EP3179551A1 - Compact bipolarisation drive assembly for a radiating antenna element and compact network comprising at least four compact drive assemblies - Google Patents

Compact bipolarisation drive assembly for a radiating antenna element and compact network comprising at least four compact drive assemblies Download PDF

Info

Publication number
EP3179551A1
EP3179551A1 EP16202268.5A EP16202268A EP3179551A1 EP 3179551 A1 EP3179551 A1 EP 3179551A1 EP 16202268 A EP16202268 A EP 16202268A EP 3179551 A1 EP3179551 A1 EP 3179551A1
Authority
EP
European Patent Office
Prior art keywords
omt
compact
connection
waveguides
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP16202268.5A
Other languages
German (de)
French (fr)
Other versions
EP3179551B1 (en
Inventor
Jean-Philippe Fraysse
Ségolène TUBAU
François DOUCET
Hervé Legay
Renaud Chiniard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP3179551A1 publication Critical patent/EP3179551A1/en
Application granted granted Critical
Publication of EP3179551B1 publication Critical patent/EP3179551B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/16Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion
    • H01P1/161Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion sustaining two independent orthogonal modes, e.g. orthomode transducer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/165Auxiliary devices for rotating the plane of polarisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/182Waveguide phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/213Frequency-selective devices, e.g. filters combining or separating two or more different frequencies
    • H01P1/2131Frequency-selective devices, e.g. filters combining or separating two or more different frequencies with combining or separating polarisations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/12Hollow waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns
    • H01Q13/0208Corrugated horns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/245Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction provided with means for varying the polarisation 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction

Definitions

  • the present invention relates to a bipolarization compact excitation assembly for an antenna radiating element and a compact array having at least four compact excitation assemblies. It applies to any multibeam antenna comprising a focal network operating in low frequency bands and more particularly in the field of space applications such as C-band, L-band or S-band satellite telecommunications, as well as to space antennas with a single-beam overall coverage in C-band, L-band or S-band. It also applies to radiating elements for network antennas, particularly X-band or Ka-band antennas.
  • Radiant sources operating in low frequency bands generally comprise very large metal cones and having a large mass.
  • To reduce the size of the radiating source it is known from the document FR2959611 , replace the metal horn with stacked Fabry-Perot cavities. This solution makes it possible to reduce the size of the sources and presents radio-frequency performances equivalent to those of a metal horn.
  • this solution is limited to an opening diameter of less than 2.5 ⁇ , where ⁇ represents the central wavelength, in a vacuum, of the frequency band of use.
  • the document FR 3012917 proposes a solution comprising a compact bipolarization power distributor comprising four asymmetrical orthomode OMT transducers coupled in phase with an orthogonal double polarization power source. These four OMTs are networked via two dedicated power distributors for each polarization. This power distributor has a very thin thickness when the OMTs and the two power distributors are located in the same plane.
  • this solution has the disadvantage of a poor insulation, of the order of 15 dB, between the two orthogonal modes of each OMT, which results in insufficient performance for the power splitter.
  • This lack of isolation between the two orthogonal modes of each OMT is essentially due to the asymmetry of each OMT which has only two lateral access ports angularly spaced 90 ° around a main waveguide.
  • the object of the invention is to solve the problems of the existing solutions and to propose an alternative solution to the existing radiating elements, having a radiating aperture diameter of average size between 2.5 ⁇ and 5 ⁇ , including good isolation between the modes. orthogonal, low losses and being compatible with high power applications.
  • the invention relates to a bipolarisation compact excitation assembly consisting of an OMT orthomode transducer comprising two transmission channels respectively dedicated to two orthogonal polarizations, a first and a second power splitter respectively connected to the two paths. of the OMT, and a first and a second connection waveguide, the OMT consisting of a cross junction having a central waveguide parallel to a Z axis and four lateral ports respectively coupled to the central waveguide and oriented in two X and Y directions orthogonal to each other and to the Z axis, the first power splitter consisting of an input waveguide adapted to be connected to a first source power supply unit operating in a first polarization P1 and two output ports respectively coupled to a first and second lateral ports of the OMT, oriented in the direction X, through area of the first and second respective connection waveguides.
  • the OMT orthomode transducer comprising two transmission channels respectively dedicated to two orthogonal polarizations, a first and a second power splitter respectively connected to the
  • the first power splitter is located on a first lateral side of the OMT, the input waveguide having a sidewall orthogonal to the X direction and extending in height parallel to the Z axis.
  • the two ports upper and lower output of the first power distributor are arranged one above the other in the height of said side wall of the input waveguide, the port of upper outlet being placed in front of the first lateral port of the OMT to which it is connected by the first connection waveguide, and the first and second connection waveguides have different electrical lengths, the difference in electrical length between the first and second connection waveguides being equal to half a wavelength ⁇ / 2, where ⁇ is the central operating wavelength.
  • the excitation assembly may comprise several levels stacked parallel to the XY plane, the OMT and the first connection waveguide being located in a first level, the second connection waveguide being constituted by a a linear section located in a second level, under the orthomode transducer, and a 180 ° angled section connected to the second lateral port of the OMT.
  • the second power distributor may be identical to the first power distributor and located on a second lateral side of the OMT, orthogonal to the Y direction.
  • the second power distributor may consist of an input waveguide adapted to be connected to a second power source operating in a second polarization P2 and two output ports arranged one above on the other in a side wall of the input waveguide and respectively coupled to third and fourth lateral ports of the OMT, oriented in the Y direction, via a third and a fourth respective connection waveguides, and the third and fourth connection waveguides have different electrical lengths, the electric length difference between the third and fourth connection waveguides being equal to half a length of wave ⁇ / 2.
  • the fourth connection waveguide may consist of a linear section located in a third level, under the orthomode transducer, and of a 180 ° angled section connected to the fourth lateral port of the OMT.
  • the OMT may comprise a symmetrical pyramid located at the center of the cross junction.
  • the second power splitter may be a septum splitter consisting of an input waveguide provided with an inner wall, called a septum, defining two output waveguides parallel to the input waveguide and stacked in a fourth level beneath the OMT, parallel to the XY plane, the two output waveguides of the septum power splitter being respectively connected to the first and second side ports of the OMT by fifth and sixth waveguides. respective connection waves located in a third level, under the OMT, the electrical lengths of the fifth and sixth connection waveguides being equal.
  • the OMT may include an asymmetrical pyramid located in the center of the cross-connection.
  • the invention also relates to a compact network comprising at least four compact excitation assemblies coupled together by two common power distributors, which are independent of one another, orthogonal to each other, and respectively dedicated to the two orthogonal polarizations.
  • the figure 1 represents a first example of compact bipolarization excitation assembly, according to the invention.
  • the excitation assembly made in waveguide technology, comprises several levels stacked one above the other, parallel to an XY plane.
  • the excitation assembly comprises an orthomode transducer OMT 10 and two power distributors 20, 30 respectively connected to the orthomode transducer, by dedicated connection waveguides.
  • the OMT orthomode transducer 10 located in a first level, consists of a cross junction, known as a "turnstile" junction, comprising a central waveguide 11, for example with a cylindrical geometry, having an axis of revolution.
  • the central waveguide 11 is provided with an axial access port 13 and the four lateral waveguides are respectively provided with four lateral ports oriented along the X or Y directions.
  • the four lateral ports are input ports and the axial port is an output port. In reception, the input and output ports are inverted and the operation of the OMT is reversed.
  • the two lateral waveguides oriented in the X direction and the two lateral waveguides oriented in the Y direction constitute two OMT channels respectively dedicated to two orthogonal polarizations P1, P2.
  • the two paths generate two different propagation modes in the central waveguide 11 of the OMT.
  • the OMT may further comprise an adaptation element, for example cone-shaped or pyramid-shaped 14, placed in the center of the cross-junction and having a vertex penetrating into the central waveguide 11, so as to to improve the junction adaptation over a predetermined operating frequency band and to improve the isolation between the two polarizations.
  • the pyramid 14, or the cone makes it possible to accompany the electric field E transmitted by each lateral waveguide of the OMT towards the central waveguide 11 and constitutes an obstacle to the passage of the electric field E towards the waveguides. perpendicular side waves.
  • the two lateral waveguides of each OMT channel must be powered by electric fields E of the same amplitude but in phase opposition, as shown by the Figures 2a, 2b , 3a, 3b .
  • the power splitters operate as a divisor on transmission and conversely as a combiner on reception.
  • the operation of each power splitter at the receiving end being reversed with respect to the transmission, the remainder of the description is limited to operation on transmission.
  • the first power splitter 20 comprises, on transmission, an input waveguide, of rectangular section, comprising an input port 21 adapted to be connected to a power source operating in a first polarization P1 and two output ports 22, 23, respectively upper and lower, arranged in a side wall of the input waveguide.
  • Said side wall is orthogonal to the input port 21 and extends in height parallel to the Z axis, the two output ports being respectively connected to a first and a second lateral ports 15, 16, diametrically opposite, of the transducer orthomode as shown in the figure 2a .
  • the two output ports of the first power splitter 20 are arranged one below the other, in the height of the side wall of the input waveguide which constitutes a first output plane parallel to the Z-axis and orthogonal to the X direction.
  • the electric fields E on the two output ports 22, 23 of the first power distributor 20 are in phase opposition.
  • the first power distributor 20 is located on a lateral side of the orthomode transducer 10, so that the upper output port 22 is placed in the XY plane, in front of a first lateral port 15 of the orthomode transducer to which it is connected by a first connection waveguide 25.
  • the lower output port 23 of the first power divider 20 is connected to a second lateral port 16 of the orthomode transducer, diametrically opposed to the first lateral port, by a second guide Connection wave 26.
  • the second connection waveguide 26 consists of a linear section located in a second level, under the orthomode transducer, in a plane parallel to the XY plane, and of a bent section, forming a turn 180 °, connected to the second side port 16 of the OMT.
  • the second connection waveguide 26 has a total electrical length greater than the electrical length of the first waveguide.
  • the difference in electrical length between the first and the second connection waveguide being equal to half a wavelength ⁇ / 2, where ⁇ is the central wavelength of the operating frequency band of the excitation set.
  • is the central wavelength of the operating frequency band of the excitation set.
  • the structure of the second power splitter 30 is chosen according to the desired application. Either the two channels of the OMT operate in the same frequency band, for example transmission Tx, or they operate in two different frequency bands, for example transmission Tx and reception Rx.
  • the second power distributor 30 may be identical to the first power distributor 20, the two power distributors extending in height parallel to the Z axis and being respectively arranged perpendicularly to the two directions X and Y.
  • the second power distributor 30 then comprises an input waveguide and two output ports arranged one above the other in a sidewall of said input waveguide.
  • the two output ports 32, 33, upper and lower, are respectively connected to a third and fourth lateral ports 17, 18 of the OMT, dedicated to the second polarization P2, via a third and a second fourth waveguide connection.
  • the two output ports 32, 33 of the second power splitter 30 are arranged one below the other in the direction of the height of the second power splitter, in a second parallel output plane. Z-axis and orthogonal to the Y direction.
  • the upper output port 32 of the second power distributor is placed in the XY plane, opposite a third lateral port 17 of the orthomode transducer to which it is connected by a third guide of connection 27.
  • the lower output port 33 of the second power distributor is connected to a fourth lateral port 18 of the orthomode transducer, diametrically opposed to the third lateral port, by a fourth connection waveguide 28.
  • the fourth waveguide connection 28 is located in a third level located under the second connection waveguide 26, in a plane parallel to the XY plane, and comprises a first linear section and a second third section. 180 ° angle connected to the fourth lateral port 18 of the OMT.
  • the fourth connection waveguide 28 has a total electrical length greater than the electrical length of the third waveguide. connection wave 27, the difference in electrical length between the third and the fourth connection waveguide being equal to half a wavelength ⁇ / 2.
  • the two paths of the OMT operate in orthogonal polarizations P1, P2 and in the same frequency band.
  • the geometry of the pyramid 14 of the OMT is symmetrical, its four faces being identical and having dimensions optimized according to the desired operating frequency.
  • the waveguides, lateral and connection, with rectangular section have identical widths.
  • This very compact excitation assembly realized in the technology of rectangular or cylindrical metallic waveguides, makes it possible, in a small space, to excite, in double polarization, a radiating element coupled to the axial access port 13 of the OMT and presents the advantages of operate at high radiofrequency RF power and have a compatible bandwidth of the transmitting frequency band between 3.7 GHz and 4.2 GHz and corresponding to the C-band.
  • the compact excitation unit according to this first embodiment can operate only in frequency bands close to each other for the two channels, or in a single frequency band common to both channels of UNWTO.
  • the second power splitter 30 may have a different structure from the first power splitter 20.
  • the two frequency bands may correspond to a transmission band Tx and respectively to a reception band Rx.
  • the second power splitter is a septum splitter 40 mounted in a fourth level, under the OMT.
  • the septal distributor 40 comprises an input waveguide provided with an inner wall 41, called a septum, delimiting two output waveguides 42, 43.
  • the septum 41 can be resistive to improve the insulation between the two output waveguides.
  • the two output waveguides 42, 43 are parallel to the input waveguide and stacked parallel to the XY plane.
  • the two output waveguides of the septum power splitter are respectively connected to the third and fourth lateral ports 17, 18 of the OMT by respective fifth and sixth connection waveguides 47, 48 located in a third level, under the OMT, the electrical lengths of the fifth and sixth connecting waveguides being equal.
  • the transmission frequency band being different from the reception frequency band
  • the widths of the waveguides, lateral and connection, dedicated to the broadcast are different from the widths of the guides dedicated to the reception.
  • the reception operating wavelength is less than transmission wavelength and the widths of the waveguides dedicated to the transmission path are therefore greater than the widths of the waveguides dedicated to the reception path.
  • the geometry of the OMT pyramid 14 is asymmetrical, as shown by the Figures 3a and 3b , two of its four faces having smaller dimensions, optimized for operation in the receiving frequency band and the other two faces having larger dimensions, optimized for operation in the transmit frequency band.
  • the pyramid is wider in emission than in reception.
  • Each compact excitation unit can be used alone to power an individual radiating element coupled at the output of the axial waveguide of the OMT.
  • several compact excitation units can be coupled together in a network, for example by four or sixteen, using two orthogonal power distributors, independent of each other, and nested one above the other, both power distributors being respectively dedicated to the two orthogonal polarizations P1 and P2 and common to all the OMTs of the network.
  • FIG 5 is illustrated a first example of assembly of two orthogonal power splitters in which the two power splitters 51, 52 are not identical because they are dedicated to two different frequency bands, for example Rx and Tx.
  • the figure 6 illustrates a second example of an assembly of two orthogonal power splitters in which the two power splitters 51, 55 are identical because they are dedicated to two identical frequency bands, for example Tx.
  • the two different power splitters 51, 52, or identical 51, 55 are respectively connected to the four OMTs of the network via the connection waveguides and ensure the distribution and division, or combination, of the power. between the different OMTs of the compact network thus formed.
  • the compact network comprises four distinct OMTs coupled together by two Orthogonal power splitters, common to all OMTs, including eight power splitters / combiners.
  • the different individual power distributors corresponding to the same polarization and dedicated to each OMT of the network are thus grouped together and integrated into the common power distributor corresponding to said polarization.
  • Each power splitter is respectively connected to all the OMTs of the network by the respective connection waveguides dedicated to each of the corresponding compact excitation assemblies.
  • the compact network may be for supplying a four-port radiating source 50 having an opening four times larger than an individual radiating element and operating in a C-band or, alternatively, feeding four individual radiating sources.
  • Each power distributor 51, 52, 55 has a respective input port 53, 54, 56 capable of being connected to a respective power source.
  • the radiating source 50 coupled on the output ports of the central waveguides 11 of the OMTs of the different excitation sets of the network, may for example be a Fabry-Perot cavity as on the figure 4 in the case of a network of four compact excitation sets.
  • an even larger aperture excitation arrays can be achieved by connecting sixteen array arrays by two orthogonal power splitters including thirty-two power splitters.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

L'ensemble d'excitation est constitué d'un OMT (10) symétrique et de deux répartiteurs (20, 30) respectivement connectés à deux voies de l'OMT. l'OMT est constitué d'une jonction en croix comportant un guide central (13) et quatre ports latéraux (15, 16, 17, 18) orientés selon deux directions X, Y, le premier répartiteur (20) étant constitué d'un guide d'entrée d'alimentation (21) fonctionnant dans une polarisation P1 et de deux ports de sortie (22, 23) couplés à deux ports latéraux (15, 16), orientés selon la direction X, par des guides de connexion (25, 26) respectifs. Le premier répartiteur est localisé sur un côté latéral de l'OMT, orthogonalement à la direction X, et ses deux ports de sortie sont aménagés l'un au dessus de l'autre dans une paroi latérale du guide d'entrée, le port de sortie supérieur étant placé en face d'un premier port latéral de l'OMT auquel il est connecté par le premier guide de connexion. La différence de longueur électrique entre les deux guides de connexion est égale à »/2.The excitation assembly consists of a symmetrical OMT (10) and two splitters (20, 30) respectively connected to two OMT channels. the OMT consists of a cross-connection comprising a central guide (13) and four lateral ports (15, 16, 17, 18) oriented in two directions X, Y, the first distributor (20) consisting of a power input guide (21) operating in a polarization P1 and two output ports (22, 23) coupled to two lateral ports (15, 16), oriented in the X direction, by connection guides (25). , 26) respectively. The first splitter is located on a lateral side of the OMT, orthogonal to the X direction, and its two output ports are arranged one above the other in a side wall of the input guide, the port of upper outlet being placed in front of a first lateral port of the OMT to which it is connected by the first connection guide. The difference in electrical length between the two connection guides is equal to »/ 2.

Description

La présente invention concerne un ensemble d'excitation compact bipolarisation pour un élément rayonnant d'antenne et un réseau compact comportant au moins quatre ensembles d'excitation compacts. Elle s'applique à toute antenne multifaisceaux comportant un réseau focal fonctionnant dans des bandes de fréquences basses et plus particulièrement au domaine des applications spatiales telles que les télécommunications par satellite en bande C, ou en bande L, ou en bande S, ainsi qu'aux antennes spatiales de couverture globale mono-faisceau en bande C, ou en bande L, ou en bande S. Elle s'applique également aux éléments rayonnants pour des antennes réseaux, notamment en bande X ou en bande Ka.The present invention relates to a bipolarization compact excitation assembly for an antenna radiating element and a compact array having at least four compact excitation assemblies. It applies to any multibeam antenna comprising a focal network operating in low frequency bands and more particularly in the field of space applications such as C-band, L-band or S-band satellite telecommunications, as well as to space antennas with a single-beam overall coverage in C-band, L-band or S-band. It also applies to radiating elements for network antennas, particularly X-band or Ka-band antennas.

Les sources rayonnantes fonctionnant dans des bandes de fréquences basses, par exemple en bande C, comportent généralement des cornets métalliques très volumineux et ayant une masse importante. Pour réduire la taille de la source rayonnante, il est connu du document FR2959611 , de remplacer le cornet métallique par des cavités Fabry-Pérot empilées. Cette solution permet de réduire la taille des sources et présente des performances radiofréquences équivalentes à celles d'un cornet métallique. Cependant cette solution est limitée à un diamètre d'ouverture inférieur à 2,5λ, où λ représente la longueur d'onde centrale, dans le vide, de la bande de fréquence d'utilisation.Radiant sources operating in low frequency bands, for example in C-band, generally comprise very large metal cones and having a large mass. To reduce the size of the radiating source, it is known from the document FR2959611 , replace the metal horn with stacked Fabry-Perot cavities. This solution makes it possible to reduce the size of the sources and presents radio-frequency performances equivalent to those of a metal horn. However, this solution is limited to an opening diameter of less than 2.5λ, where λ represents the central wavelength, in a vacuum, of the frequency band of use.

Pour réaliser des sources compactes de plus grande ouverture rayonnante, le document FR 3012917 propose une solution comportant un répartiteur de puissance bipolarisation compact comportant quatre transducteurs orthomodes OMT asymétriques, couplés en phase à une source d'alimentation à double polarisation orthogonale. Ces quatre OMTs sont reliés en réseau par l'intermédiaire de deux distributeurs de puissance dédiés à chaque polarisation. Ce répartiteur de puissance a une très faible épaisseur lorsque les OMTs et les deux distributeurs de puissance sont situés dans un même plan. Cette solution présente cependant l'inconvénient d'une isolation médiocre, de l'ordre de 15dB, entre les deux modes orthogonaux de chaque OMT, ce qui entraîne des performances insuffisantes pour le répartiteur de puissance. Ce défaut d'isolation entre les deux modes orthogonaux de chaque OMT est essentiellement dû à l'asymétrie de chaque OMT qui ne comporte que deux ports d'accès latéraux espacés angulairement de 90° autour d'un guide d'onde principal.To achieve compact sources of larger radiating aperture, the document FR 3012917 proposes a solution comprising a compact bipolarization power distributor comprising four asymmetrical orthomode OMT transducers coupled in phase with an orthogonal double polarization power source. These four OMTs are networked via two dedicated power distributors for each polarization. This power distributor has a very thin thickness when the OMTs and the two power distributors are located in the same plane. However, this solution has the disadvantage of a poor insulation, of the order of 15 dB, between the two orthogonal modes of each OMT, which results in insufficient performance for the power splitter. This lack of isolation between the two orthogonal modes of each OMT is essentially due to the asymmetry of each OMT which has only two lateral access ports angularly spaced 90 ° around a main waveguide.

Le but de l'invention est de résoudre les problèmes des solutions existantes et de proposer une solution alternative aux éléments rayonnants existants, ayant un diamètre d'ouverture rayonnante de taille moyenne comprise entre 2,5λ et 5λ, comportant une bonne isolation entre les modes orthogonaux, de faibles pertes et étant compatible des applications de forte puissance.The object of the invention is to solve the problems of the existing solutions and to propose an alternative solution to the existing radiating elements, having a radiating aperture diameter of average size between 2.5λ and 5λ, including good isolation between the modes. orthogonal, low losses and being compatible with high power applications.

Pour cela, l'invention concerne un ensemble d'excitation compact bipolarisation constitué d'un transducteur orthomode OMT comportant deux voies de transmission respectivement dédiées à deux polarisations orthogonales, d'un premier et d'un deuxième répartiteurs de puissance respectivement connectés aux deux voies de l'OMT, et d'un premier et d'un deuxième guide d'onde de connexion, l'OMT étant constitué d'une jonction en croix comportant un guide d'onde central parallèle à un axe Z et quatre ports latéraux respectivement couplés au guide d'onde central et orientés selon deux directions X et Y orthogonales entre elles et à l'axe Z, le premier répartiteur de puissance étant constitué d'un guide d'onde d'entrée apte à être relié à une première source d'alimentation fonctionnant dans une première polarisation P1 et de deux ports de sortie respectivement couplés à un premier et un deuxième ports latéraux de l'OMT, orientés selon la direction X, par l'intermédiaire du premier et du deuxième guide d'onde de connexion respectif. Le premier répartiteur de puissance est localisé sur un premier côté latéral de l'OMT, le guide d'onde d'entrée ayant une paroi latérale orthogonale à la direction X et s'étendant en hauteur parallèlement à l'axe Z. Les deux ports de sortie, respectivement supérieur et inférieur, du premier répartiteur de puissance sont aménagés l'un au-dessus de l'autre dans la hauteur de ladite paroi latérale du guide d'onde d'entrée, le port de sortie supérieur étant placé en face du premier port latéral de l'OMT auquel il est connecté par le premier guide d'onde de connexion, et les premier et deuxième guides d'onde de connexion ont des longueurs électriques différentes, la différence de longueur électrique entre les premier et deuxième guides d'onde de connexion étant égale à une demie longueur d'onde λ/2, où λ est la longueur d'onde centrale de fonctionnement.For this purpose, the invention relates to a bipolarisation compact excitation assembly consisting of an OMT orthomode transducer comprising two transmission channels respectively dedicated to two orthogonal polarizations, a first and a second power splitter respectively connected to the two paths. of the OMT, and a first and a second connection waveguide, the OMT consisting of a cross junction having a central waveguide parallel to a Z axis and four lateral ports respectively coupled to the central waveguide and oriented in two X and Y directions orthogonal to each other and to the Z axis, the first power splitter consisting of an input waveguide adapted to be connected to a first source power supply unit operating in a first polarization P1 and two output ports respectively coupled to a first and second lateral ports of the OMT, oriented in the direction X, through area of the first and second respective connection waveguides. The first power splitter is located on a first lateral side of the OMT, the input waveguide having a sidewall orthogonal to the X direction and extending in height parallel to the Z axis. The two ports upper and lower output of the first power distributor are arranged one above the other in the height of said side wall of the input waveguide, the port of upper outlet being placed in front of the first lateral port of the OMT to which it is connected by the first connection waveguide, and the first and second connection waveguides have different electrical lengths, the difference in electrical length between the first and second connection waveguides being equal to half a wavelength λ / 2, where λ is the central operating wavelength.

Avantageusement, l'ensemble d'excitation peut comporter plusieurs niveaux empilés parallèlement au plan XY, l'OMT et le premier guide d'onde de connexion étant localisés dans un premier niveau, le deuxième guide d'onde de connexion étant constitué d'un tronçon linéaire localisé dans un deuxième niveau, sous le transducteur orthomode, et d'un tronçon coudé à 180° connecté au deuxième port latéral de l'OMT.Advantageously, the excitation assembly may comprise several levels stacked parallel to the XY plane, the OMT and the first connection waveguide being located in a first level, the second connection waveguide being constituted by a a linear section located in a second level, under the orthomode transducer, and a 180 ° angled section connected to the second lateral port of the OMT.

Avantageusement, le deuxième répartiteur de puissance peut être identique au premier répartiteur de puissance et localisé sur un deuxième côté latéral de l'OMT, orthogonalement à la direction Y.Advantageously, the second power distributor may be identical to the first power distributor and located on a second lateral side of the OMT, orthogonal to the Y direction.

Avantageusement, le deuxième répartiteur de puissance peut être constitué d'un guide d'onde d'entrée apte à être relié à une deuxième source d'alimentation fonctionnant dans une deuxième polarisation P2 et de deux ports de sortie aménagés l'un au-dessus de l'autre dans une paroi latérale du guide d'onde d'entrée et respectivement couplés à un troisième et un quatrième ports latéraux de l'OMT, orientés selon la direction Y, par l'intermédiaire d'un troisième et d'un quatrième guides d'onde de connexion respectifs, et les troisième et quatrième guides d'onde de connexion ont des longueurs électriques différentes, la différence de longueur électrique entre les troisième et quatrième guides d'onde de connexion étant égale à une demie longueur d'onde λ/2.Advantageously, the second power distributor may consist of an input waveguide adapted to be connected to a second power source operating in a second polarization P2 and two output ports arranged one above on the other in a side wall of the input waveguide and respectively coupled to third and fourth lateral ports of the OMT, oriented in the Y direction, via a third and a fourth respective connection waveguides, and the third and fourth connection waveguides have different electrical lengths, the electric length difference between the third and fourth connection waveguides being equal to half a length of wave λ / 2.

Avantageusement, le quatrième guide d'onde de connexion peut être constitué d'un tronçon linéaire localisé dans un troisième niveau, sous le transducteur orthomode, et d'un tronçon coudé à 180° connecté au quatrième port latéral de l'OMT.Advantageously, the fourth connection waveguide may consist of a linear section located in a third level, under the orthomode transducer, and of a 180 ° angled section connected to the fourth lateral port of the OMT.

Avantageusement, l'OMT peut comporter une pyramide symétrique située au centre de la jonction en croix.Advantageously, the OMT may comprise a symmetrical pyramid located at the center of the cross junction.

Alternativement, le deuxième répartiteur de puissance peut être un répartiteur septum constitué d'un guide d'onde d'entrée muni d'une paroi interne, appelée septum, délimitant deux guides d'onde de sortie parallèles au guide d'onde d'entrée et empilés dans un quatrième niveau sous l'OMT, parallèlement au plan XY, les deux guides d'onde de sortie du répartiteur de puissance septum étant respectivement connectés au premier et au deuxième ports latéraux de l'OMT par des cinquième et sixième guides d'onde de connexion respectifs localisés dans un troisième niveau, sous l'OMT, les longueurs électriques des cinquième et sixième guides d'onde de connexion étant égales. Dans ce cas, avantageusement, l'OMT peut comporter une pyramide dissymétrique située au centre de la jonction en croix.Alternatively, the second power splitter may be a septum splitter consisting of an input waveguide provided with an inner wall, called a septum, defining two output waveguides parallel to the input waveguide and stacked in a fourth level beneath the OMT, parallel to the XY plane, the two output waveguides of the septum power splitter being respectively connected to the first and second side ports of the OMT by fifth and sixth waveguides. respective connection waves located in a third level, under the OMT, the electrical lengths of the fifth and sixth connection waveguides being equal. In this case, advantageously, the OMT may include an asymmetrical pyramid located in the center of the cross-connection.

L'invention concerne aussi un réseau compact comportant au moins quatre ensembles d'excitation compacts couplés entre eux par deux répartiteurs de puissance communs, indépendants entre eux, orthogonaux entre eux, et respectivement dédiés aux deux polarisations orthogonales.The invention also relates to a compact network comprising at least four compact excitation assemblies coupled together by two common power distributors, which are independent of one another, orthogonal to each other, and respectively dedicated to the two orthogonal polarizations.

D'autres particularités et avantages de l'invention apparaîtront clairement dans la suite de la description donnée à titre d'exemple purement illustratif et non limitatif, en référence aux dessins schématiques annexés qui représentent :

  • figure 1 : un schéma en perspective d'un exemple d'ensemble d'excitation compact, selon un premier mode de réalisation de l'invention ;
  • figures 2a et 2b : deux schémas en sections, respectivement selon deux plans orthogonaux XZ et YZ, de l'ensemble d'excitation compact de la figure 1, selon l'invention;
  • figures 3a et 3b : deux schémas en sections, respectivement selon deux plans orthogonaux XZ et YZ, d'un exemple d'ensemble d'excitation compact, selon un deuxième mode de réalisation de l'invention;
  • figure 4 : un schéma en perspective d'un exemple de réseau compact de quatre ensembles d'excitation compacts, selon l'invention ;
  • figure 5 : une vue schématique en perspective, d'un premier exemple d'assemblage de deux répartiteurs orthogonaux différents pouvant être utilisés pour alimenter quatre ensembles d'excitation compacts, selon l'invention ;
  • figure 6 : une vue schématique en perspective, d'un deuxième exemple d'assemblage de deux répartiteurs orthogonaux identiques pouvant être utilisés pour alimenter quatre ensembles d'excitation compacts, selon l'invention.
Other features and advantages of the invention will become clear in the following description given by way of purely illustrative and non-limiting example, with reference to the attached schematic drawings which represent:
  • figure 1 : a perspective diagram of an exemplary compact excitation assembly, according to a first embodiment of the invention;
  • Figures 2a and 2b : two diagrams in sections, respectively in two orthogonal planes XZ and YZ, of the compact excitation unit of the figure 1 according to the invention;
  • Figures 3a and 3b two diagrams in sections, respectively in two orthogonal planes XZ and YZ, of an exemplary compact excitation unit, according to a second embodiment of the invention;
  • figure 4 : a perspective diagram of an example of a compact network of four compact excitation sets, according to the invention;
  • figure 5 : a schematic perspective view, of a first example of assembly of two different orthogonal distributors can be used to power four compact excitation assemblies, according to the invention;
  • figure 6 : a schematic perspective view of a second exemplary assembly of two identical orthogonal distributors can be used to power four compact excitation assemblies, according to the invention.

La figure 1 représente un premier exemple d'ensemble d'excitation compact bipolarisation, selon l'invention. L'ensemble d'excitation, réalisé en technologie guides d'onde, comporte plusieurs niveaux empilés les uns au-dessus des autres, parallèlement à un plan XY. L'ensemble d'excitation comporte un transducteur orthomode OMT 10 et deux répartiteurs de puissance 20, 30 respectivement connectés au transducteur orthomode, par des guides d'onde de connexion dédiés. Le transducteur orthomode OMT 10, situé dans un premier niveau, est constitué d'une jonction en croix, connue sous le terme de jonction « turnstile », comportant un guide d'onde central 11 par exemple à géométrie cylindrique, ayant un axe de révolution parallèle à un axe Z, et quatre guides d'onde latéraux 12, par exemple à section rectangulaire, diamétralement opposés deux à deux, dans un plan XY orthogonal à l'axe Z, et couplés perpendiculairement au guide d'onde central. Les quatre guides d'onde latéraux sont respectivement orientés selon deux directions orthogonales X, Y du plan XY. Le guide d'onde central 11 est muni d'un port d'accès axial 13 et les quatre guides d'ondes latéraux sont respectivement munis de quatre ports latéraux orientés selon les directions X ou Y. A l'émission, les quatre ports latéraux sont des ports d'entrée et le port d'accès axial est un port de sortie. En réception, les ports d'entrée et de sortie sont inversés et le fonctionnement de l'OMT est inversé. Les deux guides d'onde latéraux orientés selon la direction X et les deux guides d'onde latéraux orientés selon la direction Y constituent deux voies de l'OMT respectivement dédiées à deux polarisations orthogonales P1, P2. Les deux voies engendrent deux modes de propagation différents dans le guide d'onde central 11 de l'OMT. Comme représenté sur les figures 2a, 2b, 3a, 3b, avantageusement, l'OMT peut comporter en outre un élément d'adaptation, par exemple en forme de cône ou de pyramide 14, placé au centre de la jonction en croix et comportant un sommet pénétrant dans le guide d'onde central 11, afin d'améliorer l'adaptation de la jonction sur une bande de fréquence de fonctionnement prédéterminée et d'améliorer l'isolation entre les deux polarisations. La pyramide 14, ou le cône, permet d'accompagner le champ électrique E transmis par chaque guide d'onde latéral de l'OMT vers le guide d'onde central 11 et constitue un obstacle au passage du champ électrique E vers les guides d'onde latéraux perpendiculaires. Pour obtenir un fonctionnement optimal du transducteur orthomode, les deux guides d'onde latéraux de chaque voie de l'OMT doivent être alimentés par des champs électriques E de même amplitude mais en opposition de phase comme le montrent les figures 2a, 2b, 3a, 3b.The figure 1 represents a first example of compact bipolarization excitation assembly, according to the invention. The excitation assembly, made in waveguide technology, comprises several levels stacked one above the other, parallel to an XY plane. The excitation assembly comprises an orthomode transducer OMT 10 and two power distributors 20, 30 respectively connected to the orthomode transducer, by dedicated connection waveguides. The OMT orthomode transducer 10, located in a first level, consists of a cross junction, known as a "turnstile" junction, comprising a central waveguide 11, for example with a cylindrical geometry, having an axis of revolution. parallel to an axis Z, and four lateral waveguides 12, for example of rectangular section, diametrically opposed in pairs, in an XY plane orthogonal to the Z axis, and coupled perpendicularly to the central waveguide. The four lateral waveguides are respectively oriented in two orthogonal directions X, Y of the XY plane. The central waveguide 11 is provided with an axial access port 13 and the four lateral waveguides are respectively provided with four lateral ports oriented along the X or Y directions. On transmission, the four lateral ports are input ports and the axial port is an output port. In reception, the input and output ports are inverted and the operation of the OMT is reversed. The two lateral waveguides oriented in the X direction and the two lateral waveguides oriented in the Y direction constitute two OMT channels respectively dedicated to two orthogonal polarizations P1, P2. The two paths generate two different propagation modes in the central waveguide 11 of the OMT. As shown on Figures 2a, 2b , 3a, 3b advantageously, the OMT may further comprise an adaptation element, for example cone-shaped or pyramid-shaped 14, placed in the center of the cross-junction and having a vertex penetrating into the central waveguide 11, so as to to improve the junction adaptation over a predetermined operating frequency band and to improve the isolation between the two polarizations. The pyramid 14, or the cone, makes it possible to accompany the electric field E transmitted by each lateral waveguide of the OMT towards the central waveguide 11 and constitutes an obstacle to the passage of the electric field E towards the waveguides. perpendicular side waves. To obtain optimal operation of the orthomode transducer, the two lateral waveguides of each OMT channel must be powered by electric fields E of the same amplitude but in phase opposition, as shown by the Figures 2a, 2b , 3a, 3b .

Les répartiteurs de puissance fonctionnent en diviseur à l'émission et inversement en combineur à la réception. Le fonctionnement de chaque répartiteur de puissance à la réception étant inversé par rapport à l'émission, la suite de la description est limitée au fonctionnement à l'émission. Le premier répartiteur de puissance 20 comporte, à l'émission, un guide d'onde d'entrée, à section rectangulaire, comportant un port d'entrée 21 apte à être relié à une source d'alimentation fonctionnant dans une première polarisation P1 et deux ports de sortie 22, 23, respectivement supérieur et inférieur, aménagés dans une paroi latérale du guide d'onde d'entrée. Ladite paroi latérale est orthogonale au port d'entrée 21 et s'étend en hauteur parallèlement à l'axe Z, les deux ports de sortie étant respectivement connectés à un premier et à un deuxième ports latéraux 15, 16, diamétralement opposés, du transducteur orthomode comme le montre la figure 2a.The power splitters operate as a divisor on transmission and conversely as a combiner on reception. The operation of each power splitter at the receiving end being reversed with respect to the transmission, the remainder of the description is limited to operation on transmission. The first power splitter 20 comprises, on transmission, an input waveguide, of rectangular section, comprising an input port 21 adapted to be connected to a power source operating in a first polarization P1 and two output ports 22, 23, respectively upper and lower, arranged in a side wall of the input waveguide. Said side wall is orthogonal to the input port 21 and extends in height parallel to the Z axis, the two output ports being respectively connected to a first and a second lateral ports 15, 16, diametrically opposite, of the transducer orthomode as shown in the figure 2a .

Les deux ports de sortie du premier répartiteur de puissance 20 sont disposés l'un en-dessous de l'autre, dans la hauteur de la paroi latérale du guide d'onde d'entrée qui constitue un premier plan de sortie parallèle à l'axe Z et orthogonal à la direction X. Par construction, les champs électriques E sur les deux ports de sortie 22, 23 du premier répartiteur de puissance 20 sont en opposition de phase. Pour limiter l'encombrement de l'ensemble d'excitation, le premier répartiteur de puissance 20 est localisé sur un côté latéral du transducteur orthomode 10, de sorte que le port de sortie supérieur 22 soit placé dans le plan XY, en face d'un premier port latéral 15 du transducteur orthomode auquel il est connecté par un premier guide d'onde de connexion 25. Le port de sortie inférieur 23 du premier répartiteur de puissance 20 est relié à un deuxième port latéral 16 du transducteur orthomode, diamétralement opposé au premier port latéral, par un deuxième guide d'onde de connexion 26. Le deuxième guide d'onde de connexion 26 est constitué d'un tronçon linéaire localisé dans un deuxième niveau, sous le transducteur orthomode, dans un plan parallèle au plan XY, et d'un tronçon coudé, formant un virage à 180°, connecté au deuxième port latéral 16 de l'OMT. Pour que le premier et le deuxième ports latéraux de l'OMT soient alimentés par des champs électriques E en opposition de phase, le deuxième guide d'onde de connexion 26 a une longueur électrique totale supérieure à la longueur électrique du premier guide d'onde de connexion 25, la différence de longueur électrique entre le premier et le deuxième guide d'onde de connexion étant égale à une demie longueur d'onde λ/2, où λ est la longueur d'onde centrale de la bande de fréquence de fonctionnement de l'ensemble d'excitation. Ainsi, le déphasage cumulé dû à la différence de longueur électrique et au virage est égal à 360° et les champs électriques E sur les premier et deuxième ports latéraux, sont en opposition de phase.The two output ports of the first power splitter 20 are arranged one below the other, in the height of the side wall of the input waveguide which constitutes a first output plane parallel to the Z-axis and orthogonal to the X direction. By construction, the electric fields E on the two output ports 22, 23 of the first power distributor 20 are in phase opposition. To limit the overall size of the set of excitation, the first power distributor 20 is located on a lateral side of the orthomode transducer 10, so that the upper output port 22 is placed in the XY plane, in front of a first lateral port 15 of the orthomode transducer to which it is connected by a first connection waveguide 25. The lower output port 23 of the first power divider 20 is connected to a second lateral port 16 of the orthomode transducer, diametrically opposed to the first lateral port, by a second guide Connection wave 26. The second connection waveguide 26 consists of a linear section located in a second level, under the orthomode transducer, in a plane parallel to the XY plane, and of a bent section, forming a turn 180 °, connected to the second side port 16 of the OMT. In order for the first and second lateral ports of the OMT to be powered by electric fields E in opposition of phase, the second connection waveguide 26 has a total electrical length greater than the electrical length of the first waveguide. 25, the difference in electrical length between the first and the second connection waveguide being equal to half a wavelength λ / 2, where λ is the central wavelength of the operating frequency band of the excitation set. Thus, the cumulative phase shift due to the difference in electrical length and the turn is equal to 360 ° and the electric fields E on the first and second lateral ports are in phase opposition.

Concernant la deuxième voie de l'OMT dédiée à la deuxième polarisation P2, la structure du deuxième répartiteur de puissance 30 est choisie en fonction de l'application souhaitée. Soit les deux voies de l'OMT fonctionnent dans une même bande de fréquence, par exemple d'émission Tx, soit elles fonctionnent dans deux bandes de fréquence différentes, par exemple d'émission Tx et de réception Rx.Concerning the second channel of the OMT dedicated to the second polarization P2, the structure of the second power splitter 30 is chosen according to the desired application. Either the two channels of the OMT operate in the same frequency band, for example transmission Tx, or they operate in two different frequency bands, for example transmission Tx and reception Rx.

Selon un premier mode de réalisation correspondant à un fonctionnement des deux voies dans la même bande de fréquence, comme représenté sur les figures 1 et 2b, le deuxième répartiteur de puissance 30 peut être identique au premier répartiteur de puissance 20, les deux répartiteurs de puissance s'étendant en hauteur parallèlement à l'axe Z et étant respectivement disposés perpendiculairement aux deux directions X et Y. Le deuxième répartiteur de puissance 30 comporte alors un guide d'onde d'entrée et deux ports de sortie aménagés l'un au-dessus de l'autre dans une paroi latérale dudit guide d'onde d'entrée. Les deux ports de sortie 32, 33, supérieur et inférieur, sont respectivement connectés à un troisième et quatrième ports latéraux 17, 18 de l'OMT, dédiés à la deuxième polarisation P2, par l'intermédiaire d'un troisième et d'un quatrième guides d'onde de connexion. Dans ce cas, les deux ports de sortie 32, 33 du deuxième répartiteur de puissance 30 sont disposés l'un en-dessous de l'autre dans la direction de la hauteur du deuxième répartiteur de puissance, dans un deuxième plan de sortie parallèle à l'axe Z et orthogonal à la direction Y. Le port de sortie supérieur 32 du deuxième répartiteur de puissance est placé dans le plan XY, en face d'un troisième port latéral 17 du transducteur orthomode auquel il est connecté par un troisième guide de connexion 27. Le port de sortie inférieur 33 du deuxième répartiteur de puissance est relié à un quatrième port latéral 18 du transducteur orthomode, diamétralement opposé au troisième port latéral, par un quatrième guide d'onde de connexion 28. Le quatrième guide d'onde de connexion 28 est localisé dans un troisième niveau situé sous le deuxième guide d'onde de connexion 26, selon un plan parallèle au plan XY, et comporte un premier tronçon linéaire et un deuxième tronçon coudé à 180° connecté au quatrième port latéral 18 de l'OMT. Pour que les champs électriques E sur les troisième et quatrième ports latéraux 17, 18 de l'OMT, soient en opposition de phase, le quatrième guide d'onde de connexion 28 a une longueur électrique totale supérieure à la longueur électrique du troisième guide d'onde de connexion 27, la différence de longueur électrique entre le troisième et le quatrième guide d'onde de connexion étant égale à une demie longueur d'onde λ/2.According to a first embodiment corresponding to an operation of the two channels in the same frequency band, as represented on the figures 1 and 2b , the second power distributor 30 may be identical to the first power distributor 20, the two power distributors extending in height parallel to the Z axis and being respectively arranged perpendicularly to the two directions X and Y. The second power distributor 30 then comprises an input waveguide and two output ports arranged one above the other in a sidewall of said input waveguide. The two output ports 32, 33, upper and lower, are respectively connected to a third and fourth lateral ports 17, 18 of the OMT, dedicated to the second polarization P2, via a third and a second fourth waveguide connection. In this case, the two output ports 32, 33 of the second power splitter 30 are arranged one below the other in the direction of the height of the second power splitter, in a second parallel output plane. Z-axis and orthogonal to the Y direction. The upper output port 32 of the second power distributor is placed in the XY plane, opposite a third lateral port 17 of the orthomode transducer to which it is connected by a third guide of connection 27. The lower output port 33 of the second power distributor is connected to a fourth lateral port 18 of the orthomode transducer, diametrically opposed to the third lateral port, by a fourth connection waveguide 28. The fourth waveguide connection 28 is located in a third level located under the second connection waveguide 26, in a plane parallel to the XY plane, and comprises a first linear section and a second third section. 180 ° angle connected to the fourth lateral port 18 of the OMT. In order for the electric fields E on the third and fourth lateral ports 17, 18 of the OMT to be in phase opposition, the fourth connection waveguide 28 has a total electrical length greater than the electrical length of the third waveguide. connection wave 27, the difference in electrical length between the third and the fourth connection waveguide being equal to half a wavelength λ / 2.

Dans ce premier mode de réalisation, les deux voies de l'OMT fonctionnent dans des polarisations orthogonales P1, P2 et dans la même bande de fréquence. La géométrie de la pyramide 14 de l'OMT est symétrique, ses quatre faces étant identiques et ayant des dimensions optimisées en fonction de la fréquence de fonctionnement souhaitée. Les guides d'onde, latéraux et de connexion, à section rectangulaire ont des largeurs identiques.In this first embodiment, the two paths of the OMT operate in orthogonal polarizations P1, P2 and in the same frequency band. The geometry of the pyramid 14 of the OMT is symmetrical, its four faces being identical and having dimensions optimized according to the desired operating frequency. The waveguides, lateral and connection, with rectangular section have identical widths.

Cet ensemble d'excitation très compact, réalisé en technologie des guides d'onde métalliques, rectangulaires ou cylindriques, permet, dans un faible encombrement, d'exciter, en double polarisation, un élément rayonnant couplé au port d'accès axial 13 de l'OMT et présente les avantages de fonctionner à de fortes puissances radiofréquences RF et d'avoir une bande passante compatible de la bande de fréquence d'émission comprise entre 3.7 GHz et 4.2 GHz et correspondant à la bande C.This very compact excitation assembly, realized in the technology of rectangular or cylindrical metallic waveguides, makes it possible, in a small space, to excite, in double polarization, a radiating element coupled to the axial access port 13 of the OMT and presents the advantages of operate at high radiofrequency RF power and have a compatible bandwidth of the transmitting frequency band between 3.7 GHz and 4.2 GHz and corresponding to the C-band.

Cependant, en raison des contraintes sur les longueurs électriques des guides d'ondes de connexion reliant les répartiteurs de puissance aux ports d'entrées de l'OMT et des contraintes sur les largeurs des guides d'onde métalliques en fonction de la fréquence de fonctionnement, l'ensemble d'excitation compact conforme à ce premier mode de réalisation, ne peut fonctionner que dans des bandes de fréquence proches l'une de l'autre pour les deux voies, ou dans une seule bande de fréquence commune aux deux voies de l'OMT.However, because of the constraints on the electrical lengths of the connection waveguides connecting the power splitters to the OMT input ports and the constraints on the widths of the metal waveguides as a function of the operating frequency , the compact excitation unit according to this first embodiment, can operate only in frequency bands close to each other for the two channels, or in a single frequency band common to both channels of UNWTO.

Selon un deuxième mode de réalisation représenté sur les figures 3a et 3b, correspondant à un fonctionnement des deux voies de l'OMT dans deux bandes de fréquence différentes et distinctes, le deuxième répartiteur de puissance 30 peut avoir une structure différente du premier répartiteur de puissance 20. Par exemple, les deux bandes de fréquences peuvent correspondre à une bande d'émission Tx et respectivement à une bande de réception Rx. Sur la figure 3b, le deuxième répartiteur de puissance est un répartiteur septum 40 monté dans un quatrième niveau, sous l'OMT. Le répartiteur septum 40 comporte un guide d'onde d'entrée muni d'une paroi interne 41, appelée septum, délimitant deux guides d'onde de sortie 42, 43. Le septum 41 peut être résistif pour améliorer l'isolation entre les deux guides d'onde de sortie. Les deux guides d'onde de sortie 42, 43 sont parallèles au guide d'onde d'entrée et empilés parallèlement au plan XY. Les deux guides d'onde de sortie du répartiteur de puissance septum sont respectivement connectés aux troisième et quatrième ports latéraux 17, 18 de l'OMT par des cinquième et sixième guides d'onde de connexion 47, 48 respectifs localisés dans un troisième niveau, sous l'OMT, les longueurs électriques des cinquième et sixième guides d'onde de connexion étant égales. Dans ce deuxième mode de réalisation, afin de permettre un fonctionnement optimisé dans les deux bandes de fréquence de fonctionnement, la bande de fréquence d'émission étant différente de la bande de fréquence de réception, les largeurs des guides d'onde, latéraux et de connexion, dédiés à l'émission sont différentes des largeurs des guides d'onde dédiés à la réception. Par exemple, pour un fonctionnement en bande C avec une bande de fréquence d'émission comprise entre 3.7 et 4.2 GHz et une bande de fréquence de réception comprise entre 5.9 et 6.4 GHz, la longueur d'onde de fonctionnement en réception est inférieure à la longueur d'onde de fonctionnement en émission et les largeurs des guides d'onde dédiés à la voie d'émission sont donc plus importantes que les largeurs des guides d'onde dédiés à la voie de réception. En outre, la géométrie de la pyramide 14 de l'OMT est dissymétrique, comme le montrent les figures 3a et 3b, deux de ses quatre faces ayant des dimensions plus faibles, optimisées pour un fonctionnement dans la bande de fréquence de réception et les deux autres faces ayant des dimensions plus importantes, optimisées pour un fonctionnement dans la bande de fréquence d'émission. En particulier, vue des guides d'onde rectangulaires latéraux de l'OMT, la pyramide est plus large en émission qu'en réception.According to a second embodiment shown on the Figures 3a and 3b corresponding to an operation of the two paths of the OMT in two different and distinct frequency bands, the second power splitter 30 may have a different structure from the first power splitter 20. For example, the two frequency bands may correspond to a transmission band Tx and respectively to a reception band Rx. On the figure 3b , the second power splitter is a septum splitter 40 mounted in a fourth level, under the OMT. The septal distributor 40 comprises an input waveguide provided with an inner wall 41, called a septum, delimiting two output waveguides 42, 43. The septum 41 can be resistive to improve the insulation between the two output waveguides. The two output waveguides 42, 43 are parallel to the input waveguide and stacked parallel to the XY plane. The two output waveguides of the septum power splitter are respectively connected to the third and fourth lateral ports 17, 18 of the OMT by respective fifth and sixth connection waveguides 47, 48 located in a third level, under the OMT, the electrical lengths of the fifth and sixth connecting waveguides being equal. In this second embodiment, in order to allow optimized operation in the two operating frequency bands, the transmission frequency band being different from the reception frequency band, the widths of the waveguides, lateral and connection, dedicated to the broadcast are different from the widths of the guides dedicated to the reception. For example, for C-band operation with a transmit frequency band between 3.7 and 4.2 GHz and a receive frequency band between 5.9 and 6.4 GHz, the reception operating wavelength is less than transmission wavelength and the widths of the waveguides dedicated to the transmission path are therefore greater than the widths of the waveguides dedicated to the reception path. In addition, the geometry of the OMT pyramid 14 is asymmetrical, as shown by the Figures 3a and 3b , two of its four faces having smaller dimensions, optimized for operation in the receiving frequency band and the other two faces having larger dimensions, optimized for operation in the transmit frequency band. In particular, seen from the lateral rectangular waveguides of the OMT, the pyramid is wider in emission than in reception.

Chaque ensemble d'excitation compact peut être utilisé seul pour alimenter, un élément rayonnant individuel couplé en sortie du guide d'onde axial de l'OMT. Alternativement, comme illustré sur la figure 4, plusieurs ensembles d'excitation compacts peuvent être couplés entre eux en réseau, par exemple par quatre ou par seize, en utilisant deux répartiteurs de puissance orthogonaux, indépendants entre eux, et emboités l'un au-dessus de l'autre, les deux répartiteurs de puissance étant respectivement dédiés aux deux polarisations orthogonales P1 et P2 et communs à tous les OMTs du réseau. Sur la figure 5 est illustré un premier exemple d'assemblage de deux répartiteurs de puissance orthogonaux dans lequel les deux répartiteurs de puissance 51, 52 ne sont pas identiques car ils sont dédiés à deux bandes de fréquences différentes, par exemple Rx et Tx. La figure 6 illustre un deuxième exemple d'assemblage de deux répartiteurs de puissance orthogonaux dans lequel les deux répartiteurs de puissance 51, 55 sont identiques car ils sont dédiés à deux bandes de fréquences identiques, par exemple Tx. Les deux répartiteurs de puissance différents 51, 52, ou identiques 51, 55, sont respectivement connectés aux quatre OMTs du réseau par l'intermédiaire des guides d'onde de connexion et assurent la répartition et la division, ou la combinaison, de la puissance entre les différents OMTs du réseau compact ainsi formé. Sur la figure 4, le réseau compact comporte quatre OMTs distincts couplés entre eux par deux répartiteurs de puissance orthogonaux, communs à tous les OMTs, incluant des diviseurs/combineurs de puissance par huit. Les différents répartiteurs de puissance individuels correspondant à une même polarisation et dédiés à chaque OMT du réseau sont ainsi regroupés et intégrés dans le répartiteur de puissance commun correspondant à ladite polarisation. Chaque répartiteur de puissance est respectivement connecté à tous les OMTs du réseau par les guides d'onde de connexion respectifs dédiés à chacun des ensembles d'excitation compacts correspondant. Le réseau compact peut être destiné à alimenter une source rayonnante 50 à quatre accès ayant une ouverture quatre fois plus grande qu'un élément rayonnant individuel et fonctionnant en bande C ou, alternativement, à alimenter quatre sources rayonnantes individuelles. Chaque répartiteur de puissance 51, 52, 55 comporte un port d'entrée 53, 54, 56 respectif apte à être relié à une source d'alimentation respective. La source rayonnante 50, couplée sur les ports de sortie des guides d'onde centraux 11 des OMTs des différents ensembles d'excitation du réseau, peut par exemple, être une cavité Fabry-Pérot comme sur la figure 4 dans le cas d'un réseau de quatre ensembles d'excitation compacts. De même, un ensemble d'excitation compact d'ouverture encore plus grande peut être réalisé en reliant seize ensembles d'excitation en réseau par deux répartiteurs de puissance orthogonaux incluant des diviseurs de puissance par trente-deux.Each compact excitation unit can be used alone to power an individual radiating element coupled at the output of the axial waveguide of the OMT. Alternatively, as illustrated on the figure 4 , several compact excitation units can be coupled together in a network, for example by four or sixteen, using two orthogonal power distributors, independent of each other, and nested one above the other, both power distributors being respectively dedicated to the two orthogonal polarizations P1 and P2 and common to all the OMTs of the network. On the figure 5 is illustrated a first example of assembly of two orthogonal power splitters in which the two power splitters 51, 52 are not identical because they are dedicated to two different frequency bands, for example Rx and Tx. The figure 6 illustrates a second example of an assembly of two orthogonal power splitters in which the two power splitters 51, 55 are identical because they are dedicated to two identical frequency bands, for example Tx. The two different power splitters 51, 52, or identical 51, 55, are respectively connected to the four OMTs of the network via the connection waveguides and ensure the distribution and division, or combination, of the power. between the different OMTs of the compact network thus formed. On the figure 4 , the compact network comprises four distinct OMTs coupled together by two Orthogonal power splitters, common to all OMTs, including eight power splitters / combiners. The different individual power distributors corresponding to the same polarization and dedicated to each OMT of the network are thus grouped together and integrated into the common power distributor corresponding to said polarization. Each power splitter is respectively connected to all the OMTs of the network by the respective connection waveguides dedicated to each of the corresponding compact excitation assemblies. The compact network may be for supplying a four-port radiating source 50 having an opening four times larger than an individual radiating element and operating in a C-band or, alternatively, feeding four individual radiating sources. Each power distributor 51, 52, 55 has a respective input port 53, 54, 56 capable of being connected to a respective power source. The radiating source 50, coupled on the output ports of the central waveguides 11 of the OMTs of the different excitation sets of the network, may for example be a Fabry-Perot cavity as on the figure 4 in the case of a network of four compact excitation sets. Likewise, an even larger aperture excitation arrays can be achieved by connecting sixteen array arrays by two orthogonal power splitters including thirty-two power splitters.

Bien que l'invention ait été décrite en liaison avec des modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.Although the invention has been described in connection with particular embodiments, it is obvious that it is not limited thereto and that it includes all the technical equivalents of the means described and their combinations if they are within the scope of the invention.

Claims (9)

Ensemble d'excitation compact bipolarisation constitué d'un transducteur orthomode OMT (10) comportant deux voies de transmission, respectivement dédiées à deux polarisations orthogonales, d'un premier et d'un deuxième répartiteurs de puissance (20, 30) respectivement connectés aux deux voies de l'OMT (10), et d'un premier et d'un deuxième guide d'onde de connexion (25, 26), l'OMT étant constitué d'une jonction en croix comportant un guide d'onde central (13) parallèle à un axe Z et quatre ports latéraux (15, 16, 17, 18) respectivement couplés au guide d'onde central (13) et orientés selon deux directions X et Y orthogonales entre elles et à l'axe Z, le premier répartiteur de puissance (20) étant constitué d'un guide d'onde d'entrée (21) apte à être relié à une première source d'alimentation fonctionnant dans une première polarisation P1 et de deux ports de sortie (22, 23) respectivement couplés à un premier et un deuxième ports latéraux (15, 16) de l'OMT, orientés selon la direction X, par l'intermédiaire du premier et du deuxième guide d'onde de connexion (25, 26) respectif, caractérisé en ce que le premier répartiteur de puissance (20) est localisé sur un premier côté latéral de l'OMT (10), le guide d'onde d'entrée (21) ayant une paroi latérale orthogonale à la direction X et s'étendant en hauteur parallèlement à l'axe Z, en ce que les deux ports de sortie (22, 23), respectivement supérieur et inférieur, du premier répartiteur de puissance (20) sont aménagés l'un au-dessus de l'autre dans la hauteur de ladite paroi latérale du guide d'onde d'entrée (21), le port de sortie supérieur (22) étant placé en face du premier port latéral (15) de l'OMT auquel il est connecté par le premier guide d'onde de connexion (25), et en ce que les premier et deuxième guides d'onde de connexion (25, 26) ont des longueurs électriques différentes, la différence de longueur électrique entre les premier et deuxième guides d'onde de connexion (25, 26) étant égale à une demie longueur d'onde λ/2, où λ est la longueur d'onde centrale de fonctionnement.Compact bipolarization excitation unit consisting of an OMT orthomode transducer (10) comprising two transmission channels, respectively dedicated to two orthogonal polarizations, of a first and a second power splitter (20, 30) respectively connected to the two OMT channels (10), and a first and a second connection waveguide (25, 26), the OMT consisting of a cross-connection comprising a central waveguide ( 13) parallel to a Z axis and four lateral ports (15, 16, 17, 18) respectively coupled to the central waveguide (13) and oriented in two directions X and Y orthogonal to each other and to the Z axis, the first power distributor (20) consisting of an input waveguide (21) adapted to be connected to a first power source operating in a first polarization P1 and two output ports (22, 23) respectively coupled to first and second lateral ports (15, 16) of the OMT, oriented in the X-direction, via the respective first and second connection waveguides (25, 26), characterized in that the first power distributor (20) is located on a first lateral side of the OMT (10), the input waveguide (21) having a sidewall orthogonal to the X direction and extending in height parallel to the Z axis, in that the two output ports (22, 23 ), respectively upper and lower, of the first power distributor (20) are arranged one above the other in the height of said side wall of the input waveguide (21), the output port upper (22) being placed in front of the first lateral port (15) of the OMT to which it is connected by the first connection waveguide (25), and in that the first and second connection waveguides (25, 26) have different electrical lengths, the difference in electrical length between the first and second waveguides the connection wave (25, 26) being equal to half a wavelength λ / 2, where λ is the central operating wavelength. Ensemble d'excitation compact selon la revendication 1, caractérisé en ce qu'il comporte plusieurs niveaux empilés parallèlement au plan XY, l'OMT et le premier guide d'onde de connexion étant localisés dans un premier niveau et en ce que le deuxième guide d'onde de connexion (26) est constitué d'un tronçon linéaire localisé dans un deuxième niveau, sous le transducteur orthomode (10), et d'un tronçon coudé à 180° connecté au deuxième port latéral (16) de l'OMT.Compact excitation unit according to claim 1, characterized in that it comprises several levels stacked parallel to the XY plane, the OMT and the first connection waveguide being located in a first level and in that the second guide connecting wave (26) consists of a linear section located in a second level, under the orthomode transducer (10), and a 180 ° angled section connected to the second lateral port (16) of the OMT . Ensemble d'excitation compact selon la revendication 2, caractérisé en ce que le deuxième répartiteur de puissance (30) est identique au premier répartiteur de puissance (20) et localisé sur un deuxième côté latéral de l'OMT (10), orthogonalement à la direction Y.Compact excitation unit according to claim 2, characterized in that the second power distributor (30) is identical to the first power distributor (20) and located on a second lateral side of the OMT (10), orthogonal to the direction Y. Ensemble d'excitation compact selon la revendication 3, caractérisé en ce que le deuxième répartiteur de puissance (30) est constitué d'un guide d'onde d'entrée (31) apte à être relié à une deuxième source d'alimentation fonctionnant dans une deuxième polarisation P2 et de deux ports de sortie (32, 33) aménagés l'un au-dessus de l'autre dans une paroi latérale du guide d'onde d'entrée (31) et respectivement couplés à un troisième et un quatrième ports latéraux (17, 18) de l'OMT, orientés selon la direction Y, par l'intermédiaire d'un troisième et d'un quatrième guides d'onde de connexion (27, 28) respectifs, et en ce que les troisième et quatrième guides d'onde de connexion (27, 28) ont des longueurs électriques différentes, la différence de longueur électrique entre les troisième et quatrième guides d'onde de connexion étant égale à une demie longueur d'onde λ/2.Compact excitation unit according to Claim 3, characterized in that the second power distributor (30) consists of an input waveguide (31) adapted to be connected to a second power source operating in a second power supply unit (30). a second polarization P2 and two output ports (32, 33) arranged one above the other in a side wall of the input waveguide (31) and respectively coupled to a third and a fourth lateral ports (17, 18) of the OMT, oriented in the Y direction, via respective third and fourth connection waveguides (27, 28), and in that the third and fourth connection waveguides (27, 28) have different electrical lengths, the difference in electrical length between the third and fourth connecting waveguides being equal to half a wavelength λ / 2. Ensemble d'excitation compact selon la revendication 4, caractérisé en ce que le quatrième guide d'onde de connexion (28) est constitué d'un tronçon linéaire localisé dans un troisième niveau, sous le transducteur orthomode (10), et d'un tronçon coudé à 180° connecté au quatrième port latéral (18) de l'OMT.Compact excitation unit according to claim 4, characterized in that the fourth connection waveguide (28) consists of a linear section located in a third level, under the orthomode transducer (10), and a 180 ° angled section connected to the fourth lateral port (18) of the OMT. Ensemble d'excitation compact selon la revendication 5, caractérisé en ce que l'OMT (10) comporte une pyramide (14) symétrique située au centre de la jonction en croix.Compact excitation unit according to claim 5, characterized in that the OMT (10) comprises a symmetrical pyramid (14) located at the center of the cross-connection. Ensemble d'excitation compact selon la revendication 2, caractérisé en ce que le deuxième répartiteur de puissance (30) est un répartiteur septum (40) constitué d'un guide d'onde d'entrée muni d'une paroi interne (41), appelée septum, délimitant deux guides d'onde de sortie (42, 43) parallèles au guide d'onde d'entrée et empilés dans un quatrième niveau sous l'OMT (10), parallèlement au plan XY, les deux guides d'onde de sortie du répartiteur de puissance septum (40) étant respectivement connectés au premier et au deuxième ports latéraux (17, 18) de l'OMT par des cinquième et sixième guides d'onde de connexion (47, 48) respectifs localisés dans un troisième niveau, sous l'OMT, les longueurs électriques des cinquième et sixième guides d'onde de connexion étant égales.Compact excitation unit according to claim 2, characterized in that the second power distributor (30) is a septum distributor (40) consisting of an input waveguide provided with an inner wall (41), called septum, defining two output waveguides (42, 43) parallel to the input waveguide and stacked in a fourth level under the OMT (10), parallel to the XY plane, the two waveguides of the septum power distributor (40) being respectively connected to the first and second lateral ports (17, 18) of the OMT by respective fifth and sixth connection waveguides (47, 48) located in a third level, under the OMT, the electrical lengths of the fifth and sixth connecting waveguides being equal. Ensemble d'excitation compact selon la revendication 7, caractérisé en ce que l'OMT comporte une pyramide (14) dissymétrique située au centre de la jonction en croix.Compact excitation unit according to claim 7, characterized in that the OMT comprises a pyramid (14) asymmetrical located in the center of the cross junction. Réseau compact comportant au moins quatre ensembles d'excitation compacts selon l'une des revendications précédentes, les au moins quatre ensembles d'excitation compacts étant couplés entre eux par deux répartiteurs de puissance (51, 52) communs, indépendants entre eux, orthogonaux entre eux, et respectivement dédiés aux deux polarisations orthogonales.Compact network comprising at least four compact excitation assemblies according to one of the preceding claims, the at least four compact excitation assemblies being coupled together by two common, independent, orthogonal power distributors (51, 52) between them, and respectively dedicated to the two orthogonal polarizations.
EP16202268.5A 2015-12-11 2016-12-05 Compact bipolarisation drive assembly for a radiating antenna element and compact network comprising at least four compact drive assemblies Active EP3179551B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1502571A FR3045220B1 (en) 2015-12-11 2015-12-11 COMPACT BIPOLARIZATION EXCITATION ASSEMBLY FOR A RADIANT ANTENNA ELEMENT AND COMPACT NETWORK COMPRISING AT LEAST FOUR COMPACT EXCITATION ASSEMBLIES

Publications (2)

Publication Number Publication Date
EP3179551A1 true EP3179551A1 (en) 2017-06-14
EP3179551B1 EP3179551B1 (en) 2021-02-24

Family

ID=55971043

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16202268.5A Active EP3179551B1 (en) 2015-12-11 2016-12-05 Compact bipolarisation drive assembly for a radiating antenna element and compact network comprising at least four compact drive assemblies

Country Status (4)

Country Link
US (1) US10381699B2 (en)
EP (1) EP3179551B1 (en)
CA (1) CA2950993A1 (en)
FR (1) FR3045220B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3071672A1 (en) * 2017-09-28 2019-03-29 Thales POWER DISTRIBUTION FOR ANTENNA COMPRISING FOUR IDENTICAL ORTHOMOD TRANSDUCERS
US20210249748A1 (en) * 2020-02-12 2021-08-12 European Space Agency Waveguide power divider

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2909240T3 (en) * 2017-11-06 2022-05-05 Swissto12 Sa orthomode transducer
CN108123202A (en) * 2017-12-18 2018-06-05 中国电子科技集团公司第五十四研究所 A kind of broadband equiphase exports orthomode coupler
CN110380161A (en) * 2019-07-23 2019-10-25 广东盛路通信科技股份有限公司 A kind of OMT of the microwave frequency band of coaxial waveguide structure
US11081766B1 (en) * 2019-09-26 2021-08-03 Lockheed Martin Corporation Mode-whisperer linear waveguide OMT
CN111293424B (en) * 2020-02-25 2022-05-13 深圳大学 High-isolation dual-polarized cavity radiation unit
CN111799572B (en) * 2020-09-08 2020-12-18 星展测控科技股份有限公司 Dual-polarized open waveguide array antenna and communication device
CN112290213B (en) * 2020-09-10 2024-04-30 星展测控科技股份有限公司 Dual-polarized open waveguide array antenna and communication device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6037910A (en) * 1996-09-11 2000-03-14 Daimlerchrysler Aerospace Ag Phased-array antenna
US6087908A (en) * 1998-09-11 2000-07-11 Channel Master Llc Planar ortho-mode transducer
US20050040914A1 (en) * 2001-11-07 2005-02-24 Philippe Chambelin Frequency-separator waveguide module with double circular polarization
FR2959611A1 (en) 2010-04-30 2011-11-04 Thales Sa COMPRISING RADIANT ELEMENT WITH RESONANT CAVITIES.
FR3012917A1 (en) 2013-11-04 2015-05-08 Thales Sa COMPACT POWER DISTRIBUTION BIPOLARIZATION, NETWORK OF SEVERAL DISTRIBUTORS, COMPACT RADIATION ELEMENT AND FLAT ANTENNA HAVING SUCH A DISTRIBUTOR

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7397323B2 (en) * 2006-07-12 2008-07-08 Wide Sky Technology, Inc. Orthomode transducer
ATE542260T1 (en) * 2009-02-02 2012-02-15 Centre Nat Etd Spatiales ORTHOMODE CONVERTER FOR A WAVEGUIDE
US9287615B2 (en) * 2013-03-14 2016-03-15 Raytheon Company Multi-mode signal source

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6037910A (en) * 1996-09-11 2000-03-14 Daimlerchrysler Aerospace Ag Phased-array antenna
US6087908A (en) * 1998-09-11 2000-07-11 Channel Master Llc Planar ortho-mode transducer
US20050040914A1 (en) * 2001-11-07 2005-02-24 Philippe Chambelin Frequency-separator waveguide module with double circular polarization
FR2959611A1 (en) 2010-04-30 2011-11-04 Thales Sa COMPRISING RADIANT ELEMENT WITH RESONANT CAVITIES.
FR3012917A1 (en) 2013-11-04 2015-05-08 Thales Sa COMPACT POWER DISTRIBUTION BIPOLARIZATION, NETWORK OF SEVERAL DISTRIBUTORS, COMPACT RADIATION ELEMENT AND FLAT ANTENNA HAVING SUCH A DISTRIBUTOR

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JUAN L. CANO ET AL: "Full band waveguide turnstile junction orthomode transducer with phase matched outputs", INTERNATIONAL JOURNAL OF RF AND MICROWAVE COMPUTER-AIDED ENGINEERING, 12 February 2010 (2010-02-12), pages NA - NA, XP055305110, ISSN: 1096-4290, DOI: 10.1002/mmce.20437 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3071672A1 (en) * 2017-09-28 2019-03-29 Thales POWER DISTRIBUTION FOR ANTENNA COMPRISING FOUR IDENTICAL ORTHOMOD TRANSDUCERS
EP3462532A1 (en) * 2017-09-28 2019-04-03 Thales Power divider for antenna comprising four identical orthomode transducers
CN109616729A (en) * 2017-09-28 2019-04-12 泰勒斯公司 The power divider for antenna including four identical orthomode transducers
US10673118B2 (en) 2017-09-28 2020-06-02 Thales Power divider for an antenna comprising four identical orthomode transducers
US20210249748A1 (en) * 2020-02-12 2021-08-12 European Space Agency Waveguide power divider
US11791530B2 (en) * 2020-02-12 2023-10-17 European Space Agency Waveguide power divider

Also Published As

Publication number Publication date
CA2950993A1 (en) 2017-06-11
US20170170570A1 (en) 2017-06-15
EP3179551B1 (en) 2021-02-24
FR3045220B1 (en) 2018-09-07
FR3045220A1 (en) 2017-06-16
US10381699B2 (en) 2019-08-13

Similar Documents

Publication Publication Date Title
EP3179551B1 (en) Compact bipolarisation drive assembly for a radiating antenna element and compact network comprising at least four compact drive assemblies
EP2869400B1 (en) Bi-polarisation compact power distributor, network of a plurality of distributors, compact radiating element and planar antenna having such a distributor
EP2564466B1 (en) Compact radiating element having resonant cavities
EP2869396B1 (en) Power divider including a T-coupler in the E-plane, radiating network and antenna including such a radiating network
FR2810163A1 (en) IMPROVEMENT TO ELECTROMAGNETIC WAVE EMISSION / RECEPTION SOURCE ANTENNAS
FR2904478A1 (en) ORTHOMODE TRANSDUCTION DEVICE COMPRISING OPTIMIZED IN THE MESH PLAN FOR AN ANTENNA
EP3462532B1 (en) Power divider for antenna comprising four identical orthomode transducers
FR2623020A1 (en) DEVICE FOR EXCITATION OF A WAVEGUIDE IN CIRCULAR POLARIZATION BY A FLANE ANTENNA
EP3086409B1 (en) Structural antenna module including elementary radiating sources with individual orientation, radiating panel, radiating network and multibeam antenna comprising at least one such module
EP4012834A1 (en) Antenna source for an array antenna with direct radiation, radiating panel and antenna comprising a plurality of antenna sources
EP3176875B1 (en) Active antenna architecture with reconfigurable hybrid beam formation
EP3180816B1 (en) Multiband source for a coaxial horn used in a monopulse radar reflector antenna.
EP3435480B1 (en) Antenna incorporating delay lenses inside a divider based distributor with a parallel plate waveguide
EP3664214B1 (en) Multiple access radiant elements
WO2021124170A1 (en) Dual-polarization antenna
FR3029018A1 (en) COMPACT RADIOFREQUENCY EXCITATION MODULE WITH INTEGRATED CINEMATIC AND COMPACT BIAXE ANTENNA COMPRISING LESS SUCH COMPACT MODULE
EP3910729B1 (en) Broadband orthomode transducer
EP3900113B1 (en) Elementary microstrip antenna and array antenna
FR3076088A1 (en) QUASI-OPTICAL BEAM FORMER, ELEMENTARY ANTENNA, ANTENNA SYSTEM, PLATFORM AND METHOD OF TELECOMMUNICATIONS THEREFOR
EP3035445B1 (en) Orthogonal mode junction coupler and associated polarization and frequency separator
FR3083014A1 (en) RADIO FREQUENCY EXCITER IN RECEIVING AND TRANSMISSION

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171120

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200228

RIC1 Information provided on ipc code assigned before grant

Ipc: H01P 1/161 20060101AFI20200629BHEP

Ipc: H01Q 21/24 20060101ALN20200629BHEP

Ipc: H01P 1/213 20060101ALI20200629BHEP

Ipc: H01P 5/12 20060101ALI20200629BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H01P 1/213 20060101ALI20200901BHEP

Ipc: H01Q 21/24 20060101ALN20200901BHEP

Ipc: H01P 1/161 20060101AFI20200901BHEP

Ipc: H01P 5/12 20060101ALI20200901BHEP

INTG Intention to grant announced

Effective date: 20200922

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1365631

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016053025

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210624

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210524

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210525

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210524

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1365631

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016053025

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

26N No opposition filed

Effective date: 20211125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210624

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602016053025

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211205

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211205

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211205

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211205

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20161205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231122

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224