EP3165053B1 - Dispositif et procédé pour contrôler un transmetteur de signal d'un feu de circulation comportant une diode électroluminescente - Google Patents

Dispositif et procédé pour contrôler un transmetteur de signal d'un feu de circulation comportant une diode électroluminescente Download PDF

Info

Publication number
EP3165053B1
EP3165053B1 EP15766791.6A EP15766791A EP3165053B1 EP 3165053 B1 EP3165053 B1 EP 3165053B1 EP 15766791 A EP15766791 A EP 15766791A EP 3165053 B1 EP3165053 B1 EP 3165053B1
Authority
EP
European Patent Office
Prior art keywords
processor
diode
light
measured
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15766791.6A
Other languages
German (de)
English (en)
Other versions
EP3165053A1 (fr
Inventor
Robert Runge
Robert BRAATZ
Heiko Junker
Geert De Zaeyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Mobility GmbH
Original Assignee
Siemens Mobility GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Mobility GmbH filed Critical Siemens Mobility GmbH
Priority to PL15766791T priority Critical patent/PL3165053T3/pl
Publication of EP3165053A1 publication Critical patent/EP3165053A1/fr
Application granted granted Critical
Publication of EP3165053B1 publication Critical patent/EP3165053B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/04Arrangement of electric circuit elements in or on lighting devices the elements being switches
    • F21V23/0442Arrangement of electric circuit elements in or on lighting devices the elements being switches activated by means of a sensor, e.g. motion or photodetectors
    • F21V23/0457Arrangement of electric circuit elements in or on lighting devices the elements being switches activated by means of a sensor, e.g. motion or photodetectors the sensor sensing the operating status of the lighting device, e.g. to detect failure of a light source or to provide feedback to the device
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • H05B45/12Controlling the intensity of the light using optical feedback
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • H05B45/56Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits involving measures to prevent abnormal temperature of the LEDs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L2207/00Features of light signals
    • B61L2207/02Features of light signals using light-emitting diodes (LEDs)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/32Pulse-control circuits
    • H05B45/325Pulse-width modulation [PWM]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • H05B45/44Details of LED load circuits with an active control inside an LED matrix
    • H05B45/46Details of LED load circuits with an active control inside an LED matrix having LEDs disposed in parallel lines

Definitions

  • the invention relates to a device and a method for monitoring a signal transmitter comprising a light-emitting diode of a traffic signal system.
  • the invention further relates to a traffic signal system and a computer program.
  • a disadvantage of this is in particular that due to the specified replacement intervals, an LED signal transmitter is also replaced, if this is not necessary, the LED signal transmitter so still emits light with a sufficient intensity. This causes unnecessary costs, increased maintenance and unnecessary material costs.
  • the publication WO 2007/006684 A1 shows a traffic signal.
  • the publication WO 2004/070675 A2 shows an LED module for an LED traffic signal.
  • the publication EP 2 677 387 A1 shows a light signal arrangement, in particular a railway light signal arrangement.
  • the publication DE 10 2010 026 012 A1 shows a LED light signal.
  • the publication DE 102 08 462 A1 shows a lighting arrangement.
  • the object underlying the invention is to provide a device for monitoring a light emitting diode comprehensive signal generator for a traffic signal system, which overcomes the known disadvantages.
  • the object on which the invention is based is furthermore to be seen in providing a corresponding method for monitoring a signal transmitter comprising a light-emitting diode (for example a traffic signal system).
  • a signal transmitter comprising a light-emitting diode (for example a traffic signal system).
  • the object underlying the invention is further to be seen in a corresponding signal generator (for example, for a traffic signal system) specify.
  • the object underlying the invention is further to be seen in specifying a corresponding computer program.
  • an apparatus for monitoring a signal emitting device comprising a light emitting diode, comprising: a measuring device for measuring an actual light intensity of the light emitted by the diode and measuring at least one electrical characteristic of the diode and a two-channel control device for Operating the signal generator depending on the measured actual light intensity and the measured electrical characteristic.
  • a method of monitoring a light emitting diode signal generator comprising the steps of: measuring an actual light intensity of the light emitted by the diode and at least one electrical characteristic of the diode and operating the signal generator depending on the measured actual light intensity and the measured electrical characteristic.
  • a signal generator comprising: a signal chamber comprising a light emitting diode; and an apparatus for monitoring a signal transmitter of a traffic signal system comprising a light emitting diode.
  • a traffic signal system comprising the signal generator according to the invention is provided.
  • a computer program comprising program code for performing the method of monitoring a light emitting diode signal generator comprising a light emitting diode when the computer program is executed on a computer, preferably on a controller.
  • the invention thus encompasses the idea of measuring an intensity of the light which is emitted by means of the diode.
  • the result of the measurement ie the actual light intensity
  • the signal generator is operated depending on the measured actual light intensity.
  • the monitoring of the signal generator is thus in particular an optical monitoring.
  • the technical advantage is achieved that can be detected when the legal minimum light requirements can no longer be met due to a reduction in the brightness of the light-emitting diode, for example, due to aging or a high ambient temperature. It can thus also be determined in an advantageous manner, whether the light-emitting diode must be replaced or not. It therefore requires no more defined replacement intervals. This advantageously reduces service costs, further reduces costs and reduces material costs.
  • the invention further includes the idea that in addition to the optical monitoring nor an electrical monitoring is performed, insofar as in addition to the measurement of the actual light intensity at least one electrical characteristic of the diode is measured, in which case based both on the measured actual light intensity and on the electrical characteristic, the diode is operated.
  • the technical advantage in particular, is achieved that efficient monitoring can be carried out.
  • control device has two channels has in particular the technical advantage that a high degree of safety can be ensured. Because of the two-channel nature, the two channels can monitor each other, in particular monitor for errors.
  • the control device comprises two processors (first and second processors, as described below), which are designed, for example, to monitor each other, in particular to monitor for errors.
  • both processors independently of one another, the signal generator, in particular, the light signal system, for example, turn off the diode. This, for example, via an electronic switch, which produces a short circuit when switching, so is designed to produce a short circuit during switching, the short circuit triggers a backup of the controller upstream.
  • both processors independently of one another have the possibility of producing a short circuit via the electronic switch which triggers the upstream backup.
  • the operation of the signal generator comprises, according to one embodiment, a driving of a driver circuit of the diode.
  • the driver circuit may also be referred to as an LED driver. That is, according to one embodiment, it is provided that the control device is designed to control a driver circuit of the diode.
  • the driver circuit includes, for example, a power driver.
  • the driving of the driver circuit comprises that the driver circuit is driven so that an actual light intensity is increased or decreased, generally that an actual light intensity is set or regulated to a predetermined target light intensity.
  • the at least one electrical parameter includes, for example, an electrical current and / or an electrical voltage. That is, for example, measuring an electric current that flows through the diode during operation. For example, in addition to or instead of an electrical voltage is measured, which is applied to the diode in operation or is applied to the diode.
  • the light-emitting diode can also be abbreviated as LED below.
  • LED stands for the English terms “light emitting diode”.
  • a signal generator in the sense of the present invention comprises in particular one or more signal chambers, in which preferably the one or more LEDs are arranged.
  • signal generator of a traffic signal thus also includes the following: Signal generator for a traffic signal system.
  • the signal transmitter comprises a plurality of light-emitting diodes.
  • the versions in connection with a LED apply analogously to several LEDs and vice versa.
  • the monitoring of several LEDs is carried out analogously to the monitoring of an LED.
  • the traffic signal system comprises a plurality of signal transmitters each comprising one or more light-emitting diodes.
  • the monitoring of these multiple signal generator is carried out analogously to the monitoring of a signal generator.
  • the corresponding explanations apply analogously.
  • control device comprises a first processor and a second processor, wherein the first processor is designed to control a driver circuit of the diode based on the measured actual light intensity and the measured electrical characteristic, wherein the second processor is configured, To monitor the first processor in operation for an error and to turn off the diode in case of a detected error.
  • a separate voltage regulator is provided for each of the two processors for a respective electrical voltage supply of the two processors.
  • the second processor is designed to switch off the diode for a functional test of the first processor, wherein the second processor is designed to prevent a restart of the diode in the absence of error message of the first processor that the diode does not work ,
  • the technical advantage is achieved that the first processor can be checked for malfunction efficiently. Because if the first processor works properly, it would have the diode off due to the measured actual light intensity and the measured electrical characteristic (both of which should yield zero in the measurement accuracy) recognize and issue a corresponding error message that the diode is not working. If the first processor does not do this, the second processor assumes that the first processor has a fault and, for safety reasons, has the diode switched off, thus preventing the diode from being switched on again.
  • the first processor is designed to send a data packet to the second processor and to switch off the diode in the absence of a response packet of the second processor, and / or that the second processor is configured to send a data packet to the first processor and to switch off the diode in the absence of a response packet of the first processor.
  • the two processors can monitor each other efficiently, so can check each other for functionality.
  • the first processor sends a data packet to the second processor. If, within a predetermined time after the transmission of the data packet, no response (response data packet) comes back from the second processor, ie if a response data packet fails within the predetermined time, the first processor assumes that the second processor has an error and switches off the security for security reasons Diode off. The same applies to the reverse case: The second processor sends a data packet to the first processor.
  • the first and / or the second processor is designed or are in the event of a fault, the signal generator, in particular the diode turn off, in particular irreversible turn off.
  • the irreversible shutdown includes, for example, triggering a fuse (blowing the fuse) in an electrical circuit of the signal generator, in particular in an electrical circuit of the diode.
  • the first and / or the second processor are respectively designed to generate an EOL signal in the event of an error in order to irreversibly switch off the signal generator, in particular the diode.
  • EOL stands for "End of life”.
  • the error case includes in particular that the first and / or the second processor has detected an error or have.
  • the error may have occurred in one of the two processors, for example.
  • the control device is designed to regulate the actual light intensity to a predetermined, larger setpoint light intensity if the measured actual light intensity is smaller than a predetermined light intensity threshold value.
  • a minimum light intensity is always radiated insofar as the predetermined desired light intensity is controlled when the measured actual light intensity is smaller than the predetermined light intensity threshold value.
  • the predetermined larger target light intensity usually corresponds to the minimum light intensity according to the legal requirements. "Greater” here refers in particular to the fact that the predetermined target light intensity is greater than the measured actual light intensity. That is, the light intensity of the emitted light is increased when the measured actual light intensity is smaller than a predetermined light intensity threshold.
  • the control device is designed to switch off the signal generator if the actual light intensity can not be regulated to the predetermined desired light intensity.
  • the technical advantage is effected that it is avoided that the signal generator is still operated even if a predetermined brightness can not be achieved.
  • standards with respect to the minimum light requirements can be maintained in an advantageous manner.
  • the traffic signal system is switched off or passes into an error state.
  • an error signal is formed, which can be sent to a central control computer, for example, so that it can be determined that the traffic signal system no longer operates correctly.
  • the measuring device comprises a light sensor and the control device comprises a processing device, which is formed is to subtract a measured by means of the light sensor with the diode off light signal from a measured by the light sensor with the diode switched light signal to form a subtracted light signal corresponding to the measured actual light intensity.
  • the processing device comprises the first and / or the second processor.
  • the first and / or the second processor are respectively designed to subtract the light signal measured by the light sensor with the diode switched off from the light signal measured by the light sensor with the diode switched on in order to form the extracted light signal which corresponds to the measured actual light intensity ,
  • the first and / or the second processor are respectively designed to switch off the signal generator, in particular the diode, if the actual light intensity can not be regulated to the predetermined desired light intensity.
  • the control device is designed to periodically switch the diode on and off for measuring the light signals when the diode is switched off and on, the period being in the millisecond range. So a lock-in measurement is performed.
  • the technical advantage is achieved that can be reliably determined that the detected light is really from the LED and not by externally penetrating light (extraneous light). For as it is known when the LED should light up or not, this can be checked in accordance with the measured light signal.
  • the period is in the millisecond range, since here a human eye is usually too lazy to detect this periodic switching on and off. Thus, the monitoring, so the measurement can be carried out undisturbed during normal operation of the traffic signal system.
  • the first and / or the second processor is / are configured to periodically switch the diode on and off for measuring the light signals when the diode is switched off and on, the period lying in the millisecond range.
  • a temperature sensor is provided for measuring a temperature of an environment of the signal generator, wherein the control device is designed to operate the signal generator depending on the measured temperature.
  • the first and / or the second processor is configured to drive a driver circuit of the diode based on the measured temperature.
  • the first and / or the second processor is / are configured to drive a driver circuit of the diode based on the measured actual light intensity and based on the measured electrical characteristic.
  • the first and / or second processor are respectively designed as microcontroller ( ⁇ C).
  • the measuring device comprises a light sensor, wherein a light guide is provided for guiding a part of the emitted light towards the light sensor.
  • a light guide is provided for guiding a part of the emitted light towards the light sensor.
  • the measuring device comprises a light sensor.
  • the light sensor is in particular a photodiode.
  • a plurality of light sensors, in particular a plurality of photodiodes, are provided.
  • the device for monitoring a signal transmitter comprising a light-emitting diode for a traffic signal system is designed or set up to carry out or carry out the method for monitoring a signal transmitter comprising a light-emitting diode for a traffic signal system.
  • the method for monitoring a light emitting diode signal transmitter comprising a light emitting diode is carried out or carried out by means of the device for monitoring a light emitting diode signal generator comprising a light emitting diode.
  • the operation comprises driving a driver circuit of the diode by means of a first processor based on the measured actual light intensity and the measured electrical parameter, wherein the first processor is monitored for an error during operation by means of a second processor wherein the second processor turns off the diode upon a detected fault.
  • a respective electrical power supply for the two processors is provided by means of a separate voltage regulator.
  • the second processor switches off the diode for a functional test of the first processor and, in the absence of an error message of the first processor, that the diode does not work, prevents the diode from being switched back on.
  • the first processor sends a data packet to the second processor and switches off the diode in the absence of a response packet of the second processor and / or wherein the second processor sends a data packet to the first processor, and if the response packet of the first processor fails, the Diode turns off.
  • the operation comprises regulating the actual light intensity to a predetermined larger desired light intensity if the measured actual light intensity is smaller than a predetermined light intensity threshold value.
  • the signal generator in particular the traffic signal system, is switched off when the actual light intensity can not be regulated to the predetermined desired light intensity.
  • a light sensor is used for measuring, whereby a light signal measured by the light sensor with the diode switched off is subtracted from a light signal measured by the light sensor with the diode switched on in order to form a subtracted light signal which corresponds to the measured actual signal. Light intensity corresponds.
  • the diode for measuring the light signals when the diode is switched off and on, the diode is periodically switched on and off, the period being in the millisecond range.
  • a temperature of an environment of the signal generator is measured and the signal generator is operated depending on the measured temperature.
  • a light sensor is used for measuring and a part of the emitted light is guided by means of a light guide to the light sensor.
  • Embodiments relating to the method are analogous to embodiments with respect to the device and vice versa.
  • Corresponding statements, technical advantages and features with regard to the method apply analogously to the device and vice versa.
  • FIG. 1 shows an apparatus 101 for monitoring a signal emitting device comprising a light-emitting diode of a traffic signal system (not shown).
  • the device 101 comprises a measuring device 103 for measuring an actual light intensity of the light emitted by the diode and for measuring at least one electrical parameter of the diode.
  • the measuring device 103 comprises a light sensor, preferably a photodiode.
  • the measuring device 103 comprises, for example, a voltage sensor and / or a current sensor.
  • the device 101 further comprises a dual-channel control device 105 for operating the signal generator as a function of the measured actual light intensity and as a function of the measured electrical parameter.
  • the device 101 comprises a light guide for guiding a part of the emitted one Light towards the measuring device 103, preferably to the light sensor.
  • FIG. 2 shows a flowchart of a method for monitoring a signal transmitter comprising a light-emitting diode of a traffic signal system.
  • an actual light intensity of the light emitted by the diode and at least one electrical characteristic of the diode are measured.
  • the measurement of the actual light intensity and the measurement of the at least one electrical parameter are carried out, for example, at the same time or preferably one after the other.
  • the signal generator is operated as a function of the measured actual light intensity and as a function of the measured electrical parameter.
  • the at least one electrical parameter includes, for example, an electrical current and / or an electrical voltage.
  • the measured parameters are used as a further basis for the operation of the signal generator. This means that the signal generator is operated in addition to the measured actual light intensity based on the one or more measured electrical parameters.
  • FIG. 3 shows a signal generator 301 (for example, a traffic signal system).
  • a signal generator 301 for example, a traffic signal system.
  • the signal generator 301 comprises three signal chambers 303, 305, 307, each of which comprises at least one, preferably a plurality of light-emitting diode.
  • the signal generator 301 further comprises in each case a device 101 according to FIG FIG. 1 for the three signal chambers 303, 305, 307.
  • the measuring device 103 and the control device 105 are in FIG FIG. 3 not shown.
  • the signal generator 301 is comprised, for example, by a traffic signal system.
  • the device 101 monitors the respective light-emitting diodes of the three signal chambers 303, 305 and 307 by measuring corresponding actual light intensities and electrical characteristics so that the diodes of the individual signal chambers 303, 305 are then based on the measured actual light intensities and the measured characteristics , 307 are operated.
  • FIG. 4 shows an evaluation of a light signal, which was measured by means of a photodiode.
  • the intensity I of the measured light signal over the time t is identified by the reference numeral 401.
  • the actual light intensity that is to say the light signal which originates exclusively from the photodiode, now results from the subtraction I2 of I1.
  • the subtracted signal is symbolically represented here by means of a double arrow, with "I3" pointing to this double arrow as a sign that this is the actual light intensity of the light of the diode.
  • FIG. 5 shows a further device 501 for monitoring a signal transmitter comprising a light-emitting diode of a traffic signal system.
  • the device 501 comprises a two-channel control device 503.
  • the two-channel control device 503 comprises a first processor 505 and a second processor 507, which are designed, for example, as a microcontroller (.mu.C).
  • the first processor 505, for example, performs the main tasks in the monitoring, can be referred to as a master.
  • the second processor 507 takes over in particular monitoring functions and can thus be referred to in particular as an "observer", ie observer or supervisor.
  • the first processor 505 assumes, for example, a drive 509 of an LED driver 511 (driver circuit) of an LED 513 of a signal transmitter, not shown here, of a light signal system likewise not shown here.
  • the driving 509 of the LED driver 511 comprises, for example, a pulse width modulation (PWM).
  • PWM pulse width modulation
  • the first processor 505 measures an LED current 515 and an LED voltage 517.
  • the second processor 507 may also take over the aforementioned drive. This is symbolically indicated by an arrow with the reference numeral 510.
  • the device 501 further comprises a photodiode 519 which is connected to an amplifier 521 which generates from the incident light on the photodiode 519 an electric voltage equivalent to the light.
  • the photodiode 519 measures a light intensity of the light emitted by the LED 513.
  • the first processor 505 evaluates the electrical voltage signal of the amplifier 521. In this case, therefore, an electrical voltage signal is transmitted from the amplifier 521 to the first processor 505, which corresponds to the measured light intensity.
  • the voltage signal is symbolically indicated by an arrow with the reference numeral 523.
  • the first processor 505 and the second processor 507 communicate with each other.
  • the first communicates Processor 505 with the second processor 507 to see if it is still working properly.
  • the communication between the two processors 505, 507 is symbolically indicated by a double arrow with the reference numeral 525 and is performed, for example, via a Serial Peripheral Interface (SPI), which is a bus system.
  • SPI Serial Peripheral Interface
  • the first processor 505 is also designed to switch off the signal generator, in particular the traffic signal system.
  • the first processor 505 limits an input current for the LED 513.
  • the first processor 505 irreversibly switches off the signal generator, in particular the traffic signal system, in the event of an error.
  • the tasks of the second processor 507 are, for example, the following: A communication with the first processor 505 to see if it is still working properly.
  • the second processor 507 checks a signal path of the light information to the first processor 505 via a "Monitor Validation Test". In case of an error the second one switches Processor 507 the signal generator, in particular the traffic signal, irreversibly.
  • EOL End of Life
  • Both processors 505, 507 have their own voltage regulator 527 and 529, respectively. That is, both processors 505, 507 are powered by their own voltage regulator 527, 529 so that failure of a voltage regulator 527, 529 does not affect both processors 505, 507 simultaneously ,
  • the current limit on the part of the first processor 505 is controlled by a switch 531 which is connected in parallel with a resistor 533.
  • the current limit works in particular as follows: At the switch-on time, a series resistance (resistor 533) is present in the supply line and limits the charging current of the capacitors of the photodiode 513. After a certain time (in the millisecond range, preferably 1 ms to 10 ms), an electronic switch is closed, bridging the series resistor 533 (FIG. low-impedance short circuits).
  • the reference numeral 541 points to a connector (connector), to which an electrical supply line can be connected or plugged.
  • the individual function blocks according to the block diagram of FIG. 5 are divided again for the sake of clarity.
  • the elements according to the frame 545 are associated with the diode.
  • the elements according to the frame 547 are associated with a voltage or power supply for the device 501.
  • the invention thus encompasses in particular the idea of no longer based solely on monitoring the voltage of a signal generator comprising a light-emitting diode, but rather of recording the optical monitoring of the light and additionally, in particular, the electric current through the LED into a disconnection decision. For if, for example, only the electric current is monitored, there is a considerable potential for danger. Because LEDs lose their brightness with increasing age and / or thermal load at the same power consumption. This means that just by monitoring the current consumption, it can not be guaranteed that the LED will continue to emit light with the same brightness.
  • a part of the LED light is deflected for example via a light guide to a photodiode and evaluated there.
  • the LED is periodically switched off for a very short period of time (millisecond range). This transition from “bright phase” (switched on LED) to “dark phase” (switched off LED) is measured. The results indicate whether the light originates from the LED and how high the luminous flux (brightness) is in the "bright phase”.
  • the "dark phase” has the further advantage that in this time the external light component can be measured, and thus the luminous flux of the LED can be calculated by simple subtraction (cf. FIG. 4 ). And in the case of too low luminous flux, for example due to high ambient temperature or aging, is provided according to one embodiment, readjust the brightness.
  • microprocessors which monitor each other (cf. FIG. 5 ).
  • Both processors are powered by their own voltage regulator according to one embodiment, so that a failure does not affect both processors simultaneously.
  • One of the processors is, for example, the master processor (master).
  • the other for example, the observer processor (Observer).
  • both processors have the option of independently producing a short circuit via an electronic switch, which triggers an upstream fuse.
  • the inventive step is therefore in particular to integrate the optical monitoring of the light in the error consideration of the signal generator in addition to monitoring at least one electrical parameter and thus to achieve a higher reliability.
  • the ability to adjust the brightness makes it possible to keep the signal generator running longer.
  • An error is in particular present if the measured actual light intensity is smaller than a predetermined light intensity threshold, in particular if the light intensity can no longer be regulated to a predetermined, larger desired light intensity.

Claims (22)

  1. Système (101, 501) de contrôle d'un transmetteur (303, 305, 307) de signal, comprenant une diode (513) électroluminescente pour une installation (301) à signal lumineux, comprenant :
    - un dispositif (103, 519; 521) de mesure pour mesurer une intensité (I3) réelle de la lumière émise au moyen de la diode (513) et pour mesurer au moins une grandeur électrique caractéristique de la diode (513) et
    - un dispositif (105, 505) de commande constitué à deux canaux pour faire fonctionner le transmetteur (303, 305, 307) de signal en fonction de l'intensité (I3) réelle mesurée de la lumière et de la grandeur caractéristique mesurée,
    - dans lequel le dispositif (105, 505) de commande comprend un premier processeur (505) et un deuxième processeur (507),
    caractérisé
    - en ce que le premier processeur (505) est constitué pour, sur la base de l'intensité (I3) réelle de la lumière mesurée et de la grandeur caractéristique électrique mesurée, commander un circuit (511) d'attaque de la diode (513) et
    - en ce que le deuxième processeur (507) est constitué pour contrôler le premier processeur (505) en fonctionnement sur le point de savoir s'il y a un défaut et, si un défaut est détecté, mettre la diode (513) hors circuit.
  2. Système (101, 201) suivant la revendication 1, dans lequel, pour chacun des deux processeurs (505, 507), est prévu un régleur (527, 529) de tension propre d'alimentation respective en tension électrique des deux processeurs (505, 507).
  3. Système (101, 201) suivant la revendication 1 ou 2, dans lequel le deuxième processeur (507) est constitué pour, pour un contrôle de fonctionnement du premier processeur (505), mettre la diode (513) hors circuit, le deuxième processeur (507) étant constitué pour, si un message de défaut du premier processeur (505) n'est pas présent, que la diode (513) ne fonctionne pas, empêcher une remise en circuit de la diode (513).
  4. Système (101, 201) suivant l'une des revendications 1 à 3, dans lequel le premier processeur (505) est constitué pour envoyer un paquet de données au deuxième processeur (507) et pour, si un paquet de réponses du deuxième processeur (507) n'est pas présent, mettre la diode (513) hors circuit et/ou dans lequel le deuxième processeur (507) est constitué pour envoyer un paquet de données au premier processeur (505) et, si un paquet de réponses du premier processeur (505) n'est pas présent, mettre la diode (513) hors circuit.
  5. Système (101, 201) suivant l'une des revendications précédentes, dans lequel le dispositif (105, 505) de commande est constitué pour réguler l'intensité (I3) réelle de la lumière à une intensité de la lumière de consigne assez grande déterminée à l'avance, si l'intensité (I3) réelle de la lumière mesurée est plus petite qu'une valeur de seuil de l'intensité de la lumière définie à l'avance.
  6. Système (101, 201) suivant la revendication 5, dans lequel le dispositif (105, 505) de commande est constitué pour mettre hors circuit le transmetteur (303, 305, 307) de signal, si l'intensité (I3) réelle de la lumière ne peut pas être régulée à l'intensité de la lumière de consigne définie à l'avance.
  7. Système (101, 201) suivant l'une des revendications précédentes, dans lequel le dispositif (103, 519; 521) de mesure comprend un capteur de lumière et le dispositif (105, 505) de commande un dispositif de traitement constitué pour déduire, d'un signal (I1) de lumière mesuré au moyen du capteur de lumière alors que la diode (513) est mise en circuit, un signal (I2) de lumière mesuré au moyen du capteur de lumière alors que la diode (513) est mise hors circuit, afin de former un signal de lumière déduit, qui correspond à l'intensité (I3) réelle de lumière mesurée.
  8. Système (101, 201) suivant la revendication 7, dans lequel le dispositif (105, 505) de commande est constitué pour mesurer pour, pour la mesure des signaux (I2) de lumière, lorsque la diode (513) est mise hors circuit et mise en circuit, mettre hors circuit et mise en circuit périodiquement la diode (513), la période étant dans la plage de la milliseconde.
  9. Système (101, 201) suivant l'une des revendications précédentes, dans lequel il est prévu une sonde de température pour mesurer une température d'une atmosphère ambiante autour du transmetteur (303, 305, 307) de signal, le dispositif (105, 505) de commande étant constitué pour faire fonctionner le transmetteur (303, 305, 307) de signal en fonction de la température mesurée.
  10. Système (101, 201) suivant l'une des revendications précédentes, dans lequel le dispositif (103, 519; 521) de mesure comprend un capteur de lumière, dans lequel une fibre optique est prévue pour conduire une partie de la lumière émise au capteur de lumière.
  11. Procédé de contrôle d'un transmetteur (303, 305, 307) de signal, comprenant une diode (513) électroluminescente pour une installation (301) à signal lumineux, comprenant les stades suivants :
    - mesure d'une intensité (I3) réelle de la lumière émise au moyen de la diode (513) et d'au moins une grandeur électrique caractéristique de la diode (513) et
    - fonctionnement (203) du transmetteur (303, 305, 307) de signal en fonction de l'intensité (I3) réelle de la lumière mesurée et de la grandeur électrique caractéristique mesurée,
    caractérisé
    - en ce que l'on commande un circuit (511) d'attaque de la diode (513) au moyen d'un premier processeur (505) sur la base de l'intensité (I3) réelle de la lumière mesurée et de la grandeur électrique caractéristique mesurée et
    - en ce que l'on contrôle le premier processeur (505) en fonctionnement au moyen d'un deuxième processeur (507) pour savoir s'il y a un défaut, le deuxième processeur (507) mettant la diode (513) hors circuit si un défaut est détecté.
  12. Procédé suivant la revendication 11, dans lequel on met à disposition une alimentation en tension électrique respective pour les deux processeurs (505, 507) au moyen d'un régleur (527, 529) propre de tension.
  13. Procédé suivant la revendication 11 ou 12, dans lequel le deuxième processeur (507) met, pour un contrôle du fonctionnement du premier processeur (505), la diode (513) hors circuit et, si un message de défaut du premier processeur (505) n'est pas présent, que la diode (513) ne fonctionne pas, empêche de pouvoir remettre la diode (513) en circuit.
  14. Procédé suivant l'une des revendications 11 à 13, dans lequel le premier processeur (505) envoie un paquet de données au deuxième processeur (507) et, si un paquet de réponses du deuxième processeur (507) n'est pas présent, met la diode (513) hors circuit et/ou dans lequel le deuxième processeur (507) envoie un paquet de données au premier processeur (505) et, si un paquet de réponses du premier processeur (505) n'est pas présent, met la diode (513) hors circuit.
  15. Procédé suivant l'une des revendications 11 à 14, dans lequel le fonctionnement comprend un réglage de l'intensité (I3) réelle de la lumière à une intensité de la lumière de consigne assez grande définie à l'avance, si l'intensité (I3) réelle de la lumière mesurée est plus petite qu'une valeur de seuil de l'intensité de la lumière définie à l'avance.
  16. Procédé suivant la revendication 15, dans lequel on met le transmetteur (303, 305, 307) de signal hors circuit, si l'intensité (I3) réelle de la lumière ne peut pas être régulée à l'intensité de la lumière de consigne définie à l'avance.
  17. Procédé suivant l'une des revendications 11 à 16, dans lequel on utilise, pour la mesure, un capteur de lumière, dans lequel un signal (I2) de lumière mesuré au moyen du capteur de lumière alors que la diode (513) est mise hors circuit, et déduit d'un signal (I1) de lumière mesuré au moyen du capteur de lumière alors que la diode (513) est mise en circuit, afin de former un signal de lumière déduit, qui correspond à l'intensité (I3) réelle de lumière mesuré.
  18. Procédé suivant la revendication 17, dans lequel, pour la mesure des signaux (I2) de lumière, alors que la diode (513) est mise hors circuit et mise en circuit, on met hors circuit et on met en circuit périodiquement la diode (513), la période étant dans la plage de la milliseconde.
  19. Procédé suivant l'une des revendications 11 à 18, dans lequel on mesure une température d'une atmosphère ambiante autour du transmetteur (303, 305, 307) de signal et on fait fonctionner le transmetteur (303, 305, 307) de signal en fonction de la température mesurée.
  20. Procédé suivant l'une des revendications 11 à 19, dans lequel on utilise, pour la mesure, un capteur de lumière et on envoie une partie de la lumière émise au capteur de lumière au moyen d'une fibre optique.
  21. Transmetteur (301) de lumière, comprenant :
    - une chambre (303, 305, 307) de signal comprenant une diode (513) électroluminescente et
    - un système (101, 501) suivant l'une des revendications 1 à 10.
  22. Programme d'ordinateur, comprenant des codes de programme pour effectuer le procédé suivant l'une des revendications 11 à 20, lorsque le programme d'ordinateur est réalisé sur un ordinateur.
EP15766791.6A 2014-09-29 2015-09-17 Dispositif et procédé pour contrôler un transmetteur de signal d'un feu de circulation comportant une diode électroluminescente Active EP3165053B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL15766791T PL3165053T3 (pl) 2014-09-29 2015-09-17 Urządzenie i sposób monitorowania zawierającego diodę elektroluminescencyjną sygnalizatora urządzenia sygnalizacji świetlnej

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014219688 2014-09-29
PCT/EP2015/071274 WO2016050521A1 (fr) 2014-09-29 2015-09-17 Dispositif et procédé pour contrôler un transmetteur de signal d'un feu de circulation comportant une diode électroluminescente

Publications (2)

Publication Number Publication Date
EP3165053A1 EP3165053A1 (fr) 2017-05-10
EP3165053B1 true EP3165053B1 (fr) 2018-11-21

Family

ID=54150397

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15766791.6A Active EP3165053B1 (fr) 2014-09-29 2015-09-17 Dispositif et procédé pour contrôler un transmetteur de signal d'un feu de circulation comportant une diode électroluminescente

Country Status (7)

Country Link
US (1) US10006616B2 (fr)
EP (1) EP3165053B1 (fr)
DK (1) DK3165053T3 (fr)
ES (1) ES2712377T3 (fr)
PL (1) PL3165053T3 (fr)
TR (1) TR201901327T4 (fr)
WO (1) WO2016050521A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3297404B1 (fr) 2016-09-16 2023-06-07 Goodrich Lighting Systems GmbH Unité d'éclairage d'aéronef extérieure et procédé de désactivation d'une sortie lumineuse d'une unité d'éclairage d'aéronef extérieure
US10889237B1 (en) * 2019-10-23 2021-01-12 Tusimple, Inc. Lighting control for autonomous vehicles

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10208462A1 (de) 2002-02-27 2003-09-04 Osram Opto Semiconductors Gmbh Beleuchtungsanordnung
JP2007524881A (ja) 2003-01-23 2007-08-30 ゲルコアー リミテッド ライアビリティ カンパニー 知的led交通信号機モジュール
DE102005032719A1 (de) 2005-07-13 2007-01-25 Siemens Ag Lichtsignalanlage, insbesondere für den Straßenverkehr
DE102010005088A1 (de) 2010-01-15 2011-07-21 Siemens Aktiengesellschaft, 80333 Lichtsignal
DE102010026012A1 (de) 2010-06-29 2011-12-29 Siemens Aktiengesellschaft LED-Lichtsignal
CA2779896A1 (fr) * 2012-06-13 2013-12-13 Clear Blue Technologies Inc. Systeme de surveillance et d'entretien d'installations d'eclairage a alimentation autonome eloignees
EP2677387A1 (fr) 2012-06-18 2013-12-25 Thales Deutschland GmbH Feu de circulation avec stabilisation de la couleur
EP2677841B1 (fr) 2012-06-19 2017-04-19 ams AG Circuit électronique pour contrôler la température d'une diode électroluminescente
US9235899B1 (en) * 2015-06-12 2016-01-12 Google Inc. Simulating an infrared emitter array in a video monitoring camera to construct a lookup table for depth determination

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3165053A1 (fr) 2017-05-10
US20170227203A1 (en) 2017-08-10
ES2712377T3 (es) 2019-05-13
WO2016050521A1 (fr) 2016-04-07
TR201901327T4 (tr) 2019-02-21
PL3165053T3 (pl) 2019-04-30
DK3165053T3 (en) 2019-03-04
US10006616B2 (en) 2018-06-26

Similar Documents

Publication Publication Date Title
EP2809019B1 (fr) Moteur EC doté d'une détermination dynamique de la dégradation du photo-coupleur
EP2131628B1 (fr) Emetteur de signal
DE102006015053A1 (de) LED-Blinker und Fehlerdetektionsverfahren
EP2804163A1 (fr) Procédé et dispositif de détection des pannes dans des lignes de commande de systèmes de signalisation de danger et de systèmes de commande
DE4441070C2 (de) Sicherheitsschalteranordnung
EP2589264B1 (fr) Signal lumineux led
EP3165053B1 (fr) Dispositif et procédé pour contrôler un transmetteur de signal d'un feu de circulation comportant une diode électroluminescente
EP2826052A1 (fr) Circuit à relais de sécurité
EP1999001B1 (fr) Dispositif de commutation et de contrôle d'un système de signaux lumineux pour trafic ferroviaire
EP2439451B1 (fr) Dispositif de détection de la présence d'une flamme
DE102007055521B4 (de) Vorrichtung zur Überwachung eines Überwachungsbereichs
DE102005051212A1 (de) Verfahren zur Überwachung der Funktion eines Leuchtkörpers
DE10018760A1 (de) Schaltung zur Überwachung der Funktion einer Leuchtdiode
DE202007007776U1 (de) Anhängeranschlußgerät
EP4352769A1 (fr) Système de surveillance optique pour élément d'affichage optique
EP2117094B1 (fr) Commutation de surveillance et procédé de contrôle d'une commutation
EP2876509B1 (fr) Commande de sécurité
EP3826875B1 (fr) Système de surveillance automatique de la signalisation de l'état du véhicule et procédé de surveillance d'un dispositif de signalisation de l'état du véhicule
WO2017194546A1 (fr) Ensemble de surveillance destiné à surveiller un capteur de sécurité et procédé pour surveiller un capteur de sécurité
EP2988419A1 (fr) Procede de determination de l'etat d'un element indicateur formant un court-circuit
DE2418527C3 (de) Schaltungsanordnung zur Überwachung von Betriebszuständen und/oder Betriebsfunktionen von Fahrzeugen
AT509969A1 (de) Verfahren und vorrichtung zur durchführung eines schaltvorgangs
EP1333552B1 (fr) Procédé et appareil pour la détection de conditions des défauts dans l'alimentation d'une charge
EP2757381B1 (fr) Appareil E/S doté d'une unité de surveillance du flux de courant et utilisation de celui-ci
DE102011013886A1 (de) Vorrichtung zum automatisierten Steuern einer technischen Anlage

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170203

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20171107

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502015006938

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H05B0033080000

Ipc: F21V0023040000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F21V 23/04 20060101AFI20180627BHEP

Ipc: F21Y 115/10 20160101ALI20180627BHEP

Ipc: H05B 33/08 20060101ALI20180627BHEP

INTG Intention to grant announced

Effective date: 20180718

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS MOBILITY GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1067970

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015006938

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20190225

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190221

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190321

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190221

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2712377

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20190513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190321

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190222

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015006938

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190917

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20200922

Year of fee payment: 6

Ref country code: CZ

Payment date: 20200917

Year of fee payment: 6

Ref country code: NL

Payment date: 20200915

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20201217

Year of fee payment: 6

Ref country code: IT

Payment date: 20200924

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150917

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502015006938

Country of ref document: DE

Owner name: YUNEX GMBH, DE

Free format text: FORMER OWNER: SIEMENS MOBILITY GMBH, 81739 MUENCHEN, DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: PD

Owner name: YUNEX GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: SIEMENS MOBILITY GMBH

Effective date: 20220201

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20220303 AND 20220309

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20210930

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20211001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211001

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502015006938

Country of ref document: DE

Representative=s name: PATENTANWALTSKANZLEI WILHELM & BECK, DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 1067970

Country of ref document: AT

Kind code of ref document: T

Owner name: YUNEX GMBH, DE

Effective date: 20220719

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20221028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210917

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210918

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230912

Year of fee payment: 9

Ref country code: GB

Payment date: 20230921

Year of fee payment: 9

Ref country code: AT

Payment date: 20230915

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230907

Year of fee payment: 9

Ref country code: DE

Payment date: 20230914

Year of fee payment: 9

Ref country code: BE

Payment date: 20230918

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20231001

Year of fee payment: 9