EP3159967A1 - Multiband gnss antenna - Google Patents
Multiband gnss antenna Download PDFInfo
- Publication number
- EP3159967A1 EP3159967A1 EP16194780.9A EP16194780A EP3159967A1 EP 3159967 A1 EP3159967 A1 EP 3159967A1 EP 16194780 A EP16194780 A EP 16194780A EP 3159967 A1 EP3159967 A1 EP 3159967A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- dielectric resonator
- antenna
- resonator antenna
- base plate
- dielectric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002184 metal Substances 0.000 claims description 16
- 230000008878 coupling Effects 0.000 claims description 6
- 238000010168 coupling process Methods 0.000 claims description 6
- 238000005859 coupling reaction Methods 0.000 claims description 6
- 230000001419 dependent effect Effects 0.000 claims description 3
- 230000005684 electric field Effects 0.000 claims description 3
- 239000006112 glass ceramic composition Substances 0.000 claims description 3
- 239000000919 ceramic Substances 0.000 claims description 2
- 230000010287 polarization Effects 0.000 description 6
- 230000006978 adaptation Effects 0.000 description 4
- 239000012790 adhesive layer Substances 0.000 description 2
- 230000004323 axial length Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0485—Dielectric resonator antennas
- H01Q9/0492—Dielectric resonator antennas circularly polarised
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/30—Arrangements for providing operation on different wavebands
- H01Q5/307—Individual or coupled radiating elements, each element being fed in an unspecified way
- H01Q5/342—Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
- H01Q5/357—Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
- H01Q9/0414—Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
- H01Q9/0428—Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave
- H01Q9/0435—Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave using two feed points
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/28—Combinations of substantially independent non-interacting antenna units or systems
Definitions
- the invention a multiband GNSS antenna.
- GNSS antennas When using GNSS antennas in, for example, automobiles or aircraft, great efforts have been made to make the antennas known in the art smaller. This is particularly important because GNSS antennas must often be mounted outside a vehicle or at least on the outside surface of a vehicle or aircraft. In order to be able to integrate GNSS antennas better in vehicles, airplanes, etc., it is constantly trying to make these antennas smaller.
- multi-band GNSS antennas so that as many signal bands as possible can be covered.
- the use of multiband GNSS antennas is not possible or very difficult for antennas with very small dimensions.
- antenna arrays are advantageous to suppress interference, for example, by maximizing signals originating from the satellite and minimizing spurious signals from other directions.
- GNSS antennas can now measure about 1 cm in size and can be used in cell phones, for example.
- a strong limitation of the performance is accepted: For example, the achievable gain is well below 0 dBi.
- the antennas behave as linearly as possible in terms of their polarization, while RHCP polarization (right hand circular polarization) would be desirable. This corresponds to the polarization of the satellite signals.
- Such antennas can thus not be used for precise and trouble-free navigation.
- multiband antennas covering several frequency bands are used, for example the L1 / E1 band as well as one or more of the E5 / L2 / E6 bands, then larger antenna elements must be used. Furthermore, special measures must be taken for the adaptation to the different frequency bands. In the prior art there exist either antennas that are multiband capable but whose bandwidth decreases with the size of the antenna or broadband antennas are known which cover the entire L band and not just the navigation signal bands. However, the latter can only be miniaturized to a very limited extent.
- the object of the invention is to provide a multiband GNSS antenna with reduced dimensions.
- the multiband GNSS antenna according to the invention comprises an electrically conductive base plate and a first dielectric resonator antenna which is arranged on the base plate.
- a first dielectric resonator antenna which is arranged on the base plate.
- a second dielectric resonator antenna is arranged directly above the first dielectric resonator antenna on the side facing away from the base plate. Immediately, it is understood that no other components are disposed between the first and second dielectric resonator antennas so that the first dielectric resonator antenna contacts the second dielectric resonator antenna. If, for example, the first and second dielectric resonator antennas are circular-cylindrical, then the lower base surface of the second dielectric resonator antenna can be in full contact with the upper base surface of the first dielectric resonator antenna. An adhesive layer may be disposed between the two dielectric resonator antennas to connect the two antennas together. Furthermore, the first dielectric resonator antenna may be fixed on the base plate by means of an adhesive. According to the invention, the first dielectric resonator antenna and the second dielectric resonator antenna have different diameters and thus different resonance frequencies.
- the multiband GNSS antenna according to the invention can be used along a wider frequency band, although it has smaller dimensions.
- a suitable material for the electrical resonator antennas in both the upper and in the lower navigation band a gain of more than 0 dBi can be achieved, while the antenna size does not exceed 3.5 cm x 3.5 cm x 4 cm.
- a glass-ceramic material can be used which has a dielectric constant between 30 and 35.
- the antenna according to the invention can thus be made particularly small and still achieve good performance and bandwidth in two or more GNSS bands. It can thus be used particularly advantageously in mobile applications such as cars, airplanes, UAVs, drones, etc.
- one of the electric resonator antennas particularly the first dielectric resonator antenna, has a resonant frequency in the band between 1164 to 1214 MHz or 1215 to 1239.6 MHz or 1260 to 1300 MHz, while the other antenna, in particular the second dielectric resonator antenna has a resonant frequency in the band between 1563 to 1587 MHz.
- first and second dielectric resonator antennas comprise a ceramic or glass-ceramic material.
- each dielectric resonator antenna has on its upper side, that is, the side facing away from the base plate, a metal lid, wherein the metal lid of the first dielectric resonator antenna serves as a base plate for the second dielectric resonator antenna.
- the metal lid may completely or partially cover the respective dielectric resonator antenna.
- the first dielectric resonator antenna has a metal cover and the second not.
- the metal lid of the first dielectric resonator antenna is considered to be part of the first dielectric resonator antenna and, according to the invention, apart from a possible adhesive layer, is the only element which is interposed between the dielectric material of the first dielectric resonator dielectric resonator antenna and the dielectric material of the second dielectric resonator antenna.
- both dielectric resonator antennas are connected to two common connection lines, via which the electrical signals are received, which are received by the antennas.
- the two common connection lines extend from the base plate along the outer wall of the first dielectric resonator antenna to the second dielectric resonator antenna, and preferably along at least a part of the outer wall of the second dielectric resonator antenna. It is preferred that the two connecting lines extend at a right angle to the base plate and preferably adjacent to the lateral surface of the first dielectric resonator antenna and the first and second dielectric resonator antenna.
- connection lines are arranged at an angle of 90 ° to each other relative to the central axis of the two dielectric resonator antennas.
- Each connection line is thus associated with an electrical signal on the x- and y-axis, which are phase-shifted relative to each other by 90 °.
- a RHCP polarization of the antenna can be achieved (Right Hand Circular Polarization).
- the connection lines are formed as metal strips, which bear against the lateral surface of the one or both dielectric resonator antennas.
- the two connecting lines may have a frequency-dependent matching device, by means of which the effective length of the connecting lines is adapted as a function of the frequency of the signal conducted via the two connecting lines.
- the effective length of the two leads for the first dielectric resonator antenna may be at the resonant frequency of the first dielectric Resonatorantenne be adapted while the effective length of the leads for the second dielectric resonator antenna is adapted to the resonant frequency of the second dielectric resonator antenna.
- This is of great importance since the dimensions and in particular the length of the connecting line must be adapted to the resonance frequency of an antenna, so that an optimal adaptation to the frequency band to be operated can be achieved.
- the GNSS antenna according to the invention is multiband capable, in particular dual-band capable, it is important to provide a possibility for separately determining the effective length of the connection lines which are in contact with the two dielectric resonator antennas for each antenna. This can be done by the inventive frequency-dependent length adjustment device, without it being necessary to provide two separate connection lines for each dielectric resonator antenna.
- the length adjusting device can be designed, for example, to block a signal with the frequency assigned to the first dielectric resonator antenna and to pass on a signal having the frequency associated with the second dielectric resonator antenna.
- the length adjusting device can be designed as a resonance circuit for this purpose.
- electrical components such as capacitors, resistors, etc. may be used.
- Such devices for blocking certain frequencies and forwarding other frequencies are known in the art and are commonly referred to as "RF traps".
- Such a device thus has the effect of being permeable to the frequency of the second dielectric resonator antenna, so that the effective The length of the two connection lines for the second dielectric resonator antenna is longer than the effective length of the two connection lines for the first dielectric resonator antenna, for the frequency of which the length adaptation device is not permeable.
- the part of the leads of the second dielectric resonator antenna is electromagnetically coupled to the part of the leads of the first dielectric resonator antenna.
- the part of the connection line of the second dielectric resonator antenna is thus galvanically isolated from the part of the connection lines of the first dielectric resonator antenna and only permeable to signals of a certain frequency or a certain frequency range.
- a similar effect can be achieved by using a metamaterial for the length adjusting device.
- a Split Ring Resonator SRR
- SRR Split Ring Resonator
- the metal cover serving as the base plate for the second dielectric resonator antenna serving as an electromagnetic coupling device for coupling the electric field generated by the first dielectric resonator antenna to the second dielectric resonator antenna is trained.
- the said metal lid may have slots, which are shown in more detail in the description of the figures.
- first and second dielectric resonator antenna have a circular cylindrical shape and in particular are arranged concentrically to one another.
- the antenna according to the invention can be used as a single antenna or alternatively in an antenna array.
- An antenna array may have all the features of the previously described antennas and may be used to amplify signals originating from a satellite and attenuate signals originating from sources of interference coming from another direction. Thus, a lower susceptibility to interference can be achieved.
- a plurality of, in particular four, first dielectric resonator antennas and a plurality, in particular four, second dielectric resonator antennas are arranged next to one another on a base plate.
- the base plate may in particular be circular and, for example, have a diameter of less than 9 cm.
- more or fewer than four dielectric resonator antennas may also be arranged on a single base plate.
- the multi-band GNSS antenna 10 is arranged on a base plate 12. It has a first dielectric resonator antenna 14 and a second dielectric resonator antenna 16 arranged directly above it. Both dielectric resonator antennas 14, 16 are circular-cylindrical in cross-section, with the second dielectric resonator antenna 16 resting against the upper base surface of the first dielectric resonator antenna 14 along its lower base surface. On the upper side of each dielectric resonator antenna 14, 16, that is to say on the side remote from the base plate 12, a metal plate 18, 20 is arranged in each case.
- the metal plate on the first dielectric resonator antenna 14 may be smaller in diameter than the diameter of the second dielectric resonator antenna 16, so that the terminal leads 22, 23 are not short-circuited by the metal plate. This makes it possible to achieve a further reduction in the dimensions of the antenna 10 according to the invention.
- the metal plate 18 of the first dielectric resonator antenna 14 serves as a base plate for the second dielectric resonator antenna 16.
- the two connecting lines 22, 23 are supplied.
- the connecting lines 22, 23 thus extend in the illustrated embodiment at a right angle to the base plate 12 in the axial direction along the entire axial length of the lateral surface of the first dielectric resonator antenna 14 and along a portion of the axial length of the second dielectric resonator antenna 16 adjacent to its lateral surface.
- the first part of the lead 22, 23 applied to the first dielectric resonator antenna is indicated as 22a and 23a, respectively, while the second part which abuts the second dielectric resonator antenna 16 is indicated as 22b and 23b, respectively.
- a middle part of the connecting lines 22, 23, which is arranged between the first part 22a, 23a and the second part 22b, 23b thereof, does not run along the lateral surface of the first dielectric resonator antenna 14 but along a part of the upper base surface of the first dielectric resonator antenna 14 namely, from its circumference in the radial direction inwards to the smaller circumference of the second dielectric resonator antenna 16.
- a first and second length adjustment device 24, 26 is arranged on the lateral surface of the first dielectric resonator antenna 14, by means of which an adaptation of the effective length of the connection lines 22, 23 takes place on the first dielectric resonator antenna 14 acts.
- the axial position at which the length adjusting devices 24, 26 are arranged along the axial extent of the first dielectric resonator antenna 14 is hereby selected as a function of the resonant frequency of the first dielectric resonator antenna 14 and thus depending on its diameter.
- Fig. 1b is a plan view of the same first embodiment as in Fig. 1a shown.
- the upper base of the second dielectric resonator antenna 16 and a part of the upper base of the first dielectric resonator antenna 14 are visible from above.
- the two dielectric resonator antennas 14, 16 are arranged concentrically with one another and in particular concentrically with the circular base plate 12.
- the base plate may also have other geometric shapes in alternative embodiments.
- FIG Fig. 2 Another alternative embodiment of a multiband GNSS antenna according to the invention is shown in FIG Fig. 2 shown.
- the lower metal plate 18 covering the upper base of the first dielectric resonator antenna has four slits 28a to 28d from its circumference in the radial direction toward the center thereof, coupling the second dielectric resonator antenna 16 to the first dielectric Resonator antenna takes place by the electric field of the first dielectric resonator antenna 14 is coupled to the second dielectric resonator antenna.
- the four slots 28a-28d more or fewer slots may be provided.
- the two leads 22, 23 need not extend in the axial direction to the second dielectric resonator, but extend only to the first dielectric resonator 14. This is thus mainly supplied by the leads 22, 23, while the upper dielectric resonator 16 through the antenna described coupling is controlled.
- the further features of this embodiment correspond to the previously described feature of the antenna 10 according to the invention.
- a third embodiment of the multiband GNSS antenna according to the invention is in Fig. 3 shown.
- the connecting lines 22a, 22b, 23a, 23b to the second dielectric resonator 16.
- each of the first part 22a, 23a of the connecting leads to the first resonator 14, while the second part 22b, 23b abuts the second resonator 16 .
- the first part 22a, 23a has as a length adjusting device 24, 26 a so-called RF trap. This can be passed only from those frequencies associated with the second dielectric resonator antenna 16 while blocking the frequencies of the first dielectric resonator antenna 14.
- FIGS. 4a and 4b An alternative embodiment of a GNSS antenna 10 according to the invention is shown in FIGS FIGS. 4a and 4b shown.
- a single base plate 12 four individual antennas each having a first dielectric resonator antenna 14a to 14d and a second dielectric resonator antenna 16a to 16d.
- Each of these dielectric resonator antennas is formed according to the features described so far.
- the four individual antennas are preferably arranged uniformly on the circular base plate 12, for example in the form of a square. This makes it possible to design the base plate with a diameter of less than 9 cm, so that a particularly compact multi-band GNSS antenna can be provided.
- the remaining features of this embodiment correspond to the previously described features of the device 10 according to the invention.
Landscapes
- Details Of Aerials (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
Multiband-GNSS Antenne (10), mit einer elektrischen leitenden Grundplatte (12), einer ersten dielektrischen Resonatorantenne (14), die auf der Grundplatte (12) angeordnet ist, gekennzeichnet durch eine auf der der Grundplatte (12) abgewandten Seite unmittelbar über der ersten dielektrischen Resonatorantenne (14) angeordnete zweite dielektrische Resonatorantenne (16), wobei die erste dielektrische Resonatorantenne (14) und die zweite dielektrische Resonatorantenne (16) unterschiedliche Durchmesser und damit unterschiedliche Resonanzfrequenzen aufweisen. Die erfindungsgemäße Multibandantenne kann somit besonders klein ausgebildet werden und erzielt trotzdem eine gute Empfangsleistung und Bandbreite in zwei oder mehr GNSS Bändern.Multiband GNSS antenna (10), comprising an electrically conductive base plate (12), a first dielectric resonator antenna (14) disposed on the base plate (12), characterized by a side facing away from the base plate (12) immediately above first dielectric resonator antenna (14) arranged second dielectric resonator antenna (16), wherein the first dielectric resonator antenna (14) and the second dielectric resonator antenna (16) have different diameters and thus different resonance frequencies. The multiband antenna according to the invention can thus be designed to be particularly small and nevertheless achieves a good reception power and bandwidth in two or more GNSS bands.
Description
Die Erfindung eine Multiband-GNSS Antenne.The invention a multiband GNSS antenna.
Bei Einsatz von GNSS Antennen beispielsweise in Kraftfahrzeugen oder Flugzeugen, wurden große Bemühungen unternommen, um die aus dem Stand der Technik bekannten Antennen kleiner zu gestalten. Dies ist insbesondere deswegen von Bedeutung, da GNSS Antennen häufig außerhalb eines Fahrzeugs oder zumindest an der Außenfläche eines Fahrzeugs oder eines Flugzeugs angebracht werden müssen. Um GNSS Antennen daher besser in Fahrzeuge, Flugzeuge etc. integrieren zu können, wird ständig versucht, diese Antennen kleiner zu gestalten.When using GNSS antennas in, for example, automobiles or aircraft, great efforts have been made to make the antennas known in the art smaller. This is particularly important because GNSS antennas must often be mounted outside a vehicle or at least on the outside surface of a vehicle or aircraft. In order to be able to integrate GNSS antennas better in vehicles, airplanes, etc., it is constantly trying to make these antennas smaller.
Diese Bemühungen gehen in den meisten Fällen mit Verlusten in der Leistungsfähigkeit der Antennen einher (was den maximal erzielbaren Gain und die verfügbare Bandbreite angeht). Somit muss ein optimaler Kompromiss zwischen noch akzeptabler Leistungsfähigkeit und reduzierten Dimensionen einer Antenne gefunden werden.These efforts are in most cases associated with losses in the performance of the antennas (in terms of maximum achievable gain and available bandwidth). Thus, an optimal compromise between still acceptable performance and reduced dimensions of an antenna must be found.
Im Hinblick auf eine verringerte Störungsanfälligkeit ist es ferner von Nutzen, Multiband-GNSS Antennen zu verwenden, so dass so viele Signalbänder wie möglich abgedeckt werden können. Die Verwendung von Multiband-GNSS Antennen ist jedoch bei Antennen mit sehr geringen Ausmaßen nicht oder nur sehr schwer möglich.Further, in view of reduced susceptibility to interference, it is useful to use multi-band GNSS antennas so that as many signal bands as possible can be covered. However, the use of multiband GNSS antennas is not possible or very difficult for antennas with very small dimensions.
Weiterhin ist es bekannt, Antennen-Arrays zu verwenden. Diese sind vorteilhaft, um Interferenzen zu unterdrücken, indem beispielsweise vom Satelliten stammende Signale maximiert und Störsignale aus anderen Richtungen minimiert werden.Furthermore, it is known to use antenna arrays. These are advantageous to suppress interference, for example, by maximizing signals originating from the satellite and minimizing spurious signals from other directions.
Kommerziell verfügbare GNSS Antennen können mittlerweile Abmessungen von ca. 1 cm aufweisen und können beispielsweise in Mobiltelefonen verwendet werden. Allerdings wird hierfür eine starke Einschränkung der Leistungsfähigkeit in Kauf genommen: So liegt beispielsweise der erzielbare Gain weit unter 0 dBi. Weiterhin stehen nur einige MHz an Bandbreite (im L1/E1 Band) zur Verfügung. Weiterhin verhalten sich die Antennen hinsichtlich ihrer Polarisation weitestgehend linear, während eine RHCP Polarisation (Right Hand Circular Polarisation) wünschenswert wäre. Dies entspricht der Polarisation der Satellitensignale. Derartige Antennen können somit nicht für eine präzise und störungsunanfällige Navigation verwendet werden.Commercially available GNSS antennas can now measure about 1 cm in size and can be used in cell phones, for example. However, a strong limitation of the performance is accepted: For example, the achievable gain is well below 0 dBi. Furthermore, only a few MHz of bandwidth (in the L1 / E1 band) are available. Furthermore, the antennas behave as linearly as possible in terms of their polarization, while RHCP polarization (right hand circular polarization) would be desirable. This corresponds to the polarization of the satellite signals. Such antennas can thus not be used for precise and trouble-free navigation.
Sollen dagegen Multiband Antennen eingesetzt werden, die mehrere Frequenzbänder abdecken, zum Beispiel das L1/E1 Band als auch eines oder mehrere der E5/L2/E6 Bänder, so müssen größere Antennenelemente verwendet werden. Weiterhin müssen für die Anpassung an die unterschiedlichen Frequenzbänder spezielle Maßnahmen getroffen werden. Im Stand der Technik existieren entweder Antennen, die zwar multibandfähig sind, deren Bandbreite aber mit der Größe der Antenne abnimmt oder aber es sind Breitbandantennen bekannt, die das gesamte L Band und nicht lediglich die Navigationssignalbänder abdecken. Letztere können allerdings nur sehr beschränkt miniaturisiert werden.If, on the other hand, multiband antennas covering several frequency bands are used, for example the L1 / E1 band as well as one or more of the E5 / L2 / E6 bands, then larger antenna elements must be used. Furthermore, special measures must be taken for the adaptation to the different frequency bands. In the prior art there exist either antennas that are multiband capable but whose bandwidth decreases with the size of the antenna or broadband antennas are known which cover the entire L band and not just the navigation signal bands. However, the latter can only be miniaturized to a very limited extent.
Bisherige aus dem Stand der Technik bekannte GNSS Antennen, die sowohl die oberen Bänder (L1/E1) als auch eins oder mehrere der unteren Bänder (E5/L2/E6) abdecken, weisen bisher Abmessungen von mindestens 3,5 cm x 3,5 cm auf.Previous GNSS antennas known in the prior art which cover both the upper bands (L1 / E1) and one or more of the lower bands (E5 / L2 / E6) have so far had dimensions of at least 3.5 cm x 3.5 cm up.
Aufgabe der Erfindung ist es, eine Multiband-GNSS Antenne mit reduzierten Abmessungen bereit zu stellen.The object of the invention is to provide a multiband GNSS antenna with reduced dimensions.
Die Lösung der Aufgabe erfolgt erfindungsgemäß durch die Merkmale des Anspruchs 1.The object is achieved according to the invention by the features of claim 1.
Die erfindungsgemäße Multiband-GNSS Antenne umfasst eine elektrisch leitende Grundplatte sowie eine erste dielektrische Resonatorantenne, die auf der Grundplatte angeordnet ist. Soweit entspricht die erfindungsgemäße GNSS Antenne aus dem Stand der Technik bekannten dielektrischen Resonatorantennen.The multiband GNSS antenna according to the invention comprises an electrically conductive base plate and a first dielectric resonator antenna which is arranged on the base plate. As far as the GNSS antenna according to the invention corresponds to known from the prior art dielectric resonator antennas.
Erfindungsgemäß ist auf der der Grundplatte abgewandten Seite unmittelbar über der ersten dielektrischen Resonatorantenne eine zweite dielektrische Resonatorantenne angeordnet. Unter unmittelbar wird verstanden, dass zwischen der ersten und der zweiten dielektrischen Resonatorantenne keine weiteren Komponenten angeordnet sind, so dass die erste dielektrische Resonatorantenne die zweite dielektrische Resonatorantenne berührt. Sind beispielsweise die erste und zweite dielektrische Resonatorantenne kreiszylinderförmig ausgebildet, so kann die untere Grundfläche der zweiten dielektrischen Resonatorantenne vollflächig an der oberen Grundfläche der ersten dielektrische Resonatorantenne anliegen. Zwischen den beiden dielektrischen Resonatorantennen kann eine Klebeschicht angeordnet sein, um die beiden Antennen miteinander zu verbinden. Ferner kann die erste dielektrische Resonatorantenne mittels eines Klebers auf der Grundplatte fixiert sein. Erfindungsgemäß weisen die erste dielektrische Resonatorantenne und die zweite dielektrische Resonatorantenne unterschiedliche Durchmesser und damit unterschiedliche Resonanzfrequenzen auf.According to the invention, a second dielectric resonator antenna is arranged directly above the first dielectric resonator antenna on the side facing away from the base plate. Immediately, it is understood that no other components are disposed between the first and second dielectric resonator antennas so that the first dielectric resonator antenna contacts the second dielectric resonator antenna. If, for example, the first and second dielectric resonator antennas are circular-cylindrical, then the lower base surface of the second dielectric resonator antenna can be in full contact with the upper base surface of the first dielectric resonator antenna. An adhesive layer may be disposed between the two dielectric resonator antennas to connect the two antennas together. Furthermore, the first dielectric resonator antenna may be fixed on the base plate by means of an adhesive. According to the invention, the first dielectric resonator antenna and the second dielectric resonator antenna have different diameters and thus different resonance frequencies.
Die erfindungsgemäße Multiband-GNSS Antenne kann entlang eines breiteren Frequenzbandes verwendet werden, obwohl sie kleinere Dimensionen aufweist. Beispielsweise kann bei der Wahl eines geeigneten Materials für die elektrischen Resonatorantennen sowohl im oberen als auch im unteren Navigationsband ein Gain von mehr als 0 dBi erreicht werden, während die Antennengröße 3,5 cm x 3,5 cm x 4 cm nicht überschreitet. Hierfür kann beispielsweise ein glaskeramisches Material verwendet werden, das eine dielektrische Konstante zwischen 30 und 35 aufweist. Die erfindungsgemäße Antenne kann somit besonders klein aufgebaut werden und dennoch eine gute Leistungsfähigkeit und Bandbreite in zwei oder mehr GNSS Bändern erzielen. Sie kann somit besonders vorteilhaft in mobilen Applikationen wie beispielsweise Autos, Flugzeuge, UAV's, Drohnen etc. eingesetzt werden.The multiband GNSS antenna according to the invention can be used along a wider frequency band, although it has smaller dimensions. For example, when choosing a suitable material for the electrical resonator antennas in both the upper and in the lower navigation band a gain of more than 0 dBi can be achieved, while the antenna size does not exceed 3.5 cm x 3.5 cm x 4 cm. For this purpose, for example, a glass-ceramic material can be used which has a dielectric constant between 30 and 35. The antenna according to the invention can thus be made particularly small and still achieve good performance and bandwidth in two or more GNSS bands. It can thus be used particularly advantageously in mobile applications such as cars, airplanes, UAVs, drones, etc.
Es ist bevorzugt, dass eine der elektrischen Resonatorantennen, insbesondere die erste dielektrische Resonatorantenne eine Resonanzfrequenz im Band zwischen 1164 bis 1214 MHz oder 1215 bis 1239,6 MHz oder 1260 bis 1300 MHz aufweist, während die andere Antenne, insbesondere die zweite dielektrische Resonatorantenne eine Resonanzfrequenz im Band zwischen 1563 bis 1587 MHz aufweist.It is preferable that one of the electric resonator antennas, particularly the first dielectric resonator antenna, has a resonant frequency in the band between 1164 to 1214 MHz or 1215 to 1239.6 MHz or 1260 to 1300 MHz, while the other antenna, in particular the second dielectric resonator antenna has a resonant frequency in the band between 1563 to 1587 MHz.
Weiterhin ist es bevorzugt, dass die erste und zweite dielektrische Resonatorantenne ein keramisches oder glaskeramisches Material aufweisen.Furthermore, it is preferred that the first and second dielectric resonator antennas comprise a ceramic or glass-ceramic material.
Ferner ist es bevorzugt, dass jede dielektrische Resonatorantenne auf ihrer Oberseite, das heißt der der Grundplatte abgewandten Seite einen Metalldeckel aufweist, wobei der Metalldeckel der ersten dielektrische Resonatorantenne als Grundplatte für die zweite dielektrische Resonatorantenne dient. Der Metalldeckel kann die jeweilige dielektrische Resonatorantenne vollständig oder nur teilweise abdecken. Weiterhin ist es möglich, dass die erste dielektrische Resonatorantenne einen Metalldeckel aufweist und die zweite nicht. Der Metalldeckel der ersten dielektrischen Resonatorantenne wird als Teil der ersten dielektrischen Resonatorantenne angesehen und ist erfindungsgemäß neben einer eventuellen Klebeschicht das einzige Element, das sich zwischen dem dielektrischen Material der ersten dielektrischen Resonatorantenne und dem dielektrischen Material der zweiten dielektrischen Resonatorantenne befindet.Further, it is preferable that each dielectric resonator antenna has on its upper side, that is, the side facing away from the base plate, a metal lid, wherein the metal lid of the first dielectric resonator antenna serves as a base plate for the second dielectric resonator antenna. The metal lid may completely or partially cover the respective dielectric resonator antenna. Furthermore, it is possible that the first dielectric resonator antenna has a metal cover and the second not. The metal lid of the first dielectric resonator antenna is considered to be part of the first dielectric resonator antenna and, according to the invention, apart from a possible adhesive layer, is the only element which is interposed between the dielectric material of the first dielectric resonator dielectric resonator antenna and the dielectric material of the second dielectric resonator antenna.
Weiterhin ist es bevorzugt, dass beide dielektrische Resonatorantennen mit zwei gemeinsamen Anschlussleitungen verbunden sind, über die die elektrischen Signale abgeführt werden, die von den Antennen empfangen werden.Furthermore, it is preferred that both dielectric resonator antennas are connected to two common connection lines, via which the electrical signals are received, which are received by the antennas.
Die zwei gemeinsamen Anschlussleitungen erstrecken sich von der Grundplatte entlang der Außenwand der ersten dielektrischen Resonatorantenne zur zweiten dielektrischen Resonatorantenne und vorzugsweise entlang zumindest einen Teils der Außenwand der zweiten dielektrischen Resonatorantenne. Es ist bevorzugt, dass die beiden Anschlussleitungen in einem rechten Winkel zur Grundplatte und bevorzugt anliegend an der Mantelfläche der ersten dielektrischen Resonatorantenne bzw. der ersten und zweiten dielektrischen Resonatorantenne verlaufen.The two common connection lines extend from the base plate along the outer wall of the first dielectric resonator antenna to the second dielectric resonator antenna, and preferably along at least a part of the outer wall of the second dielectric resonator antenna. It is preferred that the two connecting lines extend at a right angle to the base plate and preferably adjacent to the lateral surface of the first dielectric resonator antenna and the first and second dielectric resonator antenna.
Weiterhin ist es bevorzugt, dass die beiden Anschlussleitungen in einem Winkel von 90° zueinander relativ zur Mittelachse der beiden dielektrischen Resonatorantennen angeordnet sind. Jede Anschlussleitung ist somit einem elektrischen Signal auf der x- und y-Achse zugeordnet, die relativ zueinander um 90° phasenversetzt sind. Somit kann eine RHCP-Polarisation der Antenne erreicht werden (Right Hand Circular Polarisation). Bevorzugt sind die Anschlussleitungen als Metallstreifen ausgebildet, die an der Mantelfläche des oder der beiden dielektrischen Resonatorantennen anliegen.Furthermore, it is preferred that the two connecting lines are arranged at an angle of 90 ° to each other relative to the central axis of the two dielectric resonator antennas. Each connection line is thus associated with an electrical signal on the x- and y-axis, which are phase-shifted relative to each other by 90 °. Thus, a RHCP polarization of the antenna can be achieved (Right Hand Circular Polarization). Preferably, the connection lines are formed as metal strips, which bear against the lateral surface of the one or both dielectric resonator antennas.
Es ist weiterhin bevorzugt, dass die beiden Anschlussleitungen eine frequenzabhängige Anpassvorrichtung aufweisen, durch die abhängig von der Frequenz des über die beiden Anschlussleitungen abgeführten Signals ein Anpassen der wirksamen Länge der Anschlussleitungen erfolgt. Somit kann die wirksame Länge der beiden Anschlussleitungen für die erste dielektrische Resonatorantenne an die Resonanzfrequenz der ersten dielektrischen Resonatorantenne angepasst werden, während die wirksame Länge der Anschlussleitungen für die zweite dielektrische Resonatorantenne an die Resonanzfrequenz der zweiten dielektrischen Resonatorantenne angepasst wird. Dies ist von großer Wichtigkeit, da die Abmessungen und insbesondere die Länge der Anschlussleitung auf die Resonanzfrequenz einer Antenne angepasst werden müssen, so dass eine optimale Anpassung an das zu bedienende Frequenzband erreicht werden kann. Da die erfindungsgemäße GNSS Antenne multibandfähig, insbesondere dualbandfähig ist, ist es wichtig, eine Möglichkeit bereit zu stellen, die wirksame Länge der Anschlussleitungen, die mit den beiden dielektrischen Resonatorantennen in Kontakt sind, für jede Antenne separat zu bestimmen. Dies kann durch die erfindungsgemäße frequenzabhängige Längenanpassvorrichtung erfolgen, ohne dass es notwendig ist, für jede dielektrische Resonatorantenne zwei separate Anschlussleitungen vorzusehen.It is further preferred for the two connecting lines to have a frequency-dependent matching device, by means of which the effective length of the connecting lines is adapted as a function of the frequency of the signal conducted via the two connecting lines. Thus, the effective length of the two leads for the first dielectric resonator antenna may be at the resonant frequency of the first dielectric Resonatorantenne be adapted while the effective length of the leads for the second dielectric resonator antenna is adapted to the resonant frequency of the second dielectric resonator antenna. This is of great importance, since the dimensions and in particular the length of the connecting line must be adapted to the resonance frequency of an antenna, so that an optimal adaptation to the frequency band to be operated can be achieved. Since the GNSS antenna according to the invention is multiband capable, in particular dual-band capable, it is important to provide a possibility for separately determining the effective length of the connection lines which are in contact with the two dielectric resonator antennas for each antenna. This can be done by the inventive frequency-dependent length adjustment device, without it being necessary to provide two separate connection lines for each dielectric resonator antenna.
Die Längenanpassvorrichtung kann beispielsweise ausgebildet sein zum Blockieren eines Signals mit der der ersten dielektrische Resonatorantenne zugeordneten Frequenz und zum Weiterleiten eines Signals mit der der zweiten dielektrischen Resonatorantenne zugeordneten Frequenz. Beispielsweise kann die Längenanpassvorrichtung hierzu als Resonanzschaltung ausgebildet sein. Hierzu können elektrische Komponenten wie beispielsweise Kondensatoren, Widerstände etc. verwendet werden. Alternativ ist es möglich, die genannte Funktion durch einen besonderen geometrischen Aufbau der Anschlussleitungen zu erreichen, ohne dass hierfür explizit elektrische Komponenten, wie beispielsweise Widerstände, Kondensatoren etc., verwendet werden müssen. Derartige Vorrichtungen zum Blockieren bestimmter Frequenzen und Weiterleiten andere Frequenzen sind aus dem Stand der Technik bekannt und werden üblicherweise als "RF Trap" bezeichnet.The length adjusting device can be designed, for example, to block a signal with the frequency assigned to the first dielectric resonator antenna and to pass on a signal having the frequency associated with the second dielectric resonator antenna. For example, the length adjusting device can be designed as a resonance circuit for this purpose. For this purpose, electrical components such as capacitors, resistors, etc. may be used. Alternatively, it is possible to achieve said function by a special geometric structure of the connection lines, without the need for explicit electrical components, such as resistors, capacitors, etc., must be used. Such devices for blocking certain frequencies and forwarding other frequencies are known in the art and are commonly referred to as "RF traps".
Eine derartige Vorrichtung hat somit den Effekt, dass sie für die Frequenz der zweiten dielektrischen Resonatorantenne durchlässig ist, so dass die wirksame Länge der beiden Anschlussleitungen für die zweite dielektrische Resonatorantenne länger ist als die wirksame Länge der beiden Anschlussleitungen für die erste dielektrische Resonatorantenne, für deren Frequenz die Längenanpassvorrichtung nicht durchlässig ist.Such a device thus has the effect of being permeable to the frequency of the second dielectric resonator antenna, so that the effective The length of the two connection lines for the second dielectric resonator antenna is longer than the effective length of the two connection lines for the first dielectric resonator antenna, for the frequency of which the length adaptation device is not permeable.
Weiterhin ist es möglich, dass der Teil der Anschlussleitungen, der zweiten dielektrische Resonatorantenne elektromagnetisch mit dem Teil der Anschlussleitungen der ersten dielektrischen Resonatorantenne gekoppelt ist. Anders ausgedrückt ist der Teil der Anschlussleitung der zweiten dielektrischen Resonatorantenne somit galvanisch vom Teil der Anschlussleitungen der ersten dielektrischen Resonatorantenne getrennt und nur für Signale einer bestimmten Frequenz oder eines bestimmten Frequenzbereichs durchlässig.Furthermore, it is possible that the part of the leads of the second dielectric resonator antenna is electromagnetically coupled to the part of the leads of the first dielectric resonator antenna. In other words, the part of the connection line of the second dielectric resonator antenna is thus galvanically isolated from the part of the connection lines of the first dielectric resonator antenna and only permeable to signals of a certain frequency or a certain frequency range.
Ein ähnlicher Effekt kann erzielt werden durch Verwendung eines Metamaterials für die Längenanpassvorrichtung. Für den gleichen Zweck kann ferner ein Splitringresonator (SRR) verwendet werden.A similar effect can be achieved by using a metamaterial for the length adjusting device. For the same purpose, a Split Ring Resonator (SRR) can be used as well.
In einer weiteren bevorzugten Ausführungsform erfolgt durch die Anschlussleitungen ausschließlich ein Versorgen der ersten dielektrischen Resonatorantenne, wobei der Metalldeckel, der als Grundplatte für die zweite dielektrische Resonatorantenne dient, als elektromagnetische Koppelvorrichtung zum Koppeln des durch die erste dielektrische Resonatorantenne erzeugten elektrischen Felds mit der zweiten dielektrischen Resonatorantenne ausgebildet ist. Zu diesem Zweck kann beispielsweise der genannte Metalldeckel Schlitze aufweisen, die in der Figurenbeschreibung näher dargestellt werden.In a further preferred embodiment, only the supply of the first dielectric resonator antenna is performed by the connecting leads, the metal cover serving as the base plate for the second dielectric resonator antenna serving as an electromagnetic coupling device for coupling the electric field generated by the first dielectric resonator antenna to the second dielectric resonator antenna is trained. For this purpose, for example, the said metal lid may have slots, which are shown in more detail in the description of the figures.
Weiterhin ist es bevorzugt, dass die erste und zweite dielektrische Resonatorantenne eine kreiszylindrische Form aufweisen und insbesondere konzentrisch zueinander angeordnet sind.Furthermore, it is preferred that the first and second dielectric resonator antenna have a circular cylindrical shape and in particular are arranged concentrically to one another.
Die erfindungsgemäße Antenne kann als einzelne Antenne oder aber alternativ in einem Antennen-Array verwendet werden. Ein Antennen-Array kann sämtliche Merkmale der bisher beschriebenen Antennen aufweisen und kann dazu verwendet werden, von einem Satelliten stammende Signale zu verstärken und von Störquellen stammende Signale, die aus einer anderen Richtung kommen, abzuschwächen. Somit kann eine geringere Störanfälligkeit erreicht werden.The antenna according to the invention can be used as a single antenna or alternatively in an antenna array. An antenna array may have all the features of the previously described antennas and may be used to amplify signals originating from a satellite and attenuate signals originating from sources of interference coming from another direction. Thus, a lower susceptibility to interference can be achieved.
In einer bevorzugten Ausführungsform sind auf einer Grundplatte mehrere, insbesondere vier, erste dielektrische Resonatorantennen und mehrere, insbesondere vier, zweite dielektrische Resonatorantennen nebeneinander angeordnet. Hierbei kann die Grundplatte insbesondere kreisförmig ausgebildet sein und beispielsweise eine Durchmesser von weniger als 9 cm aufweisen. Bei der genannten Ausführungsform können auch mehr oder weniger als vier dielektrische Resonatorantennen auf einer einzigen Grundplatte angeordnet sein.In a preferred embodiment, a plurality of, in particular four, first dielectric resonator antennas and a plurality, in particular four, second dielectric resonator antennas are arranged next to one another on a base plate. In this case, the base plate may in particular be circular and, for example, have a diameter of less than 9 cm. In the mentioned embodiment, more or fewer than four dielectric resonator antennas may also be arranged on a single base plate.
Im Folgenden werden bevorzugte Ausführungsformen der Erfindung anhand von Figuren erläutert.In the following, preferred embodiments of the invention will be explained with reference to figures.
Es zeigen:
- Fig. 1a
- eine Schrägansicht einer ersten Ausführungsform der erfindungsgemäßen Vorrichtung
- Fig. 1b
- eine Draufsicht derselben Ausführungsform wie in
Fig. 1a , - Fig. 2
- eine Schrägansicht einer zweiten Ausführungsform der erfindungsgemäßen Vorrichtung,
- Fig. 3
- eine Schrägansicht einer dritten Ausführungsform der erfindungsgemäßen Vorrichtung,
- Fig. 4a
- eine Schrägansicht einer vierten Ausführungsform der erfindungsgemäßen Vorrichtung,
- Fig. 4b
- eine Draufsicht derselben Ausführungsform wie in
Fig. 4a .
- Fig. 1a
- an oblique view of a first embodiment of the device according to the invention
- Fig. 1b
- a plan view of the same embodiment as in
Fig. 1a . - Fig. 2
- an oblique view of a second embodiment of the device according to the invention,
- Fig. 3
- an oblique view of a third embodiment of the device according to the invention,
- Fig. 4a
- an oblique view of a fourth embodiment of the device according to the invention,
- Fig. 4b
- a plan view of the same embodiment as in
Fig. 4a ,
Gemäß
Entlang der Mantelfläche der ersten dielektrischen Resonatorantenne 14 verlaufen anliegend an dieser die beiden Anschlussleitungen 22, 23, durch die beide dielektrischen Resonatorantennen 14, 16 versorgt werden. Die Anschlussleitungen 22, 23 verlaufen somit in der dargestellten Ausführungsform in einem rechten Winkel zur Grundplatte 12 in axialer Richtung entlang der gesamten axialen Länge der Mantelfläche der ersten dielektrischen Resonatorantenne 14 und entlang eines Teils der axialen Länge der zweiten dielektrischen Resonatorantenne 16 anliegend an deren Mantelfläche. Der erste Teil der Anschlussleitung 22, 23, der an der ersten dielektrischen Resonatorantenne anliegt, ist als 22a bzw. 23a gekennzeichnet, während der zweite Teil, der an der zweiten dielektrischen Resonatorantenne 16 anliegt, als 22b bzw. 23b gekennzeichnet ist. Ein mittlerer Teil der Anschlussleitungen 22, 23, der zwischen deren ersten Teil 22a, 23a und deren zweiten Teil 22b, 23b angeordnet ist, verläuft nicht entlang der Mantelfläche der ersten dielektrischen Resonatorantenne 14, sondern entlang eines Teils der oberen Grundfläche der ersten dielektrischen Resonatorantenne 14 und zwar ausgehend von deren Umfang in radialer Richtung nach innen bis zum geringeren Umfang der zweiten dielektrischen Resonatorantenne 16.Along the lateral surface of the first
Im Bereich des ersten Teils 22a, 23a der Anschlussleitungen 22, 23 ist an der Mantelfläche der ersten dielektrischen Resonatorantenne 14 eine erste und zweite Längenanpassvorrichtung 24, 26 angeordnet, durch die eine Anpassung der wirksamen Länge der Anschlussleitungen 22, 23 erfolgt, die auf die erste dielektrische Resonatorantenne 14 wirkt. Die axiale Position, an der die Längenanpassvorrichtungen 24, 26 entlang der axialen Erstreckung der ersten dielektrischen Resonatorantenne 14 angeordnet sind, wird hierbei in Abhängigkeit von der Resonanzfrequenz der ersten dielektrischen Resonatorantenne 14 und damit in Abhängigkeit von deren Durchmesser gewählt.In the region of the
In
Eine weitere alternative Ausführungsform einer erfindungsgemäßen Multibband-GNSS Antenne ist in
Eine dritte Ausführungsform der erfindungsgemäßen Multiband-GNSS Antenne ist in
Eine alternative Ausführungsform einer erfindungsgemäßen GNSS Antenne 10 ist in den
Claims (13)
einer elektrischen leitenden Grundplatte (12),
einer ersten dielektrischen Resonatorantenne (14), die auf der Grundplatte (12) angeordnet ist,
gekennzeichnet durch
eine auf der der Grundplatte (12) abgewandten Seite unmittelbar über der ersten dielektrischen Resonatorantenne (14) angeordnete zweite dielektrische Resonatorantenne (16), wobei die erste dielektrische Resonatorantenne (14) und die zweite dielektrische Resonatorantenne (16) unterschiedliche Durchmesser und damit unterschiedliche Resonanzfrequenzen aufweisen.Multiband GNSS antenna (10), with
an electrically conductive base plate (12),
a first dielectric resonator antenna (14) disposed on the base plate (12),
marked by
a second dielectric resonator antenna (16) arranged directly on the base plate (12) directly above the first dielectric resonator antenna (14), wherein the first dielectric resonator antenna (14) and the second dielectric resonator antenna (16) have different diameters and thus different resonance frequencies ,
wobei die beiden Anschlussleitungen (22, 23) insbesondere in einem Winkel von 90° relativ zur Mittelachse der beiden dielektrischen Resonatorantennen (14, 16) angeordnet sind.Multiband GNSS antenna (10) according to one of claims 1 to 4, characterized in that both dielectric resonator antennas (14, 16) are supplied via two common connection lines (22, 23) extending from the base plate (12) along the outer wall the first dielectric resonator antenna (14) extend to the second dielectric resonator antenna (16) and preferably along at least a portion of the second dielectric resonator antenna (16),
wherein the two connecting lines (22, 23) in particular at an angle of 90 ° relative to the central axis of the two dielectric resonator antennas (14, 16) are arranged.
wobei die Längenanpassvorrichtung (24, 26) insbesondere als Resonanzschaltung ausgebildet ist.A multiband GNSS antenna (10) according to claim 6, characterized in that the length adjuster (24, 26) is adapted to block the signal of the frequency associated with the first dielectric resonator antenna (14) and to propagate the signal of the frequency associated with the second dielectric resonator antenna .
wherein the length adjusting device (24, 26) is designed in particular as a resonance circuit.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102015220372.7A DE102015220372B3 (en) | 2015-10-20 | 2015-10-20 | Multiband GNSS antenna |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3159967A1 true EP3159967A1 (en) | 2017-04-26 |
EP3159967B1 EP3159967B1 (en) | 2018-11-21 |
Family
ID=56937678
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16194780.9A Active EP3159967B1 (en) | 2015-10-20 | 2016-10-20 | Multiband gnss antenna |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP3159967B1 (en) |
DE (1) | DE102015220372B3 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110416713A (en) * | 2019-08-27 | 2019-11-05 | 北京邮电大学 | A kind of broadband two dimensional beam scanning dielectric resonator antenna and wireless communication system |
CN113285213A (en) * | 2021-04-30 | 2021-08-20 | 深圳市信维通信股份有限公司 | Integrated 5G millimeter wave dual-frequency dielectric resonator antenna module and electronic equipment |
CN115101930A (en) * | 2022-07-15 | 2022-09-23 | 广东工业大学 | Dual-frequency satellite navigation antenna with edge-loaded resonant branches |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6518285B2 (en) | 2017-05-01 | 2019-05-22 | 原田工業株式会社 | Antenna device |
DE102017217117B3 (en) | 2017-08-31 | 2019-01-17 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | GNSS antenna |
DE102018203191A1 (en) * | 2018-03-02 | 2019-09-05 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Controlled radiation pattern antenna |
CN110311691B (en) * | 2019-06-24 | 2024-02-06 | 浙江嘉科电子有限公司 | Multi-band radio frequency detection forwarding equipment based on unmanned aerial vehicle unmanned on duty platform |
CN112688069B (en) * | 2020-12-21 | 2022-01-04 | 西安电子科技大学 | Three-polarization unit with adjustable directional diagram and array antenna thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5995047A (en) * | 1991-11-14 | 1999-11-30 | Dassault Electronique | Microstrip antenna device, in particular for telephone transmissions by satellite |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6292141B1 (en) * | 1999-04-02 | 2001-09-18 | Qualcomm Inc. | Dielectric-patch resonator antenna |
EP1232538B1 (en) * | 1999-10-29 | 2008-11-19 | Antenova Limited | Steerable-beam multiple-feed dielectric resonator antenna of various cross-sections |
-
2015
- 2015-10-20 DE DE102015220372.7A patent/DE102015220372B3/en active Active
-
2016
- 2016-10-20 EP EP16194780.9A patent/EP3159967B1/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5995047A (en) * | 1991-11-14 | 1999-11-30 | Dassault Electronique | Microstrip antenna device, in particular for telephone transmissions by satellite |
Non-Patent Citations (6)
Title |
---|
DUSSEUX T ET AL: "S-BAND DIPLEXING RADIATING ELEMENT DESIGN", PROCEEDINGS OF THE ANTENNAS AND PROPAGATION SOCIETY ANNUAL MEETING. 1991. VENUE AND EXACT DATE NOT SHOWN; [PROCEEDINGS OF THE ANTENNAS AND PROPAGATION SOCIETY ANNUAL MEETING], NEW YORK, IEEE, US, vol. 2, 8 January 1992 (1992-01-08), pages 731 - 734, XP000239763, ISBN: 978-0-7803-0144-3 * |
KISHK A A ET AL: "BROADBAND STACKED DIELECTRIC RESONATOR ANTENNAS", ELECTRONICS LETTERS, IEE STEVENAGE, GB, vol. 25, no. 18, 31 August 1989 (1989-08-31), XP000071886, ISSN: 0013-5194 * |
ROCHA H H B ET AL: "Bandwidth enhancement of stacked dielectric resonator antennas excited by a coaxial probe: an experimental and numerical investigation", IET MICROWAVES ANTENNAS & PROPAGATION,, vol. 2, no. 6, 8 September 2008 (2008-09-08), pages 580 - 587, XP006031677, ISSN: 1751-8733, DOI: 10.1049/IET-MAP:20070292 * |
STEFANO CAIZZONE ET AL: "Miniaturized DRA array for GNSS applications", ANTENNAS AND PROPAGATION (EUCAP), 2015 9TH EUROPEAN CONFERENCE ON, 13 April 2015 (2015-04-13), Piscataway, pages 1, XP055349454 * |
XIAO SHENG FANG ET AL: "Linear-/Circular-Polarization Designs of Dual-/Wide-Band Cylindrical Dielectric Resonator Antennas", IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, vol. 60, no. 6, 1 June 2012 (2012-06-01), pages 2662 - 2671, XP011454927, ISSN: 0018-926X, DOI: 10.1109/TAP.2012.2194682 * |
YIJUN ZHOU ET AL: "Dual Band Proximity-Fed Stacked Patch Antenna for Tri-Band GPS Applications", IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, vol. 55, no. 1, 1 January 2007 (2007-01-01), pages 220 - 223, XP011154690, ISSN: 0018-926X, DOI: 10.1109/TAP.2006.888476 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110416713A (en) * | 2019-08-27 | 2019-11-05 | 北京邮电大学 | A kind of broadband two dimensional beam scanning dielectric resonator antenna and wireless communication system |
CN110416713B (en) * | 2019-08-27 | 2021-05-04 | 北京邮电大学 | Broadband two-dimensional beam scanning medium resonant antenna and wireless communication system |
CN113285213A (en) * | 2021-04-30 | 2021-08-20 | 深圳市信维通信股份有限公司 | Integrated 5G millimeter wave dual-frequency dielectric resonator antenna module and electronic equipment |
CN113285213B (en) * | 2021-04-30 | 2023-12-19 | 深圳市信维通信股份有限公司 | Integrated 5G millimeter wave dual-frequency dielectric resonator antenna module and electronic equipment |
CN115101930A (en) * | 2022-07-15 | 2022-09-23 | 广东工业大学 | Dual-frequency satellite navigation antenna with edge-loaded resonant branches |
CN115101930B (en) * | 2022-07-15 | 2022-11-15 | 广东工业大学 | Dual-frequency satellite navigation antenna with edge-loaded resonant branches |
Also Published As
Publication number | Publication date |
---|---|
EP3159967B1 (en) | 2018-11-21 |
DE102015220372B3 (en) | 2016-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102015220372B3 (en) | Multiband GNSS antenna | |
EP1829158B1 (en) | Disc-monopole antenna structure | |
DE102009051605B4 (en) | Highly integrated multi-band fin antenna for a vehicle | |
DE69936657T2 (en) | CIRCULAR POLARIZED DIELECTRIC RESONATOR ANTENNA | |
EP2784874B1 (en) | Broadband monopole antenna for vehicles for two frequency bands separated by a frequency gap in the decimeter wavelength | |
EP3440738B1 (en) | Antenna device | |
EP3382795A1 (en) | Antenna for receiving circular polarised satellite radio signals for satellite navigation on a vehicle | |
DE3709163A1 (en) | LOW PROFILE BROADBAND MONOPOLAR ANTENNA | |
EP3108535B1 (en) | Multi-range antenna for a receiver and/or transmitter device for mobile use | |
EP1297590A1 (en) | Slot antenna | |
WO2004027929A1 (en) | Antenna assembly comprising a surface dipole | |
EP2367233A1 (en) | Planar antenna system | |
EP1812988B1 (en) | Planar wideband antenna | |
WO2007048258A1 (en) | Antenna arrangement having a broadband monopole antenna | |
DE202013007872U1 (en) | Multi-band fin antenna for mobile use, especially for vehicles | |
DE10235222B4 (en) | Broadband antenna | |
EP3707775B1 (en) | Coupling and decoupling device between a circuit carrier and a waveguide | |
DE102022109407A1 (en) | Antenna element for wireless communication | |
WO2004102742A1 (en) | Multiband antenna | |
EP1401051B1 (en) | Antenna system for multiple frequency bands | |
EP2756550B1 (en) | Multi-band aerial for a motor vehicle | |
WO2019166360A1 (en) | Controlled radiation pattern antenna | |
DE112010004247T5 (en) | Antenna with distributed reactance | |
WO2002015335A1 (en) | Combination antenna | |
DE202014008788U1 (en) | Multi-band fin antenna for mobile use, especially for vehicles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20171026 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20180518 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R108 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1068628 Country of ref document: AT Kind code of ref document: T Effective date: 20181215 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: ISLER AND PEDRAZZINI AG, CH |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20181121 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181121 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181121 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181121 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181121 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190221 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181121 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190221 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190321 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181121 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181121 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190222 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181121 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181121 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190321 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181121 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181121 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181121 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181121 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181121 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181121 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181121 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181121 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20190822 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181121 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181121 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181121 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191020 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181121 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20161020 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181121 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181121 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IE Payment date: 20220926 Year of fee payment: 7 Ref country code: GB Payment date: 20220914 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1068628 Country of ref document: AT Kind code of ref document: T Effective date: 20211020 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211020 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20231102 Year of fee payment: 8 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20231020 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231020 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231020 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231020 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20240917 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240913 Year of fee payment: 9 |