EP3161317B1 - Vacuum pump system - Google Patents
Vacuum pump system Download PDFInfo
- Publication number
- EP3161317B1 EP3161317B1 EP15729446.3A EP15729446A EP3161317B1 EP 3161317 B1 EP3161317 B1 EP 3161317B1 EP 15729446 A EP15729446 A EP 15729446A EP 3161317 B1 EP3161317 B1 EP 3161317B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- vacuum pump
- main
- auxiliary
- outlet
- pump
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 claims description 15
- 238000007906 compression Methods 0.000 claims description 9
- 230000006835 compression Effects 0.000 claims description 8
- 210000000078 claw Anatomy 0.000 claims description 5
- 238000005086 pumping Methods 0.000 description 10
- 238000005265 energy consumption Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/08—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
- F04C18/12—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/08—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
- F04C18/12—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
- F04C18/126—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with radially from the rotor body extending elements, not necessarily co-operating with corresponding recesses in the other rotor, e.g. lobes, Roots type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/08—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
- F04C18/12—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
- F04C18/14—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
- F04C18/16—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C23/00—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
- F04C23/005—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of dissimilar working principle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C25/00—Adaptations of pumps for special use of pumps for elastic fluids
- F04C25/02—Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C28/00—Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
- F04C28/02—Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for several pumps connected in series or in parallel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C28/00—Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
- F04C28/24—Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
- F04C28/26—Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels
Definitions
- the invention relates to a vacuum pump system.
- Vacuum pumps and vacuum pump systems are often used to evacuate chambers in a short time. This is done using dry compressing vacuum pumps such as screw pumps, claw pumps or multi-stage roots pumps. If necessary, oil-sealed vacuum pumps such as rotary slide pumps or barrier slide pumps can also be used. Frequently, several pumps are arranged in series and / or parallel to one another in order to be able to pump large gas volumes in short periods of time.
- Typical applications are lock chambers such as those provided in coating plants.
- the lock chamber has to be pumped down from atmospheric pressure to a transfer pressure in short periods of time. This usually takes place in periods of 20 seconds to 120 seconds to a transfer pressure of 0.1 mbar to 10 mbar.
- a valve which is arranged between the lock chamber and the vacuum pump system, can then be closed. The valve is closed for an idle time that is about one to ten times the pumping time.
- the vacuum pump system must be very large.
- the high pumping speed of the pump systems is not necessary during the idle time or during the hold time. This leads to a high power consumption and thus a high energy consumption.
- a screw pump is used to evacuate a chamber such as a lock chamber or a process chamber
- a gap is provided between the rotor elements of the screw and the housing, which, since it is a dry-compressed vacuum pump, does not contain a lubricant is sealed.
- the gap height depends in particular on the rotor temperature. Since the medium to be conveyed always flows back through the gap, the optimum delivery rate of the pump is only achieved when the operating temperature is reached and thus with a very small gap. As soon as a target pressure is achieved in a process chamber, it would be possible, depending on the type of pump, to reduce the speed of the pump and thus the pump output or, if necessary, even to switch off the pump.
- Vacuum pump can be operated again immediately with full pump power when a target pressure in the process chamber is exceeded in order to avoid an undesired increase in the pressure in the process chamber and excessive pressure fluctuations in the process chamber.
- the pump In the case of lock chambers, the pump must preferably be kept at the nominal speed, otherwise it would first have to be accelerated at the end of the idle time. This would increase the time of the pumping process.
- a vacuum pump system with the features of the preamble of claim 1 is shown in DE 690 00 990 described.
- the object of the invention is to create a vacuum pump system in which, on the one hand, a high, in particular, maximum delivery capacity of the vacuum pump or the vacuum pump system can be ensured in different operating states and, on the other hand, the energy consumption can be reduced.
- the vacuum pump system according to the invention for evacuating a chamber which is in particular a lock or process chamber, has a main vacuum pump.
- the inlet of the main vacuum pump which is a screw pump, can be connected directly or indirectly to the chamber to be evacuated, with a switchable valve optionally being arranged in a connection line between the inlet of the main vacuum pump and the chamber to be evacuated.
- An auxiliary vacuum pump is connected downstream of the main vacuum pump in the conveying direction.
- the main vacuum pump has an outlet area on the outlet side, which is in particular a chamber or a space. A main outlet on the one hand and an inlet of the auxiliary vacuum pump on the other hand are connected to this outlet area. The outlet of the auxiliary vacuum pump is then connected to the main outlet.
- the auxiliary vacuum pump is a Roots, claw or side channel pump.
- a Roots pump has the advantage that it only consumes very little energy during the holding time.
- the pumping speed of the auxiliary vacuum pump is according to the invention less than 1 10 the pumping speed of the main vacuum pump. This results in a high internal compression of the overall pump (main pump and auxiliary pump) and thus low power consumption.
- a non-return valve is arranged in the main outlet.
- This check valve is arranged in the flow direction in the main outlet before the outlet of the auxiliary vacuum pump opens into the main outlet.
- the check valve can be a mechanical or a controllable or switchable check valve.
- the main vacuum pump which is a screw pump
- the auxiliary vacuum pump which is a Roots, claw or side channel pump, in particular a Roots pump
- the pumps are connected to a common drive motor. This can reduce manufacturing and energy costs.
- At least one delivery element of the main vacuum pump and at least one delivery element of the auxiliary vacuum pump are arranged on a common shaft.
- both delivery elements of the main vacuum pump are arranged on a common shaft with one of the two delivery elements of the auxiliary vacuum pump. This results in a very compact and energy-saving design.
- the drive motor drives one of the two shafts and synchronous driving of the second shaft is ensured via an interposed gear or directly intermeshing gearwheels.
- the main vacuum pump preferably has an internal compression which is> 2 and particularly preferably> 3.
- the auxiliary vacuum pump preferably has little or no internal compression, which is in particular ⁇ 2. It is particularly preferred that the auxiliary vacuum pump has no or at least almost no internal compression. This simplifies production; Always compressing the auxiliary pump is not very worthwhile due to the large gradation to the main pump.
- the drawing shows a schematic sectional view of a preferred embodiment of the vacuum pump system according to the invention.
- a screw pump 12 is arranged in a common housing 10.
- the screw pump 12 has two screw-shaped rotor elements 18, each arranged on a rotor shaft 14, 16.
- the two rotor shafts 16, 18 protrude through an intermediate wall 20 of the housing and each carry a rotor element 22 of a Roots pump 24.
- the shaft 14 on the left in the drawing is also connected to an electric drive motor 26.
- the electric motor 26 drives the shaft 14.
- the shaft 16 is driven via gears 28 which are each connected to one of the two shafts 14, 16.
- An inlet 30 of the main vacuum pump 12 is connected, for example, via a connecting line 31 to a chamber to be evacuated, not shown.
- the screw pump 12 then conveys the medium into an outlet region 32 or an outlet chamber 32. From this the medium passes through the main outlet 34.
- a check valve 36 is also arranged in the main outlet 34.
- a small volume of medium is sucked in through an inlet 38 of the auxiliary vacuum pump 24 and expelled through an outlet 40 of the auxiliary vacuum pump.
- the outlet 40 is connected to the main outlet 34, the connection taking place in the flow direction in the main outlet 34 downstream of the check valve 36.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
Description
Die Erfindung betrifft ein Vakuumpumpen-System.The invention relates to a vacuum pump system.
Vakuumpumpen und Vakuumpumpen-Systeme werden häufig eingesetzt, um Kammern in kurzer Zeit zu evakuieren. Dies erfolgt unter Verwendung von trockenverdichtenden Vakuumpumpen wie beispielsweise Schraubenpumpen, Klauenpumpen oder Multi-Stage-Roots-Pumpen. Gegebenenfalls können auch ölgedichtete Vakuumpumpen wie Drehschiebepumpen oder Sperrschiebepumpen verwendet werden. Häufig werden auch mehrere Pumpen in Reihe und/oder parallel zueinander angeordnet, um in kurzen Zeiträumen große Gasvolumina pumpen zu können.Vacuum pumps and vacuum pump systems are often used to evacuate chambers in a short time. This is done using dry compressing vacuum pumps such as screw pumps, claw pumps or multi-stage roots pumps. If necessary, oil-sealed vacuum pumps such as rotary slide pumps or barrier slide pumps can also be used. Frequently, several pumps are arranged in series and / or parallel to one another in order to be able to pump large gas volumes in short periods of time.
Typische Anwendungen sind Schleusenkammern, wie sie beispielsweise in Beschichtungsanlagen vorgesehen sind. Die Schleusenkammer muss hierbei in kurzen Zeiträumen von Atmosphärendruck auf einen Übergabedruck abgepumpt werden. Dies erfolgt üblicherweise in Zeiträumen von 20 Sekunden bis 120 Sekunden auf einen Übergabedruck von 0,1 mbar bis 10 mbar. Im Anschluss kann ein Ventil, das zwischen der Schleusenkammer und dem Vakuumpumpen-System angeordnet ist, geschlossen werden. Das Ventil ist über eine Leerlaufzeit, die etwa das Ein- bis Zehnfache der Abpumpzeit beträgt, geschlossen.Typical applications are lock chambers such as those provided in coating plants. The lock chamber has to be pumped down from atmospheric pressure to a transfer pressure in short periods of time. This usually takes place in periods of 20 seconds to 120 seconds to a transfer pressure of 0.1 mbar to 10 mbar. A valve, which is arranged between the lock chamber and the vacuum pump system, can then be closed. The valve is closed for an idle time that is about one to ten times the pumping time.
Eine weitere typische Anwendung sind große Prozesskammern, wie sie beispielsweise zur Wärmebehandlung oder Veredelung von Metallen verwendet werden. In diesem Anwendungsfall sind typische Abpumpzeiten 2 Minuten bis 30 Minuten. Nach der Abpumpzeit ist die Prozesskammer auf dem gewünschten niedrigen Druckniveau. Es fließt jedoch weiterhin ein relativ niedriger Prozessgasstrom, so dass kontinuierlich ein kleiner Gasstrom abgegrenzt werden muss. Hierbei handelt es sich um die Haltezeit, die ungefähr das Zweifache bis Zehnfache der Abpumpzeit beträgt.Another typical application is large process chambers, such as those used for heat treatment or the refining of metals. In this application, typical pumping times are 2 minutes to 30 minutes. After the pumping down time, the process chamber is at the desired low pressure level. However, a relatively low process gas flow continues to flow, so that a small gas flow has to be delimited continuously. This is the hold time, which is approximately two to ten times the pumping time.
Sowohl bei Schleusenkammern als auch bei entsprechend großen Prozesskammern ist es zur Realisierung kurzer Abpumpzeiten erforderlich, dass das Vakuumpumpensystem sehr groß dimensioniert ist. Während der Leerlaufzeit bzw. während der Haltezeit sind die großen Saugvermögen der Pumpsysteme jedoch nicht notwendig. Dies führt zu einer hohen Stromaufnahme und somit einem hohen Energieverbrauch.Both with lock chambers and with correspondingly large process chambers, in order to achieve short pumping times, the vacuum pump system must be very large. However, the high pumping speed of the pump systems is not necessary during the idle time or during the hold time. This leads to a high power consumption and thus a high energy consumption.
Wird beispielsweise eine Schraubenpumpe zur Evakuierung einer Kammer wie einer Schleusenkammer oder einer Prozesskammer eingesetzt, so besteht die Problematik, dass zwischen den Rotorelementen der Schraube und dem Gehäuse ein Spalt vorgesehen ist, der, da es sich um eine trockenverdichtete Vakuumpumpe handelt, nicht durch ein Schmiermittel abgedichtet ist. Die Spalthöhe hängt hierbei insbesondere von der Rotortemperatur ab. Da durch den Spalt stets ein Rückströmen des zu fördernden Mediums erfolgt, wird die optimale Förderleistung der Pumpe erst bei Erreichen der Betriebstemperatur und somit bei einem sehr geringen Spalt erzielt. Sobald ein Solldruck in einer Prozesskammer erzielt ist, wäre es je nach Pumptyp möglich, die Drehzahl der Pumpe und somit die Pumpleistung zu reduzieren oder gegebenenfalls die Pumpe sogar auszuschalten. Dies hat jedoch den Nachteil, dass, sobald der Druck in der Prozesskammer den Solldruck wieder übersteigt, zunächst die Pumpe wieder auf Betriebstemperatur gebracht werden muss, bevor die volle Pumpleistung erzielt wird. Dies würde zu nicht akzeptablen Druckschwankungen in der Prozesskammer führen. Es ist erforderlich, dass die Vakuumpumpe bei Überschreiten eines Solldrucks in der Prozesskammer unmittelbar wieder mit voller Pumpleistung betrieben werden kann, um ein ungewolltes Ansteigen des Drucks in der Prozesskammer und zu starke Druckschwankungen in der Prozesskammer zu vermeiden.If, for example, a screw pump is used to evacuate a chamber such as a lock chamber or a process chamber, the problem arises that a gap is provided between the rotor elements of the screw and the housing, which, since it is a dry-compressed vacuum pump, does not contain a lubricant is sealed. The gap height depends in particular on the rotor temperature. Since the medium to be conveyed always flows back through the gap, the optimum delivery rate of the pump is only achieved when the operating temperature is reached and thus with a very small gap. As soon as a target pressure is achieved in a process chamber, it would be possible, depending on the type of pump, to reduce the speed of the pump and thus the pump output or, if necessary, even to switch off the pump. However, this has the disadvantage that as soon as the pressure in the process chamber again exceeds the setpoint pressure, the pump must first be brought back to operating temperature before the full pump output can be achieved. This would lead to unacceptable pressure fluctuations in the process chamber. It is required that the Vacuum pump can be operated again immediately with full pump power when a target pressure in the process chamber is exceeded in order to avoid an undesired increase in the pressure in the process chamber and excessive pressure fluctuations in the process chamber.
Bei Schleusenkammern muss die Pumpe vorzugsweise auf Nenndrehzahl gehalten werden, da sie sonst zum Ende der Leerlaufzeit erst beschleunigt werden müsste. Dies würde den Abpumpvorgang zeitlich verlängern.In the case of lock chambers, the pump must preferably be kept at the nominal speed, otherwise it would first have to be accelerated at the end of the idle time. This would increase the time of the pumping process.
Die Problematik, dass die Pumpe aufgrund von Dichtspalten auf Betriebstemperatur gehalten werden muss, um ein maximales Fördervolumen zu gewährleisten, besteht auch bei anderen trockenverdichtenden Vakuumpumpen, wie Klauenpumpen, Roots-Pumpen und dergleichen.The problem that the pump has to be kept at operating temperature due to sealing gaps in order to ensure a maximum delivery volume also exists with other dry-compressing vacuum pumps, such as claw pumps, Roots pumps and the like.
Zur Reduzierung des Energieverbrauchs von Pumpen und Pumpensystemen während der Leerlauf- bzw. Haltezeit sind unterschiedliche Lösungsansätze bekannt:
Es besteht die Möglichkeit, Vakuumpumpen mit hohem eingebauten Volumenverhältnis einzusetzen. Die technisch realisierbaren Volumenverhältnisse sind jedoch durch die Fertigungstechnik, den Bauaufwand und durch Anforderungen an die Robustheit und Dichtheit der Pumpstufen beschränkt. Insbesondere kann hierdurch nur eine geringe Reduzierung der Energieaufnahme erzielt werden. Zudem sind Lösungen erforderlich, die beim Abpumpvorgang auf hohe innere Verdichtung eine Überkompression vermeiden.Different approaches are known to reduce the energy consumption of pumps and pump systems during the idling or holding time:
It is possible to use vacuum pumps with a high built-in volume ratio. However, the technically feasible volume ratios are limited by the manufacturing technology, the construction costs and the requirements for the robustness and tightness of the pump stages. In particular, only a slight reduction in energy consumption can be achieved in this way. In addition, solutions are required that avoid over-compression during the pumping process to high internal compression.
Des Weiteren ist eine Kombination von Vorvakuumpumpen mit den in Reihe geschalteten Roots-Pumpen bekannt. Durch diese Lösung kann ein großes Volumenverhältnis der gesamten Pumpkombination erreicht werden. Nachteilig ist allerdings, dass die Roots-Pumpe bei hohen Ansaugdrücken von beispielsweise ca. 100 mbar und mehr, nur wenig Unterstützung für die Vorpumpe liefert. Dies liegt darin begründet, dass ansonsten ein sehr großer Motor an der Roots-Pumpe installiert werden müsste und die Pumpe thermisch stark belastet würde.Furthermore, a combination of backing pumps with the Roots pumps connected in series is known. With this solution, a large volume ratio of the entire pump combination can be achieved. However, it is disadvantageous that the Roots pump at high suction pressures of, for example, approx. 100 mbar and more, only provides little support for the Backing pump supplies. This is due to the fact that otherwise a very large motor would have to be installed on the Roots pump and the pump would be subjected to high thermal loads.
Ein Vakuumpumpen-System mit den Merkmalen des Oberbegriffs des Anspruchs 1 ist in
Aufgabe der Erfindung ist es, ein Vakuumpumpen-System zu schaffen, bei dem in unterschiedlichen Betriebszuständen einerseits eine hohe insbesondere maximale Förderleistung der Vakuumpumpe, bzw. des Vakuumpumpen-Systems gewährleistet werden kann und andererseits der Energieverbrauch reduziert werden kann.The object of the invention is to create a vacuum pump system in which, on the one hand, a high, in particular, maximum delivery capacity of the vacuum pump or the vacuum pump system can be ensured in different operating states and, on the other hand, the energy consumption can be reduced.
Die Lösung der Aufgabe erfolgt erfindungsgemäß durch ein Vakuumpumpen-System gemäß Anspruch 1.The object is achieved according to the invention by a vacuum pump system according to claim 1.
Das erfindungsgemäße Vakuumpumpen-System zur Evakuierung einer Kammer, bei der es sich insbesondere um eine Schleusen- oder Prozesskammer handelt, weist eine Hauptvakuumpumpe auf. Der Einlass der Hauptvakuumpumpe, bei der es sich um eine Schraubenpumpe handelt, ist mit der zu evakuierenden Kammer mittelbar oder unmittelbar verbindbar, wobei gegebenenfalls in einer Verbindungsleitung zwischen dem Einlass der Hauptvakuumpumpe und der zu evakuierenden Kammer ein schaltbares Ventil angeordnet sein kann. Mit der Hauptvakuumpumpe ist in Förderrichtung nachgeordnet eine Hilfsvakuumpumpe verbunden. Die Hauptvakuumpumpe weist auslassseitig einen Auslassbereich auf, bei dem es sich insbesondere um eine Kammer bzw. einen Raum handelt. Mit diesem Auslassbereich sind einerseits ein Hauptauslass und andererseits ein Einlass der Hilfsvakuumpumpe verbunden. Der Auslass der Hilfsvakuumpumpe ist sodann mit dem Hauptauslass verbunden.The vacuum pump system according to the invention for evacuating a chamber, which is in particular a lock or process chamber, has a main vacuum pump. The inlet of the main vacuum pump, which is a screw pump, can be connected directly or indirectly to the chamber to be evacuated, with a switchable valve optionally being arranged in a connection line between the inlet of the main vacuum pump and the chamber to be evacuated. An auxiliary vacuum pump is connected downstream of the main vacuum pump in the conveying direction. The main vacuum pump has an outlet area on the outlet side, which is in particular a chamber or a space. A main outlet on the one hand and an inlet of the auxiliary vacuum pump on the other hand are connected to this outlet area. The outlet of the auxiliary vacuum pump is then connected to the main outlet.
Bei der Hilfsvakuumpumpe handelt es sich um eine Roots-, Klauen- oder Seitenkanalpumpe. Insbesondere das Vorsehen einer Roots-Pumpe hat den Vorteil, dass diese während der Haltezeit nur eine sehr geringe Energieaufnahme aufweist.The auxiliary vacuum pump is a Roots, claw or side channel pump. In particular, the provision of a Roots pump has the advantage that it only consumes very little energy during the holding time.
Das Saugvermögen der Hilfsvakuumpumpe ist erfindungsgemäß kleiner als
Um ein Zurückströmen von Medium, das von der Hilfsvakuumpumpe in den Hauptauslass gepumpt wurde, zurück in den Auslassbereich der Hauptvakuumpumpe zu vermeiden, ist in dem Hauptauslass ein Rückschlagventil angeordnet. Dieses Rückschlagventil ist in Strömungsrichtung in dem Hauptauslass angeordnet, bevor in den Hauptauslass der Auslass der Hilfsvakuumpumpe einmündet. Bei dem Rückschlagventil kann es sich um ein mechanisches oder auch um ein regel- bzw. schaltbares Rückschlagventil handeln.In order to prevent medium that was pumped into the main outlet by the auxiliary vacuum pump from flowing back into the outlet area of the main vacuum pump, a non-return valve is arranged in the main outlet. This check valve is arranged in the flow direction in the main outlet before the outlet of the auxiliary vacuum pump opens into the main outlet. The check valve can be a mechanical or a controllable or switchable check valve.
Vorzugsweise sind die Hauptvakuumpumpe, bei der es sich um eine Schraubenpumpe handelt, und die Hilfsvakuumpumpe, bei der es sich um eine Roots-, Klauen oder Seitenkanalpumpe, insbesondere um eine Roots-Pumpe handelt, in einem gemeinsamen Gehäuse angeordnet. Hierdurch ist eine sehr kompakte Bauweise möglich. Des Weiteren ist es bevorzugt, dass die Pumpen mit einem gemeinsamen Antriebsmotor verbunden sind. Hierdurch können Herstellungs- und Energiekosten reduziert werden.The main vacuum pump, which is a screw pump, and the auxiliary vacuum pump, which is a Roots, claw or side channel pump, in particular a Roots pump, are preferably arranged in a common housing. This enables a very compact design. Furthermore, it is preferred that the pumps are connected to a common drive motor. This can reduce manufacturing and energy costs.
Bei einer besonders bevorzugten Ausführungsform sind zumindest ein Förderelement der Hauptvakuumpumpe und zumindest ein Förderelement der Hilfsvakuumpumpe auf einer gemeinsamen Welle angeordnet.In a particularly preferred embodiment, at least one delivery element of the main vacuum pump and at least one delivery element of the auxiliary vacuum pump are arranged on a common shaft.
Da als Hauptvakuumpumpe eine Schraubenpumpe vorgesehen ist und wenn als Hilfsvakuumpumpe eine Roots-Pumpe vorgesehen ist, ist es besonders bevorzugt, dass beide Förderelemente der Hauptvakuumpumpe mit jeweils einem der beiden Förderelemente der Hilfsvakuumpumpe auf einer gemeinsamen Welle angeordnet sind. Hierdurch ist eine sehr kompakte und energiesparende Bauweise realisiert. Besonders bevorzugt ist es hierbei wiederum, dass der Antriebsmotor eine der beiden Wellen antreibt und über ein zwischengeschaltetes Getriebe oder unmittelbar ineinander greifende Zahnräder ein synchrones Antreiben der zweiten Welle gewährleistet ist.Since a screw pump is provided as the main vacuum pump and if a Roots pump is provided as the auxiliary vacuum pump, it is particularly preferred that both delivery elements of the main vacuum pump are arranged on a common shaft with one of the two delivery elements of the auxiliary vacuum pump. This results in a very compact and energy-saving design. Again, it is particularly preferred that the drive motor drives one of the two shafts and synchronous driving of the second shaft is ensured via an interposed gear or directly intermeshing gearwheels.
Die Hauptvakuumpumpe weist vorzugsweise eine innere Verdichtung auf, die >2 und besonders bevorzugt >3 ist. Die Hilfsvakuumpumpe weist vorzugsweise keine oder eine sehr geringe innere Verdichtung auf, die insbesondere <2 ist. Besonders bevorzugt ist es, dass die Hilfsvakuumpumpe keine oder zumindest annähernd keine innere Verdichtung aufweist. Dies vereinfacht die Fertigung; eine immer Verdichtung der Hilfspumpe ist aufgrund der großen Abstufung zur Hauptpumpe wenig lohnenswert.The main vacuum pump preferably has an internal compression which is> 2 and particularly preferably> 3. The auxiliary vacuum pump preferably has little or no internal compression, which is in particular <2. It is particularly preferred that the auxiliary vacuum pump has no or at least almost no internal compression. This simplifies production; Always compressing the auxiliary pump is not very worthwhile due to the large gradation to the main pump.
Nachfolgend wird die Erfindung anhand einer bevorzugten Ausführungsform, unter Bezugnahme auf die anliegende Zeichnung näher erläutert.The invention is explained in more detail below on the basis of a preferred embodiment with reference to the accompanying drawing.
Die Zeichnung zeigt eine schematische Schnittansicht einer bevorzugten Ausführungsform des erfindungsgemäßen Vakuumpumpen-Systems.The drawing shows a schematic sectional view of a preferred embodiment of the vacuum pump system according to the invention.
In der schematischen Darstellung einer bevorzugten Ausführungsform der Erfindung ist in einem gemeinsamen Gehäuse 10 eine Schraubenpumpe 12 angeordnet. Die Schraubenpumpe 12 weist zwei jeweils auf einer Rotorwelle 14, 16 angeordnete schraubenförmige Rotorelemente 18 auf.In the schematic representation of a preferred embodiment of the invention, a
Die beiden Rotorwellen 16, 18 ragen durch eine Zwischenwand 20 des Gehäuses hindurch und tragen jeweils ein Rotorelement 22 einer Roots-Pumpe 24.The two
Die in der Zeichnung linke Welle 14 ist ferner mit einem elektrischen Antriebsmotor 26 verbunden.The
Der Elektromotor 26 treibt die Welle 14 an. Die Welle 16 wird über Zahnräder 28, die jeweils mit einer der beiden Wellen 14, 16 verbunden sind, angetrieben.The
Ein Einlass 30 der Hauptvakuumpumpe 12 ist beispielsweise über eine Verbindungsleitung 31 mit einer nicht dargestellten, zu evakuierenden Kammer verbunden. Die Schraubenpumpe 12 fördert das Medium sodann in einen Auslassbereich 32 bzw. eine Auslasskammer 32. Aus dieser gelangt das Medium durch den Hauptauslass 34. In dem Hauptauslass 34 ist ferner ein Rückschlagventil 36 angeordnet.An
Insbesondere im Haltebetrieb wird ein geringes Volumen an Medium durch einen Einlass 38 der Hilfsvakuumpumpe 24 angesogen und durch einen Auslass 40 der Hilfsvakuumpumpe ausgestoßen. Der Auslass 40 ist mit dem Hauptauslass 34 verbunden, wobei die Verbindung in Strömungsrichtung in dem Hauptauslass 34 hinter dem Rückschlagventil 36 erfolgt.In particular in holding mode, a small volume of medium is sucked in through an
Claims (10)
- A vacuum pump system for evacuating a chamber, in particular a lock or a process chamber, comprising
a main vacuum pump (12) configured as a screw pump whose inlet (30) is adapted to be connected to the chamber to be evacuated,
an auxiliary vacuum pump (24) downstream of said main vacuum pump (12) as seen in the direction of flow,
wherein the main vacuum pump (12) comprises an outlet area (32) which is connected to a main outlet (34) on the one hand and an inlet (38) of the auxiliary vacuum pump (24) on the other hand, and
wherein an outlet (40) of the auxiliary vacuum pump is connected to the main outlet (34),
characterized in that
the auxiliary vacuum pump (24) is configured as a Roots, claw or side channel pump, and
the suction capacity of the auxiliary vacuum pump (24) is smaller than - The vacuum pump system according to claim 1, characterized in that in the main outlet (34) a check valve (36) is arranged which prevents a medium from flowing back into the outlet area (32).
- The vacuum pump system according to claim 2, characterized in that the outlet (40) of the auxiliary vacuum pump (24) is connected to the main outlet (34) at a location downstream of the check valve (36) as seen in the direction of flow.
- The vacuum pump system according to any one of claims 1-3, characterized in that the main vacuum pump (12) and the auxiliary vacuum pump (24) are arranged in a common housing (10).
- The vacuum pump system according to any one of claims 1-4, characterized in that the main vacuum pump (12) and the auxiliary vacuum pump (24) are connected to a common drive motor (26).
- The vacuum pump system according to any one of claims 1-5, characterized in that at least one feeder element (18) of the main vacuum pump (12) and at least one feeder element (22) of the auxiliary vacuum pump (24) are arranged on a common shaft (14, 16).
- The vacuum pump system according to claim 6, characterized in that the main vacuum pump (12) and the auxiliary vacuum pump (24) each comprise two feeder elements (18, 22), wherein the two feeder elements (18) of the main vacuum pump (12), together with one of the two feeder elements (22) of the auxiliary vacuum pump (24) are respectively arranged on a common shaft (14, 16).
- The vacuum pump system according to any one of claims 6 or 7 in combination with claim 5, characterized in that the drive motor (26) drives one of the two shafts (14).
- The vacuum pump system according to any one of claims 1-8, characterized in that the main vacuum pump (12) comprises an internal compression of at least >2.
- The vacuum pump system according to any one of claims 1-9, characterized in that the auxiliary vacuum pump (24) comprises an internal compression of less than 2, but in particular no internal compression at all.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE202014005279.4U DE202014005279U1 (en) | 2014-06-26 | 2014-06-26 | Vacuum system |
PCT/EP2015/063287 WO2015197396A1 (en) | 2014-06-26 | 2015-06-15 | Vacuum pump system |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3161317A1 EP3161317A1 (en) | 2017-05-03 |
EP3161317B1 true EP3161317B1 (en) | 2020-12-30 |
Family
ID=53404546
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15729446.3A Active EP3161317B1 (en) | 2014-06-26 | 2015-06-15 | Vacuum pump system |
Country Status (7)
Country | Link |
---|---|
US (1) | US10465686B2 (en) |
EP (1) | EP3161317B1 (en) |
JP (1) | JP6615132B2 (en) |
KR (1) | KR101878088B1 (en) |
CN (1) | CN106662106A (en) |
DE (1) | DE202014005279U1 (en) |
WO (1) | WO2015197396A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9982666B2 (en) * | 2015-05-29 | 2018-05-29 | Agilient Technologies, Inc. | Vacuum pump system including scroll pump and secondary pumping mechanism |
US10094381B2 (en) * | 2015-06-05 | 2018-10-09 | Agilent Technologies, Inc. | Vacuum pump system with light gas pumping and leak detection apparatus comprising the same |
CN109162925A (en) * | 2018-10-31 | 2019-01-08 | 浙江羿阳太阳能科技有限公司 | A kind of anti-return vacuum pump for ingot furnace |
FR3094762B1 (en) * | 2019-04-05 | 2021-04-09 | Pfeiffer Vacuum | Dry type vacuum pump and pumping installation |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4504201A (en) * | 1982-11-22 | 1985-03-12 | The Boc Group Plc | Mechanical pumps |
GB8808608D0 (en) * | 1988-04-12 | 1988-05-11 | Boc Group Plc | Dry pump with booster |
FR2647853A1 (en) | 1989-06-05 | 1990-12-07 | Cit Alcatel | DRY PRIMARY PUMP WITH TWO FLOORS |
KR100190310B1 (en) * | 1992-09-03 | 1999-06-01 | 모리시따 요오이찌 | Two stage primary dry pump |
JPH0828471A (en) * | 1994-07-11 | 1996-01-30 | Matsushita Electric Ind Co Ltd | Positive displacement pump |
KR20010066569A (en) * | 1999-12-31 | 2001-07-11 | 양재신 | Variable flow oil pump |
GB0004404D0 (en) * | 2000-02-24 | 2000-04-12 | Boc Group Plc | Improvements in vacuum pumps |
FR2822200B1 (en) * | 2001-03-19 | 2003-09-26 | Cit Alcatel | PUMPING SYSTEM FOR LOW THERMAL CONDUCTIVITY GASES |
JP2003022686A (en) * | 2001-07-09 | 2003-01-24 | Mitsubishi Electric Corp | Semiconductor integrated circuit device |
WO2003023229A1 (en) * | 2001-09-06 | 2003-03-20 | Ulvac, Inc. | Vacuum pumping system and method of operating vacuum pumping system |
US6589023B2 (en) * | 2001-10-09 | 2003-07-08 | Applied Materials, Inc. | Device and method for reducing vacuum pump energy consumption |
JP2003343469A (en) * | 2002-03-20 | 2003-12-03 | Toyota Industries Corp | Vacuum pump |
JP2005155540A (en) * | 2003-11-27 | 2005-06-16 | Aisin Seiki Co Ltd | Multistage dry-sealed vacuum pump |
DE102005008887A1 (en) * | 2005-02-26 | 2006-08-31 | Leybold Vacuum Gmbh | Single-shaft vacuum displacement pump has two pump stages each with pump rotor and drive motor supported by the shaft enclosed by a stator housing |
KR100656070B1 (en) * | 2005-12-28 | 2006-12-11 | 두산인프라코어 주식회사 | Apparatus for controlling variable displaement hydraulic pumps of a wheel loader |
TWI438342B (en) * | 2006-07-28 | 2014-05-21 | Lot Vacuum Co Ltd | Complex dry vacuum pump having root and screw rotors |
TWI467092B (en) * | 2008-09-10 | 2015-01-01 | Ulvac Inc | Vacuum pumping device |
KR101506743B1 (en) * | 2008-12-23 | 2015-03-27 | 두산인프라코어 주식회사 | Hydraulic pump control apparatus for construction machinery |
DE202009003980U1 (en) * | 2009-03-24 | 2010-08-19 | Vacuubrand Gmbh + Co Kg | vacuum pump |
DE102010055798A1 (en) | 2010-08-26 | 2012-03-01 | Vacuubrand Gmbh + Co Kg | vacuum pump |
CN102828952B (en) * | 2012-07-24 | 2015-04-08 | 中国科学院沈阳科学仪器股份有限公司 | Dry type vacuum pump unit and a dry type vacuum pump with same |
CN102828652B (en) | 2012-09-13 | 2015-08-05 | 无锡山羊轻工机电有限公司 | A kind of ratchet wheel type tightener |
DE102012220442A1 (en) * | 2012-11-09 | 2014-05-15 | Oerlikon Leybold Vacuum Gmbh | Vacuum pump system for evacuating a chamber and method for controlling a vacuum pump system |
-
2014
- 2014-06-26 DE DE202014005279.4U patent/DE202014005279U1/en not_active Expired - Lifetime
-
2015
- 2015-06-15 JP JP2016575561A patent/JP6615132B2/en active Active
- 2015-06-15 WO PCT/EP2015/063287 patent/WO2015197396A1/en active Application Filing
- 2015-06-15 EP EP15729446.3A patent/EP3161317B1/en active Active
- 2015-06-15 US US15/320,169 patent/US10465686B2/en active Active
- 2015-06-15 CN CN201580031572.9A patent/CN106662106A/en active Pending
- 2015-06-15 KR KR1020167036336A patent/KR101878088B1/en active IP Right Grant
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
JP2017520715A (en) | 2017-07-27 |
DE202014005279U1 (en) | 2015-10-05 |
CN106662106A (en) | 2017-05-10 |
JP6615132B2 (en) | 2019-12-11 |
WO2015197396A1 (en) | 2015-12-30 |
KR20170010410A (en) | 2017-01-31 |
US10465686B2 (en) | 2019-11-05 |
US20170122319A1 (en) | 2017-05-04 |
KR101878088B1 (en) | 2018-07-12 |
EP3161317A1 (en) | 2017-05-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3161317B1 (en) | Vacuum pump system | |
DE3740726A1 (en) | AIR CONDITIONING OR COOLING SYSTEM WITH A SPIRAL COMPRESSOR FOR THE REFRIGERANT | |
EP2834542B1 (en) | Closed hydraulic circuit | |
WO2016207106A1 (en) | Vacuum pump system | |
DE102010009083B4 (en) | vacuum pump | |
WO2015074865A1 (en) | Vacuum pump system and method for operating a vacuum pump system | |
DE112020001762T5 (en) | Dry vacuum pump and pumping system | |
EP2419641A2 (en) | Roughing pump method for a positive displacement pump | |
EP1400313B1 (en) | Hydraulically operated ratchet spanner with a double-acting hydraulic cylinder/piston drive | |
DE1284156B (en) | Gear pump for supplying internal combustion engines with fuel | |
WO2018228784A1 (en) | Multi-stage rotary piston pump | |
EP1920158B1 (en) | Rotary pump | |
WO2006066994A1 (en) | Piston pump provided with at least one step piston element | |
EP2783115B1 (en) | Liquid ring vacuum pump | |
DE3046973A1 (en) | Vane compressors | |
DE60105249T2 (en) | vacuum pump | |
DE10305585B3 (en) | Rotary pump for hydraulic fluid has slide between compression and induction connections to alter effective size of at least one connection | |
WO2017215818A1 (en) | Feed pump for cryogenic fuels and fuel delivery system | |
DE102009023507A1 (en) | Screw type compressor aggregate i.e. pressurized air compressor aggregate, has pressure line exhibiting trap, where proportion between common geometrical chamber volumes in front of trap is larger than dimension of operating chamber | |
CH621854A5 (en) | Roots pump | |
DE102015011732B3 (en) | Hydrostatic pump | |
DE2462187A1 (en) | Vacuum pump with preceeding side channel ring compressor - drive of ring compressor is controllable by output requirements in terms of revolutions | |
EP1509698A1 (en) | Variable volume flow internal gear pump | |
DE102012012973A1 (en) | Hydrostatic machine has drive shaft rotatably connected to engine, which is accommodated in housing interior, and hydrostatic displacement pump is provided to discharge leakage oil from housing interior and is coupled with drive shaft | |
DE102012221492B4 (en) | Diaphragm pump with eccentric drive and integrated shut-off valve |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20161220 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: MUELLER, ROLAND Inventor name: SCHILLER, DIRK Inventor name: STRATMANN, DIRK Inventor name: DREIFERT, THOMAS Inventor name: SCHNEIDENBACH, DANIEL Inventor name: PELIKAN, MAX |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200918 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502015014076 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1350199 Country of ref document: AT Kind code of ref document: T Effective date: 20210115 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: ISLER AND PEDRAZZINI AG, CH |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210330 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210330 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20201230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210430 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210430 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502015014076 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
26N | No opposition filed |
Effective date: 20211001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210615 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210615 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210630 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1350199 Country of ref document: AT Kind code of ref document: T Effective date: 20210615 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210615 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20150615 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230423 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20230628 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20230702 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240620 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240621 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240701 Year of fee payment: 10 |