EP3183079B1 - Modèle de coulée de boîtier, série de boîtier et procédé de fabrication d'un boîtier coulé d'une turbomachine à énergie fluidique radiale - Google Patents

Modèle de coulée de boîtier, série de boîtier et procédé de fabrication d'un boîtier coulé d'une turbomachine à énergie fluidique radiale Download PDF

Info

Publication number
EP3183079B1
EP3183079B1 EP15763591.3A EP15763591A EP3183079B1 EP 3183079 B1 EP3183079 B1 EP 3183079B1 EP 15763591 A EP15763591 A EP 15763591A EP 3183079 B1 EP3183079 B1 EP 3183079B1
Authority
EP
European Patent Office
Prior art keywords
housing
model
pressure
casm
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP15763591.3A
Other languages
German (de)
English (en)
Other versions
EP3183079A1 (fr
Inventor
Sebastian Huth
Dieter Nass
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP3183079A1 publication Critical patent/EP3183079A1/fr
Application granted granted Critical
Publication of EP3183079B1 publication Critical patent/EP3183079B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C7/00Patterns; Manufacture thereof so far as not provided for in other classes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • F04D17/122Multi-stage pumps the individual rotor discs being, one for each stage, on a common shaft and axially spaced, e.g. conventional centrifugal multi- stage compressors
    • F04D17/125Multi-stage pumps the individual rotor discs being, one for each stage, on a common shaft and axially spaced, e.g. conventional centrifugal multi- stage compressors the casing being vertically split
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/21Manufacture essentially without removing material by casting

Definitions

  • Radial turbofan energy machines are usually provided as a compact unit with a drive or output on a common platform. During maintenance or inspection on the radial turbofan energy machine, an opening of a housing is usually mandatory, and it is preferable to avoid an expense for the other connected units. In particular, a drive or output of the radial turbofan energy machine should not have to be moved.
  • housing are preferably in pot construction designed so that there is no parting line extending along the central axis or axis of rotation on the housing. Since the machines are usually placed horizontally, this type of parting joint is then also referred to as a horizontal parting line.
  • a parting line is associated with local, necessary in the region of the parting material concentrations, on the one hand space, on the other hand require additional material and also cause stiffness jumps in the housing.
  • the avoidance of the horizontal parting line also has the advantage in the pot construction that under the mechanical and thermal loads on the housing no asymmetrical deformations occur in the direction of contact, which can lead to alignment problems and to leaks in the parting line.
  • reference to an axis always means reference to the central axis of extension of the housing, unless otherwise specified.
  • this central extension axis is usually almost or completely identical to a rotational axis of a rotor of the radial fluid energy machine, for which the housing has been produced by the method according to the invention and by means of the housing model according to the invention.
  • the preferred application of the invention are the housing of radial turbocompressors, in particular designed as a pipeline compressor for the compression of natural gas.
  • the housing of a radial turbofluid energy machine according to the invention can also be used for an expander. In essence, such a design is identical with reversal of the flow direction.
  • high pressure and low pressure are to be understood in the context of this document such that during normal operation of the machine according to the invention in the region of low pressure a lower pressure prevails than in the area of high pressure.
  • Low pressure does not necessarily mean that the prevailing pressure level is in the order of magnitude of the atmospheric pressure or below.
  • FIG. 5 a conventional radial turbofluid energy machine in the form of a centrifugal compressor is shown schematically as a longitudinal section.
  • the radial turbofluid energy engine RFM shown comprises a rotor R which extends along an axis X and comprises the impellers IMP, specifically in the flow direction: a first impeller IMP1, a second impeller IMP 2 and a third impeller IMP3.
  • a process fluid PF passes through the inlet of a housing CAS in the interior of the machine and is compacted by means of the impeller IMP and by means of stationary between the impellers arranged intermediate floors to a final pressure.
  • the housing CAS essentially comprises a housing jacket CCV, on a low-pressure side a low-pressure cover LPC and on a high-pressure side a high-pressure cover HPC.
  • the high-pressure spiral HSP claimed so much radial space that the housing CAS is bell-shaped, optimizing the material requirements and space requirements, the larger outer and inner diameter is provided on the high pressure side due to the high pressure spiral HSP.
  • the high-pressure lid HPC of the housing CAS must be designed, in particular, with regard to the diameter and, due to the pressure, also be adequately dimensioned in terms of its thickness and attached to the housing jacket CCV in a complex manner.
  • the diameter of the high-pressure spiral and thus the high-pressure lid shapes the overall size of the machine and causes high costs.
  • the lateral surface is also not nearly cylindrical and walls of the lateral surface are bent.
  • the bell-shaped due to the dimensions of the high pressure spiral HSP inner bundle IB can be introduced only along a first axial mounting direction DX1 in the housing CAS or the housing shell CCV.
  • the introduction of the inner bundle IB takes place through the opening of the housing shell on the part of the HPC high-pressure cover.
  • Due to the bell shape also on the inner diameter of the housing CAS support of the inner beam IB in the housing shell is not possible during assembly, so that one extends the inner beam IB along the rotor with a so-called horsetail and outside of the housing CAS on the low pressure side or on the Low pressure cover the horsetail (eg Fig. 3 .
  • Another disadvantage of the conventional construction of the radial turbofluid energy machine RFM according to FIG. 5 consists in the enormous dimensions of the high-pressure lid HPC, which is oriented in its diameter at the belonging to the inner beam IB high-pressure spiral HSP.
  • the large diameter also requires a massive thickness of the high-pressure lid HPC and requires particularly reliable stationary seals of the high-pressure lid HPC to the housing shell CCV, the housing shell CCV in the high pressure area is additionally weakened by the attachment of the high-pressure lid HPC screws SCR.
  • the high weight of the HPC high pressure lid requires
  • special measures also in the context of assembly for supporting and guiding the high-pressure lid HPC and a special care so that the seal of the high-pressure lid HPC is not destroyed in the joining process.
  • the invention has set itself the task of improving the housing cast model, the housing series and the method for producing a cast housing of a radial turbofluid energy machine so that at least some of the above-mentioned disadvantages are at least partially avoided.
  • the invention proposes a method for producing a cast housing of the type defined above with the additional features of the method claim.
  • the invention proposes a novel housing casting model.
  • the invention proposes a novel housing series.
  • the particular advantage of the method according to the invention lies in the variability of the design of the housing required for the radial turbofluid energy machine, wherein the housing is advantageously provided as a cast component in terms of flow and does not have to be provided with the same number of complete cast housing models for a large number of geometries for the high-pressure spiral.
  • the various selectable high-pressure housing jacket models and low-pressure housing jacket models only have to have an identical geometry or cross-sectional geometry at the end faces facing one another and to be joined, so that a largely smooth transition between the assembled model parts is guaranteed. If one goes from the in FIG.
  • Another advantageous development of the invention provides that when assembling from different high-pressure housing jacket models can be selected which different Hochlichgephaseusemantelmodelle fit to the same high-pressure model cover or provide the same opening to be closed by means of the high-pressure model cover.
  • Another advantageous development of the invention provides that, when assembling different low-pressure housing jacket models, it is possible to select which different low-pressure housing jacket models match the same low-pressure model cover or provide the same opening to be closed by means of the low-pressure model cover.
  • the housing model casing is designed such that the cast housing to be produced therewith is formed undivided in the axial direction.
  • the housing model casing is designed such that the cast housing to be produced therewith is also designed to be undivided in the circumferential direction.
  • the undivided design of the housing model shell in the axial direction relates only to the design of the shell itself, which is formed axially closable by means of the already described high pressure lid and low pressure lid.
  • At least the region of the high-pressure model spiral is designed with stiffening rib models, so that the wall thickness of the high-pressure model spiral or the high-pressure spiral can be made smaller, because the high-pressure spiral is designed rib-stiffened in this way.
  • the housing casting model comprises at least one Aufstellfußmodell, by means of which at least one Aufstellfuß modeling technology to the other cast housing can be formed.
  • an outlet nozzle model is provided as a detachable component of the housing casting model for the outlet nozzle and an extension direction along an outlet nozzle axis results from the design and attachment
  • an inlet nozzle model as a detachable component of the housing casting model for the inlet nozzle is provided, wherein the inlet nozzle extends along an extension direction of an inlet nozzle axis
  • the housing casting model and the design and attachment of the nozzle models is designed such that the Inlet nozzle axis and the outlet nozzle axis in a list of radial turbofan energy with horizontal axis horizontally lying substantially in an identical horizontal plane.
  • Particularly useful can be produced by means of the invention housing series, which are each components of a radial turbo energy machine.
  • FIG. 1 shows a schematic representation of a longitudinal section through a multi-part (ie not one-piece) Casegussussmodell CASM comprising a housing model jacket CCVM, a high pressure model cover HCVM and a low pressure model cover LCVM.
  • FIG. 2 shows a Gepatiusegussmodell this housing in a schematic three-dimensional view of the Invention.
  • the high-pressure model jacket CCVM extends along an axis X from a high-pressure side HPS to a low-pressure side LPS.
  • the housing model jacket CCVM is divided in an axial plane perpendicular to the axis X in a circumferentially extending parting line SPA into a high-pressure model jacket HPCVM and a low-pressure model jacket LPCVM.
  • the high-pressure model jacket HPCVM is formed in an axial region as a high-pressure model spiral HSPM with an opening for an outlet nozzle.
  • the low-pressure model jacket LPCVM has an inlet opening IOC for an inlet connection IFL into the cast housing CAS.
  • the housing casting model CASM is preferably designed such that in a lineup of a corresponding radial turbo energy machine, with a horizontal orientation of the axis X (which is also present as the axis of rotation of a rotor R with fully assembled radial fluid turbomachinery RFM), as shown in Figure 2, are the Inlet nozzle axis IFX and the outlet nozzle axis OFX arranged in the same horizontal plane.
  • a horizontal orientation of the axis X which is also present as the axis of rotation of a rotor R with fully assembled radial fluid turbomachinery RFM
  • RFM Radial Turbofluidenergymaschine shown RFM is the high-pressure spiral HSP and the high-pressure spiral model HSPM each to be adjusted in size. Therefore, the method according to the invention provides that, in a first step, the housing casting model CASM is assembled before, in a second step, molding of the assembled cast housing model CASM takes place and finally casting of the housing CAS takes place in a third step.
  • the composition of the casement model CASM is made using the already explained modularity of the Housing model jacket CCVM and its division into a high pressure model jacket HPCM and a low pressure model jacket LPCVM.
  • the CCVM Housing Shell Model is assembled from a variety of LPCVM Low Pressure Housing Model Covers and a selection of a suitable HPCVM High Pressure Housing Model Shell from various models as described in US Pat FIG. 3 is shown.
  • FIG. 3 shows the possibilities, from five different high-pressure housing model jackets HPCVM (HPCVM 1 to HPCVM 5) and two different LPCVM low-pressure housing model jackets (LPCVM 1, LPCVM 2), the housing casting model CASM according to the method step a) put together.
  • HPCVM 1 to HPCVM 5 high-pressure housing model jackets
  • LPCVM 1 to LPCVM 2 two different LPCVM low-pressure housing model jackets
  • the housing casting model CASM according to the method step a) put together.
  • the number of choices for the two model parts is only an example here.
  • the HPCVM high pressure shell models can be selected for optimum efficiency with best aspect ratio, impeller outer diameter, and spiral base circle.
  • the various high-pressure housing model jackets HPCVM differ in particular by differently sized collecting spaces SCL of the high-pressure model spiral HSPM.
  • the high pressure model spiral HSPM provides stiffening model ribs FINM, in particular the casting of stiffening ribs for stiffening the in FIG. 4 used high-pressure spiral HSP serve.
  • the high-pressure model spiral HSPM has a spiral inlet SPI pointing radially outwards into the collecting space.
  • the spiral collecting space SCL of the high-pressure model spiral HSPM extends radially outward from the spiral inlet SPI, annularly in the circumferential direction and in the axial direction from the spiral inlet SPI toward the low-pressure side LPS.
  • the spiral outlet is secant-like - approximately tangential to the circumferentially extending spiral collection space SCL.
  • the housing model casing CCVM is provided with stand-up models SUPM, wherein the stand-up models SUPM both support the housing CAS in a first vertical orientation against the ground in a setup as already defined above with a horizontally extending axis X.
  • the stand-up models SUPM both support the housing CAS in a first vertical orientation against the ground in a setup as already defined above with a horizontally extending axis X.
  • Radial turbofluid energy machine RFM schematically represented in longitudinal section has a cast housing CAS which extends along an axis X.
  • the cast housing CAS has a housing jacket CCV, which is undivided in the circumferential direction.
  • the radial turbofan energy machine RFM is placed horizontally with the axis X extending horizontally.
  • On the in the FIG. 2 . 4 further left side is an axial high pressure side HPS of the cast housing CAS.
  • On the right side there is an axial low pressure side LPS.
  • a rotor R which is led out of the housing CAS axially.
  • the housing jacket CCV of the housing CAS is closed against the environment by means of a high-pressure cover HCV.
  • the housing jacket CCV is closed to the environment by means of a low-pressure cover LCV.
  • the rotor R is connected to transmit torque by means of a clutch CUP on the high-pressure side HPS to a drive DRI.
  • the housing jacket CCV is in an axial plane perpendicular to the axis X extending in a direction indicated by a dotted line and extending in the circumferential direction along the housing shell CCV parting line SPA ( FIG.
  • the preferred alternative of forming the housing jacket CCV is that the housing jacket CCV of the housing CAS in an axial plane perpendicular to the axis X (here also by means of the parting line SPA ( FIG. 1 ) has extending in a circumferentially extending transition between low pressure side LPS and high pressure side HPS, wherein the housing shell is continuously integrally formed as a casting in the axial direction, as a result of a done before molding and casting in the casting process compilation of the housing casting model of a particular high-pressure model jacket and a certain low-pressure model jacket.
  • the casting models being provided only for the different high-pressure jackets and low-pressure jacket jackets.
  • the high-pressure housing jacket HCV is provided with a high pressure spiral HSP comprising a collecting space SCL, wherein the collecting space SCL has a circumferentially tangetial and radially outwardly directed outlet opening OOC and a radially outwardly facing outlet nozzle OFL of the housing CAS or high-pressure housing jacket HPCV.
  • the low-pressure housing jacket LPCV On the low-pressure side LPS, the low-pressure housing jacket LPCV has a radial inlet opening IOP and an inlet connection piece IFL, which adjoins it against the flow direction, into the cast housing CAS.
  • inlet nozzle IFL is also a diametrically the nozzle in two equal halves dividing flow rib GFI ( FIG. 1 ), which on the one hand stiffens the nozzle and on the other hand, the inflowing process fluid PF ( FIG. 2 ) is divided into two substantially identical volume flows for the two halves of the annular inflow chamber.
  • stiffening ribs FIN can be easily recognized on the outside of the cast housing CAS, at least in the region of the high-pressure spiral HSP. These stiffening ribs FIN go with a horizontal installation of the machine preferably both towards the ground in feet SUPM over and in the opposite direction, so that the machine can be placed in reverse vertical orientation with horizontally extending axis X.
  • outlet nozzle RFL has an extension direction along an outlet nozzle axis OFX and the inlet nozzle IFL has an extension direction along an inlet nozzle axis IFX, wherein the casting housing CAS is designed such that the outlet nozzle axis OFX and the inlet nozzle axis IFX during a setup of the radial turbofluid energy machine RFM lie horizontally extending axis substantially in an identical horizontal plane.
  • a compensation piston BAP is provided on the rotor R, which separates a high-pressure chamber HPC from a low-pressure chamber LPC by means of a compensating piston shaft seal BAS.
  • the balance piston BAP is arranged axially in the direction of the high pressure side HPS adjacent to an impeller IMP of the rotor R. This the balance piston BAP adjacent Impeller IMP is traversed by the process fluid PF at the highest pressure level in the radial turbofluid energy machine RFM.
  • a balancing line BAC connects the low-pressure chamber LPC to the inlet chamber INC downstream of the inlet opening IOP. This compensation line BAC is connected for this purpose only to openings in the housing jacket CCV.
  • the machine can be opened by removing the low-pressure cover LCV and an inner bundle IBN consisting of the rotor and surrounding flow-conducting components can be axially removed from the housing CAS, without dismantling the balancing line BAC.
  • a high-pressure spiral HSP is part of the housing CAS with a spiral inlet SPI opening radially inwardly from the high-pressure spiral HSP and viewed against the flow direction.
  • the collecting space SCL extends essentially downstream axially in the direction of the low pressure side LPS. Furthermore, the collecting space SCL is located radially outward of the spiral inlet SPI.
  • FIG. 5 shows a schematic longitudinal section through a conventional radial turbofluid energy machine. The essential features of this machine were already described in the introduction to the description.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Claims (13)

  1. Procédé de production d'une carcasse (CAS) coulée d'une turbomachine (RFM) radiale à énergie fluidique, comprenant les stades suivants :
    a) assemblage d'un modèle (CASM) coulé de carcasse, notamment suivant au moins l'une des revendications 2 à 10, le modèle (CASM) coulé de carcasse ayant une enveloppe (CCVM) de modèle de carcasse,
    dans lequel le modèle (CASM) coulé de carcasse et l'enveloppe (CCVM) de modèle de carcasse s'étendent suivant un axe (X),
    dans lequel le modèle (CASM) coulé de carcasse a un côté (HPS) axial de haute pression,
    dans lequel le modèle (CASM) coulé de carcasse a un côté (LPS) axial de basse pression,
    dans lequel l'enveloppe (CCVM) de modèle de carcasse, en s'étendant dans un plan axial perpendiculaire à l'axe (X), a un joint (SPA) s'étendant dans la direction périphérique, joint qui subdivise l'enveloppe (CCVM) de modèle de carcasse en une enveloppe (HPCVM) de modèle de haute pression et en une enveloppe (LPCVM) de modèle de basse pression,
    dans lequel l'enveloppe (HPCVM) de modèle de haute pression est constituée, dans une région axiale, sous la forme d'une volute (HSPM) de modèle de haute pression, ayant une ouverture (OOC) de sortie d'une tubulure (OFL) de sortie,
    dans lequel il est prévu plusieurs enveloppes (HPCVM1, HPCVM2, HPCVM3, ...) de modèle de haute pression ayant des volutes (HSPM1, HSPM2, HSPM3, ...) de modèle de haute pression de dimensions différentes les unes par rapport aux autres, de manière à effectuer l'assemblage à partie d'un choix d'une enveloppe (HPCVM) de modèle de haute pression individuelle et de l'enveloppe (LPCVM) de modèle de basse pression,
    b) moulage du modèle (CASM) coulé de carcasse assemblé,
    c) coulée de la carcasse (CAS) coulée.
  2. Modèle (CASM) coulé de carcasse en plusieurs parties pour fabriquer une carcasse (CAS) coulée d'une turbomachine (RFM) radiale à énergie fluidique, qui s'étend suivant un axe (X),
    dans lequel le modèle (CASM) coulé de carcasse a une enveloppe (CCVM) de modèle de carcasse,
    dans lequel le modèle (CASM) coulé de carcasse a un côté (HPS) axial de haute pression,
    dans lequel le modèle (CASM) coulé de carcasse a un côté (LPS) axial de basse pression,
    dans lequel l'enveloppe (CCVM) de modèle de carcasse du modèle (CASM) coulé de carcasse a, en s'étendant dans un plan axial perpendiculaire à l'axe (X), un joint (SPA) s'étendant dans la direction périphérique,
    dans lequel le côté (HPS) axial de haute pression de l'enveloppe (CCVM) de modèle de carcasse est constitué dans une région axiale, sous la forme d'une volute (HSP) de haute pression ayant une ouverture (OOC) de sortie d'une tubulure (OFL) de sortie de la carcasse (CAS) coulée.
  3. Modèle (CASM) coulé de carcasse suivant la revendication 2,
    dans lequel le côté (LPS) de basse pression a une ouverture (IOC) d'entrée radiale d'une tubulure (IFL) d'entrée dans la carcasse (CAS) coulée.
  4. Modèle (CASM) coulé de carcasse suivant la revendication 2,
    dans lequel, du côté (HPS) axial de haute pression, le modèle (CASM) coulé de carcasse a une ouverture (HPO) de haute pression pour fermer la carcasse (CAS) coulée au moyen d'un couvercle (HCV) de haute pression,
    dans lequel, du côté (LPS) de basse pression, le modèle (CASM) coulé de carcasse a une ouverture (LPO) axiale de basse pression pour fermer la carcasse (CAS) coulée au moyen d'un couvercle (LCV) de basse pression.
  5. Modèle (CASM) coulé de carcasse suivant la revendication 4,
    dans lequel l'ouverture (HPO) de haute pression a un diamètre intérieur plus petit que l'ouverture (LPO) de basse pression.
  6. Modèle (CASM) coulé de carcasse suivant la revendication 2,
    dans lequel l'enveloppe (CCVM) de modèle de carcasse est constitué de manière à constituer, sans séparation dans la direction périphérique, la carcasse (CAS) coulée à fabriquer ainsi.
  7. Modèle (CASM) coulé de carcasse suivant la revendication 2,
    dans lequel l'enveloppe (CCVM) de modèle de carcasse est constitué de manière à constituer, sans séparation, dans la direction axiale, la carcasse (4) coulée à fabriquer ainsi.
  8. Modèle (CASM) coulé de carcasse suivant la revendication 2,
    dans lequel la volute (HSP) de haute pression a une entrée (SPI) de volute s'étendant dans la direction périphérique en débouchant radialement vers l'intérieur et un espace (SCL) collecteur, l'espace (SCL) collecteur s'étendant sensiblement axialement, à partir de l'entrée (SPI) de volute, dans la direction du côté (LPS) de basse pression.
  9. Modèle (CASM) coulé de carcasse suivant la revendication 2,
    dans lequel il est prévu des nervures (FINM) de modèle de renfort s'étendant radialement à l'extérieur sur le modèle (CASM) coulé de carcasse, au moins dans la région de volute du (HSPM) de modèle de haute pression.
  10. Modèle (CASM) coulé de carcasse suivant la revendication 2,
    caractérisé en ce que le modèle (CASM) coulé de carcasse comprend au moins un modèle (SUPM) de pied d'érection, au moyen duquel au moins un pied (SUP) d'érection peut être formé en technique de modèle sur le reste de la carcasse (CAS) coulée.
  11. Modèle (CASM) coulé de carcasse suivant la revendication 3,
    dans lequel un modèle (OFLM) de tubulure de sortie est prévu comme partie constitutive du modèle (CASM) coulé de carcasse pour la tubulure (OFL) de sortie et a une direction dans laquelle il s'étend, suivant un axe (OFX) de tubulure de sortie et un modèle (IFLM) de tubulure d'entrée est prévu comme partie constitutive du modèle (CASM) coulé de carcasse pour la tubulure (IFL) d'entrée et a une direction suivant lequel il s'étend, suivant un axe (IFX) de tubulure d'entrée, le modèle (CASM) coulé de carcasse étant constitué de manière à ce que l'axe (OFX) de tubulure de sortie et l'axe (IFX) de tubulure d'entrée soient, à la mise en place de la turbomachine (RFM) radiale à énergie fluidique suivant un axe (X) s'étendant horizontalement, sensiblement dans le même plan horizontal.
  12. Modèle (CASM) coulé de carcasse en plusieurs parties pour fabriquer des carcasses (CAS) coulées différentes d'une série (RTS) de construction d'une turbomachine (RFM) radiale à énergie fluidique, comprenant un modèle (CASM) coulé de carcasse suivant au moins l'une des revendications précédentes 2 à 10,
    dans lequel le modèle (CASM) coulé de carcasse comprend, pour une enveloppe (LPCVM) de modèle de basse pression, plusieurs - au moins deux - enveloppes (HPCVM) de modèle de haute pression,
    dans lequel, pour produire une carcasse (CAS) coulée déterminée, une carcasse (HPCVM) de modèle de haute pression déterminée peut être choisie et être jointe axialement à la carcasse (LPCVM) de modèle de basse pression.
  13. Gamme de carcasses d'une gamme (RTS) d'une turbomachine (RFM) radiale à énergie fluidique, fabriquée au moyen d'un modèle (CASM) coulé de carcasse en plusieurs parties suivant la revendication 10 et/ou suivant le procédé suivant la revendication 1.
EP15763591.3A 2014-09-19 2015-09-16 Modèle de coulée de boîtier, série de boîtier et procédé de fabrication d'un boîtier coulé d'une turbomachine à énergie fluidique radiale Not-in-force EP3183079B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014218945.4A DE102014218945A1 (de) 2014-09-19 2014-09-19 Gehäusegussmodell, Gehäusebaureihe, Verfahren zur Erzeugung eines gegossenen Gehäuses einer Radialturbofluidenergiemaschine
PCT/EP2015/071151 WO2016042004A1 (fr) 2014-09-19 2015-09-16 Modèle de coulée de boîtier, série de boîtier et procédé de fabrication d'un boîtier coulé d'une turbomachine à énergie fluidique radiale

Publications (2)

Publication Number Publication Date
EP3183079A1 EP3183079A1 (fr) 2017-06-28
EP3183079B1 true EP3183079B1 (fr) 2018-08-01

Family

ID=54140465

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15763591.3A Not-in-force EP3183079B1 (fr) 2014-09-19 2015-09-16 Modèle de coulée de boîtier, série de boîtier et procédé de fabrication d'un boîtier coulé d'une turbomachine à énergie fluidique radiale

Country Status (5)

Country Link
EP (1) EP3183079B1 (fr)
CN (1) CN107073561A (fr)
DE (1) DE102014218945A1 (fr)
RU (1) RU2669133C1 (fr)
WO (1) WO2016042004A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3421808B1 (fr) * 2016-03-28 2020-01-22 Mitsubishi Heavy Industries Compressor Corporation Machine a compresseur rotative
DE102016217669A1 (de) 2016-09-15 2018-03-15 Siemens Aktiengesellschaft Verfahren zur Montage, Turbomaschine
DE102016217672A1 (de) 2016-09-15 2018-03-15 Siemens Aktiengesellschaft Einwellenturboverdichter
DE102018200287A1 (de) 2018-01-10 2019-07-11 Siemens Aktiengesellschaft Turbomaschineninnengehäuse

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT277440B (de) * 1967-12-11 1969-12-29 Gutehoffnungshuette Sterkrade Turboverdichter
SU844120A1 (ru) * 1979-04-04 1981-07-07 Проектно-Конструкторское И Техноло-Гическое Бюро Химического Машино-Строения Способ изготовлени выплавл емыхМОдЕлЕй и уСТРОйСТВО дл ЕгО ОСу-щЕСТВлЕНи
JPS59134396A (ja) * 1983-01-19 1984-08-02 Shimadzu Corp ヘリウムガス圧縮装置
DE4416497C1 (de) * 1994-05-10 1995-01-12 Gutehoffnungshuette Man Getriebe-Mehrwellenturbokompressor und Getriebe-Mehrwellenradialexpander
DE19648213A1 (de) * 1996-11-21 1998-05-28 Zahnradfabrik Friedrichshafen Herstellungsverfahren von Achsbrückengehäusen
EP1069313B1 (fr) * 1999-07-16 2005-09-14 Man Turbo Ag Turbo-compresseur
US7014418B1 (en) * 2004-12-03 2006-03-21 Honeywell International, Inc. Multi-stage compressor and housing therefor
WO2006105804A1 (fr) * 2005-04-04 2006-10-12 Honeywell International Inc. Turbocompresseur a debit variable
RU2319866C2 (ru) * 2006-04-13 2008-03-20 Николай Иванович Сотник Способ изготовления корпуса насоса двустороннего входа
DE202007009097U1 (de) * 2007-06-26 2007-08-30 Lanzke, Andreas Pumpengehäuse
EP2045472A1 (fr) 2007-10-05 2009-04-08 Siemens Aktiengesellschaft Procédé pour le montage de turbomachines et son dispositif de réalisation
DE102008046351A1 (de) * 2008-09-09 2010-03-11 Bosch Mahle Turbo Systems Gmbh & Co. Kg Abgasturbolader
DE102010026678B4 (de) * 2010-07-09 2016-05-19 Siemens Aktiengesellschaft Überwachungs-und Diagnosesystem für ein Fluidenergiemaschinensystem sowie Fluidenergiemachinensystem
KR102036846B1 (ko) * 2012-05-29 2019-10-25 보르그워너 인코퍼레이티드 배기가스 터보차저
EP2722495B1 (fr) * 2012-10-17 2015-03-11 ABB Turbo Systems AG Carter d'entrée de gaz et turbine associée pour gaz d'échappement

Also Published As

Publication number Publication date
WO2016042004A1 (fr) 2016-03-24
DE102014218945A1 (de) 2016-03-24
RU2669133C1 (ru) 2018-10-08
EP3183079A1 (fr) 2017-06-28
CN107073561A (zh) 2017-08-18

Similar Documents

Publication Publication Date Title
EP3183079B1 (fr) Modèle de coulée de boîtier, série de boîtier et procédé de fabrication d'un boîtier coulé d'une turbomachine à énergie fluidique radiale
EP1530670B1 (fr) Structure de recirculation d'un turbocompresseur
DE102013207452A1 (de) Gehäuseabschnitt einer Turbomaschinenverdichter- oder Turbomaschinenturbinenstufe
EP2183487B1 (fr) Turbomachine et procédé de production d'une turbomachine de ce type
DE102008025249A1 (de) Sammelraum und Verfahren zur Fertigung
DE102008013433A1 (de) Strömungsmaschine mit verbesserter Ausgleichskolbendichtung
DE112013003239B4 (de) Turbolader mit einem Ladedruck-Regelventil
DE102014218941A1 (de) Radialturbofluidenergiemaschine, Verfahren zur Montage
EP2054587B1 (fr) Boîtier de turbine
DE102017127758A1 (de) Radialverdichter und Turbolader
DE112020001965B4 (de) Turbinengehäuse und Turbolader
EP2859190B1 (fr) Carter de turbine pour turbocompresseur à gaz d'echappement
DE102010037692A1 (de) Geformte Wabendichtung für eine Turbomaschine
DE102014214226A1 (de) Verbundverdichtergehäuse
DE102012001322B4 (de) Schaufelkranzaggregat, Verfahren zu dessen Montage und Turbinenmotor
WO2016041800A1 (fr) Carter d'une turbomachine radiale à énergie fluidique et turbomachine radiale à énergie fluidique
DE102020202967A1 (de) Abgasturbolader mit Integralgehäuse
DE102016212552A1 (de) Elektro-Verdichter mit schwingungsgedämpfter, kompakter Lagerung
DE60115025T2 (de) Gegossenes spiralgehäuse für einen turbolader
DE69106318T2 (de) Gehäuse einer Druckkammer und Motorpumpe, die ein solches Gehäuse verwendet.
DE3835341A1 (de) Kreiselverdichter mit horizontaler teilungsebene
DE102016201581A1 (de) Rotor-Stator-Verbund für eine axiale Strömungsmaschine und Flugtriebwerk
EP3572622B1 (fr) Carter intermédiaire de turbine pourvu de contour d'espace annulaire à conception spécifique
WO2023061641A1 (fr) Carter de turbocompresseur et turbocompresseur à gaz d'échappement avec carter de turbo-rotor intégré et couvercle de carter de compresseur
DE102012208493A1 (de) Symmetrisches Schaufelrad aus Metallguss

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20170209

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: B22C 7/00 20060101AFI20180209BHEP

Ipc: F04D 29/42 20060101ALI20180209BHEP

Ipc: F04D 17/12 20060101ALI20180209BHEP

Ipc: B22C 9/02 20060101ALI20180209BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180321

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

Ref country code: AT

Ref legal event code: REF

Ref document number: 1023705

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015005317

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180801

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181102

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181101

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181101

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181201

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181119

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20181210

Year of fee payment: 4

Ref country code: IT

Payment date: 20180930

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015005317

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180930

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180916

26N No opposition filed

Effective date: 20190503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181001

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502015005317

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150916

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200401

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190916

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190916

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1023705

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200916