EP3173698B1 - Adaptive vibration damper - Google Patents

Adaptive vibration damper Download PDF

Info

Publication number
EP3173698B1
EP3173698B1 EP16197252.6A EP16197252A EP3173698B1 EP 3173698 B1 EP3173698 B1 EP 3173698B1 EP 16197252 A EP16197252 A EP 16197252A EP 3173698 B1 EP3173698 B1 EP 3173698B1
Authority
EP
European Patent Office
Prior art keywords
combustion
volume
helmholtz resonator
gas guide
resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16197252.6A
Other languages
German (de)
French (fr)
Other versions
EP3173698A1 (en
Inventor
Richard Richard Fischbuch
Lars Thum
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vaillant GmbH
Original Assignee
Vaillant GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vaillant GmbH filed Critical Vaillant GmbH
Publication of EP3173698A1 publication Critical patent/EP3173698A1/en
Application granted granted Critical
Publication of EP3173698B1 publication Critical patent/EP3173698B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M20/00Details of combustion chambers, not otherwise provided for, e.g. means for storing heat from flames
    • F23M20/005Noise absorbing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/02Premix gas burners, i.e. in which gaseous fuel is mixed with combustion air upstream of the combustion zone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/18Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2210/00Noise abatement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/18Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel
    • F23N2005/181Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel using detectors sensitive to rate of flow of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/18Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel
    • F23N2005/185Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel using detectors sensitive to rate of flow of fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/04Memory
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/06Ventilators at the air intake
    • F23N2233/08Ventilators at the air intake with variable speed

Definitions

  • the invention relates to an adaptive vibration damper.
  • the phenomenon is in DE 102004013584 A1 and the VDI progress report no. 364 of the series 6 for energy technology.
  • Self-excited vibration (SES) triggers interactions between the temporal release of the flame and the combustion chamber acoustics.
  • Condition for the emergence of the described phenomenon is the temporal power release of the flame at the time of a positive sound pressure amplitude (Rayleigh criterion). Remedies are off DE 19730254 C2 known.
  • the problem is usually solved by designing the geometry of the air and fuel gas-air mixture-carrying parts so that the system acoustically is detuned and therefore as possible no self-excited vibrations occur.
  • additional components are used in the air or exhaust gas path, which have the function to detune the system and thus to prevent or dampen self-excited vibrations.
  • intake pipes which increase the pressure loss upstream of the flame or a Helmholtz resonator are used.
  • Helmholtz resonator Depending on the geometrical characteristics of the Helmholtz resonator, it has a certain natural frequency at which it acts. Vibrations of the combustion system are damped or completely prevented.
  • Another possibility is to change the excess air or the heat load in an electronic fuel gas-air composite when vibrations occur.
  • the object of the invention is a device and a method for operating the same, with which self-excited vibrations can be turned off in vollvormischenden combustion systems.
  • the invention is preferably used in electronic fuel gas / air systems in which a mass flow sensor measuring a pressure difference between airway and fuel gas path is used.
  • Self-excited vibrations can not only be detected with the aid of the mass flow sensor, but can also be determined at a sufficiently high sampling rate with respect to the frequency of the oscillation.
  • the measured sensor signal is converted into the frequency domain.
  • the invention also relates to a Helmholtz resonator which can be adapted in terms of its frequency of action.
  • the frequency at which a Helmholtz resonator acts is defined by its geometric dimensioning. Influencing factors are, on the one hand, the damping volume in the actual body, and, on the other hand, the oscillating volume in the connection channel.
  • the change in a side length of the Helmholtz resonator can be adjusted by the position the bottom of the cylinder along the symmetry axis by means of suitable electromechanics (eg Stellmotor) can be changed. From the determined Frequency of the oscillation occurred, the required side length of the cylinder is calculated and changed so that adjusts this page length.
  • suitable electromechanics eg Stellmotor
  • the invention protects a control system that uses a sensor to determine the frequency of a self-excited oscillation and adjusts an adaptive Helmholtz resonator so that the oscillation is turned off.
  • the system requires a gas control valve, a controllable blower and a burner.
  • FIG. 1 shows a cylindrical Helmholtz resonator 2 with two cylindrical volumes.
  • the first cylindrical Helmholz resonator volume 17 has a length l 1 and a radius r 1 .
  • the first cylindrical Helmholz resonator volume 17 is open on both sides and opens on one side in the second cylindrical Helmholz resonator volume 18, which has a length l 2 and a radius r 2 .
  • f 0 c 2 ⁇ A 1 V 2 l 1 + 2 ⁇ ⁇ l 1
  • c is the speed of sound
  • V2 r 2 2 * ⁇ * l 2
  • 2 * ⁇ l 1 the orifice correction here: ⁇ l 1 ⁇ ⁇ 4 ⁇ r 1 ).
  • FIG. 2 shows a combustion system according to the invention with a burner 11 and a blower 10 in a fresh gas guide 14.
  • the blower 10 sucks combustion air and supplies it to the burner 11.
  • a fuel gas duct 15 opens into a venturi 3 in the fresh gas duct 14, in which a fuel gas control valve 9 is arranged in front of the mouth.
  • a mass flow sensor 1 is arranged between the fuel gas guide 15 and the fresh gas guide 14 and serves to adapt the fuel gas-air mixture.
  • Upstream of the Venturi 3 is an off FIG. 1 known cylindrical Helmholtz resonator 2 connected to the fresh gas guide 14. The connection of the Helmholtz resonator 2 must take place at a previously determined active site / active position.
  • the Helmholtz resonator 2 has a displaceable resonator cylinder 4 in the second cylindrical Helmholz resonator volume 18, so that its volume can be continuously adjusted.
  • a linear stepping motor 5 which can move via a drive shaft 6 in the form of a threaded rod and an internal thread 7 in the resonator cylinder 4 latter.
  • An ultrasonic or Laserwegmesser 8 serves to detect the current length of the second cylindrical Helmholz resonator volume 18.
  • the resonator 4 closes gas-tight to the side walls of the second cylindrical Helmholz resonator volume 18 from. The necessary seal can be performed for example as a lip seal or ring seal.
  • a controller 16 is connected to the blower 10, the fuel gas control valve 9, the mass flow sensor 1, the linear stepping motor 5 and the ultrasonic or Laserwegmesser 8.
  • N values of the sensor signal are recorded at a sampling rate f.
  • the sampling rate must be twice as high as the expected maximum frequency.
  • the number N of the values must correspond to a power of two.
  • FFT Fast Fourier Transform
  • the frequency with the highest deflection is set as the frequency of the self-excited oscillation and further processed. Subsequently, the required height of the resonator cylinder is determined from this determined frequency of the combustion oscillation.
  • f 0 c 2 ⁇ A 1 V 2 l 1 + 2 ⁇ ⁇ l 1
  • the controller 16 controls the linear stepper motor 5 such that the resonator cylinder 4 is shifted to the target position until the second cylindrical Helmholtz resonator volume 18 has this calculated length l 2 .
  • the ultrasonic or Laserwegmesser 8 serves the control 16 for control. Alternatively, starting from a stop position, a previously calculated number of steps can be moved. This results from the required path, the pitch of the thread and the number of steps per revolution of the motor.
  • an incremental encoder can be used to determine the position of the stepper motor and thus the height of the cylinder. This step losses can be compensated.
  • FIG. 3 shows an alternative embodiment.
  • the Helmholtz resonator 2 is arranged between the blower 10 and burner 11.
  • a motor 12, which is connected to the control 16, moves via a threaded rod 13 the resonator cylinder 4 within the second cylindrical Helmholz resonator volume 18.
  • the threaded rod 13 is connected to the resonator cylinder 4 rigid or via a movable bearing.
  • a determination of the length of the second cylindrical Helmholz resonator volume 18 can be dispensed with by starting from an extreme position of the resonator cylinder 4 while the combustion oscillations occur, which is still detected by the mass flow sensor 1, in the direction of the other extreme position is until the self-excited combustion oscillations are turned off, and thus the correct side length is reached.
  • the vehicle will first be moved back to the start position, in order to continue to move until the correct height of the cylinder is reached.
  • the necessary position is determined from the mass flow sensor signal as described above. Then the calculated position is approached to a defined distance, and then slowly continue to move until the vibrations are turned off.
  • a critical frequency is known even before the start of the incineration plant, it can be stored in the memory and the corresponding size of the Helmholtz resonator can already be set before the start of the burner in order to prevent the vibrations from occurring.
  • the setting of the Helmholtz resonator remains after switching off the incinerator in the last set position and is available unchanged at the next start.
  • a system may each have a self-excited swing at two different frequencies.
  • the problem could be solved by using two Helmholtz resonators, which are tuned in their geometric properties to one of the two frequencies.
  • the Helmholtz resonator can be adapted so that it is able to cover both frequencies. If there is more than one frequency in the burner operating range, the control system can always set the resonator to the frequency that has just or previously been measured in the operating point just approached.
  • the frequencies and the operating points are stored in a memory. When changing from one operating point to another, it is read in the memory whether there is another critical frequency to the new operating point than that to which the resonator is currently set. If this is the case, the resonator geometry is already adapted during the modulation as described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Description

Die Erfindung betrifft einen adaptiven Schwingungsdämpfer.The invention relates to an adaptive vibration damper.

Bei der Verbrennung von Brenngas in einem vollvormischenden Verbrennungssystem können in bestimmten Betriebspunkten unerwünschte selbsterregte Verbrennungsschwingungen auftreten. Diese sind zumeist mit für den Betreiber unangenehmen Geräuschen verbunden und können unter bestimmten Umständen zu einer Beschädigung der Anlage führen.In the combustion of fuel gas in a fully premixing combustion system undesirable self-excited combustion oscillations may occur at certain operating points. These are usually associated with unpleasant noises for the operator and can in certain circumstances lead to damage to the system.

Das Phänomen ist in DE 102004013584 A1 sowie dem VDI-Fortschrittsbericht Nr. 364 der Reihe 6 für Energietechnik beschrieben. Auslöser für die selbsterregten Schwingungen (SES) sind Wechselwirkungen zwischen der zeitlichen Leistungsfreisetzung der Flamme und der Akustik der Brennkammer. Bedingung für die Entstehung des beschriebenen Phänomens ist die zeitliche Leistungsfreisetzung der Flamme zum Zeitpunkt einer positiven Schalldruckamplitude (Rayleigh-Kriterium). Abstellmaßnahmen sind aus DE 19730254 C2 bekannt.The phenomenon is in DE 102004013584 A1 and the VDI progress report no. 364 of the series 6 for energy technology. Self-excited vibration (SES) triggers interactions between the temporal release of the flame and the combustion chamber acoustics. Condition for the emergence of the described phenomenon is the temporal power release of the flame at the time of a positive sound pressure amplitude (Rayleigh criterion). Remedies are off DE 19730254 C2 known.

Gemäß dem Stand der Technik wird das Problem zumeist dadurch gelöst, die Geometrie der Luft- und Brenngas-Luft-Gemisch-führenden Teile so zu gestalten, dass das System akustisch verstimmt wird und somit möglichst keine selbsterregten Schwingungen auftreten. Dabei werden beispielsweise zusätzliche Bauteile im Luft- oder Abgasweg eingesetzt, die die Funktion haben, das System zu verstimmen und somit selbsterregte Schwingungen zu verhindern oder zu dämpfen. Hierzu dienen beispielsweise Ansaugrohre, welche den Druckverlust stromauf der Flamme erhöhen oder ein Helmholtz-Resonator. Abhängig von den geometrischen Kenngrößen des Helmholtz-Resonators hat dieser eine bestimmte Eigenfrequenz, bei der er wirkt. Schwingungen des Verbrennungssystems werden gedämpft oder gänzlich verhindert.According to the prior art, the problem is usually solved by designing the geometry of the air and fuel gas-air mixture-carrying parts so that the system acoustically is detuned and therefore as possible no self-excited vibrations occur. In this case, for example, additional components are used in the air or exhaust gas path, which have the function to detune the system and thus to prevent or dampen self-excited vibrations. For this purpose, for example, intake pipes which increase the pressure loss upstream of the flame or a Helmholtz resonator are used. Depending on the geometrical characteristics of the Helmholtz resonator, it has a certain natural frequency at which it acts. Vibrations of the combustion system are damped or completely prevented.

Eine weitere Möglichkeit besteht darin, bei einem elektronischen Brenngas-Luft-Verbund beim Auftreten von Schwingungen den Luftüberschuss oder die Wärmebelastung zu verändern.Another possibility is to change the excess air or the heat load in an electronic fuel gas-air composite when vibrations occur.

Aus DE 102005052881 A1 ist eine Schalldämpfungseinrichtung und ein Verfahren für ein Heizgerät mit einem Helmholtz-Resonator gemäß dem Oberbegriff der Ansprüche 1 und 4 bekannt. Ein Schallaufnehmer nimmt die Frequenz der Schwingung auf; ein temperaturabhängies Bimetallmaterial realisiert die Volumenänderung des Resonatorraums.Out DE 102005052881 A1 a sound damping device and a method for a heater with a Helmholtz resonator according to the preamble of claims 1 and 4 is known. A transducer picks up the frequency of the vibration; a temperature-dependent bimetal material realizes the volume change of the resonator space.

Aufgabe der Erfindung ist eine Vorrichtung und ein Verfahren zum Betrieben derselben, mit denen selbsterregte Schwingungen bei vollvormischenden Verbrennungssystemen abgestellt werden können.The object of the invention is a device and a method for operating the same, with which self-excited vibrations can be turned off in vollvormischenden combustion systems.

Erfindungsgemäß wird dies durch einen individuell anpassbaren Helmholtz-Resonator gemäß Anspruch 1 und ein Verfahren gemäß Anspruch 4 gelöst. Vorteilhafte Ausgestaltungen ergeben sich durch die Merkmale der abhängigen Ansprüche.According to the invention this is achieved by an individually adaptable Helmholtz resonator according to claim 1 and a method according to claim 4. Advantageous embodiments result from the features of the dependent claims.

Die Erfindung findet bevorzugt bei elektronischen Brenngas-Luft-Systemen Anwendung, bei denen ein Massenstromsensor, der eine Druckdifferenz zwischen Luftweg und Brenngasweg misst, verwendet wird. Mit Hilfe des Massenstromsensors können selbsterregte Schwingungen nicht nur detektiert, sondern bei ausreichend hoher Abtastrate auch bezüglich der Frequenz der Schwingung bestimmt werden. Mittels einer Fourier-Transformation wird das gemessene Sensorsignal in den Frequenzbereich überführt.The invention is preferably used in electronic fuel gas / air systems in which a mass flow sensor measuring a pressure difference between airway and fuel gas path is used. Self-excited vibrations can not only be detected with the aid of the mass flow sensor, but can also be determined at a sufficiently high sampling rate with respect to the frequency of the oscillation. By means of a Fourier transformation, the measured sensor signal is converted into the frequency domain.

Gegenstand der Erfindung ist zudem ein in seiner Wirkfrequenz anpassbarer Helmholtz-Resonator. Die Frequenz, bei der ein Helmholtz-Resonator wirkt, wird durch seine geometrische Dimensionierung definiert. Einflussgrößen sind zum einen das dämpfende Volumen im eigentlichen Körper, als zum anderen auch das schwingende Volumen im Anbindungskanal.The invention also relates to a Helmholtz resonator which can be adapted in terms of its frequency of action. The frequency at which a Helmholtz resonator acts is defined by its geometric dimensioning. Influencing factors are, on the one hand, the damping volume in the actual body, and, on the other hand, the oscillating volume in the connection channel.

So kann beispielsweise bei einem geschlossenen Zylinder, der über einen entsprechend ausgelegten Anbindungskanal mit dem Verbrennungssystem an der entsprechenden vorher zu ermittelnden Wirkstelle verbunden oder an dieser Position in das Verbrennungssystem integriert ist, die Veränderung einer Seitenlänge des Helmholtz-Resonators dadurch eingestellt werden, dass die Position des Bodens des Zylinders entlang der Symmetrieachse mittels geeigneter Elektromechanik (z.B.Stellmotor) verändert werden kann. Aus der ermittelten Frequenz der aufgetretenen Schwingung wird die erforderliche Seitenlänge des Zylinders ausgerechnet und so verändert, dass sich diese Seitenlänge einstellt.Thus, for example, in the case of a closed cylinder, which is connected via a correspondingly designed connection channel to the combustion system at the corresponding previously determined active site or integrated into the combustion system at this position, the change in a side length of the Helmholtz resonator can be adjusted by the position the bottom of the cylinder along the symmetry axis by means of suitable electromechanics (eg Stellmotor) can be changed. From the determined Frequency of the oscillation occurred, the required side length of the cylinder is calculated and changed so that adjusts this page length.

Die Erfindung schützt ein Regelungssystem, das mithilfe eines Sensors die Frequenz einer selbsterregten Schwingung ermittelt und einen anpassbaren Helmholtz-Resonator derart einstellt, dass die Schwingung abgestellt wird. Das System benötigt dafür ein Gasregelventil, ein regelbares Gebläse und einem Brenner.The invention protects a control system that uses a sensor to determine the frequency of a self-excited oscillation and adjusts an adaptive Helmholtz resonator so that the oscillation is turned off. The system requires a gas control valve, a controllable blower and a burner.

Die Erfindung wird nun anhand der Figuren erläutert. Hierbei zeigen:

  • Figur 1 einen Helmholtz-Resonator,
  • Figur 2 eine erste Ausführungsform eines Verbrennungssystems mit einem erfindungsgemäßen Helmholtz-Resonator und
  • Figur 3 eine zweite Ausführungsform eines Verbrennungssystems mit einem erfindungsgemäßen Helmholtz-Resonator.
The invention will now be explained with reference to the figures. Hereby show:
  • FIG. 1 a Helmholtz resonator,
  • FIG. 2 a first embodiment of a combustion system with a Helmholtz resonator according to the invention and
  • FIG. 3 a second embodiment of a combustion system with a Helmholtz resonator according to the invention.

Figur 1 zeigt einen zylindrischen Helmholtz-Resonator 2 mit zwei zylindrischen Volumina. Das erste zylindrische Helmholz-Resonator-Volumen 17 verfügt über eine Länge l1 sowie einen Radius r1. Das erste zylindrische Helmholz-Resonator-Volumen 17 ist beidseitig geöffnet und mündet auf der einen Seite in das zweite zylindrische Helmholz-Resonator-Volumen 18, das über eine Länge l2 sowie einen Radius r2 verfügt. FIG. 1 shows a cylindrical Helmholtz resonator 2 with two cylindrical volumes. The first cylindrical Helmholz resonator volume 17 has a length l 1 and a radius r 1 . The first cylindrical Helmholz resonator volume 17 is open on both sides and opens on one side in the second cylindrical Helmholz resonator volume 18, which has a length l 2 and a radius r 2 .

Die Eigenfrequenz f 0 dieses Helmholtz-Resonators lässt sich wie folgt bestimmen. f 0 = c 2 π A 1 V 2 l 1 + 2 Δ l 1

Figure imgb0001
The natural frequency f 0 of this Helmholtz resonator can be determined as follows. f 0 = c 2 π A 1 V 2 l 1 + 2 Δ l 1
Figure imgb0001

Hierbei sind c die Schallgeschwindigkeit, A1 die Querschnittsöffnung des Eingangs des Helmholtz-Resonators (hier: A1 = r1 2 * π), V2 das Volumen des zweiten Helmholz-Resonator-Volumens 18 (hier: V2 = r2 2 * π *l2) und 2 *Δl1 die Mündungskorrektur (hier: Δ l 1 π 4 r 1

Figure imgb0002
).Here, c is the speed of sound, A 1 is the cross-sectional opening of the entrance of the Helmholtz resonator (here: A 1 = r 1 2 * π), V 2 is the volume of the second Helmholtz resonator volume 18 (here: V2 = r 2 2 * π * l 2 ) and 2 * Δl 1 the orifice correction (here: Δ l 1 π 4 r 1
Figure imgb0002
).

Figur 2 zeigt eine erfindungsgemäße verbrennungstechnische Anlage mit einem Brenner 11 und einem Gebläse 10 in einer Frischgasführung 14. Das Gebläse 10 saugt Verbrennungsluft an und führt sie dem Brenner 11 zu. Stromauf des Gebläses 10 mündet eine Brenngasführung 15 in einen Venturi 3 in die Frischgasführung 14, in der ein Brenngasregelventil 9 vor der Mündung angeordnet ist. Ein Massenstromsensor 1 ist zwischen der Brenngasführung 15 und der Frischgasführung 14 angeordnet und dient der Anpassung des Brenngas-Luft-Gemischs. Stromauf des Venturis 3 ist ein aus Figur 1 bekannter zylindrischer Helmholtz-Resonator 2 mit der Frischgasführung 14 verbunden. Die Anbindung des Helmholtz-Resonators 2 muss an einer vorher zu ermittelnden Wirkstelle / Wirkposition erfolgen. Der Helmholtz-Resonator 2 verfügt über einen verschiebbaren Resonatorzylinder 4 im zweiten zylindrischen Helmholz-Resonator-Volumen 18, so dass dessen Volumen kontinuierlich verstellt werden kann. Zum Verschieben des Resonatorzylinders 4 dient ein Linearschrittmotor 5, der über eine Antriebswelle 6 in Form einer Gewindestange und ein Innengewinde 7 in dem Resonatorzylinder 4 letztgenannten verschieben kann. Um ein Drehen des Resonatorzylinders 4 zu verhindern, ist eine Verdrehsicherung vorgesehen. Ein Ultraschall- oder Laserwegmesser 8 dient der Erfassung der aktuellen Länge des zweiten zylindrischen Helmholz-Resonator-Volumens 18. Der Resonatorzylinder 4 schließt gasdicht zu den Seitenwänden des zweiten zylindrischen Helmholz-Resonator-Volumens 18 ab. Die dafür notwendige Dichtung kann beispielsweise als Lippendichtung oder Ringdichtung ausgeführt sein. Eine Regelung 16 ist mit dem Gebläse 10, dem Brenngasregelventil 9, dem Massenstromsensor 1, dem Linearschrittmotor 5 sowie dem Ultraschall- oder Laserwegmesser 8 verbunden. FIG. 2 shows a combustion system according to the invention with a burner 11 and a blower 10 in a fresh gas guide 14. The blower 10 sucks combustion air and supplies it to the burner 11. Upstream of the blower 10, a fuel gas duct 15 opens into a venturi 3 in the fresh gas duct 14, in which a fuel gas control valve 9 is arranged in front of the mouth. A mass flow sensor 1 is arranged between the fuel gas guide 15 and the fresh gas guide 14 and serves to adapt the fuel gas-air mixture. Upstream of the Venturi 3 is an off FIG. 1 known cylindrical Helmholtz resonator 2 connected to the fresh gas guide 14. The connection of the Helmholtz resonator 2 must take place at a previously determined active site / active position. The Helmholtz resonator 2 has a displaceable resonator cylinder 4 in the second cylindrical Helmholz resonator volume 18, so that its volume can be continuously adjusted. To move the resonator cylinder 4 is a linear stepping motor 5, which can move via a drive shaft 6 in the form of a threaded rod and an internal thread 7 in the resonator cylinder 4 latter. To prevent rotation of the resonator 4, a rotation is provided. An ultrasonic or Laserwegmesser 8 serves to detect the current length of the second cylindrical Helmholz resonator volume 18. The resonator 4 closes gas-tight to the side walls of the second cylindrical Helmholz resonator volume 18 from. The necessary seal can be performed for example as a lip seal or ring seal. A controller 16 is connected to the blower 10, the fuel gas control valve 9, the mass flow sensor 1, the linear stepping motor 5 and the ultrasonic or Laserwegmesser 8.

Treten beim Betrieb der Anlage selbsterregte Verbrennungsschwingungen auf, so führt dies zu einer Rückkopplung auf den Verbrennungs- und Brenngasfluss, so dass der Massenstromsensor 1 die Schwingungen erfasst. Da in der Praxis das Signal des Massenstromsensors 1 stets von diversen Frequenzen überlagert wird, müssen für die Notwendigkeit zur Durchführung von Abstellmaßnahmen Schwellwerte für die Intensität der Schwingungen überschritten werden.If self-excited combustion oscillations occur during operation of the system, this leads to a feedback to the combustion and fuel gas flow, so that the mass flow sensor 1 detects the vibrations. Since in practice the signal of the mass flow sensor 1 is always superimposed by various frequencies, threshold values for the intensity of the vibrations must be exceeded for the necessity of carrying out remedial measures.

Zuerst werden N Werte des Sensorsignals mit einer Abtastrate f aufgezeichnet. Die Abtastrate muss dabei doppelt so hoch sein wie die erwartete maximale Frequenz. Um eine schnelle Fourier-Transformation-Analyse anwenden zu können, muss die Anzahl N der Werte einer Zweierpotenz entsprechen.First, N values of the sensor signal are recorded at a sampling rate f. The sampling rate must be twice as high as the expected maximum frequency. In order to be able to apply a fast Fourier transform analysis, the number N of the values must correspond to a power of two.

Der Algorithmus für eine schnelle Fourier-Transformation (FFT) basiert auf der diskreten Fourier-Transformation. Für N reele Abtastwerte werden N /2 Frequenz- bzw. Spektrallinien F(k ) berechnet: F i ω k = 1 N n = 0 N 1 f t n e i 2 πkn / N

Figure imgb0003
mit k = 0,1, , N 1
Figure imgb0004
The Fast Fourier Transform (FFT) algorithm is based on the Discrete Fourier Transform. For N real samples N / 2 frequency or spectral lines F ( k ) are calculated: F i ω k = 1 N Σ n = 0 N - 1 f t n e - i 2 πkn / N
Figure imgb0003
With k = 0.1 ... ... . N - 1
Figure imgb0004

Die Frequenz mit der höchsten Auslenkung wird als Frequenz der selbsterregten Schwingung festgelegt und weiter verarbeitet. Anschließend wird aus dieser ermittelten Frequenz der Verbrennungsschwingung die erforderliche Höhe des Resonatorzylinders ermittelt. Für die Eigenfrequenz f 0 des Helmholtz-Resonators gilt (unter Bezug auf Figur 1, siehe oben): f 0 = c 2 π A 1 V 2 l 1 + 2 Δ l 1

Figure imgb0005
The frequency with the highest deflection is set as the frequency of the self-excited oscillation and further processed. Subsequently, the required height of the resonator cylinder is determined from this determined frequency of the combustion oscillation. For the natural frequency f 0 of the Helmholtz resonator applies (with reference to FIG. 1 , see above): f 0 = c 2 π A 1 V 2 l 1 + 2 Δ l 1
Figure imgb0005

Es ergibt sich für l 2 : l 2 = c 2 A 1 f 0 2 4 π 3 r 2 2 l 1 + 2 Δ l 1

Figure imgb0006
It follows for l 2 : l 2 = c 2 A 1 f 0 2 4 π 3 r 2 2 l 1 + 2 Δ l 1
Figure imgb0006

Die Regelung 16 steuert den Linearschrittmotor 5 derart an, dass der Resonatorzylinder 4 in die Zielposition verschoben wird, bis das zweite zylindrische Helmholz-Resonator-Volumen 18 über diese berechnete Länge l2 verfügt. Die Ultraschall- oder Laserwegmesser 8 dient hierbei der Regelung 16 zur Kontrolle. Alternativ kann auch aus einer Anschlagposition startend eine vorher errechnete Anzahl von Schritten verfahren werden. Diese ergibt sich aus dem erforderlichen Weg, der Steigung des Gewindes und der Schrittzahl pro Umdrehung des Motors.The controller 16 controls the linear stepper motor 5 such that the resonator cylinder 4 is shifted to the target position until the second cylindrical Helmholtz resonator volume 18 has this calculated length l 2 . The ultrasonic or Laserwegmesser 8 here serves the control 16 for control. Alternatively, starting from a stop position, a previously calculated number of steps can be moved. This results from the required path, the pitch of the thread and the number of steps per revolution of the motor.

In einer weiteren Ausführung kann ein Inkrementaldrehgeber verwendet werden, um die Position des Schrittmotors und damit die Höhe des Zylinders zu bestimmen. Damit können Schrittverluste ausgeglichen werden.In another embodiment, an incremental encoder can be used to determine the position of the stepper motor and thus the height of the cylinder. This step losses can be compensated.

Figur 3 zeigt eine alternative Ausführungsform. Der Helmholtz-Resonator 2 ist dabei zwischen Gebläse 10 und Brenner 11 angeordnet. Ein Motor 12, der mit der Regelung 16 verbunden ist, bewegt über eine Gewindestange 13 den Resonatorzylinder 4 innerhalb des zweiten zylindrischen Helmholz-Resonator-Volumens 18. Die Gewindestange 13 ist mit dem Resonatorzylinder 4 starr oder über ein Loslager verbunden. Auf eine Bestimmung der Länge des zweiten zylindrischen Helmholz-Resonator-Volumens 18 kann hierbei verzichtet werden, indem beim Auftreten der Verbrennungsschwingungen, was nach wie vor mittels des Massenstromssensors 1 erkannt wird, startend aus einer Extremposition des Resonatorzylinders 4 solange in Richtung der anderen Extremposition verfahren wird, bis die selbsterregten Verbrennungsschwingungen abgestellt sind, und somit die korrekte Seitenlänge erreicht ist. FIG. 3 shows an alternative embodiment. The Helmholtz resonator 2 is arranged between the blower 10 and burner 11. A motor 12, which is connected to the control 16, moves via a threaded rod 13 the resonator cylinder 4 within the second cylindrical Helmholz resonator volume 18. The threaded rod 13 is connected to the resonator cylinder 4 rigid or via a movable bearing. In this case, a determination of the length of the second cylindrical Helmholz resonator volume 18 can be dispensed with by starting from an extreme position of the resonator cylinder 4 while the combustion oscillations occur, which is still detected by the mass flow sensor 1, in the direction of the other extreme position is until the self-excited combustion oscillations are turned off, and thus the correct side length is reached.

Treten später erneut Schwingungen auf, wird erneut zuerst in die Startposition gefahren, um anschließen wieder zu verfahren bis die korrekte Höhe des Zylinders erreicht ist.If vibrations occur again later, the vehicle will first be moved back to the start position, in order to continue to move until the correct height of the cylinder is reached.

Möglich ist auch eine Kombination der beiden beschriebenen Verfahren: Die notwendige Position wird aus dem Massenstromsensorsignal wie oben beschrieben ermittelt. Dann wird die errechnete Position bis auf einen definierten Abstand angefahren, um dann langsam weiter zu verfahren, bis die Schwingungen abgestellt sind.Also possible is a combination of the two described methods: The necessary position is determined from the mass flow sensor signal as described above. Then the calculated position is approached to a defined distance, and then slowly continue to move until the vibrations are turned off.

Ist eine kritische Frequenz bereits vor dem Start der Verbrennungsanlage bekannt, so kann diese im Speicher abgelegt werden und bereits vor dem Start des Brenners die entsprechende Größe des Helmholtz-Resonators eingestellt werden, um ein Auftreten der Schwingungen zu verhindern. Im einfachsten Fall verbleibt die Einstellung des Helmholtz-Resonators nach dem Abschalten der Verbrennungsanlage in der zuletzt eingestellten Position und steht beim nächsten Start unverändert zur Verfügung.If a critical frequency is known even before the start of the incineration plant, it can be stored in the memory and the corresponding size of the Helmholtz resonator can already be set before the start of the burner in order to prevent the vibrations from occurring. In the simplest case, the setting of the Helmholtz resonator remains after switching off the incinerator in the last set position and is available unchanged at the next start.

Ein System kann bei zwei unterschiedlichen Frequenzen jeweils ein selbsterregtes Schwingen aufweisen. In diesem Fallbeispiel gibt es beispielsweise eine Schwingungsneigung bei 40Hz und bei 160Hz. Nach dem Stand der Technik könnte das Problem dadurch gelöst werden, dass zwei Helmholtz-Resonatoren eingesetzt werden, die in ihren geometrischen Eigenschaften auf jeweils eine der beiden Frequenzen abgestimmt sind. Erfindungsgemäß kann der Helmholtz-Resonator anpasst werden, so dass er in der Lage ist, beide Frequenzen abzudecken. Gibt es mehr als eine Frequenz in dem Brennerbetriebsbereich, so kann das Regelungssystem den Resonator immer auf die Frequenz einstellen, die gerade oder vorher schon einmal in dem gerade angefahrenen Betriebspunkt gemessen wurde. Die Frequenzen und die Betriebspunkte werden in einem Speicher abgelegt. Beim Wechsel von einem Betriebspunkt in einen anderen wird im Speicher ausgelesen, ob es zu dem neuen Betriebspunkt eine andere kritische Frequenz gibt, als die, auf die der Resonator gerade eingestellt ist. Ist dies der Fall, so wird die Resonatorgeometrie bereits während der Modulation wie oben beschrieben angepasst.A system may each have a self-excited swing at two different frequencies. In this case example, for example, there is a tendency to oscillate at 40Hz and at 160Hz. According to the prior art, the problem could be solved by using two Helmholtz resonators, which are tuned in their geometric properties to one of the two frequencies. According to the invention, the Helmholtz resonator can be adapted so that it is able to cover both frequencies. If there is more than one frequency in the burner operating range, the control system can always set the resonator to the frequency that has just or previously been measured in the operating point just approached. The frequencies and the operating points are stored in a memory. When changing from one operating point to another, it is read in the memory whether there is another critical frequency to the new operating point than that to which the resonator is currently set. If this is the case, the resonator geometry is already adapted during the modulation as described above.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
MassenstromsensorMass flow sensor
22
Helmholtz-ResonatorHelmholtz resonator
33
Venturiventuri
44
ResonatorzylinderResonatorzylinder
55
LinearschrittmotorLinear Stepper Motor
66
Antriebswelledrive shaft
77
Innengewindeinner thread
88th
Ultraschall- oder LaserwegmessersUltrasonic or Laser Wegmessers
99
GasregelventilGas control valve
1010
Gebläsefan
1111
Brennerburner
1212
Motorengine
1313
Gewindestangethreaded rod
1414
FrischgasführungFresh gas management
1515
BrenngasführungFuel gas management
1616
Regelungregulation
1717
erstes zylindrisches Helmholz-Resonator-Volumenfirst cylindrical Helmholz resonator volume
1818
zweites zylindrisches Helmholz-Resonator-Volumensecond cylindrical Helmholz resonator volume

Claims (8)

  1. Combustion system having a burner (11), a fan (10) for conveying combustion air and optionally combustion gas to this burner (11), a fresh gas guide (14) in which the fan (14) is arranged, a combustion gas guide (15) in which a gas control valve (9) is arranged, wherein the combustion gas guide (15) opens in the fresh gas guide (14) or directly in the burner (11), and a Helmholtz resonator (2) is connected to the fresh gas guide (14), wherein the Helmholtz resonator (2) has a drive (4, 5, 6, 7) for adjusting the volume of the Helmholtz resonator (2), characterised in that a volume or mass flow sensor (1) is arranged in the combustion gas guide (15) and/or fresh gas guide (14) or between the combustion gas guide (15) and fresh gas guide (14), wherein the volume or mass flow sensor (1) is connected to a controller (16), and the controller (16) is connected to the drive (5, 6, 7) for adjusting the volume of the Helmholtz resonator (2).
  2. Combustion system according to claim 1, characterised in that the Helmholtz resonator (2) has means for detecting at least one parameter of the Helmholtz resonator (2).
  3. Combustion system according to any of the preceding claims, characterised in that the fan (10) has a speed detection unit.
  4. Method for operating a combustion system having a burner (11), a fan (10) for conveying combustion air and optionally combustion gas to this burner (11), a fresh gas guide (14) in which the fan (14) is arranged, a combustion gas guide (15) in which a gas control valve (9) is arranged, wherein the combustion gas guide (15) opens in the fresh gas guide (14) or directly in the burner (11), a volume or mass flow sensor (1) is arranged in the combustion gas guide (15) and/or fresh gas guide (14) and/or the fan (10) has a speed detection unit, a Helmholtz resonator (2) is connected to the fresh gas guide (14), wherein the Helmholtz resonator (2) has a drive (4, 5, 6, 7) for adjusting the volume of the Helmholtz resonator (2), characterised in that by means of the volume or mass flow sensor (1) self-excited combustion oscillations and optionally the frequency thereof are identified and subsequently the volume of the Helmholtz resonator (2) is adjusted in accordance with the established frequency and/or the drive (4, 5, 6, 7) for adjusting the volume of the Helmholtz resonator (2) is moved until the self-excited combustion oscillations stop.
  5. Method for operating a combustion system according to claim 4, characterised in that the frequency is established by means of Fourier transformation.
  6. Method for operating a combustion system according to claim 4, characterised in that when self-excited combustion oscillations occur the drive (4, 5, 6, 7) for adjusting the volume of the Helmholtz resonator (2) is continuously moved from one extreme position in the direction of another extreme position.
  7. Method for operating a combustion system according to any one of claims 4 to 6, characterised in that first the drive (4, 5, 6, 7) for adjusting the volume of the Helmholtz resonator (2) roughly adjusts the calculated volume and subsequently the drive (4, 5, 6, 7) for adjusting the volume of the Helmholtz resonator (2) is moved until the self-excited combustion oscillations stop.
  8. Method for operating a combustion system according to any one of claims 4 to 7, characterised in that results of earlier adjustment methods are stored in a store and, before the combustion system is operated, the volume of the Helmholtz resonator (2) is adjusted accordingly.
EP16197252.6A 2015-11-16 2016-11-04 Adaptive vibration damper Active EP3173698B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015222587.9A DE102015222587A1 (en) 2015-11-16 2015-11-16 Adaptive vibration damper

Publications (2)

Publication Number Publication Date
EP3173698A1 EP3173698A1 (en) 2017-05-31
EP3173698B1 true EP3173698B1 (en) 2019-01-02

Family

ID=57226878

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16197252.6A Active EP3173698B1 (en) 2015-11-16 2016-11-04 Adaptive vibration damper

Country Status (4)

Country Link
EP (1) EP3173698B1 (en)
CN (1) CN106705037B (en)
DE (1) DE102015222587A1 (en)
ES (1) ES2716654T3 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110857774B (en) * 2018-08-24 2021-08-20 宁波方太厨具有限公司 Noise-reducing fire grate
DE102019119186A1 (en) * 2019-01-29 2020-07-30 Vaillant Gmbh Method and device for controlling a fuel gas-air mixture in a heater
CN114483219A (en) * 2020-10-26 2022-05-13 中国航发商用航空发动机有限责任公司 Vortex reducer, vortex reducing pipe and method for arranging vortex reducing pipe
DE102022107984A1 (en) 2022-04-04 2023-10-05 Ebm-Papst Landshut Gmbh Gas control valve for electronic pressure control on a gas boiler
DE102022116819A1 (en) * 2022-07-06 2024-01-11 Vaillant Gmbh Heater, method for equipping a heater with a check valve, silencer and use of a check valve and a control line

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3025794C2 (en) * 1980-07-08 1984-09-20 Didier-Werke Ag, 6200 Wiesbaden Device for suppressing vibrations that occur in fired industrial furnaces, in particular wind heaters
DE3517859A1 (en) * 1985-05-17 1986-11-20 Wolf Klimatechnik GmbH, 8302 Mainburg Heating boiler
JPS63172817A (en) * 1987-01-13 1988-07-16 Rinnai Corp Forced blasting type combustion apparatus
CH692095A5 (en) * 1995-03-23 2002-01-31 Vaillant Gmbh Central heating, fuel burning heater
DE19730254C2 (en) 1996-07-09 2002-01-03 Vaillant Joh Gmbh & Co Fuel-heated heater
DE10058688B4 (en) * 2000-11-25 2011-08-11 Alstom Technology Ltd. Damper arrangement for the reduction of combustion chamber pulsations
US6792907B1 (en) * 2003-03-04 2004-09-21 Visteon Global Technologies, Inc. Helmholtz resonator
DE102004013584B4 (en) 2003-05-10 2016-01-21 IfTA Ingenieurbüro für Thermoakustik GmbH Method for investigating the frequency-dependent vibration behavior of a burner
US7337877B2 (en) * 2004-03-12 2008-03-04 Visteon Global Technologies, Inc. Variable geometry resonator for acoustic control
DE102005052881A1 (en) * 2005-11-07 2007-05-10 Robert Bosch Gmbh Heating device e.g. oil-heated heating device, has helmholtz-resonator connected to opening as noise damping device and having resonator chamber formed with controller to change acoustic mass and/or volume of resonator chamber
DE102005062284B4 (en) * 2005-12-24 2019-02-28 Ansaldo Energia Ip Uk Limited Combustion chamber for a gas turbine
DE102008007967B4 (en) * 2008-02-07 2022-11-10 Eberspächer Climate Control Systems GmbH Fuel-operated vehicle heater and exhaust system for a fuel-operated vehicle heater
AT506228B1 (en) * 2008-03-25 2009-07-15 Vaillant Austria Gmbh METHOD FOR OPERATING A HEATER
GB201108917D0 (en) * 2011-05-27 2011-07-13 Rolls Royce Plc A Hydraulic damping apparatus
DE102012019409A1 (en) * 2012-10-04 2014-04-10 August Brötje GmbH Device for generating heat from at least one energy carrier medium with the addition of air
DE102013110489B4 (en) * 2013-09-23 2022-05-12 Rational Aktiengesellschaft Cooking device and method for detecting the degree of contamination of a filter unit
CN104566477B (en) * 2014-12-31 2019-02-01 北京华清燃气轮机与煤气化联合循环工程技术有限公司 Frequency modulation device and term durability gas turbine flame barrel for term durability gas turbine flame barrel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN106705037A (en) 2017-05-24
DE102015222587A1 (en) 2017-05-18
CN106705037B (en) 2020-01-17
EP3173698A1 (en) 2017-05-31
ES2716654T3 (en) 2019-06-13

Similar Documents

Publication Publication Date Title
EP3173698B1 (en) Adaptive vibration damper
DE102005059530B4 (en) Command generation device
EP3849740B1 (en) Method and device for laser cutting a tailored blank from a continuously conveyed sheet strip
DE102010052261A1 (en) Method and device for calibrating a torque measuring device
WO2013174600A1 (en) Percussion unit
EP3024684B1 (en) Haptic motor-vehicle accelerator pedal having an elastically coupled actuator and method and control unit for controlling said accelerator pedal
WO2001029819A1 (en) Method and device for actively influencing the intake noise of an internal combustion engine
EP3464862B1 (en) Method and apparatus for calibrating an actuator system
DE202014009989U1 (en) Oszillationswerkzeugmaschine
EP3171510A1 (en) Method for operating an electromotor
EP1044353A1 (en) Device for determining a rotational speed
DE19938319A1 (en) Method and circuit for controlling RPMs in an electric motor driving a ventilating fan in a gaseous hot spa has a power input for an electrical energy source and a signal input for a sensor to detect noise, vibration or its mechanical load.
DE102008052261A1 (en) Exhaust gas turbocharger for internal combustion engine, particularly motor vehicle, has shaft, which rotates compressor and turbine wheel
DE102017101581A1 (en) Method for operating a workpiece machining system, and workpiece machining system
DE102016213720A1 (en) System for data transmission and processing for controlling a rotor blade actuator
DE102004021645A1 (en) Machine component test unit has contactless actuators with contactless sensors including actuator air gap magnetic flux sensors
WO2020015799A1 (en) Method for determining a fluid delivery parameter
DE102020129988B4 (en) Handling device and method for recognizing a condition
DE102007041017A1 (en) Vibration sensor for a motor and for a dental handpiece and method for determining and evaluating the vibration
WO2018189057A1 (en) Method for intermittent ultrasonic processing of a length of material
DE102021100206A1 (en) VIBRATION CONTROL DEVICE AND VIBRATION CONTROL METHOD
EP3481081B1 (en) Exhaust finisher with sound wave source
EP3480436B1 (en) Method and device for analysing the acoustics of an exhaust gas flap
EP1596130A1 (en) Device for damping thermoacoustic oscillations in a combustion chamber with a variable resonator frequency
EP3252547B1 (en) Method for controlling a movement of a mobile body of a mechanical system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171115

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F23M 20/00 20140101AFI20180713BHEP

INTG Intention to grant announced

Effective date: 20180802

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1084863

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016003056

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2716654

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20190613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190502

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190502

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190402

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016003056

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

26N No opposition filed

Effective date: 20191003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191104

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20161104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20221027

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231026

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231026

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231201

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231129

Year of fee payment: 8

Ref country code: FR

Payment date: 20231127

Year of fee payment: 8

Ref country code: DE

Payment date: 20231026

Year of fee payment: 8