambre de combustion 50, une section croissante. De préférence, la chambre de précombustion 60 comporte deux parties, la première partie comportant la bougie d'allumage 65 et présentant un premier diamètre intérieur maximal qui est plus petit que le diamètre intérieur minimum de la deuxième partie.
  • De préférence, au moins un diamètre, et de préférence les deux diamètres de la première et de la seconde partie sont constants. Par exemple, comme représenté sur la figure 6, la chambre allongée à section transversale constante est remplacée par deux portions dont une, supérieure, a une section transversale S2 plus grande que celle S1 de l'autre, inférieure. La chambre 60 a ainsi en section longitudinale une forme générale en T. En conséquence, tout en maintenant constant le volume V1, ce mode de réalisation présente une longueur inférieure à la longueur B de l'art antérieur. En conséquence, l'encombrement de l'outil peut être réduit.
  • La réduction de la longueur de la chambre de précombustion 60 permet de réduire la distance entre la bougie 65 et la chambre de combustion 50, ce qui a pour avantage de réduire le temps d'allumage de la chambre 50, ainsi que la durée globale d'un cycle de tir.
  • L'invention fournit ainsi une chambre de précombustion efficace pour un outil qui est moins encombrant et peut fonctionner plus rapidement que ceux de l'art antérieur.
  • La figure 7 montre une variante de réalisation de la chambre de précombustion 60. Cette figure montre une chambre de précombustion 60 qui comporte une partie ayant une composante d'extension horizontale vers l'avant, de telle sorte que la ligne d'écoulement de fluide la plus courte entre la bougie 65 et la liaison à la chambre de combustion 50 a (au moins en partie) une composante horizontale inclinée vers l'arrière de l'outil, en venant de la bougie d'allumage.
  • Cette conception conduit à une meilleure ergonomie parce qu'il est plus bénéfique en termes d'équilibre de l'outil. Avec cette conception, la chambre de précombustion n'est plus située entièrement sur un côté de l'outil de telle sorte que la chambre de combustion et la chambre de travail 80 ne forment pas nécessairement une architecture classique en L, c'est-à-dire un outil assimilable à un « pistolet ».
  • Ce nouveau design est plus pratique en termes d'ergonomie étant donné que les masses de la chambre de travail et du magasin comportant les éléments de fixation ne sont plus tous situés sur le même côté de l'outil et sur le même côté de la poignée de l'outil.
  • De préférence, la chambre de précombustion 60 comporte au moins deux parties, la première de ces parties est celle reliée à la chambre de combustion 50 et la seconde partie est celle la plus éloignée de la chambre de combustion 50. La paroi latérale 82 de la chambre de précombustion 60 dans la première partie est plus proche de l'extrémité arrière de l'outil, que ne l'est la paroi latérale de la chambre de précombustion dans la seconde partie. De préférence, la deuxième partie comprend la bougie d'allumage 65. L'outil est configuré de telle sorte que l'outil est serré autour de la chambre de précombustion.
  • De préférence, au moins un diamètre, et de préférence les deux diamètres de la première et de la seconde partie sont constants. Par exemple, comme représenté sur la figure 7, la chambre allongée à section transversale constante est remplacée par deux portions dont une, supérieure, a une section transversale S2 plus grande que celle S1 de l'autre, inférieure. La chambre 60 a ainsi en section longitudinale une forme générale en L. En conséquence, tout en maintenant constant le volume V1, ce mode de réalisation présente une longueur inférieure à la longueur B de l'art antérieur. En conséquence, l'encombrement de l'outil peut être réduit.
  • Comme on le voit sur la figure 7, un exemple de réalisation de l'invention, la chambre de précombustion 60 n'est plus rectiligne, mais comprend une courbure afin de déplacer la poignée de l'outil (qui contient la chambre de précombustion) plus près du centre de gravité de l'outil. Dans l'exemple représenté, une partie horizontale est présente. La paroi latérale 83 (gauche) de la chambre de précombustion dans la partie avec la bougie d'allumage est positionnée plus près de la paroi latérale (droite) 84 de la partie reliée à la chambre de combustion.
  • Tout en gardant constante V1 par rapport à l'art antérieur, l'invention permet de garder un niveau de performances comparable, voire identique, en termes de production d'énergie, dans un outil qui est beaucoup mieux équilibré.
  • Chambre de combustion
  • Comme représenté sur la figure 5, la chambre de combustion 50 d'un outil est généralement adjacente à la chambre de travail 80 dans lequel le piston 78 est déplacé sous l'effet de la combustion du mélange air-combustible.
  • Par conséquent, comme le carter de la chambre de travail 80 a toujours une forme cylindrique et le piston 78 a également une forme cylindrique, la chambre de combustion 50 a, du côté de la chambre de travail 80, une forme générale cylindrique.
  • Comme on le voit sur la figure 5, cette chambre de combustion 50 a la forme d'un cylindre plat ayant un diamètre D et une hauteur H, et sa cavité 70 a un volume V2.
  • Les inventeurs ont constaté que cette chambre 50 ne conduit pas à une sortie d'énergie optimale. Ils ont trouvé une forme améliorée pour la chambre de combustion qui permet d'améliorer la production d'énergie.
  • Un mode de réalisation préféré est présenté à la figure 8 dans laquelle la chambre de combustion définit une cavité de combustion sphérique ou ovoïde.
  • Cette forme sphérique/ovoïde conduit à un meilleure mélange, et à une distribution de combustible et à un balayage des gaz de combustion corrects. Les inventeurs ont en effet découvert que cette forme ne dispose pas de zones mortes en raison de la présence de bords dans la cavité. Ces bords affectent à la fois le flux et la flamme de combustion. Le débit a tendance à s'arrêter à l'approche des bords, résultant dans des zones mortes. La flamme est également affectée par ces bords car elle tend à s'éteindre en se rapprochant des bords. La nouvelle forme supprime la plupart, sinon tous les points morts néfastes qui existent dans l'art antérieur. Même si le volume de combustion n'est pas une sphère parfaite, tout bord qui peut être retiré à partir du volume de la chambre de combustion permet d'optimiser l'entrée et la sortie des flux de la chambre pour l'alimentation optimale avec le mélange air-combustible et le balayage optimal des gaz de combustion.
  • De plus, le mélange peut brûler beaucoup plus efficacement dans n'importe quelle zone de la chambre de combustion, en minimisant les zones mortes. Comme la principale raison de cette amélioration est l'élimination des bords et angles morts, une forme partiellement sphérique peut également être remplacé par une forme partiellement ovoïde ou toute autre forme qui n'a pas ou a un nombre minime de bords, par exemple une forme où le rayon de courbure de la partie supérieure de la paroi de fond (ici à gauche) de la chambre de combustion 50 est supérieur ou égal à 25%, de préférence 50% au plus petit diamètre de la chambre de combustion de la technique antérieure (par exemple, H).
  • Les figures 9a à 9c montrent un exemple plus concret de réalisation de cet aspect de l'invention.
  • La chambre de combustion 50 comprend un carter 68 définissant trois ouvertures dont deux 50a, 50b sont alignées sur un même axe U, qui correspond à l'axe longitudinal de la chambre de précombustion ou une partie de celle-ci, et une troisième 50c est alignée sur un axe Y sensiblement perpendiculaire à l'axe U.
  • Le carter 68 comprend une première demi-coque 68a comportant une première paroi 68aa en portion de sphère. Cette première paroi 68aa est une paroi médiane qui est située entre deux parois d'extrémité 68ab chacune en portion de cylindre. Les parois d'extrémité 68ab définissent en partie les ouvertures 50a, 50b d'axe U. Le carter 68 comprend une seconde demi-coque 68b comportant deux parois d'extrémité 68bb chacune en portion de cylindre et définissant le reste des ouvertures d'axe U, et une paroi cylindrique 68ba définissant l'ouverture d'axe Y.
  • L'ouverture 50a assure la communication fluidique avec la cavité de la chambre de précombustion. L'ouverture 50c assure la communication fluidique avec la cavité interne de la chambre de travail, et l'ouverture 50b assure la communication fluidique avec l'atmosphère. L'ouverture 50a est obturable par le clapet 66 précité et l'ouverture 50b est obturable par une vanne 84, dont le corps mobile est porté par une tige portant également le clapet 66.
  • Chambre de travail
  • Les performances d'un outil de fixation actionné par combustion sont notamment basées sur la capacité du piston de convertir efficacement l'énergie de pression générée par la combustion du mélange explosif en énergie cinétique transférée à l'élément de fixation. Cette conversion efficace est affectée par les fuites qui se produisent entre le piston et le carter de la chambre de travail. Ces pistons et les carters sont très bien connus car ils sont utilisés dans tous les outils. La conception de la chambre de combustion et la technologie de combustion peut varier d'un outil à l'autre, mais le piston en mouvement réciproque dans le carter demeure essentiellement la même pour les différents outils de fixation.
  • Ceci est bien connu par l'homme de l'art, comme expliqué dans le document EP-B1-123 717 . La combustion se produit et la pression générée déplace le piston pour enfoncer un élément de fixation dans un matériau support. Peu de temps avant que le piston atteigne le bas ou la fin de sa course d'entraînement où il vient en butée sur un amortisseur élastique, le piston passe au droit d'orifices dans la paroi du carter, qui servent à l'évacuation des gaz de combustion. Ces orifices permettent de faciliter l'élimination des gaz de combustion pour faciliter à l'établissement d'un vide partiel de sorte que de l'air à pression atmosphérique puisse pénétrer sous le piston, et facilite le retour de ce dernier dans sa position de repos ou supérieure.
  • Le piston utilisé dans un tel outil comprend classiquement des moyens d'étanchéité dynamique, c'est-à-dire des moyens utilisés pour assurer une étanchéité entre le piston et le carter de la chambre de travail pendant la course de déplacement du piston. Cette course résulte d'une différence de pression entre les deux côtés du piston (combustion pour l'entraînement et le vide pour le retour). Les joints selon l'art antérieur sont configurés pour assurer une étanchéité dynamique.
  • La présence d'une chambre de précombustion permet d'augmenter l'efficacité de la combustion et la pression à l'intérieur de l'outil.
  • Dans sa position initiale rétractée, le piston doit d'abord être maintenu étanche pour contenir la pression générée par la combustion du mélange air-combustible. Comme mentionné ci-dessus, chaque fois que le mélange est suralimenté, ou lorsque la technologie de combustion utilise une chambre de précombustion, la pré-pression résultante générée par la chambre de précombustion, avant l'allumage de la chambre de combustion, doit rester étanche et maintenir la chambre de combustion sans fuite. Pendant cette phase préliminaire, le piston doit par conséquent être étanche autant que possible. Idéalement, le piston doit également rester stable pour maintenir le volume de la chambre de combustion faible afin de maximiser la pression jusqu'à ce que la combustion soit presque terminée. Idéalement aussi, à cette phase préliminaire, le piston doit être maintenu jusqu'à ce qu'à ce qu'un pic de pression se produise et la combustion se termine. Cette exigence de maintenir le piston à une phase préliminaire a été abordé dans l'art antérieur en utilisant des aimants ou des mécanismes, notamment des billes, des ressorts et/ou des cames. Tous ces mécanismes de rétention de piston sont en général encombrants, complexes et coûteux.
  • Par conséquent, à cette phase préliminaire, l'exigence est d'assurer une étanchéité maximale entre le piston et le carter de la chambre de travail et donc d'avoir une étanchéité statique maximale lorsque le piston est en position de repos.
  • Idéalement, le piston doit être maintenu dans cette position, de manière étanche, jusqu'à ce que soit atteint le pic de pression afin de maximiser le transfert de l'énergie sous forme de pression de combustion à l'énergie cinétique d'entraînement du piston.
  • La libération du piston est la deuxième étape de l'opération, alors que le piston accélère le long de sa course jusqu'à ce qu'il atteigne sa position de travail opposée et entraîne l'élément de fixation dans le matériau support. Au cours de cette deuxième étape, l'exigence d'étanchéité entre le piston et le carter est moins problématique. Les moyens d'étanchéité dynamique sont fortement sollicités par l'accélération du piston et leur friction avec le carter, mais permettent de répondre au besoin de manière satisfaisante.
  • Il existe donc un compromis sur les moyens d'étanchéité entre la première phase exigeant des performances d'étanchéité statique, et la seconde phase exigeant des performances d'étanchéité dynamique.
  • L'homme de l'art considère en général que des joints statiques sont généralement des joints souples (joints toriques, etc.) fait de matériaux souples comme le caoutchouc, la silicone, etc. Ceux-ci sont efficaces lorsqu'il n'y a pas de mouvement relatif entre les parties ou si les mouvements sont limités et lents. Le même homme de l'art sait que les joints dynamiques sont plus capables d'assurer une étanchéité entre deux parties en mouvement, même si l'étanchéité en tant que telle n'est pas aussi bonne qu'avec un joint statique.
  • Pour les moteurs à combustion interne, les joints dynamiques pour pistons peuvent être des segments métalliques tels qu'en acier, qui fonctionnent efficacement à haute vitesse et à haute température. D'autres joints dynamiques existent également, tels que des joints à lèvres, ou des joints composites, par exemple, même s'ils ne sont généralement pas aussi efficaces que des anneaux en acier du fait des hautes températures dans les moteurs à combustion.
  • Cela confirme le compromis mentionné ci-dessus entre étanchéité statique requise à la première phase de l'opération de l'outil, et étanchéité dynamique requise à la deuxième phase. Ce compromis est encore justifié par la structure particulière des outils de fixation qui présentent un ou plusieurs orifices d'échappement situés à l'intérieur du carter de la chambre de travail, entre les deux positions extrêmes de la course du piston. Ces orifices d'échappement sont tenus d'évacuer les gaz brûlés. Malheureusement, lorsque le piston passe au droit de ces orifices d'échappement, les moyens d'étanchéité dynamique sont fortement compressés et ont tendance à se dilater dans l'orifice d'échappement ouvert. Cette situation est relativement bien supportée par les joints en acier, mais pas par les joints d'étanchéité souples. Les joints souples ont donc tendance à s'user rapidement s'ils sont exposés à des passages répétés au niveau des orifices d'échappement car ils ont tendance à s'extruder dans les orifices d'échappement.
  • Les inventeurs ont cherché à assurer une meilleure étanchéité entre le piston et son carter, lorsque le piston est dans sa position de repos, cette étanchéité n'étant pas altérée du fait du passage du piston au niveau des orifices d'échappement. Idéalement, ces moyens d'étanchéité améliorés devraient maintenir le piston dans sa position de repos jusqu'à ce que la pression des gaz de combustion dans la chambre atteigne un certain seuil.
  • Selon invention, la chambre de travail comprend un carter par exemple cylindrique, un piston et un premier joint d'étanchéité pour rendre étanche le piston dans la position rétractée ou de repos du piston (joint statique), et un second joint d'étanchéité - qui est différent du premier joint d'étanchéité - pour rendre étanche le piston pendant son mouvement (joint dynamique).
  • En utilisant deux joints d'étanchéité différents, chaque joint d'étanchéité peut être adapté de façon optimale à la fonction d'étanchéité nécessaire et aucun compromis doit être trouvé entre une étanchéité dynamique et statique.
  • De préférence, le second joint d'étanchéité est fixé sur le piston (par exemple, logé dans une rainure du piston). De préférence, le premier joint et le deuxième joint d'étanchéité sont tous deux fixés sur le piston et le carter a une surface d'étanchéité pour le premier joint d'étanchéité qui est radialement à l'intérieur de la surface d'étanchéité pour le second joint d'étanchéité. Par exemple, le carter comporte donc une saillie radiale vers l'intérieur de la surface cylindrique intérieure opposée au premier joint d'étanchéité avant/pendant la position de repos. Plus préférablement, le premier joint d'étanchéité est fixé sur le carter (par exemple, logé à l'intérieur d'une rainure du carter). De préférence, dans ce cas, aucune saillie radialement vers l'intérieur, qui tient le joint ou servant de surface d'étanchéité radiale (par exemple en forme de surface latérale cylindrique), est présente.
  • Tout en essayant de résoudre les problèmes et les compromis énumérés ci-dessus, les inventeurs ont réalisé plusieurs modes de réalisation qui sont illustrés dans les figures 10a à 10e.
  • Tous les modes de réalisation montrent une chambre de travail 80 comportant un carter 90 à l'intérieur duquel est monté coulissant un piston 78, la cavité interne 92 de la chambre de travail communiquant avec la cavité interne d'une chambre de combustion telle que celle décrite dans ce qui précède.
  • Le piston 78 est représenté dans sa position rétractée ou de repos, comme cela est connu dans la technique et a déjà été expliqué ci-dessus, et se déplace (vers le bas par rapport à l'orientation des figures) dans le carter 90 pour entraîner un élément de fixation. Pendant sa course, le piston peut éventuellement passer au droit d'un orifice d'échappement 94.
  • La figure 10a se réfère au premier mode de réalisation de l'invention. Le piston 78 comprend un joint d'étanchéité statique 96 utilisé pour assurer l'étanchéité du piston dans la phase préliminaire de l'actionnement de l'outil. Dans ce mode de réalisation, le joint statique 96 est porté par le piston et logé dans une rainure du piston. Le piston comprend également un joint dynamique 98 logé dans une rainure du piston.
  • Chaque joint fournit ses performances notamment comme décrit ci-dessus. Le piston est conçu de sorte que les surfaces d'étanchéité pour les joints d'étanchéité soient différentes. Dans cet exemple, le diamètre de la surface d'étanchéité du joint d'étanchéité statique 96 est plus petit que le diamètre de la surface d'étanchéité du joint dynamique 98. Lorsque le piston se déplace vers le bas, le joint dynamique reste en contact avec sa surface d'étanchéité pendant toute la course. Comme le joint dynamique est en mesure de résister à des passages répétés au niveau de l'orifice d'échappement 94, il n'y a pas de problème de tenue pour ce joint. Dans le même temps, tandis que se déplace le piston (vers le bas) le long de sa course, le joint statique 96 assure l'étanchéité au début de la course, jusqu'à ce qu'il se dégage de sa surface de plus petit diamètre d'étanchéité prévu dans le carter 90. Par conséquent, alors que le piston continue sa course, le joint statique n'est plus en contact avec sa surface, ni avec aucune autre surface du carter.
  • En particulier, grâce à cette conception, le joint statique 96 est jamais en contact avec l'orifice d'échappement 94 et donc peu sollicité par frottement. Le joint statique assure par conséquent une étanchéité que pendant la première phase de l'opération. Cette situation permet d'utiliser le plus efficacement possible le joint d'étanchéité statique sans exiger de compromis du fait que celui-ci n'est pas exposé à des sollicitations dynamiques.
  • Le joint statique peut être réalisé en matériau souple, tel qu'en caoutchouc, car il ne sera jamais en contact avec l'orifice d'échappement 94 et ne subira donc pas de dommage par frottement. En outre, le joint d'étanchéité statique peut être ajusté serré de sorte que l'étanchéité soit optimisée. L'autre avantage de cet ajustement serré est que le joint statique participe au maintien du piston dans sa position de repos. Ainsi, le joint d'étanchéité statique agit également comme un mécanisme de retenue du piston selon les besoins de performances de combustion optimale.
  • En se référant maintenant à la figure 10b, les avantages généraux décrits ci-dessus restent applicables à la seule différence que la rainure prévue pour maintenir le joint statique 96 est située sur la surface du carter qui doit être rendue étanche. Les figures 10a et 10b représentent deux solutions pour parvenir aux mêmes effets d'étanchéité et de rétention du piston.
  • La figure 10c est un autre mode de réalisation de l'invention. Il représente une simplification de la structure. Le joint statique 96 est maintenu en place dans une rainure ménagée dans le carter de l'outil, et non pas dans le piston. Il n'y a pas nécessité que les surfaces d'étanchéité des joints d'étanchéité soient différentes. Comme le joint statique ne suit pas le piston le long de sa course, le joint statique ne risque pas de rencontrer l'orifice d'échappement, même si les surfaces des joints étanchéité sont les mêmes. En d'autres termes, le diamètre de la surface des joints d'étanchéité statique et dynamique peut être identique, et le piston 78 peut être conçu avec un seul diamètre. Par conséquent, ce mode de réalisation simplifié fournit également tous les avantages de l'invention sur le plan de l'étanchéité statique, l'étanchéité dynamique et la rétention du piston dans sa position de repos.
  • Les figures 10d et 10e sont d'autres modes de réalisation de l'invention. Ils sont en fait une autre conception des modes de réalisation des figures 10a et 10b. Le piston utilise deux surfaces d'étanchéité différentes pour l'étanchéité statique et l'étanchéité dynamique. La différence étant que dans les figures 10a et 10b, le piston est la partie mâle de la surface d'étanchéité du joint d'étanchéité statique, tandis que dans les figures 10d et 10e, le piston est la partie femelle de la surface d'étanchéité du joint d'étanchéité statique. Ici encore, les avantages de l'invention sont l'étanchéité statique, l'étanchéité dynamique et la rétention du piston dans sa position de repos.
  • Dans les différents modes de réalisation, le piston 78 a une forme allongée et comprend une tête et une tige coaxiales. Le joint d'étanchéité statique 96 est situé dans une zone de la tête de piston, proche d'une extrémité longitudinale de celle-ci, qui est opposée à la tige.

Claims (5)

  1. Dispositif (28) d'injection d'un gaz combustible pour un outil de fixation à gaz (10), caractérisé en ce qu'il comprend un bloc évaporateur (42) comportant :
    - une cavité (47) d'évaporation du combustible,
    - une conduite (48) d'évaporation du combustible sortant de ladite cavité, et
    - un logement (46), de préférence en amont de ladite cavité, dans lequel est monté un filtre (44) sensiblement plan configuré pour retenir des impuretés dudit combustible.
  2. Dispositif (28) selon la revendication précédente, dans lequel ledit bloc évaporateur comprend un logement de réception d'un organe (58) d'actionnement d'une cartouche de combustible, ledit organe ayant une forme allongée d'axe Z et étant configuré pour être déplacé en translation le long dudit axe entre une position de repos et une position de libération de combustible depuis ladite cartouche, ledit organe comportant un alésage (60) interne de passage de combustible qui comprend une forme générale en L ou en T dont une première partie axiale débouche à une extrémité longitudinale dudit organe et dont une seconde partie radiale débouche sur une surface périphérique externe dudit organe et est destinée à être située en regard dudit filtre (44) au moins lorsque ledit organe est dans ladite position de libération.
  3. Dispositif (28) selon la revendication 1 ou 2, dans lequel ladite conduite (48) a une forme générale en L ou S.
  4. Dispositif (28) selon l'une des revendications précédentes, dans lequel ladite conduite (48) est formée d'une seule pièce avec au moins une partie dudit bloc évaporateur (42).
  5. Outil de fixation à gaz, comportant un dispositif (28) selon l'une des revendications précédentes.
EP17157756.2A 2015-03-10 2015-12-18 Perfectionnements pour un outil de fixation à gaz Active EP3189939B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP15158537 2015-03-10
EP15200997.3A EP3067158B1 (fr) 2015-03-10 2015-12-18 Perfectionnements pour un outil de fixation a gaz

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP15200997.3A Division EP3067158B1 (fr) 2015-03-10 2015-12-18 Perfectionnements pour un outil de fixation a gaz
EP15200997.3A Division-Into EP3067158B1 (fr) 2015-03-10 2015-12-18 Perfectionnements pour un outil de fixation a gaz

Publications (2)

Publication Number Publication Date
EP3189939A1 true EP3189939A1 (fr) 2017-07-12
EP3189939B1 EP3189939B1 (fr) 2020-03-11

Family

ID=55129414

Family Applications (4)

Application Number Title Priority Date Filing Date
EP17157755.4A Active EP3189938B1 (fr) 2015-03-10 2015-12-18 Perfectionnements pour un outil de fixation à gaz
EP15200997.3A Active EP3067158B1 (fr) 2015-03-10 2015-12-18 Perfectionnements pour un outil de fixation a gaz
EP17157754.7A Active EP3189937B1 (fr) 2015-03-10 2015-12-18 Perfectionnements pour un outil de fixation a gaz
EP17157756.2A Active EP3189939B1 (fr) 2015-03-10 2015-12-18 Perfectionnements pour un outil de fixation à gaz

Family Applications Before (3)

Application Number Title Priority Date Filing Date
EP17157755.4A Active EP3189938B1 (fr) 2015-03-10 2015-12-18 Perfectionnements pour un outil de fixation à gaz
EP15200997.3A Active EP3067158B1 (fr) 2015-03-10 2015-12-18 Perfectionnements pour un outil de fixation a gaz
EP17157754.7A Active EP3189937B1 (fr) 2015-03-10 2015-12-18 Perfectionnements pour un outil de fixation a gaz

Country Status (6)

Country Link
US (1) US11065750B2 (fr)
EP (4) EP3189938B1 (fr)
AU (4) AU2016229422B2 (fr)
CA (4) CA3031269C (fr)
NZ (4) NZ744543A (fr)
WO (1) WO2016144580A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111015598A (zh) * 2019-12-31 2020-04-17 张豪 一种射钉枪工质循环结构及射钉枪

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10759031B2 (en) * 2014-08-28 2020-09-01 Power Tech Staple and Nail, Inc. Support for elastomeric disc valve in combustion driven fastener hand tool
US11179837B2 (en) 2017-12-01 2021-11-23 Illinois Tool Works Inc. Fastener-driving tool with multiple combustion chambers and usable with fuel canisters of varying lengths
US11241777B2 (en) 2017-12-05 2022-02-08 Illinois Tool Works Inc. Powered fastener driving tools and clean lubricants therefor
FR3086569B1 (fr) 2018-10-01 2020-12-18 Illinois Tool Works Outil de fixation a gaz et son procede de fonctionnement
EP3954504B1 (fr) 2020-08-11 2024-01-17 Illinois Tool Works, Inc. Outil entraînant une attache

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0123717B1 (fr) 1983-05-02 1988-04-20 Signode Corporation Outil portable de fixation entraîné par gaz
EP1254745A2 (fr) * 2001-05-04 2002-11-06 Illinois Tool Works Inc. Soupape à volume variable pour outil entraíné par gaz de combustion
US6647969B1 (en) * 2001-10-30 2003-11-18 Joseph S. Adams Vapor-separating fuel system utilizing evaporation chamber
EP1243383B1 (fr) 2001-03-20 2009-05-13 Illinois Tool Works Inc. Système de chambre à combustion avec chambre de pré-combustion en forme de bobine
US20100108734A1 (en) * 2008-10-31 2010-05-06 Illinois Tool Works Inc. Fuel supply and combustion chamber systems for fastener-driving tools
EP2202033A1 (fr) * 2007-10-17 2010-06-30 Max Co., Ltd. Outil d'entraînement de type à combustion de gaz
EP2087220B1 (fr) 2006-11-13 2011-10-26 Illinois Tool Works Inc. Système évaporateur de carburant pour évaporer des carburants liquides et utilisé dans des dispositifs alimentés par combustion

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19950351C2 (de) * 1999-10-19 2002-06-13 Hilti Ag Vorrichtung zur Erzeugung einer laminaren Flammfront, insbesondere für brennkraftbetriebene Setzgeräte zum Setzen von Befestigungselementen
US20020134345A1 (en) * 2001-03-20 2002-09-26 Adams Joseph S. Combustion chamber system
DE10158626B4 (de) * 2001-11-29 2006-07-13 Hilti Ag Tragbares, brennkraftbetriebenes Arbeitsgerät und Verfahren zu seiner Betriebssteuerung
US6779493B2 (en) * 2002-06-13 2004-08-24 Illinois Tool Works Inc. Combustion mechanism for generating a flame jet
US6860243B2 (en) * 2002-06-18 2005-03-01 Illinois Tool Works Inc. Combustion chamber system with obstacles for use within combustion-powered fastener-driving tools, and combustion-powered fastener-driving tools having combustion chamber system incorporated therein
US6983871B2 (en) * 2002-08-09 2006-01-10 Hitachi Koki Co., Ltd. Combustion-powered nail gun
FR2852546B1 (fr) * 2003-03-19 2006-08-11 Prospection & Inventions Procedes de reglage de la puissance d'un appareil a fonctionnement a gaz
FR2852547B1 (fr) * 2003-03-19 2006-05-12 Prospection & Inventions Appareils a fonctionnement a gaz a chambre de pre-compression et chambre de propulsion
DE602004023998D1 (de) * 2003-06-02 2009-12-24 Makita Corp Verbrennungsmotorwerkzeug
JP5100190B2 (ja) * 2007-04-12 2012-12-19 株式会社マキタ 打ち込み作業工具
US8313545B2 (en) * 2007-10-16 2012-11-20 Illinois Tool Works Inc. Air filter assembly for combustion tool
US20140014703A1 (en) * 2012-07-10 2014-01-16 Illinois Tool Works Inc. Fastener driving tool with fastener driving and rotating mechanism
FR3046742B1 (fr) * 2016-01-20 2018-01-05 Illinois Tool Works Inc Outil de fixation a gaz et son procede de fonctionnement

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0123717B1 (fr) 1983-05-02 1988-04-20 Signode Corporation Outil portable de fixation entraîné par gaz
EP1243383B1 (fr) 2001-03-20 2009-05-13 Illinois Tool Works Inc. Système de chambre à combustion avec chambre de pré-combustion en forme de bobine
EP1254745A2 (fr) * 2001-05-04 2002-11-06 Illinois Tool Works Inc. Soupape à volume variable pour outil entraíné par gaz de combustion
US6647969B1 (en) * 2001-10-30 2003-11-18 Joseph S. Adams Vapor-separating fuel system utilizing evaporation chamber
EP2087220B1 (fr) 2006-11-13 2011-10-26 Illinois Tool Works Inc. Système évaporateur de carburant pour évaporer des carburants liquides et utilisé dans des dispositifs alimentés par combustion
EP2202033A1 (fr) * 2007-10-17 2010-06-30 Max Co., Ltd. Outil d'entraînement de type à combustion de gaz
US20100108734A1 (en) * 2008-10-31 2010-05-06 Illinois Tool Works Inc. Fuel supply and combustion chamber systems for fastener-driving tools

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111015598A (zh) * 2019-12-31 2020-04-17 张豪 一种射钉枪工质循环结构及射钉枪
CN111015598B (zh) * 2019-12-31 2021-06-08 张豪 一种射钉枪工质循环结构及射钉枪

Also Published As

Publication number Publication date
AU2018207327B2 (en) 2020-03-26
EP3067158A1 (fr) 2016-09-14
EP3189937A1 (fr) 2017-07-12
EP3189938A1 (fr) 2017-07-12
CA3031271C (fr) 2021-01-12
AU2018207324C1 (en) 2020-05-07
NZ734353A (en) 2019-01-25
AU2018207324B2 (en) 2020-01-16
AU2016229422B2 (en) 2018-09-13
NZ744542A (en) 2020-06-26
AU2016229422A1 (en) 2017-08-24
NZ744543A (en) 2020-06-26
CA3031269A1 (fr) 2016-09-15
EP3189938B1 (fr) 2020-03-11
AU2018207327A1 (en) 2018-08-09
AU2018207329A1 (en) 2018-08-09
EP3067158B1 (fr) 2018-09-12
EP3189939B1 (fr) 2020-03-11
CA3031272C (fr) 2021-01-12
CA3031272A1 (fr) 2016-09-15
CA3031271A1 (fr) 2016-09-15
CA3031269C (fr) 2020-06-30
WO2016144580A1 (fr) 2016-09-15
US20180036871A1 (en) 2018-02-08
CA2976366C (fr) 2019-08-27
US11065750B2 (en) 2021-07-20
CA2976366A1 (fr) 2016-09-15
NZ744536A (en) 2020-06-26
EP3189937B1 (fr) 2018-09-12
AU2018207329B2 (en) 2020-03-26
AU2018207324A1 (en) 2018-08-09

Similar Documents

Publication Publication Date Title
EP3189937B1 (fr) Perfectionnements pour un outil de fixation a gaz
FR3032236B1 (fr) Moteur thermique a transfert-detente et regeneration
EP3850201B1 (fr) Dispositif de rappel magnetique de clapet
WO2018104681A1 (fr) Bougie d'allumage a electrode-navette
CA2679015C (fr) Generateur d'air chaud
CA2748891A1 (fr) Reacteur d'aeronef a combustion isochore
EP0750719B1 (fr) Moteur a combustion interne, a obturateurs de distribution rotatifs
WO2000008317A1 (fr) Dispositif et procede d'allumage pour moteur a combustion interne et paroi de separation correspondante
FR3046742A1 (fr) Outil de fixation a gaz et son procede de fonctionnement
EP3181296B1 (fr) Outil de fixation a gaz avec une chambre de combustion
FR3046741A1 (fr) Outil de fixation a gaz
FR3001172A1 (fr) Appareil de fixation electropneumatique a gaz
EP2112351B1 (fr) Moteur à détonations pulsées
EP0507648B1 (fr) Moteur à deux temps à contrôle sélectif de la charge introduite dans la chambre de combustion
FR3115066A1 (fr) Moteur à combustion interne et procédé de fonctionnement d'un moteur à combustion interne
WO2018134517A1 (fr) Dispositif et procede d'injection d'une charge dans la chambre de combustion d'un moteur a combustion interne et a allumage commande
FR3052526A1 (fr) Vanne de controle d'un debit de fluide
FR2524550A1 (fr) Moteur a explosion a piston rotatif
BE359302A (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170228

AC Divisional application: reference to earlier application

Ref document number: 3067158

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191011

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AC Divisional application: reference to earlier application

Ref document number: 3067158

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1242550

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015048852

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200611

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200612

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200611

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200711

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1242550

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200311

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015048852

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

26N No opposition filed

Effective date: 20201214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201218

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230606

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231227

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231227

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231229

Year of fee payment: 9