EP3189917A1 - Throw-away tip - Google Patents

Throw-away tip Download PDF

Info

Publication number
EP3189917A1
EP3189917A1 EP15838053.5A EP15838053A EP3189917A1 EP 3189917 A1 EP3189917 A1 EP 3189917A1 EP 15838053 A EP15838053 A EP 15838053A EP 3189917 A1 EP3189917 A1 EP 3189917A1
Authority
EP
European Patent Office
Prior art keywords
throw
recess
less
away tip
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP15838053.5A
Other languages
German (de)
French (fr)
Other versions
EP3189917A4 (en
EP3189917B1 (en
Inventor
Yuji Tomoda
Yasuyuki Kanada
Kunishige Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Hardmetal Corp
Original Assignee
Sumitomo Electric Hardmetal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Hardmetal Corp filed Critical Sumitomo Electric Hardmetal Corp
Publication of EP3189917A1 publication Critical patent/EP3189917A1/en
Publication of EP3189917A4 publication Critical patent/EP3189917A4/en
Application granted granted Critical
Publication of EP3189917B1 publication Critical patent/EP3189917B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/18Cutting tools of which the bits or tips or cutting inserts are of special material with cutting bits or tips or cutting inserts rigidly mounted, e.g. by brazing
    • B23B27/20Cutting tools of which the bits or tips or cutting inserts are of special material with cutting bits or tips or cutting inserts rigidly mounted, e.g. by brazing with diamond bits or cutting inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/141Specially shaped plate-like cutting inserts, i.e. length greater or equal to width, width greater than or equal to thickness
    • B23B27/143Specially shaped plate-like cutting inserts, i.e. length greater or equal to width, width greater than or equal to thickness characterised by having chip-breakers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/22Cutting tools with chip-breaking equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2200/00Details of cutting inserts
    • B23B2200/04Overall shape
    • B23B2200/0447Parallelogram
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2200/00Details of cutting inserts
    • B23B2200/08Rake or top surfaces
    • B23B2200/086Rake or top surfaces with one or more grooves
    • B23B2200/087Rake or top surfaces with one or more grooves for chip breaking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2226/00Materials of tools or workpieces not comprising a metal
    • B23B2226/31Diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2226/00Materials of tools or workpieces not comprising a metal
    • B23B2226/31Diamond
    • B23B2226/315Diamond polycrystalline [PCD]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/04Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner applied by chemical vapour deposition [CVD]

Definitions

  • the present invention relates to a throw-away tip and more specifically to a throw-away tip comprising a blade containing diamond.
  • a throw-away tip is provided with a chip breaker such as a breaker groove and a breaker wall.
  • Japanese Patent Laying-Open No. 4-217404 (PTD 1)
  • Japanese Patent Laying-Open No. 4-217405 (PTD 2)
  • Japanese Patent Laying-Open No. 4-217406 (PTD 3) disclose defining a chip breaker in surface roughness to curl chips spirally.
  • PTDs 1-3 describe forming a chip breaker by electro-discharge machining or grinding, and accordingly, the chip breaker is shaped in the form of a simple groove. Accordingly, depending on the working condition(s), it cannot curl chips spirally and cannot obtain desired chip processability. Furthermore, the chip breaker formed by electro-discharge machining has a blade with a rake face that is an electro-discharge machined surface, and the blade's cutting edge cannot be formed sharply. Thus, when the throw-away tips disclosed in PTDs 1-3 are used to work a workpiece, the workpiece has aggravated finished surface roughness.
  • diamond is used for a blade to improve a throw-away tip in strength and wear resistance.
  • diamond has large hardness and is thus not easily processed, and thus it is difficult to use it to form a chip breaker excellent in chip processability.
  • the present invention contemplates a throw-away tip which includes a blade containing diamond and is excellent in chip processability.
  • the present invention in one manner provides a throw-away tip comprising a body and a blade provided to the body and having a cutting edge, the blade containing 80% by volume or more of diamond, the blade having a land surface extending along the cutting edge, and a chip breaker having a recess located opposite to the cutting edge with the land surface therebetween, the recess having a side surface having a rake face that recedes continuously as a distance thereof from the land surface increases in magnitude and that has a shape identical to that of a portion of a side surface of a shape of a body of revolution.
  • a throw-away tip which includes a blade containing diamond and is excellent in chip processability.
  • the present invention in one manner provides a throw-away tip (1) comprising a body and a blade provided to the body and having a cutting edge, the blade containing 80% by volume or more of diamond, the blade having a land surface extending along the cutting edge, and a chip breaker having a recess located opposite to the cutting edge with the land surface therebetween, the recess having a side surface having a rake face that recedes continuously as a distance thereof from the land surface increases in magnitude and that has a shape identical to that of a portion of a side surface of a shape of a body of revolution.
  • the throw-away tip according to one manner of the present invention that has a blade including a chip breaker having a recess with a side surface having a rake face that recedes continuously as a distance thereof from the land surface increases in magnitude and that has a shape identical to that of a portion of a side surface of a shape of a body of revolution allows a workpiece to be cut such that chips flow out along the rake face of the chip breaker toward the bottom of the rake face, and large distortion can be imparted to the chips.
  • the throw-away tip according to one manner of the present invention can thus exhibit excellent chip processability under a variety of cutting conditions.
  • the throw-away tip according to one manner of the present invention has a blade containing 80% by volume or more of diamond and hence excellent in strength and wear resistance.
  • Fig. 1 is a perspective view of a throw-away tip 1 of one embodiment of the present invention.
  • Fig. 2 is an enlarged perspective view of a blade 3 of throw-away tip I shown in Fig. 1 .
  • Fig. 3 is an enlarged top view of blade 3 of throw-away tip I shown in Fig. 1 .
  • Fig. 4 is a cross section along a line A-A' of Fig. 3 .
  • Fig. 5 is a cross section along a line B-B' of Fig. 3 .
  • throw-away tip 1 of the present embodiment includes a body 2 and a blade 3 provided to body 2. While throw-away tip 1 of Fig. 1 is a parallelogram in a plan view, it is not limited to any particular shape. While throw-away tip of Fig. 1 has body 2 with a plurality of corners having one thereof provided with blade 3, two or more corners may be provided with blade 3. Body 2 can be formed of material such as steel, cemented carbide, etc. Body 2 has an upper surface with a corner notched to allow blade 3 to be adhered thereto. The notch is formed by opening the corner's upper and lateral sides. The notch has a triangular bottom surface in a top plan view, and a side wall erected vertically from the bottom surface.
  • Blade 3 is adhered to the notch of body 2.
  • Blade 3 has a generally triangular upper surface 31 identical to the bottom surface of the notch in a top plan view, a bottom surface opposite to upper surface 31 and identical in shape to upper surface 31, and a side surface 32 connecting a periphery of upper surface 31 and a periphery of bottom surface 31.
  • a surface located over a corner of the body configures a flank 33 of the throw-away tip.
  • Chip breaker 9 is formed to extend along the ridge line of the position at which the blade 3 upper surface 31 and side surface 32 cross each other. Chip breaker 9 includes a recess 7 formed along cutting edge 4.
  • Blade 3 contains 80% by volume or more of diamond.
  • Diamond is excellent in strength and wear resistance, and the blade containing diamond can be excellent in strength and wear resistance, and can enhance the chip breaker in longevity as a tool.
  • blade 3 has a diamond content of 90% by volume or more, more preferably 95% by volume or more.
  • the diamond can be a sintered diamond compact of sintered powdery diamond, single crystal diamond synthesized by chemical vapor deposition (CVD), etc.
  • CVD chemical vapor deposition
  • the blade sintered compact When the diamond sintered compact is used for blade 3, the blade has excellent wear resistance in working of nonferrous metal in particular, and can provide satisfactory finished surface.
  • the single crystal diamond synthesized by CVD When the single crystal diamond synthesized by CVD is used for blade 3, the blade can have excellent wear resistance and have a cutting edge with sharpness (i.e., edge sharpening performance).
  • the single crystal diamond has an absorption coefficient in a range of 2 cm -1 or more and 90 cm -1 or less for a laser wavelength in a wavelength range of 190 nm or more and 11000 nm or less.
  • the single crystal diamond has an absorption coefficient in said range, it easily absorbs laser light, which helps laser-machining of blade 3. This allows blade 3 to be worked to have a desired contour and the chip breaker to be formed at blade 3 with high precision.
  • the laser wavelength is 1064 nm, it is more preferable that the single crystal diamond have an absorption coefficient in a range of 5 cm -1 or more and 20 cm -1 or less.
  • the single crystal diamond When the laser wavelength is 532 nm, it is more preferable that the single crystal diamond have an absorption coefficient in a range of 30 cm -1 or more and 70 cm -1 or less. When the laser wavelength is 355 nm, it is more preferable that the single crystal diamond have an absorption coefficient in a range of 60 cm -1 or more and 90 cm -1 or less.
  • Blade 3 has upper surface 31 with a land surface 5 formed to extend along cutting edge 4.
  • land surface 5 has a determined width W1 in a direction perpendicular to cutting edge 4 and extending toward the center of upper surface 31.
  • Land surface 5 preferably has width W1 in a range of 10 ⁇ m or more and 100 ⁇ m or less.
  • Land surface 5 having width W1 of 10 ⁇ m or more allows the blade to have the cutting edge with strength maintained and can prevent the cutting edge from chipping and thus enhance the throw-away tip in longevity as a tool.
  • Land surface 5 having width W1 of 100 ⁇ m or less allows cutting to be done while preventing chips from running up onto the land surface and thus being large in length and enhances the throw-away tip's chip processability.
  • land surface 5 has width W1 of 10 ⁇ m or more and 70 ⁇ m or less.
  • land surface 5 has a surface roughness in a range of 0.05 ⁇ m or more and 0.2 ⁇ m or less. This allows the blade to have a cutting edge formed sharply and thus provides a workpiece with satisfactory finished surface roughness.
  • surface roughness is a ten-point average height (Rz). More specifically, it is a value that is obtained in a portion extracted from a profile curve only by a reference length and represents a difference between an average value of the highest to fifth highest peaks' altitudes and an average value of the deepest to fifth deepest troughs' altitudes, as represented in micrometers ( ⁇ m).
  • land surface 5 has a surface roughness in a range of 0.08 ⁇ m or more and 0.15 ⁇ m or less.
  • Blade 3 has upper surface 31 with chip breaker 9 formed opposite to cutting edge 4 with land surface 5 therebetween and having a recess 7.
  • recess 7 is a portion of chip breaker 9 that is formed along cutting edge 4 in a vicinity of a corner.
  • a side surface which forms an outer contour of recess 7 includes a rake face 6 which recedes continuously from land surface 5 as a distance toward the center of blade 3 increases in magnitude, and a breaker wall surface 16 which is raised from a rear end of rake face 6 toward upper surface 31 of blade 3. This allows chips flowing out in cutting a workpiece to first flow out along rake face 6 toward the bottom of rake face 6. At the time, distortion is imparted to the chips and thus helps to shred the chips. Subsequently, the chips reach the bottom of rake face 6 and collide against breaker wall surface 16. At the time, the chips are shredded by the collision. Or the chips are shredded as further distortion is imparted thereto
  • Rake face 6 is identical in shape to a portion of a side surface of the shape of a body of revolution. According to this, in recess 7 of blade 3, in cutting a workpiece, chips flow out along rake face 6 of the chip breaker toward the bottom of rake face 6, and large distortion can be imparted to the chips.
  • the shape of the body of revolution means a solid that can be formed by revolving a plane figure once with a straight line on its plane serving as an axis of revolution.
  • the shape of the body of revolution includes a sphere, a cone, etc., for example.
  • rake face 6 has a shape identical to a portion of a side surface of a cone. This can maintain the cutting edge's strength.
  • an angle of inclination ⁇ of rake face 6 relative to land surface 5 is preferably in a range of 15° or more and 50° or less. This allows cutting to be done with chips easily flowing out along the rake face and thus enhances the throw-away tip's chip processability. Furthermore, it can also maintain strength of the cutting edge of the blade and thus also enhance the throw-away tip in longevity as a tool.
  • angle of inclination ⁇ of rake face 6 relative to land surface 5 is an acute angle among angles formed by a plane 15 assumed when land surface 5 is extended to above the recess (hereinafter also referred to as a "top plane of the recess") and rake face 6. Angle of inclination ⁇ of rake face 6 relative to land surface 5 is more preferably 20° or more and 40° or less.
  • Rake face 6 preferably has a surface roughness in a range of 2 ⁇ m or more and 7 ⁇ m or less. This increases resistance caused when chips flowing out in cutting scratch the surface of the rake face, and the chips are easily curled and the throw-away tip's chip processability is thus improved.
  • surface roughness is a ten-point average height (Rz).
  • Rake face 6 more preferably has a surface roughness in a range of 3.0 ⁇ m or more and 6.0 ⁇ m or less.
  • recess 7 preferably has a maximum depth D in a range of 60 ⁇ m or more and 300 ⁇ m or less. This allows cutting to be done with distortion effectively imparted to chips and thus enhances the throw-away tip's chip processability.
  • maximum depth D of recess 7 is a maximum value of a distance to the bottom of the recess from plane 15 assumed when land surface 5 is extended to above the recess (i.e., the top plane of the recess).
  • recess 7 has maximum depth D in a range of 60 ⁇ m or more and 200 ⁇ m or less.
  • recess 7 preferably has a width 2 in a direction perpendicular to cutting edge 4 (hereinafter also referred to as a "width of the recess") in a range of 0.2 mm or more and 1.0 mm or less. This allows chips flowing out in cutting to collide against breaker wall surface 16, without running up onto upper surface 31 of blade 3, to help to shred the chips and thus enhance the throw-away tip's chip processability.
  • width 2 in the direction perpendicular to cutting edge 4 means a distance between an end of the opening of the recess closer to the land surface and an end of the opening of the recess closer to the center of the blade, as seen in a direction along a straight line which is perpendicular to cutting edge 4 and is also located on the top plane of the recess.
  • width 2 means a distance between an end of the opening of the recess closer to the land surface and an end of the opening of the recess closer to the center of the blade, as seen in a direction along a straight line which is perpendicular to a tangent of the curve and is also located on the top plane of the recess.
  • Recess 7 more preferably has width 2 in the direction perpendicular to cutting edge 4 in a range of 0.25 mm or more and 0.7 mm or less.
  • a projection 8 is formed along a bisector (B-B') of the corner angle of blade 3. This allows chips flowing out in cutting a workpiece to collide against projection 8 and thus be shredded or imparts further distortion to the chips and thus shred the chips
  • projection 8 will exist on a path along which chips flow out, which can more effectively shred the chips.
  • projection 8 has a height H in a range of 20% or more and 80% or less relative to maximum depth D of the recess. This allows chips flowing out in cutting to collide against projection 8, without running up onto the projection, to help to shred the chips.
  • projection 8 having height H of 80% or less relative to maximum depth D of the recess can be prevented from being worn in cutting and thus enhance the throw-away tip in longevity as a tool.
  • height H of projection 8 is a height of the projection as seen in a cross section to which the bisector (B-B') of the corner angle is a normal and that traverses a position at which the recess presents maximum depth D.
  • projection 8 when projection 8 is seen in the cross section to which the bisector of the corner angle is a normal, it has a cross sectional shape increasing in width as the recess becomes deeper.
  • the cross sectional shape of projection 8 can be a triangle, a trapezoid, etc., for example.
  • the cross sectional shape of the projection in a widthwise direction W3 preferably has a minimum value (hereinafter also referred to as a "minimum width of the projection") in a range of 5 ⁇ m or more and 40 ⁇ m or less. This allows chips flowing out in cutting to collide against the projection, without running up onto the projection, to help to shred the chips and thus enhance the throw-away tip's chip processability. More preferably, the cross sectional shape of the projection in widthwise direction W3 preferably has a minimum value in a range of 10 ⁇ m or more and 20 ⁇ m or less.
  • Projection 8 as seen in a direction along the bisector of the corner angle, preferably has a length W5 in a range of 0.2 mm or more and 1.0 mm or less. This helps chips flowing out in cutting to collide against the projection to help to shred the chips and thus enhance the throw-away tip's chip processability.
  • Body 2 having a notch, and blade 3 containing 80% by volume or more of diamond are prepared.
  • the blade is brazed to the notch of the body, and ground with a diamond wheel to have a cutting edge.
  • a high output pulsed laser is used to work a surface of blade 3 to form chip breaker 9.
  • a blade containing diamond is worked by electro-discharge machining, grinding or the like, which limits a chip breaker to a simple shape.
  • blade 3 is worked with precise positioning done by laser irradiation, which can provide a chip breaker in a desire shape.
  • the shape of recess 7 of the chip breaker presented along cutting edge 4 can be precisely adjusted, and the throw-away tip's chip processability can be enhanced.
  • a blade made of a polycrystalline hard sintered compact containing 90% by volume of diamond having an average grain size of 0.5 ⁇ m or less was brazed at a corner of the body, as shown in Fig. 1 , and then ground with a diamond wheel to have a cutting edge.
  • a high output pulse YVO 4 : Nd laser enhanced in condensability by a galvanometer mirror (wavelength: 1,064 nm) was employed with an output of 1.5 W, an oscillatory frequency of 22 kHz and a working pitch of 1 ⁇ m to proceed to carve the blade in contour lines in a constant working amount to form on an upper surface of the rake face of the blade a shape of a chip breaker having a three-dimensionally shaped recesses and projections.
  • a variety of samples with rake faces varied in shape as shown in table 1 were produced and accessed in chip processability. The cutting conditions and the tool's shape are indicated below. In this assessment, chips of a range of 5 mm or more and 300 mm or less in length were determined as being satisfactory.
  • Sample 1 A had a rake face without a chip breaker, and chips were not shredded and the workpiece was tangled with the chips.
  • samples 1B-1G had their rake faces in the form of a portion of a ball (or sphere) or cone and provided chips having a length of 300 mm or less and hence satisfactory chip processability.
  • samples ID-1F had their rake faces in the form of a cone and having an angle of inclination of 15° or more and 50° or less relative to the land surface, and thus provided chips having a length of 30-50 mm and hence particularly satisfactory chip processability
  • Sample 1G had a rake face in the form of a cone and having an angle of inclination of 60° relative to the land surface, and provided chips having a satisfactory length of 30-50 mm, although it had the cutting edge chipped when a cutting length of 10 km was reached.
  • Sample 1B had a rake face in the form of a ball and provided chips having a satisfactory length of 30-50 mm, although it had the cutting edge chipped when a cutting length of 10 km was reached.
  • a rake face having a shape identical to a portion of a shape of a body of revolution such as a ball, a cone or the like allows chips to have a length of 300 mm or less and allows satisfactory chip processability
  • a throw-away tip having a rake face having a shape identical to a portion of a shape of a cone and an angle of inclination of 15° to 50° relative to the land surface allows chips to have a length of 30-50 mm and presents satisfactory chip processability, and as a tool it is increased in longevity as it did not have chipping even when a cutting length of 10 km was reached.
  • Breaker working condition YAG laser (wavelength: 1,064 nm), with a frequency of 20 kHz, an output of 1.5 W, and a working pitch of 1 ⁇ m
  • Sample 2A had a rake face without a chip breaker, and chips were not shredded and the workpiece was tangled with the chips.
  • Samples 2B-2F had a chip breaker, and chips were shredded to have a length of 300 mm or less.
  • samples 2B-2E had their land surfaces in a range in width of 5-100 ⁇ m, and provided chips having a length of 50-150 mm and hence particularly satisfactory chip processability. However, sample 2B had a land surface with a width of 5 ⁇ m, and had the cutting edge chipped when a cutting length of 10 km was reached.
  • a rake face having a chip breaker allows chips to be shredded to have a length of 300 mm or less.
  • a land surface having a width in a range of 10-100 ⁇ m allows a throw-away tip to present satisfactory chip processability and stable endurance.
  • Breaker working condition YAG (wavelength: 532 nm), with a frequency of 60 kHz, an output of 2.5 W, and a working pitch of 1.8 ⁇ m
  • Sample 3A had a rake face without a chip breaker, and chips were not shredded.
  • samples 3B-3G had a chip breaker, and chips had a length of 300 mm or less.
  • samples 3C-3F had a recess with a maximum depth of 0.06 mm to 0.30 mm and a width of 0.20 mm to 1.00 mm and provided chips having a length of 200 mm or less and hence presented particularly satisfactory chip processability.
  • Sample 4A had a rake face without a chip breaker, and chips were not shredded.
  • samples 4B-4F had a chip breaker, and chips had a length of 300 mm or less.
  • samples 4C-4F had a projection with height (H) of 0.02-0.10 mm and provided chips having a length of 200 mm or less and hence presented particularly satisfactory chip processability.
  • sample 4F had the projection worn when a cutting length of 10 km was reached.
  • a projection having height (H) in a range of 0.02-0.08 mm allows particularly satisfactory chip processability, and it has thus been found that satisfactory chip processability is provided when height (H) of the projection is in a range of 20-80% of maximum depth (D) of the recess.
  • Sample 5A had a rake face without a chip breaker, and chips were not shredded.
  • samples 5B-5G had a chip breaker, and chips had a length of 300 mm or less.
  • samples 5D-5F had a projection having a trapezoidal cross section and an upper surface having a width (W3) of 5 to 40 ⁇ m, and provided chips having a length of 50-150 mm and hence presented particularly satisfactory chip processability.
  • the projection has a uniform cross section along the bisector of the corner angle of the tool.
  • width (W2) of the recess needs to be in a range of 0.20-1.0 mm, and as indicated in Example 4, height (H) of the projection needs be a height of 20-80% of maximum depth (D) of the recess.
  • the projection as seen along the bisector of the corner angle needs to have length (W5) equal to or smaller than width (W2) of the recess.
  • Sample 6A had a rake face without a chip breaker, and chips were not shredded.
  • samples 6B-6G had a chip breaker, and chips had a length of 300 mm or less.
  • samples 6C-6G had a rake face with surface roughness Rz1 of Rz 2.0 ⁇ m or more and provided chips having a length of 50-150 mm and hence presented particularly satisfactory chip processability. This is because a rake face having coarser surface roughness Rz1 increases resistance caused when chips scratch, resulting in chips curled to be small.
  • a rake face having excessively large surface roughness increases adhesion of a cut material to the rake face, and while satisfactory chip processability is presented, finished surface roughness is worsened depending on the case, as presented by sample 6G.
  • the samples had land surfaces formed by lapping done for a variety of periods of time to have the land surfaces with worked surfaces different in surface roughness, as indicated in table 7.
  • the samples were assessed in performance under cutting conditions with a tool having a shape, as follows:
  • Samples 7A-7E had a chip breaker, and chips had a length of 100 mm or less.
  • a land surface having excessively large surface roughness impairs the cutting edge's edge sharpening performance, and while satisfactory chip processability is presented, finished surface roughness is worsened depending on the case, as presented by sample 7E.
  • a rake face having surface roughness Rz1 in a range of Rz2.0-7.0 ⁇ m and a land surface having surface roughness Rz2 in a range of Rz0.05-0.20 ⁇ m allow chips to have a length of 150 mm or less and thus provide particularly satisfactory chips.
  • Table 8 shows an evaluation result.
  • the polycrystalline hard sintered compact used for samples 8A and 8B and the single crystal diamond synthesized by CVD and used for sample 8C had an absorption rate of 2 cm -1 or more, and were thus workable by laser machining.
  • the single crystal diamond of sample 8D had an absorption coefficient of 0.01 cm -1 or less and was thus unworkable by laser machining.
  • a cutting assessment provided a result as follows: Sample 8A had a rake face without a chip breaker, and chips were not shredded. In contrast, samples 8B and 8C had a chip breaker, and chips had a length of 50-150 ⁇ m, and satisfactory chip processability was presented. Furthermore, sample 8C using CVD single crystal diamond had the flank worn in an amount of 0.008 mm when a cutting length of 10 km was reached, and sample 8C presented a significantly smaller amount of wearing than samples 8A and 8B using polycrystalline hard sintered compact.
  • the throw-away tip of the present embodiment is beneficial when it is used for tools and the like used in turning and milling aluminum alloy, nonferrous metal and the like.

Abstract

There is provided a throw-away tip which includes a blade containing diamond and is excellent in chip processability. The throw-away tip comprises a body and a blade provided to the body and having a cutting edge, the blade containing 80% by volume or more of diamond, the blade having a land surface extending along the cutting edge, and a chip breaker having a recess located opposite to the cutting edge with the land surface therebetween, the recess having a side surface having an inclined surface that recedes continuously as a distance thereof from the land surface increases in magnitude and that has a shape identical to that of a portion of a side surface of a shape of a body of revolution.

Description

    TECHNICAL FIELD
  • The present invention relates to a throw-away tip and more specifically to a throw-away tip comprising a blade containing diamond.
  • BACKGROUND ART
  • In order to enhance chip processability in cutting, a throw-away tip is provided with a chip breaker such as a breaker groove and a breaker wall.
  • For example, Japanese Patent Laying-Open No. 4-217404 (PTD 1), Japanese Patent Laying-Open No. 4-217405 (PTD 2), and Japanese Patent Laying-Open No. 4-217406 (PTD 3) disclose defining a chip breaker in surface roughness to curl chips spirally.
  • CITATION LIST PATENT DOCUMENTS
    • PTD 1: Japanese Patent Laying-Open No. 4-217404
    • PTD 2: Japanese Patent Laying-Open No. 4-217405
    • PTD 3: Japanese Patent Laying-Open No. 4-217406
    SUMMARY OF INVENTION TECHNICAL PROBLEM
  • PTDs 1-3 describe forming a chip breaker by electro-discharge machining or grinding, and accordingly, the chip breaker is shaped in the form of a simple groove. Accordingly, depending on the working condition(s), it cannot curl chips spirally and cannot obtain desired chip processability. Furthermore, the chip breaker formed by electro-discharge machining has a blade with a rake face that is an electro-discharge machined surface, and the blade's cutting edge cannot be formed sharply. Thus, when the throw-away tips disclosed in PTDs 1-3 are used to work a workpiece, the workpiece has aggravated finished surface roughness.
  • Furthermore, diamond is used for a blade to improve a throw-away tip in strength and wear resistance. However, diamond has large hardness and is thus not easily processed, and thus it is difficult to use it to form a chip breaker excellent in chip processability.
  • Accordingly, the present invention contemplates a throw-away tip which includes a blade containing diamond and is excellent in chip processability.
  • SOLUTION TO PROBLEM
  • The present invention in one manner provides a throw-away tip comprising a body and a blade provided to the body and having a cutting edge, the blade containing 80% by volume or more of diamond, the blade having a land surface extending along the cutting edge, and a chip breaker having a recess located opposite to the cutting edge with the land surface therebetween, the recess having a side surface having a rake face that recedes continuously as a distance thereof from the land surface increases in magnitude and that has a shape identical to that of a portion of a side surface of a shape of a body of revolution.
  • ADVANTAGEOUS EFFECT OF INVENTION
  • In this manner, there can be provided a throw-away tip which includes a blade containing diamond and is excellent in chip processability.
  • BRIEF DESCRIPTION OF DRAWINGS
    • Fig, 1 illustrates a representative configuration example of a throw-away tip according to one manner of the present invention.
    • Fig. 2 is an enlarged view of a blade of a throw-away tip shown in Fig. 1.
    • Fig 3 is a top view of the blade of the throw-away tip shown in Fig. 1.
    • Fig. 4 is a cross section along a line A-A' of Fig. 3.
    • Fig 5 is a cross section along a line B-B' of Fig. 3.
    DESCRIPTION OF EMBODIMENTS Description of Embodiment of the Present Invention
  • Initially, embodiments of the present invention are enumerated and described. The present invention in one manner provides a throw-away tip (1) comprising a body and a blade provided to the body and having a cutting edge, the blade containing 80% by volume or more of diamond, the blade having a land surface extending along the cutting edge, and a chip breaker having a recess located opposite to the cutting edge with the land surface therebetween, the recess having a side surface having a rake face that recedes continuously as a distance thereof from the land surface increases in magnitude and that has a shape identical to that of a portion of a side surface of a shape of a body of revolution.
  • The throw-away tip according to one manner of the present invention that has a blade including a chip breaker having a recess with a side surface having a rake face that recedes continuously as a distance thereof from the land surface increases in magnitude and that has a shape identical to that of a portion of a side surface of a shape of a body of revolution allows a workpiece to be cut such that chips flow out along the rake face of the chip breaker toward the bottom of the rake face, and large distortion can be imparted to the chips. The throw-away tip according to one manner of the present invention can thus exhibit excellent chip processability under a variety of cutting conditions. Furthermore, the throw-away tip according to one manner of the present invention has a blade containing 80% by volume or more of diamond and hence excellent in strength and wear resistance.
    • (2) Preferably, an angle of inclination of the rake face relative to the land surface is in a range of 15° or more and 50° or less. This allows cutting to be done with chips easily flowing out along the rake face and thus enhances the throw-away tip's chip processability. Furthermore, it can also maintain strength of the cutting edge of the blade and thus also enhance the throw-away tip in longevity as a tool. In the present specification, an angle of inclination of the rake face relative to the land surface is an acute angle among angles formed by a plane assumed when the land surface is extended to above the recess (hereinafter also referred to as a "top plane of the recess") and the rake face.
    • (3) Preferably, the land surface has a width in a direction perpendicular to the cutting edge in a range of 10 µm or more and 100 µm or less. This allows cutting to be done while preventing chips from running up onto the land surface and thus enhances the throw-away tip's chip processability. Furthermore, it can also maintain strength of the cutting edge of the blade and thus also enhance the throw-away tip in longevity as a tool. Note that the direction perpendicular to the cutting edge means a direction along a straight line which is perpendicular to the cutting edge and is also located on the land surface. Note that if the cutting edge is curved, the direction means a direction along a straight line which is perpendicular to a tangent of the curve and is also located on the land surface
    • (4) Preferably, the recess has a maximum depth in a range of 60 µm or more and 300 µm or less. This allows cutting to be done with distortion effectively imparted to chips and thus enhances the throw-away tip's chip processability.
    • (5) Preferably, the recess has a width in a direction perpendicular to the cutting edge in a range of 0.2 mm or more and 1.0 mm or less. This allows chips flowing out in cutting to collide against an inclined surface that is raised from a rear end of the rake face of the recess of the chip breaker toward an upper surface of the blade (hereinafter also referred to as the breaker's wall surface), without running up onto the upper surface of the blade, to help to shred the chips and thus enhance the throw-away tip's chip processability.
    • (6) Preferably, the blade has a corner, the recess has on a side surface of the recess a projection formed along a bisector of an angle of the corner, and the projection has a height in a range of 20% or more and 80% or less relative to a maximum depth of the recess. This allows chips flowing out in cutting to collide against the projection, without running up onto the projection, to help to shred the chips and thus enhance the throw-away tip's chip processability.
    • (7) Preferably, when the projection is seen in a cross section to which the bisector of the angle of the corner is a normal, the projection has a cross sectional shape increasing in width as the recess becomes deeper, and the cross sectional shape in a widthwise direction has a minimum value in a range of 5 µm or more and 40 µm or less. This allows chips flowing out in cutting to collide against the projection, without running up onto the projection, to help to shred the chips and thus enhance the throw-away tip's chip processability.
    • (8) Preferably, the projection has a length in a direction along the bisector of the angle of the corner in a range of 0.2 mm or more and 1.0 mm or less. This helps chips flowing out in cutting to collide against the projection to help to shred the chips and thus enhance the throw-away tip's chip processability.
    • (9) Preferably, the land surface has a surface roughness in a range of 0.05 µm or more and 0.2 µm or less, and the rake face has a surface roughness in a range of 2 µm or more and 7 µm or less. The land surface having a surface roughness in a range of 0.05 µm or more and 0.2 µm or less allows the blade to have a cutting edge formed sharply to thus provide a workpiece with satisfactory finished surface roughness. Furthermore, the rake face having a surface roughness in a range of 2 µm or more and 7 µm or less increases resistance caused when the chips having flown out in cutting scratch the surface of the rake face, and the chips are easily curled and the throw-away tip's chip processability is thus improved.
    • (10) Preferably, the diamond is single crystal diamond synthesized by vapor deposition Single crystal diamond is excellent in strength and wear resistance, and the throw-away tip can have excellent wear resistance and have a cutting edge with sharpness (i.e., edge sharpening performance).
    • (11) Preferably, the single crystal diamond has an absorption coefficient in a range of 2 cm-1 or more and 90 cm-1 or less for laser light of 190 nm or more and 11000 nm or less in wavelength. The single crystal diamond having an absorption coefficient in a range of 2cm-1 or more and 90 cm-1 or less easily absorbs laser light. The single crystal diamond can thus be easily laser-machined to provide a blade with a chip breaker shaped as desired to thus enhance the throw-away tip's chip processability.
    DESCRIPTION OF EMBODIMENTS
  • A specific example of a throw-away tip according to an embodiment of the present invention will now be described with reference to the drawings below. Note that the present invention is defined by the terms of the claims, rather than these examples, and is intended to include any modifications within the meaning and scope equivalent to the terms of the claims.
  • Fig. 1 is a perspective view of a throw-away tip 1 of one embodiment of the present invention. Fig. 2 is an enlarged perspective view of a blade 3 of throw-away tip I shown in Fig. 1. Fig. 3 is an enlarged top view of blade 3 of throw-away tip I shown in Fig. 1. Fig. 4 is a cross section along a line A-A' of Fig. 3. Fig. 5 is a cross section along a line B-B' of Fig. 3.
  • With reference to Fig. 1, throw-away tip 1 of the present embodiment includes a body 2 and a blade 3 provided to body 2. While throw-away tip 1 of Fig. 1 is a parallelogram in a plan view, it is not limited to any particular shape. While throw-away tip of Fig. 1 has body 2 with a plurality of corners having one thereof provided with blade 3, two or more corners may be provided with blade 3. Body 2 can be formed of material such as steel, cemented carbide, etc. Body 2 has an upper surface with a corner notched to allow blade 3 to be adhered thereto. The notch is formed by opening the corner's upper and lateral sides. The notch has a triangular bottom surface in a top plan view, and a side wall erected vertically from the bottom surface.
  • Blade 3 is adhered to the notch of body 2. Blade 3 has a generally triangular upper surface 31 identical to the bottom surface of the notch in a top plan view, a bottom surface opposite to upper surface 31 and identical in shape to upper surface 31, and a side surface 32 connecting a periphery of upper surface 31 and a periphery of bottom surface 31. Of side surface 32, a surface located over a corner of the body configures a flank 33 of the throw-away tip.
  • Of the sides configuring the periphery of upper surface 31 of blade 3, a side formed by a ridge line of a position at which the blade 3 upper surface 31 and side surface 32 cross each other configures a cutting edge 4.
  • At blade 3, a chip breaker 9 is formed to extend along the ridge line of the position at which the blade 3 upper surface 31 and side surface 32 cross each other. Chip breaker 9 includes a recess 7 formed along cutting edge 4.
  • Blade 3 contains 80% by volume or more of diamond. Diamond is excellent in strength and wear resistance, and the blade containing diamond can be excellent in strength and wear resistance, and can enhance the chip breaker in longevity as a tool. Preferably, blade 3 has a diamond content of 90% by volume or more, more preferably 95% by volume or more.
  • The diamond can be a sintered diamond compact of sintered powdery diamond, single crystal diamond synthesized by chemical vapor deposition (CVD), etc. When the diamond sintered compact is used for blade 3, the blade has excellent wear resistance in working of nonferrous metal in particular, and can provide satisfactory finished surface. When the single crystal diamond synthesized by CVD is used for blade 3, the blade can have excellent wear resistance and have a cutting edge with sharpness (i.e., edge sharpening performance).
  • Preferably, the single crystal diamond has an absorption coefficient in a range of 2 cm-1 or more and 90 cm-1 or less for a laser wavelength in a wavelength range of 190 nm or more and 11000 nm or less. When the single crystal diamond has an absorption coefficient in said range, it easily absorbs laser light, which helps laser-machining of blade 3. This allows blade 3 to be worked to have a desired contour and the chip breaker to be formed at blade 3 with high precision. When the laser wavelength is 1064 nm, it is more preferable that the single crystal diamond have an absorption coefficient in a range of 5 cm-1 or more and 20 cm-1 or less. When the laser wavelength is 532 nm, it is more preferable that the single crystal diamond have an absorption coefficient in a range of 30 cm-1 or more and 70 cm-1 or less. When the laser wavelength is 355 nm, it is more preferable that the single crystal diamond have an absorption coefficient in a range of 60 cm-1 or more and 90 cm-1 or less.
  • Blade 3 has upper surface 31 with a land surface 5 formed to extend along cutting edge 4. With reference to Fig. 5, land surface 5 has a determined width W1 in a direction perpendicular to cutting edge 4 and extending toward the center of upper surface 31. Land surface 5 preferably has width W1 in a range of 10 µm or more and 100 µm or less. Land surface 5 having width W1 of 10 µm or more allows the blade to have the cutting edge with strength maintained and can prevent the cutting edge from chipping and thus enhance the throw-away tip in longevity as a tool. Land surface 5 having width W1 of 100 µm or less allows cutting to be done while preventing chips from running up onto the land surface and thus being large in length and enhances the throw-away tip's chip processability. Further preferably, land surface 5 has width W1 of 10 µm or more and 70 µm or less.
  • Preferably, land surface 5 has a surface roughness in a range of 0.05 µm or more and 0.2 µm or less. This allows the blade to have a cutting edge formed sharply and thus provides a workpiece with satisfactory finished surface roughness. Herein, surface roughness is a ten-point average height (Rz). More specifically, it is a value that is obtained in a portion extracted from a profile curve only by a reference length and represents a difference between an average value of the highest to fifth highest peaks' altitudes and an average value of the deepest to fifth deepest troughs' altitudes, as represented in micrometers (µm). Further preferably, land surface 5 has a surface roughness in a range of 0.08 µm or more and 0.15 µm or less.
  • Blade 3 has upper surface 31 with chip breaker 9 formed opposite to cutting edge 4 with land surface 5 therebetween and having a recess 7. Herein, recess 7 is a portion of chip breaker 9 that is formed along cutting edge 4 in a vicinity of a corner. A side surface which forms an outer contour of recess 7 includes a rake face 6 which recedes continuously from land surface 5 as a distance toward the center of blade 3 increases in magnitude, and a breaker wall surface 16 which is raised from a rear end of rake face 6 toward upper surface 31 of blade 3. This allows chips flowing out in cutting a workpiece to first flow out along rake face 6 toward the bottom of rake face 6. At the time, distortion is imparted to the chips and thus helps to shred the chips. Subsequently, the chips reach the bottom of rake face 6 and collide against breaker wall surface 16. At the time, the chips are shredded by the collision. Or the chips are shredded as further distortion is imparted thereto
  • Rake face 6 is identical in shape to a portion of a side surface of the shape of a body of revolution. According to this, in recess 7 of blade 3, in cutting a workpiece, chips flow out along rake face 6 of the chip breaker toward the bottom of rake face 6, and large distortion can be imparted to the chips. Herein, the shape of the body of revolution means a solid that can be formed by revolving a plane figure once with a straight line on its plane serving as an axis of revolution. The shape of the body of revolution includes a sphere, a cone, etc., for example. When the shape of the body of revolution has the axis on a bisector of the corner angle of blade 3, chips flow toward the maximum depth of the bottom located under the bisector of the corner angle, and larger distortion can be imparted to the chips. Preferably, rake face 6 has a shape identical to a portion of a side surface of a cone. This can maintain the cutting edge's strength.
  • With reference to Fig. 5, an angle of inclination α of rake face 6 relative to land surface 5 is preferably in a range of 15° or more and 50° or less. This allows cutting to be done with chips easily flowing out along the rake face and thus enhances the throw-away tip's chip processability. Furthermore, it can also maintain strength of the cutting edge of the blade and thus also enhance the throw-away tip in longevity as a tool. Note that angle of inclination α of rake face 6 relative to land surface 5 is an acute angle among angles formed by a plane 15 assumed when land surface 5 is extended to above the recess (hereinafter also referred to as a "top plane of the recess") and rake face 6. Angle of inclination α of rake face 6 relative to land surface 5 is more preferably 20° or more and 40° or less.
  • Rake face 6 preferably has a surface roughness in a range of 2 µm or more and 7 µm or less. This increases resistance caused when chips flowing out in cutting scratch the surface of the rake face, and the chips are easily curled and the throw-away tip's chip processability is thus improved. Herein, surface roughness is a ten-point average height (Rz). Rake face 6 more preferably has a surface roughness in a range of 3.0 µm or more and 6.0 µm or less.
  • With reference to Fig. 4, recess 7 preferably has a maximum depth D in a range of 60 µm or more and 300 µm or less. This allows cutting to be done with distortion effectively imparted to chips and thus enhances the throw-away tip's chip processability. Note that maximum depth D of recess 7 is a maximum value of a distance to the bottom of the recess from plane 15 assumed when land surface 5 is extended to above the recess (i.e., the top plane of the recess). Further preferably, recess 7 has maximum depth D in a range of 60 µm or more and 200 µm or less.
  • With reference to Fig. 5, recess 7 preferably has a width 2 in a direction perpendicular to cutting edge 4 (hereinafter also referred to as a "width of the recess") in a range of 0.2 mm or more and 1.0 mm or less. This allows chips flowing out in cutting to collide against breaker wall surface 16, without running up onto upper surface 31 of blade 3, to help to shred the chips and thus enhance the throw-away tip's chip processability. Note that width 2 in the direction perpendicular to cutting edge 4 means a distance between an end of the opening of the recess closer to the land surface and an end of the opening of the recess closer to the center of the blade, as seen in a direction along a straight line which is perpendicular to cutting edge 4 and is also located on the top plane of the recess. Note that if the cutting edge is curved, width 2 means a distance between an end of the opening of the recess closer to the land surface and an end of the opening of the recess closer to the center of the blade, as seen in a direction along a straight line which is perpendicular to a tangent of the curve and is also located on the top plane of the recess. Recess 7 more preferably has width 2 in the direction perpendicular to cutting edge 4 in a range of 0.25 mm or more and 0.7 mm or less.
  • With reference to Fig. 3 to Fig. 5, preferably, on a side surface of recess 7, a projection 8 is formed along a bisector (B-B') of the corner angle of blade 3. This allows chips flowing out in cutting a workpiece to collide against projection 8 and thus be shredded or imparts further distortion to the chips and thus shred the chips When projection 8 is formed along the bisector of the corner angle of blade 3, projection 8 will exist on a path along which chips flow out, which can more effectively shred the chips. Preferably, projection 8 has a height H in a range of 20% or more and 80% or less relative to maximum depth D of the recess. This allows chips flowing out in cutting to collide against projection 8, without running up onto the projection, to help to shred the chips. Furthermore, projection 8 having height H of 80% or less relative to maximum depth D of the recess can be prevented from being worn in cutting and thus enhance the throw-away tip in longevity as a tool. Note that height H of projection 8 is a height of the projection as seen in a cross section to which the bisector (B-B') of the corner angle is a normal and that traverses a position at which the recess presents maximum depth D.
  • Preferably, when projection 8 is seen in the cross section to which the bisector of the corner angle is a normal, it has a cross sectional shape increasing in width as the recess becomes deeper. The cross sectional shape of projection 8 can be a triangle, a trapezoid, etc., for example. The cross sectional shape of the projection in a widthwise direction W3 preferably has a minimum value (hereinafter also referred to as a "minimum width of the projection") in a range of 5 µm or more and 40 µm or less. This allows chips flowing out in cutting to collide against the projection, without running up onto the projection, to help to shred the chips and thus enhance the throw-away tip's chip processability. More preferably, the cross sectional shape of the projection in widthwise direction W3 preferably has a minimum value in a range of 10 µm or more and 20 µm or less.
  • Projection 8, as seen in a direction along the bisector of the corner angle, preferably has a length W5 in a range of 0.2 mm or more and 1.0 mm or less. This helps chips flowing out in cutting to collide against the projection to help to shred the chips and thus enhance the throw-away tip's chip processability. Projection 8, as seen in the direction along the bisector of the corner angle, more preferably has length W5 in a range of 0.25 mm or more and 0.7 mm or less.
  • An example of a method for manufacturing the throw-away tip of the present embodiment will now be described. Body 2 having a notch, and blade 3 containing 80% by volume or more of diamond are prepared. The blade is brazed to the notch of the body, and ground with a diamond wheel to have a cutting edge. Subsequently, a high output pulsed laser is used to work a surface of blade 3 to form chip breaker 9. Conventionally, a blade containing diamond is worked by electro-discharge machining, grinding or the like, which limits a chip breaker to a simple shape. In contrast, in the present embodiment, blade 3 is worked with precise positioning done by laser irradiation, which can provide a chip breaker in a desire shape. In particular, the shape of recess 7 of the chip breaker presented along cutting edge 4 can be precisely adjusted, and the throw-away tip's chip processability can be enhanced.
  • Examples
  • The present invention will now be more specifically described by way of examples However, the present invention is not limited to these examples.
  • [Example 1]
  • In the present example, what effect the shape of the rake face of the recess has on chip processability and the amount of the flank worn in cutting was investigated.
  • A blade made of a polycrystalline hard sintered compact containing 90% by volume of diamond having an average grain size of 0.5 µm or less was brazed at a corner of the body, as shown in Fig. 1, and then ground with a diamond wheel to have a cutting edge.
  • Subsequently, a high output pulse YVO4: Nd laser enhanced in condensability by a galvanometer mirror (wavelength: 1,064 nm) was employed with an output of 1.5 W, an oscillatory frequency of 22 kHz and a working pitch of 1 µm to proceed to carve the blade in contour lines in a constant working amount to form on an upper surface of the rake face of the blade a shape of a chip breaker having a three-dimensionally shaped recesses and projections. A variety of samples with rake faces varied in shape as shown in table 1 were produced and accessed in chip processability. The cutting conditions and the tool's shape are indicated below. In this assessment, chips of a range of 5 mm or more and 300 mm or less in length were determined as being satisfactory.
  • (Cutting Conditions)
    • Workpiece: cylindrical aluminum alloy (ADC12)
    • Cutting method: external turning of a diameter of 100-95 (mm) x a length of 500 (mm)
    • Cutting manner: wet cutting
    • Cutting length: 10 km
    • Workpiece's circumferential surface speed: 400 (m/min)
    • Tool's cutting depth: 0.30 (mm)
    • Tool's feed rate: 0.10 (mm/rev)
    (Tool's shape)
    • Description of tool used: DCMT11T304
    • Tool's material: polycrystalline hard sintered compact containing 90% by volume of diamond having an average grain size of 0.5 µm
    • Holder's description: SDJCL2525M11
    • Rake face's shape: identical to a portion of a shape indicated by that of a rake face indicated in table 1
    • Land surface's width (W1): 0.03 (mm)
    • Recess's maximum depth (D): 0.1 (mm)
    • Recess's width (W2): 0.3 (mm)
    • Projection's height (H): 0.05 (mm)
    • Projection's minimum width (W3): 0.020 (mm)
    • Rake face's surface roughness (Rz1): Rz3.2 (µm)
    • Land surface's surface roughness (Rz2): Rz0.06 (µm)
    • Breaker working condition: YVO4: Nd laser (wavelength: 1,064 nm), with a frequency of 22 kHz, an output of 1.5 W, and a working pitch of 1 µm
  • An evaluation result is indicated in table 1. [Table 1]
    sample nos. shape of rake face length of chip (mm) amount of wearing of flank (cutting length: 10 km) (mm)
    1A no chip breaker not shredded 0.021
    1B ball (R0.395) 50-100 0.075 (chipping occurred depending on the case)
    1C cone (angle of inclination α = 10°) 100-200 0.023
    1D cone (angle of inclination α = 15°) 30-50 0.024
    1E cone (angle of inclination α = 35°) 30-50 0.023
    1F cone (angle of inclination α = 50° 30-50 0.027
    1G cone (angle of inclination α = 60°) 30-50 0.080 (chipping occurred depending on the case)
  • Sample 1 A had a rake face without a chip breaker, and chips were not shredded and the workpiece was tangled with the chips. In contrast, samples 1B-1G had their rake faces in the form of a portion of a ball (or sphere) or cone and provided chips having a length of 300 mm or less and hence satisfactory chip processability. Inter alia, samples ID-1F had their rake faces in the form of a cone and having an angle of inclination of 15° or more and 50° or less relative to the land surface, and thus provided chips having a length of 30-50 mm and hence particularly satisfactory chip processability Sample 1G had a rake face in the form of a cone and having an angle of inclination of 60° relative to the land surface, and provided chips having a satisfactory length of 30-50 mm, although it had the cutting edge chipped when a cutting length of 10 km was reached. Sample 1B had a rake face in the form of a ball and provided chips having a satisfactory length of 30-50 mm, although it had the cutting edge chipped when a cutting length of 10 km was reached.
  • Thus, it has been found that a rake face having a shape identical to a portion of a shape of a body of revolution such as a ball, a cone or the like allows chips to have a length of 300 mm or less and allows satisfactory chip processability, Inter alia, it has been found that a throw-away tip having a rake face having a shape identical to a portion of a shape of a cone and an angle of inclination of 15° to 50° relative to the land surface allows chips to have a length of 30-50 mm and presents satisfactory chip processability, and as a tool it is increased in longevity as it did not have chipping even when a cutting length of 10 km was reached.
  • [Example 2]
  • What effect width W1 of the land surface has on chip processability and the amount of the flank worn in cutting was investigated. The tool was produced in a method similar to that in Example 1. A variety of samples with their land surfaces varied in width as shown in table 2 were produced and accessed in chip processability. The cutting conditions and the tool's shape are indicated below. In this assessment, chips of a range of 5 mm or more and 300 mm or less in length were determined as being satisfactory.
  • (Cutting Conditions)
    • Workpiece: cylindrical aluminum material (A6061)
    • Cutting method: external turning of a diameter of 100-95 (mm) x a length of 500 (mm)
    • Cutting manner: wet cutting
    • Cutting length: 10 km
    • Workpiece's circumferential surface speed: 400 (m/min)
    • Tool's cutting depth: 0.30 (mm)
    • Tool's feed rate: 0.10 (mm/rev)
    (Tool's shape)
    • Description of tool used: DCMT11T304
    • Tool's material: polycrystalline hard sintered compact containing 90% by volume or more of diamond having an average grain size of 0.5 µm or less
    • Holder's description: SDJCL2525MH11
    • Rake face's shape: identical to a portion of a side surface of a cone
    • Angle of inclination of the rake face relative to the land surface: 25°
    • Land surface's width (W1): see table 2
    • Recess's maximum depth (D): 0.1 (mm)
    • Recess's width (W2): 0.4 (mm)
    • Projection's height (H): 0.05 (mm)
    • Projection's minimum width (W3): 0.020 (mm)
    • Rake face's surface roughness (Rz1): Rz 3.5 (µm)
    • Land surface's surface roughness (Rz2): Rz 0.09 (µm)
  • Breaker working condition: YAG laser (wavelength: 1,064 nm), with a frequency of 20 kHz, an output of 1.5 W, and a working pitch of 1 µm
  • An evaluation result is indicated in table 2. [Table 2]
    sample nos. width of land surface (W1) (µm) length of chip (mm) amount of wearing of flank (cutting length: 10 km) (mm)
    2A no chip breaker not shredded 0.014
    2B 5 50-100 0.045 (chipping occurred depending on the case)
    2C 10 50-100 0.011
    2D 50 50-100 0.012
    2E 100 50-150 0.015
    2F 120 200-300 0.012
  • Sample 2A had a rake face without a chip breaker, and chips were not shredded and the workpiece was tangled with the chips. Samples 2B-2F had a chip breaker, and chips were shredded to have a length of 300 mm or less. Inter alia, samples 2B-2E had their land surfaces in a range in width of 5-100 µm, and provided chips having a length of 50-150 mm and hence particularly satisfactory chip processability. However, sample 2B had a land surface with a width of 5 µm, and had the cutting edge chipped when a cutting length of 10 km was reached.
  • It has thus been found that a rake face having a chip breaker allows chips to be shredded to have a length of 300 mm or less. In particular, it has been found that a land surface having a width in a range of 10-100 µm allows a throw-away tip to present satisfactory chip processability and stable endurance.
  • [Example 3]
  • What effect the recess's maximum depth (D) and width (W2) have on chip processability and the amount of the flank worn in cutting was investigated. Each sample indicated in table 3 was produced in a method similar to that in Example 1. In order to investigate only the effect of the maximum depth and width of the recess, the samples had chip breakers with recesses shaped to have similar figures. A variety of samples each with the recess's maximum depth and width varied as shown in table 3 were produced and accessed in chip processability. The cutting conditions and the tool's shape are indicated below. In this assessment, chips of a range of 5 mm or more and 300 mm or less in length were determined as being satisfactory.
  • (Cutting Conditions)
    • Workpiece: cylindrical aluminum material (A5052)
    • Cutting method: external turning of a diameter of 100-95 (mm) x a length of 500 (mm)
    • Cutting manner: wet cutting
    • Cutting length: 10 km
    • Workpiece's circumferential surface speed: 400 (m/min)
    • Tool's cutting depth: 0.6 (mm)
    • Tool's feed rate: 0.15 (mm/rev)
    (Tool's shape)
    • Description of tool used: DCMT11T308
    • Tool's material: polycrystalline hard sintered compact containing 90% by volume of diamond having an average grain size of 0.5 µm or less
    • Holder's description: SDJCL2525M11
    • Rake face's shape: identical to a portion of a side surface of a cone
    • Angle of inclination of the rake face relative to the land surface: 25°
    • Land surface's width (W1): 0.030 (mm)
    • Recess's maximum depth (D): see table 3
    • Recess's width (W2): see table 3
    • Projection's height (H): 0.05 (mm)
    • Projection's minimum width (W3): 0.020 (mm)
    • Rake face's surface roughness (Rz1): Rz3.1 (µm)
    • Land surface's surface roughness (Rz2): Rz0.10 (µm)
  • Breaker working condition: YAG (wavelength: 532 nm), with a frequency of 60 kHz, an output of 2.5 W, and a working pitch of 1.8 µm
  • An evaluation result is indicated in table 3. [Table 3]
    sample nos. maximum depth of recess (D) (mm) width of recess (W2) (mm) length of chip (mm)
    3A no chip breaker no chip breaker not shredded
    3B 0.03 0.17 200-300
    3C 0.06 0.20 100-200
    3D 0.10 0.40 50-150
    3E 0.20 0.74 100-200
    3F 0.30 1.00 100-200
    3G 0.36 1.20 200-300
  • Sample 3A had a rake face without a chip breaker, and chips were not shredded. In contrast, samples 3B-3G had a chip breaker, and chips had a length of 300 mm or less. Inter alia, samples 3C-3F had a recess with a maximum depth of 0.06 mm to 0.30 mm and a width of 0.20 mm to 1.00 mm and provided chips having a length of 200 mm or less and hence presented particularly satisfactory chip processability.
  • Thus it has been found that a recess having a maximum depth in a range of 0.06 mm to 0.30 mm and a width in a range of 0.20 mm to 1.00 mm allows particularly satisfactory chip processability.
  • [Example 4]
  • What effect height (H) of projection 8 has on chip processability in cutting was investigated. Each sample indicated in table 4 was produced in a method similar to that in Example 1. The samples were assessed in performance under cutting conditions with a tool having a shape, as follows:
  • (Cutting Conditions)
    • Workpiece: cylindrical aluminum material (A6063)
    • Cutting method: external turning of a diameter of 50 (mm) x a length of 100 (mm)
    • Cutting manner: dry cutting
    • Cutting length: 10 (km)
    • Workpiece's circumferential surface speed: 250 (m/min)
    • Tool's cutting depth: 0.10 (mm)
    • Tool's feed rate: 0.10 (mm/rev)
    (Tool's shape)
    • Description of tool used: VCMT160404
    • Tool's material: polycrystalline hard sintered compact containing 90% by volume of diamond having an average grain size of 0.5 µm or less
    • Holder's description: SVJCL2525M16
    • Rake face's shape: identical to a portion of a side surface of a cone
    • Angle of inclination of the rake face relative to the land surface: 25°
    • Land surface's width (W1): 0.030 (mm)
    • Recess's maximum depth (D): 0.1 (mm)
    • Recess's width (W2): 0.4 (mm)
    • Projection's height (H): see table 4
    • Projection's minimum width (W3): 0.020 (mm)
    • Rake face's surface roughness (Rz1): Rz 4.0 (µm)
    • Land surface's surface roughness (Rz2): Rz 0.1 (µm)
    • Breaker working condition: YAG (wavelength: 532 nm), with a frequency of 50 kHz, an output of 3.0 W, and a working pitch of 2 µm
  • An evaluation result is indicated in table 4. [Table 4]
    sample nos. height of projection (mm) length of chip (mm) stability of shape of projection (cutting length: 10 km)
    4A no breaker not shredded -
    4B 0.00mm 200-300 -
    4C 0.02mm 100-200 not worn
    4D 0.05mm 50-150 not worn
    4E 0.08mm 50-150 not worn
    4F 0.10mm 50-150 upper portion worn
  • Sample 4A had a rake face without a chip breaker, and chips were not shredded. In contrast, samples 4B-4F had a chip breaker, and chips had a length of 300 mm or less. Inter alia, samples 4C-4F had a projection with height (H) of 0.02-0.10 mm and provided chips having a length of 200 mm or less and hence presented particularly satisfactory chip processability. However, sample 4F had the projection worn when a cutting length of 10 km was reached.
  • Thus when the recess has maximum depth (D) of 0.1 mm, a projection having height (H) in a range of 0.02-0.08 mm allows particularly satisfactory chip processability, and it has thus been found that satisfactory chip processability is provided when height (H) of the projection is in a range of 20-80% of maximum depth (D) of the recess.
  • [Example 5]
  • What effect the projection's cross sectional shape has on chip processability in cutting was investigated. Each sample indicated in table 5 was produced in a method similar to that in Example 1. The samples were assessed in performance under cutting conditions with a tool having a shape, as follows:
  • (Cutting Conditions)
    • Workpiece: cylindrical aluminum material (A6063)
    • Cutting method: external turning of a diameter of 50 (mm) x a length of 100 (mm)
    • Cutting manner: wet cutting
    • Cutting length: 150(m)
    • Workpiece's circumferential surface speed: 250 (m/min)
    • Tool's cutting depth: 0.80 (mm)
    • Tool's feed rate: 0.15 (mm/rev)
    (Tool's shape)
    • Description of tool used: CCMT09T308
    • Tool's material: polycrystalline hard sintered compact containing 90% by volume of diamond having an average grain size of 0.5 µm or less
    • Holder's description: SCLCL2525M09
    • Rake face's shape: identical to a portion of a side surface of a cone
    • Angle of inclination of the rake face relative to the land surface: 25°
    • Land surface's width (W1): 0.06 (mm)
    • Recess's maximum depth (D): 0.12 (mm)
    • Recess's width (W2): 0.6 (mm)
    • Projection's height (H): 0.05 (mm)
    • Projection's minimum width (W3): see table 5
    • Rake face's surface roughness (Rz1): Rz 4.5 (µm)
    • Land surface's surface roughness (Rz2): Rz 0.12 (µm)
    • Breaker working condition: YVO4 laser (wavelength: 1,064 nm), with a frequency of 75 kHz, an output of 1.2 W, and a working pitch of 0.7 µm
  • An evaluation result is indicated in table 5. [Table 5]
    sample nos. cross section of projection (widthwise minimum value W3) length of chip (mm)
    5A no chip breaker not shredded
    5B no projection 200-300
    5C arc (W3 = 0 μm) 200-300
    5D trapezoid (trapezoid with W3 = 5 µm) 50-150
    5E trapezoid (W3 = 20 μm) 50-150
    5F trapezoid (W3 = 40 µm) 50-150
    5G trapezoid (W3 = 80 µm) 200-300
  • Sample 5A had a rake face without a chip breaker, and chips were not shredded. In contrast, samples 5B-5G had a chip breaker, and chips had a length of 300 mm or less. Inter alia, samples 5D-5F had a projection having a trapezoidal cross section and an upper surface having a width (W3) of 5 to 40 µm, and provided chips having a length of 50-150 mm and hence presented particularly satisfactory chip processability.
  • The projection has a uniform cross section along the bisector of the corner angle of the tool. As indicated in Example 3, in order to exhibit satisfactory chip processability, width (W2) of the recess needs to be in a range of 0.20-1.0 mm, and as indicated in Example 4, height (H) of the projection needs be a height of 20-80% of maximum depth (D) of the recess. Accordingly, the projection as seen along the bisector of the corner angle needs to have length (W5) equal to or smaller than width (W2) of the recess.
  • Thus it has been found that particularly satisfactory chip processability is exhibited when the projection has a trapezoidal cross section having a widthwise minimum value (W3) in a range of 5 µm to 40 µm and along the bisector of the corner angle has length (W5) in a range of 0.20-1.0 mm.
  • [Example 6]
  • What effect the rake face's surface roughness (Rz1) has on chip processability in cutting was investigated. The samples had their chip breakers worked under a variety of laser machining conditions to have rake faces having worked surfaces different in surface roughness, as indicated in table 6. The samples were assessed in performance under cutting conditions with a tool having a shape, as follows:
  • (Cutting Conditions)
    • Workpiece: cylindrical aluminum material (A5052)
    • Cutting method: external turning of a diameter of 100-95 (mm) x a length: of 500 (mm)
    • Cutting manner: wet cutting
    • Cutting length: 10 km
    • Workpiece's circumferential surface speed: 400 (m/min)
    • Tool's cutting depth: 0.30 (mm)
    • Tool's feed rate: 0.10 (mm/rev)
    (Tool's shape)
    • Description of tool used: DCMT11T304
    • Tool's material: polycrystalline hard sintered compact containing 90% by volume of diamond having an average grain size of 0.5 µm or less
    • Holder's description: SDJCL2525M11
    • Rake face's shape: identical to a portion of a side surface of a cone
    • Angle of inclination of the rake face relative to the land surface: 25°
    • Land surface's width (W1): 0.01 (mm)
    • Recess's maximum depth (D): 0.1 (mm)
    • Recess's width (W2): 0.4 (mm)
    • Projection's height (H): 0.05 (mm)
    • Projection's minimum width (W3): 0.020 (mm)
    • Rake face's surface roughness (Rz1): see table 6
    • Land surface's surface roughness (Rz2): Rz0.08 (µm)
    • Working conditions: YVO4 (wavelength: 1064 nm), and see table 6
  • An evaluation result is indicated in table 6. [Table 6]
    sample nos. laser machining conditions Rake face's surface roughness (Rz1) length of chip (mm) finished surface roughness
    6A no chip breaker Rz 0.09 μm not shredded Rz 3.47 µm
    6B frequency of 100 kHz, output of 1.0 W, and pitch of 0.25 µm Rz 1.2 µm 100-300 Rz 3.51 µm
    6C frequency of 80 kHz, output of 1.2 W, and pitch of 0.4 µm Rz 2.0 µm 50-150 Rz 3.50 µm
    6D frequency of 20 kHz output of 1.5 W, and pitch of 0.5 µm Rz 3.8 µm 50-150 Rz 3.22 µm
    6E frequency of 20 kHz, output of 5.5 W, and pitch of 1.0 µm Rz 4.0 µm 50-100 Rz. 3.30 µm
    6F frequency of 50kHz, output of 12.0 W, and pitch of 1.6 µm Rz 7.0 µm 50-100 Rz 3.11 µm
    6G frequency of 50 kHz, output of 14.9 W, and pitch of 2.0 µm Rz 7.8 µm 50-100 Rz 4.92 µm
  • Sample 6A had a rake face without a chip breaker, and chips were not shredded. In contrast, samples 6B-6G had a chip breaker, and chips had a length of 300 mm or less. Inter alia, samples 6C-6G had a rake face with surface roughness Rz1 of Rz 2.0 µm or more and provided chips having a length of 50-150 mm and hence presented particularly satisfactory chip processability. This is because a rake face having coarser surface roughness Rz1 increases resistance caused when chips scratch, resulting in chips curled to be small. However, a rake face having excessively large surface roughness increases adhesion of a cut material to the rake face, and while satisfactory chip processability is presented, finished surface roughness is worsened depending on the case, as presented by sample 6G.
  • [Example 7]
  • What effect the land surface's surface roughness (Rz2) has on chip processability and finished surface roughness in cutting was investigated. The samples had land surfaces formed by lapping done for a variety of periods of time to have the land surfaces with worked surfaces different in surface roughness, as indicated in table 7. The samples were assessed in performance under cutting conditions with a tool having a shape, as follows:
  • (Cutting Conditions)
    • Workpiece: cylindrical aluminum material (A5052)
    • Cutting method: external turning of a diameter of 100-95 (mm) x a length of 500 (mm)
    • Cutting manner: wet cutting
    • Cutting length: 10 km
    • Workpiece's circumferential surface speed: 400 (m/min)
    • Tool's cutting depth: 0.30 (mm)
    • Tool's feed rate: 0.10 (mm/rev)
    (Tool's shape)
    • Description of tool used: DCMT11T304
    • Tool's material: polycrystalline hard sintered compact containing 90% by volume of diamond having an average grain size of 0.5 µm or less
    • Holder's description: SDJCL2525M11
    • Rake face's shape: identical to a portion of a side surface of a cone
    • Angle of inclination of the rake face relative to the land surface: 25°
    • Land surface's width (W1): 0.01 (mm)
    • Recess's maximum depth (D): 0.1 (mm)
    • Recess's width (W2): 0.4 (mm)
    • Projection's height (H): 0.05 (mm)
    • Projection's minimum width (W3): 0.020 (mm)
    • Rake face's surface roughness (Rz1): Rz4.0 (µm)
    • Land surface's surface roughness (Rz2): see table 7
    • Working condition: YVO4 (wavelength: 1,064 nm), with a frequency of 20 kHz, an output of 5.5 W, and a working pitch of 1 µm
  • An evaluation result is indicated in table 7. [Table 7]
    sample nos. Lapping time (hrs) roughness of land surface (Rz2) length of chip (mm) finished surface roughness
    7A
    16 Rz 0.01 µm 50-100 Rz 3.47 µm
    7B
    8 Rz 0.05 µm 50-100 Rz 3.51 µm
    7C
    7 Rz 0.12 µm 50-100 Rz 3.50 µm
    7D
    6 Rz 0.20 µm 50-100 Rz 3 22 µm
    7E 6 Rz 0.28 µm 50-100 Rz 5.22 µm
  • Samples 7A-7E had a chip breaker, and chips had a length of 100 mm or less. However, a land surface having excessively large surface roughness impairs the cutting edge's edge sharpening performance, and while satisfactory chip processability is presented, finished surface roughness is worsened depending on the case, as presented by sample 7E. In contrast, land surface roughness Rz2 of about Rz0.01 µm, as sample 7A has, requires lapping for 10 hours or more, which is not economical.
  • Thus, a rake face having surface roughness Rz1 in a range of Rz2.0-7.0 µm and a land surface having surface roughness Rz2 in a range of Rz0.05-0.20 µm allow chips to have a length of 150 mm or less and thus provide particularly satisfactory chips.
  • [Example 8]
  • What effect the tool's material has on chip processability and wearing of the flank in cutting was investigated. Tools were formed of three types of materials as indicated in table 8 The chip breaker was produced by laser machining under the following working conditions. The samples were assessed in performance under cutting conditions with a tool having a shape, as follows:
  • (Cutting Conditions)
    • Workpiece: cylindrical aluminum material (A390)
    • Cutting method: external turning of a diameter of 100-95 (mm) x a length of 500 (mm)
    • Cutting manner: wet cutting
    • Cutting length: 10km
    • Workpiece's circumferential surface speed: 800 (m/min)
    • Tool's cutting depth: 0.50 (mm)
    • Tool's feed rate: 0.15 (mm/rev)
    (Tool's shape)
    • Description of tool used: DCMT11T304
    • Tool's material
    • Sample 8A: polycrystalline hard sintered compact containing 90% by volume of diamond having an average grain size of 0.5 µm or less
    • Sample 8B: polycrystalline hard sintered compact containing 90% by volume of diamond having an average grain size of 0.5 µm or less
    • Sample 8C: single crystal diamond synthesized by chemical vapor deposition (CVD)
    • Sample 8D: single crystal diamond synthesized by a high pressure and high temperature synthesis method
    • Holder's description: SDJCL2525M11
    • Rake face's shape: identical to a portion of a side surface of a cone
    • Angle of inclination of the rake face relative to the land surface: 25°
    • Land surface's width (W1): 0.03 (mm)
    • Recess's maximum depth (D): 0.1 (mm)
    • Recess's width (W2): 0.4 (mm)
    • Projection's height (H): 0.05 (mm)
    • Projection's minimum width (W3): 0.020 (mm)
    • Breaker rake face surface roughness (Rz1): Rz 2.0-6.5 (µm)
    • Breaker land surface roughness (Rz2): Rz 0.08-0.12 (µm)
    • Breaker working condition:
      • Sample 8B: YAG laser, with a wavelength of 1,064 nm, a frequency of 30 kHz, an output of 1.5 W, and a working pitch of 1 µm
      • Sample 8C: YAG laser, with a wavelength of 1,064 nm, a frequency of 50 kHz, an output of 5.5 W, and a working pitch of 5 µm
      • Sample 8D: unworkable
  • Table 8 shows an evaluation result. [Table 8]
    sample nos. type of material presence/absence of chip breaker absorption coefficient for wavelength of 1064 nm (cm-1) length of chip (mm) amount of wearing of flank (cutting length: 10 km) (mm)
    8A polycrystalline diamond absent 100 or more not shredded 0.035
    8B polycrystalline diamond present 100 or more 50-150 0.033
    8C CVD single crystal diamond present 8 50-150 0.008
    8D single crystal diamond present 0.01 or less - -
  • The polycrystalline hard sintered compact used for samples 8A and 8B and the single crystal diamond synthesized by CVD and used for sample 8C had an absorption rate of 2 cm-1 or more, and were thus workable by laser machining. In contrast, the single crystal diamond of sample 8D had an absorption coefficient of 0.01 cm-1 or less and was thus unworkable by laser machining.
  • A cutting assessment provided a result as follows: Sample 8A had a rake face without a chip breaker, and chips were not shredded. In contrast, samples 8B and 8C had a chip breaker, and chips had a length of 50-150 µm, and satisfactory chip processability was presented. Furthermore, sample 8C using CVD single crystal diamond had the flank worn in an amount of 0.008 mm when a cutting length of 10 km was reached, and sample 8C presented a significantly smaller amount of wearing than samples 8A and 8B using polycrystalline hard sintered compact.
  • It should be understood that the embodiments and examples disclosed herein have been described for the purpose of illustration only and in a non-restrictive manner in any respect. The scope of the present invention is defined by the terms of the claims, rather than the embodiments above, and is intended to include any modifications within the meaning and scope equivalent to the terms of the claims.
  • INDUSTRIAL APPLICABILITY
  • The throw-away tip of the present embodiment is beneficial when it is used for tools and the like used in turning and milling aluminum alloy, nonferrous metal and the like.
  • REFERENCE SIGNS LIST
  • 1: throw-away tip; 2: body; 3: blade; 4: cutting edge, 5: land surface; 6: rake face; 7: recess; 8: projection; 16: breaker's wall surface; 31: upper surface of blade, 32: side surface of blade; 33: flank.

Claims (11)

  1. A throw-away tip comprising a body and a blade provided to the body and having a cutting edge,
    the blade containing 80% by volume or more of diamond,
    the blade having a land surface extending along the cutting edge, and a chip breaker having a recess located opposite to the cutting edge with the land surface therebetween,
    the recess having a side surface having a rake face that recedes continuously as a distance thereof from the land surface increases in magnitude and that has a shape identical to that of a portion of a side surface of a shape of a body of revolution.
  2. The throw-away tip according to claim 1, wherein an angle of inclination of the rake face relative to the land surface is in a range of 15° or more and 50° or less.
  3. The throw-away tip according to claim 1 or 2, wherein the land surface has a width in a direction perpendicular to the cutting edge in a range of 10 µm or more and 100 µm or less.
  4. The throw-away tip according to any one of claims 1-3, wherein the recess has a maximum depth in a range of 60 µm or more and 300 µm or less.
  5. The throw-away tip according to any one of claims 1-4, wherein the recess has a width in a direction perpendicular to the cutting edge in a range of 0.2 mm or more and 1.0 mm or less.
  6. The throw-away tip according to any one of claims 1-5, wherein:
    the blade has a corner;
    the recess has on a side surface of the recess a projection formed along a bisector of an angle of the corner, and
    the projection has a height in a range of 20% or more and 80% or less relative to a maximum depth of the recess.
  7. The throw-away tip according to claim 6, wherein when the projection is seen in a cross section to which the bisector of the angle of the corner is a normal, the projection has a cross sectional shape increasing in width as the recess becomes deeper, and
    the cross sectional shape in a widthwise direction has a minimum value in a range of 5 µm or more and 40 µm or less.
  8. The throw-away tip according to claim 6 or 7, wherein the projection has a length in a direction along the bisector of the angle of the corner in a range of 0.2 mm or more and 1.0 mm or less.
  9. The throw-away tip according to any one of claims 1-8, wherein:
    the land surface has a surface roughness in a range of 0.05 µm or more and 0.2 µm or less, and
    the rake face has a surface roughness in a range of 2 µm or more and 7 µm or less.
  10. The throw-away tip according to any one of claims 1-9, wherein the diamond is single crystal diamond synthesized by vapor deposition.
  11. The throw-away tip according to claim 10, wherein the single crystal diamond has an absorption coefficient in a range of 2 cm-1 or more and 90 cm-1 or less for laser light of 190 nm or more and 11000 nm or less in wavelength.
EP15838053.5A 2014-09-05 2015-07-31 Throw-away tip Active EP3189917B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014181296 2014-09-05
PCT/JP2015/071765 WO2016035490A1 (en) 2014-09-05 2015-07-31 Throwaway tip

Publications (3)

Publication Number Publication Date
EP3189917A1 true EP3189917A1 (en) 2017-07-12
EP3189917A4 EP3189917A4 (en) 2018-05-30
EP3189917B1 EP3189917B1 (en) 2021-06-09

Family

ID=55439558

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15838053.5A Active EP3189917B1 (en) 2014-09-05 2015-07-31 Throw-away tip

Country Status (8)

Country Link
US (1) US10286455B2 (en)
EP (1) EP3189917B1 (en)
JP (1) JP6603955B2 (en)
KR (1) KR20170047190A (en)
CN (1) CN105682833B (en)
MX (1) MX2016004989A (en)
PH (1) PH12016500616B1 (en)
WO (1) WO2016035490A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3381595A4 (en) * 2015-11-26 2019-07-03 Sumitomo Electric Hardmetal Corp. Rotating tool
EP3819051A4 (en) * 2018-07-03 2022-05-04 Sumitomo Electric Hardmetal Corp. Cutting insert and manufacturing method thereof

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10232445B2 (en) * 2014-02-26 2019-03-19 Kyocera Corporation Cutting insert, cutting tool, and method for manufacturing machined product
KR101838107B1 (en) * 2015-09-24 2018-03-14 한국야금 주식회사 Cutting insert
JP6315350B2 (en) * 2015-10-23 2018-04-25 住友電工ハードメタル株式会社 Rotary cutting tool
JP6612900B2 (en) * 2016-02-05 2019-11-27 京セラ株式会社 INSERT, CUTTING TOOL AND CUTTING PRODUCTION METHOD
JP6798663B2 (en) * 2016-04-27 2020-12-09 住友電工ハードメタル株式会社 Cutting insert
EP3260225B1 (en) * 2016-06-20 2022-11-30 Sandvik Intellectual Property AB Turning insert
KR20180088637A (en) * 2016-12-20 2018-08-06 스미또모 덴꼬오 하드메탈 가부시끼가이샤 Cutting tool and manufacturing method thereof
KR102437366B1 (en) * 2017-02-09 2022-08-29 유에스 신써틱 코포레이션 Energy machined polycrystalline diamond compacts and related methods
WO2018159499A1 (en) * 2017-02-28 2018-09-07 京セラ株式会社 Cutting insert, cutting tool, and method for manufacturing cut workpiece
CN106903334A (en) * 2017-03-29 2017-06-30 深圳市中天超硬工具股份有限公司 Chemical vapour deposition diamond cutter and its processing method
JP2018183829A (en) * 2017-04-25 2018-11-22 株式会社タンガロイ Cutting insert and manufacturing method of the same
WO2019087844A1 (en) * 2017-10-30 2019-05-09 京セラ株式会社 Cutting insert, cutting tool, and method of manufacturing cut workpiece
DE112019001596T5 (en) * 2018-03-27 2020-12-10 Kyocera Corporation CUTTING INSERT, CUTTING TOOL AND METHOD FOR MANUFACTURING A MACHINED PRODUCT
CN108515242A (en) * 2018-06-25 2018-09-11 廊坊西波尔钻石技术有限公司 A kind of cutter head and blade for finishing
US20200001374A1 (en) * 2018-06-29 2020-01-02 Herramientas Preziss, S.L. Cutting Insert Applicable To Machining Tools And The Tool Bearing It
JPWO2020090372A1 (en) * 2018-10-30 2021-09-16 兼房株式会社 Rotating tool
JP7023214B2 (en) * 2018-11-05 2022-02-21 京セラ株式会社 How to manufacture cutting tools
BE1026861B1 (en) * 2018-12-12 2020-07-13 Phoenix Contact Gmbh & Co Cutting part and lathe
USD902966S1 (en) * 2019-05-21 2020-11-24 Christopher Lee Caliendo Rhombus negative rake wood turning blade
CN110281278A (en) * 2019-06-27 2019-09-27 马鞍山市恒利达机械刀片有限公司 A kind of wear-resistant tyre production trimmer blade and its processing technology
JP7001245B2 (en) * 2019-08-01 2022-01-19 住友電工ハードメタル株式会社 How to manufacture cutting tools
US11413689B2 (en) * 2020-05-28 2022-08-16 Kennametal Inc. Cutting inserts with control cavities
DE102020117101A1 (en) * 2020-06-29 2021-12-30 Kennametal Inc. Cutting insert and cutting tool
CN114309682A (en) 2020-09-30 2022-04-12 肯纳金属公司 Cutting insert
JP6923854B1 (en) * 2021-02-26 2021-08-25 株式会社タンガロイ Cutting insert
JP6923855B1 (en) 2021-02-26 2021-08-25 株式会社タンガロイ Cutting insert
JP7003388B1 (en) * 2021-04-28 2022-01-20 株式会社タンガロイ Cutting tools
KR20230046568A (en) 2021-09-30 2023-04-06 송용수 Throwaway tip
JP7094501B1 (en) 2021-11-30 2022-07-04 株式会社タンガロイ Cutting tools
WO2023164372A1 (en) * 2022-02-23 2023-08-31 Us Synthetic Corporation Cutting tool with pcd inserts, systems incorporating same and related methods
WO2023195070A1 (en) * 2022-04-05 2023-10-12 住友電工ハードメタル株式会社 Cutting insert
KR102478886B1 (en) * 2022-07-11 2022-12-16 김성률 Tip structure with chip breaker

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE354593C (en) * 1972-05-17 1975-01-09 Sandvik Ab
US4056871A (en) * 1976-10-21 1977-11-08 Kennametal Inc. Cutting insert
CA1194684A (en) * 1981-01-30 1985-10-08 Kennametal Inc. Cutting insert
CH642884A5 (en) * 1981-05-19 1984-05-15 Stellram Sa CUTTING INSERT FOR MACHINING BY CHIP REMOVAL.
FR2509209A1 (en) * 1981-07-10 1983-01-14 Feldmuehle Prod Tech France NEW PROFILE OF CUTTING PLATES AND OTHER CUTTING MATERIALS OF CERAMICS OR CERMETS
JPH0815681B2 (en) 1986-01-23 1996-02-21 東芝タンガロイ株式会社 Throw-away tip
US4787784A (en) * 1987-08-03 1988-11-29 Gte Valenite Corporation Polygonal cutting insert
US4941780A (en) * 1987-11-24 1990-07-17 Sumitomo Electric Industries, Ltd. Indexable cutting insert
US4856942A (en) * 1988-07-19 1989-08-15 Gte Valenite Corporation Polygonal cutting insert
US4880338A (en) * 1988-12-07 1989-11-14 Gte Valenite Corporation Cutting insert
JP2523987Y2 (en) 1989-03-14 1997-01-29 京セラ株式会社 Indexable inserts
US4993893A (en) * 1990-01-08 1991-02-19 Kennametal Inc. Cutting insert with chip control
CA2036930C (en) 1990-02-27 1996-01-09 Hitoshi Fukuoka Cutting insert
KR910015351A (en) 1990-02-27 1991-09-30 나가노 다께시 Drawaway tip
KR960004237B1 (en) 1990-02-27 1996-03-28 미쓰비시 긴조꾸 가부시끼가이샤 Cutting insert
US5178645A (en) * 1990-10-08 1993-01-12 Sumitomo Electric Industries, Ltd. Cutting tool of polycrystalline diamond and method of manufacturing the same
JP3013448B2 (en) * 1991-01-16 2000-02-28 住友電気工業株式会社 Polycrystalline diamond cutting tool and its manufacturing method
US5141367A (en) * 1990-12-18 1992-08-25 Kennametal, Inc. Ceramic cutting tool with chip control
JP2553321Y2 (en) * 1992-04-27 1997-11-05 住友電気工業株式会社 Indexable tip
SE508452C2 (en) * 1992-07-02 1998-10-05 Sandvik Ab Cuts for chip separating processing
US5743681A (en) * 1993-04-05 1998-04-28 Sandvik Ab Cutting insert with chip control protrusion on a chip surface
SE9301811D0 (en) * 1993-05-27 1993-05-27 Sandvik Ab CUTTING INSERT
IL109054A (en) * 1994-03-21 1998-07-15 Iscar Ltd Cutting insert
DE19523128C2 (en) * 1994-08-09 1997-05-22 Valenite Inc Indexable insert
JP3371733B2 (en) * 1997-02-06 2003-01-27 住友電気工業株式会社 Indexable tip
DE19903038C2 (en) 1999-01-26 2003-06-26 Jakob Lach Gmbh & Co Kg cutting tool
JP4228557B2 (en) * 2001-02-05 2009-02-25 三菱マテリアル株式会社 Throwaway tip
US7107594B1 (en) * 2002-06-27 2006-09-12 Siebel Systems, Inc. Method and system for providing a version-independent interface to a computer resource
JP4139171B2 (en) * 2002-09-11 2008-08-27 京セラ株式会社 Throwaway tip
US7234901B2 (en) * 2002-09-11 2007-06-26 Kyocera Corporation Throw-away tip
KR100761302B1 (en) * 2004-01-14 2007-09-27 스미또모 덴꼬오 하드메탈 가부시끼가이샤 Throw-away tip
AT8376U1 (en) 2005-02-25 2006-07-15 Tiro Tool Werkzeugsysteme Gmbh CUTTING TOOL
JP4583222B2 (en) * 2005-04-01 2010-11-17 株式会社タンガロイ Hard sintered body cutting tool and manufacturing method thereof
JP2007216327A (en) 2006-02-15 2007-08-30 Aisin Seiki Co Ltd Forming method of chip breaker
JP4967721B2 (en) * 2007-03-07 2012-07-04 三菱マテリアル株式会社 Cutting insert
US8342779B2 (en) 2007-08-31 2013-01-01 Kyocera Corporation Cutting insert and cutting method
DE202007017088U1 (en) 2007-12-05 2008-04-24 Jakob Lach Gmbh & Co. Kg Cutting tool for the machining of workpieces
JP5092865B2 (en) 2008-04-17 2012-12-05 株式会社タンガロイ Throwaway tip
RU2492970C1 (en) * 2009-06-24 2013-09-20 Тунгалой Корпорейшн Cutting plate
WO2011142297A1 (en) * 2010-05-11 2011-11-17 株式会社タンガロイ Cutting insert
SE535166C2 (en) * 2010-08-25 2012-05-08 Sandvik Intellectual Property Double-sided, indexable lathe cutter with pointed chip angle
CN202498228U (en) 2012-03-22 2012-10-24 成都一通密封有限公司 Improved polycrystalline diamond blade
AT12934U1 (en) * 2012-03-27 2013-02-15 Ceratizit Austria Gmbh cutting insert
JP6315203B2 (en) * 2012-06-29 2018-04-25 住友電気工業株式会社 Diamond single crystal, manufacturing method thereof, and single crystal diamond tool
JP6206801B2 (en) * 2013-09-09 2017-10-04 住友電工ハードメタル株式会社 Cutting insert

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3381595A4 (en) * 2015-11-26 2019-07-03 Sumitomo Electric Hardmetal Corp. Rotating tool
US10493536B2 (en) 2015-11-26 2019-12-03 Sumitomo Electric Hardmetal Corp. Rotary tool
EP3819051A4 (en) * 2018-07-03 2022-05-04 Sumitomo Electric Hardmetal Corp. Cutting insert and manufacturing method thereof

Also Published As

Publication number Publication date
US10286455B2 (en) 2019-05-14
JP6603955B2 (en) 2019-11-13
US20160243624A1 (en) 2016-08-25
EP3189917A4 (en) 2018-05-30
WO2016035490A1 (en) 2016-03-10
EP3189917B1 (en) 2021-06-09
PH12016500616A1 (en) 2016-06-13
PH12016500616B1 (en) 2016-06-13
CN105682833B (en) 2019-05-28
JPWO2016035490A1 (en) 2017-06-22
MX2016004989A (en) 2016-08-15
KR20170047190A (en) 2017-05-04
CN105682833A (en) 2016-06-15

Similar Documents

Publication Publication Date Title
EP3189917B1 (en) Throw-away tip
US10493536B2 (en) Rotary tool
JP6330082B2 (en) Cutting insert, cutting tool, and method of manufacturing cut workpiece
US11103929B2 (en) Turning insert
EP3450065A1 (en) Cutting insert
CN104105811B (en) Method for finishing spray coated surface, and work tool
EP3375550B1 (en) Cutting tool and method for manufacturing same
JP6420239B2 (en) Cutting insert, cutting tool, and method of manufacturing cut workpiece
JPWO2009096516A1 (en) Cutting insert, cutting tool, and cutting method
JP5814611B2 (en) End mill
CN109702259B (en) Cutting insert and replaceable cutting insert milling tool
JP6228229B2 (en) Cutting insert, cutting tool, and manufacturing method of cut workpiece
CN111148590B (en) Cutting insert, cutting tool, and method for manufacturing cut product
JP2003175408A (en) Polycrystal hard sintered body throw-away tip
JP2013013962A (en) Cbn end mill
JP2008229764A (en) Rotary tool and machining method
CN109570629A (en) Cutting element
CN217253134U (en) Single-edge straight flute slotting cutter
CN211413681U (en) Cutting tool
JP6658805B2 (en) Cutting insert
JP4655548B2 (en) Throwaway tip
JP5873345B2 (en) End mill
CN114799304A (en) Single-edge straight-groove slotting cutter and machining method
JP2018183829A (en) Cutting insert and manufacturing method of the same
JPH0436803B2 (en)

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20160407

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20180502

RIC1 Information provided on ipc code assigned before grant

Ipc: B23B 27/22 20060101ALI20180424BHEP

Ipc: B23B 27/14 20060101AFI20180424BHEP

Ipc: B23B 27/20 20060101ALI20180424BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210112

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1400051

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015070314

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210909

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1400051

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210609

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210909

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211011

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015070314

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210731

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

26N No opposition filed

Effective date: 20220310

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210909

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210809

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150731

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230607

Year of fee payment: 9