EP3440738B1 - Antenna device - Google Patents

Antenna device Download PDF

Info

Publication number
EP3440738B1
EP3440738B1 EP17716202.1A EP17716202A EP3440738B1 EP 3440738 B1 EP3440738 B1 EP 3440738B1 EP 17716202 A EP17716202 A EP 17716202A EP 3440738 B1 EP3440738 B1 EP 3440738B1
Authority
EP
European Patent Office
Prior art keywords
emitter
antenna device
coupling
radiator
coupling point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17716202.1A
Other languages
German (de)
French (fr)
Other versions
EP3440738A1 (en
Inventor
Mario Schühler
Lars Weisgerber
Mengistu TESSEMA
Rainer Wansch
Michael Schlicht
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP3440738A1 publication Critical patent/EP3440738A1/en
Application granted granted Critical
Publication of EP3440738B1 publication Critical patent/EP3440738B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
    • H01Q9/0457Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means electromagnetically coupled to the feed line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0428Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave
    • H01Q9/0435Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave using two feed points
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0471Non-planar, stepped or wedge-shaped patch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration

Definitions

  • the invention relates to an antenna device.
  • the antenna device is used in particular to transmit and / or receive electromagnetic signals.
  • Antennas have different directional characteristics with different properties depending on their shape, size and power supply. There are a variety of antenna shapes to suit the amount of needs desired for the application.
  • the supply or coupling of the signal source to the radiator element also plays a decisive role here, because in addition to the shape and size, the properties of the radiated wave and the base point impedance of the antenna are also determined.
  • Such properties can e.g. B. Form of the radiation lobe, but also especially the polarization (linear, circular, elliptical), the polarization purity (polarization decoupling) and the omnidirectionality of the emitted free space wave.
  • the impedance bandwidth and the frequency dependence of the directional characteristic are also decisive factors of an antenna for broadband wireless communication. In order to generate, for example, beamforming with group antennas that are as uniform and extremely similar as possible in different spatial directions, a high degree of polarization purity and omnidirectionality of the directional characteristic of the individual element is required.
  • circularly polarized antennas are usually used to to reliably detect the mostly linearly polarized passive transponders even with very different orientations in the room.
  • multi-lobe antennas are increasingly being used in order to cover a larger angular range or space with a large number of beam forms. This allows a large number of transponders, which are often arranged in bulk, to be reliably identified.
  • such a multi-lobe antenna enables the position of the transponder in the room to be determined (localization). For this, very uniform and symmetrical beams are required, the generation of which is only possible through the mentioned radiation properties of the individual element of the group antennas.
  • a radiator element (usually in the form of a patch antenna) is often coupled to two feed points offset by 90 ° (see, for example, "Patch Antenna (Circular), 860-930 MHz” from Poynting Antennas (Pty.) Ltd.). This is done galvanically, for example, through wire lines below the patch.
  • a feed network (mostly in microstrip line technology) is usually required here, which enables the phase shift of the power supplied by 90 °.
  • the directional characteristic here has poor polarization purity or cross-polarization discrimination (XPD), which results in asymmetrical lobes in beamforming.
  • XPD cross-polarization discrimination
  • This structure also means that the patch diameter must be on the order of half a wavelength and a large ground plane or a reflector are required in order to keep the reflection (cross-polarization) low. The bandwidth of such a structure is also very small.
  • Ceramic antennas can be used in order to be able to develop antennas with small dimensions and thereby generate a directional characteristic with high polarization purity and omnidirectionality. However, these are very expensive and generally very narrow-band.
  • a more economical method is to excite the radiator element at four feed points, each offset by 90 ° [1]. It is advantageous to use a radiator as a sheet metal element with connection segments bent by 90 ° on the four sides and to solder it directly to the board; Feeding through wire elements is also conceivable [2]. This requires a compact and decoupled feed network [1], which provides the four phases, each offset by 90 °. Thanks to the four-point feed, the diameter of the radiator element can be reduced to well below half a wavelength and a high bandwidth can be achieved at the same time.
  • the bandwidth is slightly larger compared to the two-point fed solution.
  • a very large ground area is required compared to the dimensions of the radiator element in order to keep the reflection (cross-polarization) low.
  • the radiator element also has a significantly greater electrical overall height.
  • Another possibility of coupling the patch element is to couple the line-guided wave through slots in the ground plane (see [3]).
  • a microstrip line (usually orthogonally) crosses the slot in the ground line.
  • the method of two- or four-point feeding can also be used here.
  • a patch is not absolutely necessary for this, but in both cases a reflector is required in order to reduce the reflection and thus also to increase the profit.
  • the disadvantage is that the dimensions of the opposite feed points (slots) and the diameter of the patch are approximately half the wavelength of the signals that are transmitted or received.
  • the dimensions of the radiator element and the distances between the feed points are in the order of magnitude of half a wavelength. If these dimensions were to be reduced, the base point impedances of the radiator element would increase significantly in terms of amount: the smaller the radiator element, the greater the base point impedance. This makes impedance matching to 50 ohms or 100 ohms more difficult and is generally associated with high power losses due to the matching elements and a reduction in bandwidth. This makes a low-loss adaptation of radiator elements or, in the case of feed point spacings significantly smaller than half the wavelength (e.g. a quarter of the wavelength), almost impossible.
  • a patch antenna in which a radiation surface is arranged on a dielectric substrate at a distance from a ground plane and is fed via conductive pins that extend through the dielectric substrate, is from the US 2014/0266963 A1 known.
  • the US 2015/0042513 A1 discloses a patch antenna in which a radiation patch is fed electromagnetically via probes which extend from corners of the radiation patch with increasing width towards the center of the radiation patch.
  • the US 2015/0214592 A1 discloses an antenna arrangement in which four columns are provided to couple a horizontal radiation unit to output ports of a feed network.
  • HU FUGUO ET AL "Ultra-Wideband Dual-Polarized Patch Antenna With Four Capacitively Coupled Feeds", IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, vol. 62, no.5, pages 2440 - 2449, May 5, 2014 , disclose a broadband patch antenna that is capacitively fed on four sides.
  • the US 2015/0015447 A1 discloses an antenna in which a conical radiation element is galvanically connected to a ground plane via four conductive elements.
  • the US 2003/174098 A1 discloses a loop antenna that is capacitively fed on four sides.
  • the object of the invention is to propose an antenna device which allows miniaturization without significant losses in the radiation properties.
  • the invention achieves the object by means of an antenna device according to claim 1.
  • the antenna device has a radiator element for radiating and / or receiving electromagnetic signals.
  • the radiator element has at least one coupling point.
  • the coupling point is connected to one side of the radiator element.
  • the coupling point is designed for capacitive coupling and / or decoupling of electromagnetic signals.
  • the coupling point is directly on one side of the radiator element available.
  • the side refers to the outer surface or the outer border of the radiator element.
  • the radiator element is expanded on the at least one side by an element - a wing element - which carries the coupling point.
  • the at least one coupling point is thus located directly or indirectly - in particular via a wing element - on one side of the radiator element.
  • the coupling point is an area via which electromagnetic signals are coupled into the radiator element for emission or via which signals received from the radiator element are decoupled from the radiator element.
  • the antenna device is a single antenna or is part of several individual radiators or a group antenna.
  • the radiator element is the part of the antenna device which is used for the actual emission or the actual reception of the electromagnetic signals.
  • a web element for the capacitive coupling opens at the level of the radiator element side.
  • the antenna device has a conductor structure for conducting electromagnetic signals.
  • the conductor structure and the radiator element are capacitively coupled to one another via the coupling point.
  • the conductor structure is z. B. formed from electrical lines or from conductor tracks on a semiconductor substrate. The connection between the radiator element and the conductor structure for transmitting the electromagnetic signals takes place capacitively and in particular free of galvanic coupling.
  • the radiator element has at least one wing element.
  • the radiator element and the wing element are galvanically coupled to one another.
  • the wing element is arranged on the side of the radiator element.
  • the radiator element and the wing element form an angle with one another and the wing element has the coupling point.
  • the coupling point is thus located indirectly via the wing element on the side of the radiator element.
  • the emitter element and wing element or possibly wing elements are in one piece executed or the wing element or the wing elements are connected to the radiator element.
  • the wing element is made of an electrically conductive material, in particular a metal.
  • the antenna device has a carrier element.
  • the conductor structure is at least partially applied to the carrier element. If, in one embodiment, the conductor structure consists at least partially of conductor tracks, then in a supplementary embodiment these conductor tracks are applied or produced on the carrier element.
  • the carrier element is, for example, a substrate on which the conductor structure - z. B. with thin-film or thick-film processes - has been applied.
  • the wing element is angled away from the emitter element in the direction of the carrier element.
  • the wing element thus runs from the side of the radiator element in the direction of the carrier element.
  • the coupling point is located at a free end of the wing element.
  • the free end is the end of the wing element which faces away from the side of the radiator element and therefore also from the radiator element. The free end is therefore an end that is not connected to the radiator element.
  • the radiator element is only capacitively connected to the conductor structure or to other structures.
  • the radiator element has at least one galvanic coupling in addition to the at least one capacitive coupling.
  • an intermediate medium is present in the area of the coupling point, the capacitive coupling taking place via the intermediate medium.
  • the intermediate medium is a dielectric and, alternatively, at least a non-conductor or an insulator.
  • the intermediate medium influences the type of coupling and therefore also the further electrical properties of the antenna device.
  • the intermediate medium is attached between two electrically conductive units, so that the capacitive coupling results. These two at least partially electrically conductive units are formed in one embodiment by a wing element and a web element.
  • the radiator element is attached at a distance from the carrier element.
  • the radiator element is located in this embodiment, for. B. above the carrier element. In one embodiment, the distance also has an effect on the radiation properties of the antenna device.
  • the mechanical fastening and the electrical coupling of the radiator element are implemented via the same components (e.g. wing element and / or web element).
  • a distance between the radiator element and the carrier element is at least dependent on the wing element.
  • the distance between the radiator element and the carrier element is at least dependent on the configuration of the wing element and in particular on its geometric configuration.
  • the wing element is at least part of a support structure which carries the steel element and thus also holds it at a distance from the support element.
  • the conductor structure is applied to the carrier element, so that in one configuration in conjunction with the aforementioned configuration, the radiator element is located at a distance above at least part of the conductor structure. In this embodiment, the conductor structure is thus at least partially covered or protected by the radiator element.
  • the antenna device has at least one web element.
  • the web element is galvanically or capacitively coupled to a feed point of the conductor structure.
  • the bar element and the radiator element are capacitively coupled to one another via the coupling point.
  • the conductor structure has a feed point at which electromagnetic signals are thus extracted from the conductor structure or coupled into the conductor structure.
  • a web element is galvanically or capacitively coupled to this at least one feed point.
  • the bar element and the radiator element are capacitively coupled to one another via the coupling point.
  • the web element and the wing element couple capacitively with one another.
  • the coupling between the conductor structure and the radiator element therefore takes place indirectly via the web element and the wing element.
  • a distance between the radiator element and the carrier element depends at least on the web element.
  • the bar element thus also serves at least partially as a carrier element for the radiator element.
  • the radiator element is fastened relative to the carrier element via the wing element or via the wing element and a web element.
  • the wing element or the web element allow the electrical - and especially capacitive - connection between the radiator element and the conductor structure. In this embodiment, this is expanded to include corresponding mechanical properties that allow the wing element and / or the web element to carry the radiator element and thus to keep it at a predeterminable distance from the carrier element.
  • the distance between the radiator element and the conductor structure or especially the carrier element - and possibly other components located thereon - can therefore be set in a targeted manner via the wing element or the bar or via the wing element and the bar element in order to achieve certain effects or properties of the radiation properties To achieve antenna device.
  • the radiator element is designed as a surface radiator.
  • a surface radiator differs from the so-called linear radiators (or also linear antennas) in that conducted waves are converted into free space waves at a surface area and vice versa.
  • Surface emitters are used, for example, as directional emitters. The surface emitters are thus determined by a surface that they span or cover.
  • the radiator element is designed as a surface radiator with an outer contour in the form of an n-corner.
  • n is a natural number greater than or equal to three.
  • the surface radiator therefore has the outer contour of a triangle, a square or any other n-corner.
  • the outer contour relates to the projection of the radiator element onto the carrier element and therefore, in one embodiment, to the surface that is covered by the radiator element.
  • the wing element is located between two corners on at least one side. The arrangement of the at least one coupling point or, depending on the configuration of the at least one wing element, takes place in one configuration in the middle on the assigned side.
  • the radiator element is designed as a funnel-shaped surface radiator with a central depression.
  • the radiator element is therefore not flat in this embodiment, but has a depression that makes it funnel-shaped.
  • the radiator element is designed in the sense of a horn antenna.
  • the radiator element has at least one recess within its outer contour.
  • the radiator element is designed as an n-gon with n sides between the corners
  • the at least one coupling point is arranged in the area of one side of the n-gon of the radiator element.
  • the coupling point is arranged centrally on one side of the n-gon.
  • n coupling points are present to match the n-cornered radiator element, each of which is arranged on one side of the surface radiator.
  • the radiator element is designed as a sheet metal.
  • a sheet has a significantly larger area than its height.
  • the sheet preferably consists of an electrically conductive metal or metal mixture.
  • the radiator element is designed as a monopole.
  • a monopole or a monopole antenna is part of a dipole antenna (or half-wave dipole antenna) as a linear antenna. Such antennas have a linear current distribution in the antenna structure.
  • the implementation involves, for example, an electrical conductor made of a metallic wire or a metallic rod that is thin compared to the wavelength.
  • a monopole antenna also quarter-wave radiator or ground plane antenna
  • the monopole is formed by a flat sheet metal, the coupling point then being located above or below the surface of the monopole.
  • the radiator element is designed as a rod-shaped monopole.
  • the coupling point is located along a longitudinal axis of the rod-shaped monopoly.
  • the antenna device has a ground plane which, in a further embodiment, is located on the carrier element.
  • the ground plane is connected to an electrical ground.
  • the radiator element has coupling points on several sides.
  • the radiator element is capacitively coupled to the conductor structure via at least one coupling point.
  • the radiator element is capacitively coupled to the conductor structure via more than one coupling point.
  • the coupling points or the wing elements having the coupling points are each located on the sides of a radiator element having an n-angular outer contour.
  • the radiator element has four coupling points. In an associated embodiment, the radiator element is capacitively coupled to the conductor structure via all four coupling points.
  • the coupling points are arranged symmetrically around the radiator element.
  • the radiator element is connected to a signal source (e.g. in the form of a voltage source) via at least one coupling point.
  • the signal source serves as a signal source for an electromagnetic signal that is emitted via the radiator element.
  • the radiator element is connected to an idle via at least one coupling point.
  • the coupling via the coupling point takes place capacitively in each case. In the case of idling, therefore, no coupling to a consumer or an electrical resistor is provided via the coupling point. There is thus an open end.
  • the radiator element is connected to a short circuit via at least one coupling point.
  • radiator elements there are at least two radiator elements.
  • these at least two radiator elements are coupled to one another, in particular capacitively or via a short circuit, that is to say galvanically.
  • the two radiator elements have different distances from the carrier element.
  • the radiator elements are at different heights upset.
  • the radiator elements overlap - z. B. in the projection perpendicular to the carrier element - and are free from an overlap in an alternative embodiment.
  • one of the two radiator elements has a recess which is located, for example, in the center of the radiator element designed as a surface radiator.
  • the other radiator element is arranged in the region of the recess.
  • one radiator element corresponds to the recess of the other radiator element and, in addition to this, is located at a different height than the correspondingly associated recess in one embodiment.
  • a part of a radiator element has, as it were, been offset in height.
  • the two radiator elements are preferably capacitively coupled to one another.
  • the radiator element has at least one bend.
  • the radiator element is z. B. designed more rod-shaped or more as a flat element and has an angled or kinked course at at least one point.
  • the antenna device according to the invention therefore results in the advantages of reducing the dimensions of the antenna device and thereby not or only slightly losing performance, such as radiation behavior with simultaneous impedance matching. Via the type of capacitive coupling and the components involved in it, radiation properties and an impedance matching can in particular also be specified or set in a targeted manner.
  • the present invention essentially comprises an antenna element - specifically a radiator element - as part of the antenna device 1, which is fed via a novel capacitive coupling.
  • the diameter of the electromagnetic signals to be emitted or received can be well below half a wavelength can be reduced and enables loss-free or low-loss impedance matching to significantly less than 100 ohms, e.g. B. 50 ohms. Depending on the design, this can be achieved up to a quarter of the wavelength and below. It is also possible here to dispense with the lossy adaptation elements required in the prior art for adapting radiators smaller than half a wavelength. In addition, no large ground plane or a reflector is required to suppress the reflection. As a result, the overall efficiency of the radiator element 4 drops significantly in the prior art.
  • the antenna device 1 is designed, for example, for operation at 910 MHz. With exemplary dimensions (square carrier element with 175 mm edge length and square radiator element with 75 mm edge length) and a height of 30 mm, the real part of the base point impedance amounts to approx. 200 ohms with a purely galvanic coupling.
  • the Fig. 1 shows a three-dimensional representation of an antenna device 1 with a carrier element 2 and a radiator element 4.
  • a ground surface 10 is also located on the carrier element 2 here. It can be seen that the radiator element 4 has a square outer contour and descends in a funnel shape. The radiator element 4 is at a distance from the carrier element 2 and is held or supported here by the four coupling points or by the four wing elements 6.
  • the Indian Fig. 1 circled area is in the Fig. 2 shown larger.
  • the four wing elements 6 can be seen, which are located on the sides 40 of the here rectangular radiator element 4 and have coupling points 5 for the capacitive coupling at their free ends 60.
  • Four web elements 7 extend from the carrier element 2 at the four feed points 8. The web elements 7 and the wing elements 6 meet at the coupling points 5 and cause the capacitive coupling there.
  • the radiator element 4 lowers centrally towards the carrier element 2. It can also be seen that the wing elements 6 and thereby the coupling points 5 are located on the sides 40 of the radiator element 4, which is square here. Like the radiator element 4, the wing elements 6 are designed here as metal sheets and are in particular galvanically coupled to the radiator element 4. Between the wing elements 6 and the web elements 7 there is in each case an intermediate medium 9 in the coupling area 5, which is designed here as a dielectric and therefore also Has effects on the capacitive coupling and which enables the radiator element 4 to be fixed with a defined distance between the wing element 6 and the web element 7. Furthermore, the web elements 7 are galvanically coupled to the conductor structure on the carrier element 2 at the feed points 8. The wing elements 6 and the radiator element 4 or its outer border form an angle 14, which here is a 90 ° angle. The wing elements 6 face the carrier element 2 here and also face away from the top of the radiator element 4.
  • the conductor structure 3 in the form of conductor tracks on the carrier element 2 shows Fig. 4 .
  • the conductor structure 3 is located below the radiator element 4 and on the opposite side of the ground plane 10, i.e. below the carrier element 2.
  • the earth plane 10 is below and the conductor structure 3 is above the carrier element 2.
  • the ground plane 10 or the conductor structure 3 within any number of layered carrier elements 2.
  • the web elements 7 or possibly existing elements that connect the conductor structure 3 to the web elements 7 therefore protrude through the carrier element 2 depending on the configuration.
  • FIGs. 1 to 4 thus show the novel capacitive coupling of the radiator element 4 using the example of a patch with four feed points.
  • the radiator element 4 can be easily adapted to a desired impedance, often 50 ohms, without a large ground plane 10 or without a reflector.
  • the coupling points 5 are located on the sides 40 of the radiator element 4.
  • the wings or wing elements 6) are attached to the sides of the radiator element 4 and are bent downwards.
  • Four webs protrude from the carrier board 2 - one web (or web element 7) per feed point 8 - and couple capacitively with the wings 7 via an intermediate medium 9.
  • This allows the width of the coupling gap between web 7 and wing 6 to be reduced and also enables a defined distance between web 7 and wing 6.
  • an air gap can also be provided.
  • the radiator element 4 or the wing elements 6 can also be attached to the webs 7, for. B. screwed, plugged, glued or soldered to the intermediate medium between web 7 and wing 6. Almost any impedance matching is possible due to the width, height and spacing of the coupling point 5 possible, which significantly simplifies the development of the antenna element 1, since no lossy matching network is required.
  • the shape of the radiator element 4 and the capacitive coupling points 5 generate high field strengths at the coupling points 5, in which the majority of the energy fed in is concentrated. This imposes a wide electrical aperture on the radiator 4, as a result of which the lateral dimensions of the radiator 4 can be significantly reduced.
  • Fig. 5 shows examples of some variants.
  • the radiator element 4 can be shaped or configured differently.
  • Fig. 6 shows examples of some variants.
  • an n-cornered radiator element 4 is shown, the outer contour of which is formed by the n-corner.
  • n is a natural number greater than three.
  • the Fig. 7 shows variants with a monopole as a design of the radiator element 4. Furthermore, different variants for the coupling with web elements 7 are shown. In some of the configurations there are no wing elements, so that the radiator element 4 has the at least one coupling point directly on one side 40.
  • the variants of the Fig. 7 a) to e) and l ) only have the radiator element 4 and the bar element 7.
  • the variants of the Fig. 7 f) to k) have the radiator element 4, at least one wing element 5 and at least one web element 7.
  • the radiator elements 4 are surface radiators, e.g. B. in the form of wide sheet metal elements. This shows the Fig. 7 I) who have a 90 ° rotated view of the design of the Fig. 7 b) allowed.
  • the side 40 of the radiator element 4 is given here by the base area.
  • the web element 7, designed here as a strip, is located on this side 40 through the coupling point 5 in a capacitive connection with the radiator element 4.
  • the webs 7 can also be designed differently. These can vary in width, height, thickness and shape. They can also be straight or angled. In addition to air, an intermediate medium 9, e.g. B. dielectrics, ferrites, ferroelectrics and others.
  • the fastening of the web elements 7 on the feeder board as an example for the carrier element 2 can be implemented differently like the fastening of the radiator element 4 to the web elements 7, e.g. B. screwed, plugged, glued or soldered.
  • FIGS 9 and 10 show two further embodiments with four points for capacitive coupling between the conductor structure on the carrier element 2 and the radiator element 4.
  • the wing elements 6 are located on the sides of the n-angular radiator element 4 and are bent in the direction of the carrier element 2.
  • a capacitive coupling - here in particular via an air gap - between the web element 7 and the wing element 6, so that the capacitive coupling point 5 is also located between the two.
  • the wing elements 6 can also be seen here as sheet metal strips that are attached to the sides of the radiator element 4 and are bent downwards. It can also be seen that, via the configurations of wing elements 6 and web elements 7, the distance between the radiator element 6 and the carrier element 2 or z. B. a ground plane on the carrier element 2 are adjustable.
  • the at least one radiator element 4 is made from sheet metal, the wing elements 6 and the web elements 7 also being made from sheet metal.
  • FIGS. 11 to 14 show a further embodiment of the antenna device 1 with two radiator elements 4, 4 '.
  • This is, for example, a "stacked patch", e.g. B. for dual-band design or extended broadband design.
  • the Fig. 11 shows the two differently configured radiator elements 4, 4 ′, both of which are spaced apart from the carrier element 2.
  • the radiator element 4 located higher also the first radiator element
  • the second radiator element 4 ' is located within the recess 21 and closer to the carrier element 2.
  • the second radiator element 4' in the illustrated embodiment is also designed to be square.
  • Both radiator elements 4, 4 ' are designed flat here and are here essentially parallel to the carrier element 2.
  • the conductor structure 3 can be seen in the form of conductor tracks on the carrier element 2 with the four feed points 8, each of which is connected to a web element 7. This is done here to match the four coupling points 5 on the wing elements 6 on the four outer sides 40 of the upper radiator element 4.
  • the Fig. 12 shows the different configuration of the two radiator elements 4, 4 'and their arrangement with respect to one another. It can also be seen that the wing elements 6 are located on the sides 40 of the upper or first square radiator element 4 and protrude from there in the direction of the carrier element 2. The capacitive coupling points 5 are therefore also on the sides. The flat course of the wing elements can also be seen, which extend from the sides of the upper radiator element 4 and are angled here in the direction of the carrier element 2.
  • the Fig. 13 shows the enlarged section of the part of the antenna device 1 of FIG Fig. 12 .
  • Tongue elements 15 protrude from the coupling points 5 to the radiator element 4 'located further in the direction of the carrier element 2 and therefore also generate an electrical - here in particular capacitive - coupling to this - second - radiator element 4'.
  • the two radiating elements 4, 4 ′ are capacitively coupled to one another and one of the two radiating elements 4 is capacitively coupled to the conductor structure 3 via the wing elements 6.
  • the cut of the Fig. 14 shows once again that the upper - first - radiator element 4 rests on the carrier element 2 via the connection of laterally located wing elements 6 and web elements 7 and is capacitively coupled to the feed points 8 via the coupling points 5.
  • a dielectric is located between the web elements 7 and the wing elements 6 as an intermediate medium 9.
  • the tongue elements 15 run in the direction of the lower - second - radiator element 4 ′, which also effect electrical and, here, capacitive contact.
  • the carrier element 2 has a width of 175 mm and the upper radiator element 4 has a side length of 75 mm.
  • the outer contour - here in particular square - of the upper radiator element 4 is located approximately 25 mm above the carrier element 2.
  • UHF RFID antennas for use in logistics, production or automation offer a technical field of application. These include, for example, gate passages with bulk reading (recording of many transponders in a short time), automated inventory or personal checks (e.g. healthcare).
  • Another possible application is mobile terminals for satellite or terrestrial mobile communication. Further applications are in the automotive sector or in the area of networking vehicles or road users (so-called Car2X).

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Details Of Aerials (AREA)
  • Waveguide Aerials (AREA)
  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

Die Erfindung bezieht sich auf eine Antennenvorrichtung. Die Antennenvorrichtung dient insbesondere dem Senden und/oder Empfangen von elektromagnetischen Signalen.The invention relates to an antenna device. The antenna device is used in particular to transmit and / or receive electromagnetic signals.

Die stetige Verkleinerung bzw. Miniaturisierung von elektronischen und elektromechanischen Systemen bedingt letztendlich auch die entsprechende Verkleinerung der erforderlichen Komponenten, ohne dabei an Performance zu verlieren. Im Gegenteil, die Steigerung der Leistungsfähigkeit dieser Baugruppen wird dabei angestrebt.The constant downsizing or miniaturization of electronic and electromechanical systems ultimately also necessitates the corresponding downsizing of the required components without losing performance. On the contrary, the aim is to increase the performance of these assemblies.

Zusätzlich steigt der Bedarf an drahtlos kommunizierenden Komponenten und demnach auch die Anforderung an die Verkleinerung der Antennen als Kernstück dieser Baugruppen. Hierin liegt eines der grundlegenden Probleme der Miniaturisierung von Systemen, denn die Entwicklung und letztendlich die Abmessungen der benötigten Antennenelemente unterliegen gewissen physikalischen Grenzen.In addition, the need for wirelessly communicating components is increasing, and so is the need to reduce the size of the antennas as the core of these assemblies. This is one of the fundamental problems of the miniaturization of systems, because the development and ultimately the dimensions of the antenna elements required are subject to certain physical limits.

Antennen prägen, abhängig von ihrer Form, Größe und Speisung, verschiedene Richtcharakteristiken mit verschiedenen Eigenschaften aus. Es gibt eine Vielzahl von Antennenformen, um der Menge an den für die Anwendung gewünschten Anforderungen zu genügen. Hierbei spielt auch die Speisung bzw. Ankopplung der Signalquelle an das Strahlerelement eine entscheidende Rolle, denn neben der Form und Größe werden dadurch maßgeblich die Eigenschaften der abgestrahlten Welle und die Fußpunktimpedanz der Antenne bestimmt. Solche Eigenschaften können z. B. Form der Strahlungskeule, aber auch besonders die Polarisation (linear, zirkular, elliptisch), die Polarisationsreinheit (Polarisationsentkopplung) und die Omnidirektionalität der abgestrahlten Freiraumwelle sein. Auch die Impedanzbandbreite und die Frequenzabhängigkeit der Richtcharakteristik sind maßgebliche Faktoren einer Antenne für breitbandige drahtlose Kommunikation. Um beispielsweise für das Keulenformen (sog. Beamforming) mit Gruppenantennen möglichst gleichmäßige und äußerst ähnliche Strahlungskeulen in verschiedene Raumrichtungen zu generieren, ist eine hohe Polarisationsreinheit sowie Omnidirektionalität der Richtcharakteristik des Einzelelements erforderlich.Antennas have different directional characteristics with different properties depending on their shape, size and power supply. There are a variety of antenna shapes to suit the amount of needs desired for the application. The supply or coupling of the signal source to the radiator element also plays a decisive role here, because in addition to the shape and size, the properties of the radiated wave and the base point impedance of the antenna are also determined. Such properties can e.g. B. Form of the radiation lobe, but also especially the polarization (linear, circular, elliptical), the polarization purity (polarization decoupling) and the omnidirectionality of the emitted free space wave. The impedance bandwidth and the frequency dependence of the directional characteristic are also decisive factors of an antenna for broadband wireless communication. In order to generate, for example, beamforming with group antennas that are as uniform and extremely similar as possible in different spatial directions, a high degree of polarization purity and omnidirectionality of the directional characteristic of the individual element is required.

Für viele Anwendungen, z. B. bei UHF-RFID-(Ultra-High-Frequency-radio-frequency identification-)Lesetoren, werden in der Regel zirkular polarisierte Antennen verwendet, um die zumeist linear polarisierten passiven Transponder auch bei sehr unterschiedlichen Orientierungen im Raum sicher zu erfassen. Hierfür werden zunehmend Mehrkeulenantennen eingesetzt, um durch eine Vielzahl von Keulenausprägungen (Beams) einen größeren Winkelbereich bzw. Raum abzudecken. Dies erlaubt es, eine Vielzahl von häufig im Pulk angeordneten Transpondern sicher zu identifizieren. Zudem ermöglicht solch eine Mehrkeulenantenne die Bestimmung der Position der Transponder im Raum (Lokalisierung). Dafür sind sehr gleichmäßige und symmetrische Beams erforderlich, deren Erzeugung nur durch die genannten Strahlungseigenschaften des Einzelelements der Gruppenantennen möglich ist.For many applications, e.g. B. with UHF-RFID (Ultra-High-Frequency-radio-frequency identification-) reading gates, circularly polarized antennas are usually used to to reliably detect the mostly linearly polarized passive transponders even with very different orientations in the room. For this purpose, multi-lobe antennas are increasingly being used in order to cover a larger angular range or space with a large number of beam forms. This allows a large number of transponders, which are often arranged in bulk, to be reliably identified. In addition, such a multi-lobe antenna enables the position of the transponder in the room to be determined (localization). For this, very uniform and symmetrical beams are required, the generation of which is only possible through the mentioned radiation properties of the individual element of the group antennas.

Für viele Anwendungen müssen die Antennen preiswert sein. Um z. B. eine zirkular polarisierte Richtcharakteristik kostengünstig zu erzeugen, wird häufig ein Strahlerelement (meist in Form einer Patch-Antenne) an zwei um 90° versetzten Speisepunkten angekoppelt (siehe z. B. "Patch Antenna (Circular), 860 - 930 MHz" von Poynting Antennas (Pty.) Ltd.). Dies geschieht beispielsweise galvanisch durch Drahtleitungen unterhalb vom Patch. Hier wird meist ein Speisenetzwerk (zumeist in Mikrostreifenleitungstechnologie) benötigt, welches die Phasenverschiebung der zugeführten Leistung von 90° ermöglicht. Allerdings besitzt hierbei die Richtcharakteristik eine schlechte Polarisationsreinheit bzw. Kreuzpolarisationsunterdrückung (cross-polarisation discrimination, XPD), was asymmetrische Keulen beim Beamforming zur Folge hat. Ebenso bedingt dieser Aufbau, dass der Patch-Durchmesser in der Größenordnung einer halben Wellenlänge liegen muss und eine große Massefläche oder ein Reflektor erforderlich sind um die Rückstrahlung (Kreuz-Polarisation) gering zu halten. Auch die Bandbreite eines solchen Aufbaus ist sehr gering.For many applications the antennas have to be inexpensive. To z. B. to generate a circularly polarized directional characteristic inexpensively, a radiator element (usually in the form of a patch antenna) is often coupled to two feed points offset by 90 ° (see, for example, "Patch Antenna (Circular), 860-930 MHz" from Poynting Antennas (Pty.) Ltd.). This is done galvanically, for example, through wire lines below the patch. A feed network (mostly in microstrip line technology) is usually required here, which enables the phase shift of the power supplied by 90 °. However, the directional characteristic here has poor polarization purity or cross-polarization discrimination (XPD), which results in asymmetrical lobes in beamforming. This structure also means that the patch diameter must be on the order of half a wavelength and a large ground plane or a reflector are required in order to keep the reflection (cross-polarization) low. The bandwidth of such a structure is also very small.

Um Antennen mit kleinen Abmessungen entwickeln zu können und dabei eine Richtcharakteristik mit hoher Polarisationsreinheit und Omnidirektionalität zu erzeugen, können Keramikantennen eingesetzt werden. Diese sind allerdings sehr teuer und im Allgemeinen sehr schmalbandig. Eine günstigere Methode ist, das Strahlerelement an vier um jeweils 90° versetzten Speisepunkten anzuregen [1]. Dabei ist es vorteilhaft, einen Strahler als Blechelement mit an den vier Seiten um 90° gebogenen Anschlusssegmenten zu verwenden und direkt mit der Platine zu verlöten; auch die Speisung durch Drahtelemente ist denkbar [2]. Dies benötigt ein kompaktes und entkoppeltes Speisenetzwerk [1], welches die vier um jeweils 90° versetzten Phasen bereitstellt. Durch die Vierpunktspeisung kann der Durchmesser des Strahlerelements auf deutlich unter eine halbe Wellenlänge reduziert und gleichzeitig eine hohe Bandbreite erreicht werden. Die Bandbreite ist etwas größer gegenüber der zweipunkt-gespeisten Lösung. Allerdings sind verlustbehaftete Stichleitungen erforderlich, um den Strahler anzupassen und dessen Bandbreite zu erhöhen. Weiterhin ist eine sehr große Massefläche gegenüber den Abmessungen des Strahlerelements erforderlich, um die Rückstrahlung (Kreuz-Polarisation) gering zu halten. Ebenso besitzt das Strahlerelement gegenüber der beschriebenen Idee eine deutlich größere elektrische Bauhöhe.Ceramic antennas can be used in order to be able to develop antennas with small dimensions and thereby generate a directional characteristic with high polarization purity and omnidirectionality. However, these are very expensive and generally very narrow-band. A more economical method is to excite the radiator element at four feed points, each offset by 90 ° [1]. It is advantageous to use a radiator as a sheet metal element with connection segments bent by 90 ° on the four sides and to solder it directly to the board; Feeding through wire elements is also conceivable [2]. This requires a compact and decoupled feed network [1], which provides the four phases, each offset by 90 °. Thanks to the four-point feed, the diameter of the radiator element can be reduced to well below half a wavelength and a high bandwidth can be achieved at the same time. The bandwidth is slightly larger compared to the two-point fed solution. However, there are lossy stubs required to adapt the radiator and to increase its bandwidth. Furthermore, a very large ground area is required compared to the dimensions of the radiator element in order to keep the reflection (cross-polarization) low. Compared to the idea described, the radiator element also has a significantly greater electrical overall height.

Eine weitere Möglichkeit, das Patch-Element anzukoppeln, besteht darin, die leitungsgeführte Welle über Schlitze in der Massefläche auszukoppeln (siehe [3]). Dabei kreuzt eine Mikrostreifenleitung (meist orthogonal) den Schlitz in der Masseleitung. Um eine zirkulare Polarisation der Welle zu ermöglichen, kann auch hier die Methode der Zwei- bzw. Vier-Punkte-Speisung angewendet werden. Dafür ist nicht zwingend ein Patch erforderlich, allerdings in beiden Fällen ein Reflektor, um die Rückstrahlung zu verringern und somit auch den Gewinn zu erhöhen. Nachteilig ist, dass die Abmessungen der gegenüberliegenden Speisestellen (Schlitze) sowie der Durchmesser des Patches etwa die halbe Wellenlänge der Signale, die ausgestrahlt bzw. empfangen werden, betragen.Another possibility of coupling the patch element is to couple the line-guided wave through slots in the ground plane (see [3]). A microstrip line (usually orthogonally) crosses the slot in the ground line. In order to enable a circular polarization of the wave, the method of two- or four-point feeding can also be used here. A patch is not absolutely necessary for this, but in both cases a reflector is required in order to reduce the reflection and thus also to increase the profit. The disadvantage is that the dimensions of the opposite feed points (slots) and the diameter of the patch are approximately half the wavelength of the signals that are transmitted or received.

Bei den beschriebenen Methoden liegen die Abmessungen des Strahlerelements bzw. die Abstände der Speisepunkte in der Größenordnung einer halben Wellenlänge. Würden diese Abmessungen verkleinert werden, so würden sich die Fußpunktimpedanzen des Strahlerelements betragsmäßig deutlich erhöhen: desto kleiner das Strahlerelement, desto größer der Betrag der Fußpunktimpedanz. Dies erschwert die Impedanzanpassung auf 50 Ohm oder auch 100 Ohm und ist im Allgemeinen mit hohen Leistungsverlusten durch die Anpasselemente und einer Verringerung der Bandbreite verbunden. Dies macht eine verlustarme Anpassung von Strahlerelementen bzw. bei Speisepunktabständen deutlich kleiner der halben Wellenlänge (z. B. ein Viertel der Wellenlänge) nahezu unmöglich.In the methods described, the dimensions of the radiator element and the distances between the feed points are in the order of magnitude of half a wavelength. If these dimensions were to be reduced, the base point impedances of the radiator element would increase significantly in terms of amount: the smaller the radiator element, the greater the base point impedance. This makes impedance matching to 50 ohms or 100 ohms more difficult and is generally associated with high power losses due to the matching elements and a reduction in bandwidth. This makes a low-loss adaptation of radiator elements or, in the case of feed point spacings significantly smaller than half the wavelength (e.g. a quarter of the wavelength), almost impossible.

Eine Patch-Antenne, bei der eine Strahlungsfläche auf einem dielektrischen Substrat beabstandet von einer Masseebene angeordnet ist und über leitfähige Stifte, die sich durch das dielektrische Substrat erstrecken, gespeist wird, ist aus der US 2014/0266963 A1 bekannt.A patch antenna, in which a radiation surface is arranged on a dielectric substrate at a distance from a ground plane and is fed via conductive pins that extend through the dielectric substrate, is from the US 2014/0266963 A1 known.

Die US 2015/0042513 A1 offenbart eine Patchantenne, bei der ein Strahlungspatch über Sonden, die sich von Ecken des Strahlungspatches mit zunehmender Breite zur Mitte des Strahlungspatches hin erstrecken, elektromagnetisch gespeist wird.The US 2015/0042513 A1 discloses a patch antenna in which a radiation patch is fed electromagnetically via probes which extend from corners of the radiation patch with increasing width towards the center of the radiation patch.

Die US 2015/0214592 A1 offenbart eine Antennenanordnung, bei der vier Säulen vorgesehen sind, um eine horizontale Strahlungseinheit mit Ausgangstoren eines Speisenetzwerks koppeln.The US 2015/0214592 A1 discloses an antenna arrangement in which four columns are provided to couple a horizontal radiation unit to output ports of a feed network.

HU FUGUO ET AL, "Ultra-Wideband Dual-Polarized Patch Antenna With Four Capacitively Coupled Feeds", IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, vol. 62, no. 5, pages 2440 - 2449, 5. Mai 2014 , offenbaren eine breitbandige Patchantenne, die an vier Seiten kapazitiv gespeist wird. HU FUGUO ET AL, "Ultra-Wideband Dual-Polarized Patch Antenna With Four Capacitively Coupled Feeds", IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, vol. 62, no.5, pages 2440 - 2449, May 5, 2014 , disclose a broadband patch antenna that is capacitively fed on four sides.

SOORYA R ET AL, "UWB microstrip patch antenna with flower shaped patch and cavity structure", 2016 INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, SIGNAL PROCESSING AND NETWORKING (WISPNET), IEEE, (23. März 2016), pages 2080 - 2084 , offenbaren eine Mikrostreifen-Patchantenne mit einem Strahler, der über vier kapazitiv gekoppelte Zuführungen gespeist wird. SOORYA R ET AL, "UWB microstrip patch antenna with flower shaped patch and cavity structure", 2016 INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, SIGNAL PROCESSING AND NETWORKING (WISPNET), IEEE, (March 23, 2016), pages 2080-2084 , disclose a microstrip patch antenna with a radiator that is fed via four capacitively coupled feeds.

Die US 2015/0015447 A1 offenbart eine Antenne, bei der ein konisches Strahlungselement über vier leitfähige Elemente mit einer Massefläche galvanisch verbunden ist.The US 2015/0015447 A1 discloses an antenna in which a conical radiation element is galvanically connected to a ground plane via four conductive elements.

Die US 2003/174098 A1 offenbart eine Schleifenantenne, die an vier Seiten kapazitiv gespeist wird.The US 2003/174098 A1 discloses a loop antenna that is capacitively fed on four sides.

Die Aufgabe der Erfindung besteht darin, eine Antennenvorrichtung vorzuschlagen, die eine Miniaturisierung erlaubt, ohne dass sich signifikante Einbußen der Strahlungseigenschaften ergeben.The object of the invention is to propose an antenna device which allows miniaturization without significant losses in the radiation properties.

Die Erfindung löst die Aufgabe durch eine Antennenvorrichtung gemäß Anspruch 1.The invention achieves the object by means of an antenna device according to claim 1.

Die Antennenvorrichtung weist ein Strahlerelement zum Abstrahlen und/oder Empfangen von elektromagnetischen Signalen auf. Dabei weist das Strahlerelement mindestens eine Koppelstelle auf. Die Koppelstelle ist mit einer Seite des Strahlerelements verbunden. Zudem ist die Koppelstelle zur kapazitiven Ein- und/oder Auskopplung von elektromagnetischen Signalen ausgestaltet. In einigen der folgenden Ausgestaltungen ist direkt an einer Seite des Strahlerelements die Koppelstelle vorhanden. Die Seite bezieht sich dabei je nach Ausgestaltung auf die Außenfläche oder Außenumrandung des Strahlerelements. In alternativen Ausgestaltungen wird das Strahlerelement an der mindestens einen Seite gleichsam durch ein Element - ein Flügelelement - erweitert, das die Koppelstelle trägt. Je nach Ausgestaltung befindet sich somit unmittelbar oder mittelbar - insbesondere über ein Flügelelement - die mindestens eine Koppelstelle an einer Seite des Strahlerelements. Die Koppelstelle ist dabei ein Bereich, über den elektromagnetische Signale zum Ausstrahlen in das Strahlerelement eingekoppelt oder über den von dem Strahlelement empfangene Signale aus dem Strahlerelement ausgekoppelt werden.The antenna device has a radiator element for radiating and / or receiving electromagnetic signals. The radiator element has at least one coupling point. The coupling point is connected to one side of the radiator element. In addition, the coupling point is designed for capacitive coupling and / or decoupling of electromagnetic signals. In some of the following configurations, the coupling point is directly on one side of the radiator element available. Depending on the design, the side refers to the outer surface or the outer border of the radiator element. In alternative configurations, the radiator element is expanded on the at least one side by an element - a wing element - which carries the coupling point. Depending on the configuration, the at least one coupling point is thus located directly or indirectly - in particular via a wing element - on one side of the radiator element. The coupling point is an area via which electromagnetic signals are coupled into the radiator element for emission or via which signals received from the radiator element are decoupled from the radiator element.

Die Antennenvorrichtung ist dabei eine einzelne Antenne oder ist ein Teil von mehreren Einzelstrahlern bzw. einer Gruppenantenne.The antenna device is a single antenna or is part of several individual radiators or a group antenna.

Das Strahlerelement ist das Teil der Antennenvorrichtung, das der eigentlichen Abstrahlung bzw. dem eigentlichen Empfang der elektromagnetischen Signale dient.The radiator element is the part of the antenna device which is used for the actual emission or the actual reception of the electromagnetic signals.

Verfügt das Strahlerelement unmittelbar an seiner Seite über die Koppelstelle, so mündest in einer Ausgestaltung ein Stegelement für die kapazitive Kopplung auf der Höhe der Seite des Strahlerelements.If the radiator element has the coupling point directly on its side, in one embodiment a web element for the capacitive coupling opens at the level of the radiator element side.

In einer Ausgestaltung weist die Antennenvorrichtung eine Leiterstruktur zum Leiten von elektromagnetischen Signalen auf. Dabei sind die Leiterstruktur und das Strahlerelement über die Koppelstelle kapazitiv miteinander gekoppelt. Die Leiterstruktur wird je nach Ausgestaltung z. B. aus elektrischen Leitungen oder aus Leiterbahnen auf einem Halbleitersubstrat gebildet. Die Verbindung zwischen dem Strahlerelement und der Leiterstruktur zum Übertragen der elektromagnetischen Signale erfolgt dabei kapazitiv und insbesondere frei von einer galvanischen Kopplung.In one configuration, the antenna device has a conductor structure for conducting electromagnetic signals. The conductor structure and the radiator element are capacitively coupled to one another via the coupling point. The conductor structure is z. B. formed from electrical lines or from conductor tracks on a semiconductor substrate. The connection between the radiator element and the conductor structure for transmitting the electromagnetic signals takes place capacitively and in particular free of galvanic coupling.

In einer Ausgestaltung weist das Strahlerelement mindestens ein Flügelelement auf. Dabei sind das Strahlerelement und das Flügelelement galvanisch miteinander gekoppelt. Weiterhin ist das Flügelelement an der Seite des Strahlerelements angeordnet. Zudem bilden das Strahlerelement und das Flügelelement einen Winkel miteinander und das Flügelelement weist die Koppelstelle auf. In dieser Ausgestaltung befindet sich somit die Koppelstelle mittelbar über das Flügelelement an der Seite des Strahlerelements. Je nach Ausgestaltung sind Strahlerelement und Flügelelement oder ggf. Flügelelemente einteilig ausgeführt oder das Flügelelement bzw. die Flügelelemente sind mit dem Strahlerelement verbunden.In one embodiment, the radiator element has at least one wing element. The radiator element and the wing element are galvanically coupled to one another. Furthermore, the wing element is arranged on the side of the radiator element. In addition, the radiator element and the wing element form an angle with one another and the wing element has the coupling point. In this embodiment, the coupling point is thus located indirectly via the wing element on the side of the radiator element. Depending on the design, the emitter element and wing element or possibly wing elements are in one piece executed or the wing element or the wing elements are connected to the radiator element.

Das Flügelelement ist in einer Ausgestaltung aus einem elektrisch leitfähigen Material, insbesondere einem Metall gefertigt.In one embodiment, the wing element is made of an electrically conductive material, in particular a metal.

In einer Ausgestaltung weist die Antennenvorrichtung ein Trägerelement auf. Dabei ist in einer Ausgestaltung die Leiterstruktur auf dem Trägerelement zumindest teilweise aufgebracht. Besteht in einer Ausgestaltung die Leiterstruktur zumindest teilweise aus Leiterbahnen, so sind in einer ergänzenden Ausgestaltung diese Leiterbahnen auf dem Trägerelement aufgebracht bzw. erzeugt worden. In einer Ausgestaltung ist das Trägerelement beispielsweise ein Substrat, auf dem die Leiterstruktur - z. B. mit Dünnschicht- oder Dickschichtverfahren - aufgebracht worden ist.In one embodiment, the antenna device has a carrier element. In one embodiment, the conductor structure is at least partially applied to the carrier element. If, in one embodiment, the conductor structure consists at least partially of conductor tracks, then in a supplementary embodiment these conductor tracks are applied or produced on the carrier element. In one embodiment, the carrier element is, for example, a substrate on which the conductor structure - z. B. with thin-film or thick-film processes - has been applied.

In einer weiteren Ausgestaltung ist das Flügelelement in Richtung des Trägerelements von dem Strahlerelement abgewinkelt. Das Flügelelement verläuft somit von der Seite des Strahlerelements in Richtung des Trägerelements. Weiterhin befindet sich die Koppelstelle an einem freien Ende des Flügelelements. Das freie Ende ist dabei das Ende des Flügelelements, das von der Seite des Strahlerelements und daher auch vom Strahlerelement abgewandt ist. Das freie Ende ist also ein Ende, das nicht mit dem Strahlerelement verbunden ist.In a further embodiment, the wing element is angled away from the emitter element in the direction of the carrier element. The wing element thus runs from the side of the radiator element in the direction of the carrier element. Furthermore, the coupling point is located at a free end of the wing element. The free end is the end of the wing element which faces away from the side of the radiator element and therefore also from the radiator element. The free end is therefore an end that is not connected to the radiator element.

Dabei ist in einer Ausgestaltung das Strahlerelement nur kapazitiv mit der Leiterstruktur oder mit anderen Strukturen verbunden. In einer alternativen Ausgestaltung weist das Strahlerelement zusätzlich zu der mindestens einen kapazitiven Kopplung mindestens eine galvanische Kopplung auf.In one embodiment, the radiator element is only capacitively connected to the conductor structure or to other structures. In an alternative embodiment, the radiator element has at least one galvanic coupling in addition to the at least one capacitive coupling.

In einer Ausgestaltung ist im Bereich der Koppelstelle ein Zwischenmedium vorhanden, wobei die kapazitive Kopplung über das Zwischenmedium erfolgt. In einer Ausgestaltung handelt es sich bei dem Zwischenmedium um ein Dielektrikum und alternativ zumindest um einen Nichtleiter bzw. um einen Isolator. Das Zwischenmedium beeinflusst dabei die Art der Kopplung und daher auch die weiteren elektrischen Eigenschaften der Antennenvorrichtung. In einer weiteren Ausgestaltung ist das Zwischenmedium zwischen zwei elektrisch leitfähigen Einheiten angebracht, so dass sich die kapazitive Kopplung ergibt. Diese beiden zumindest teilweise elektrisch leitfähigen Einheiten werden in einer Ausgestaltung von einem Flügelelement und einem Stegelement gebildet.In one embodiment, an intermediate medium is present in the area of the coupling point, the capacitive coupling taking place via the intermediate medium. In one embodiment, the intermediate medium is a dielectric and, alternatively, at least a non-conductor or an insulator. The intermediate medium influences the type of coupling and therefore also the further electrical properties of the antenna device. In a further embodiment, the intermediate medium is attached between two electrically conductive units, so that the capacitive coupling results. These two at least partially electrically conductive units are formed in one embodiment by a wing element and a web element.

In einer Ausgestaltung ist das Strahlerelement beabstandet von dem Trägerelement befestigt. Das Strahlerelement befindet sich in dieser Ausgestaltung z. B. oberhalb des Trägerelements. Dabei hat in einer Ausgestaltung der Abstand auch eine Auswirkung auf die Strahlungseigenschaften der Antennenvorrichtung. In einer Ausgestaltung werden die mechanische Befestigung und die elektrische Ankopplung des Strahlerelements über die gleichen Bauteile (z. B. Flügelelement und/oder Stegelement) realisiert.In one embodiment, the radiator element is attached at a distance from the carrier element. The radiator element is located in this embodiment, for. B. above the carrier element. In one embodiment, the distance also has an effect on the radiation properties of the antenna device. In one embodiment, the mechanical fastening and the electrical coupling of the radiator element are implemented via the same components (e.g. wing element and / or web element).

In einer Ausgestaltung ist ein Abstand zwischen dem Strahlerelement und dem Trägerelement mindestens abhängig von dem Flügelelement. In dieser Ausgestaltung ist somit der Abstand zwischen Strahlerelement und Trägerelement zumindest abhängig von der Ausgestaltung des Flügelelements und insbesondere von dessen geometrischer Ausgestaltung. In einer damit einhergehenden Ausgestaltung ist das Flügelelement zumindest ein Teil einer Trägerstruktur, die das Stahlerelement trägt und damit auch im Abstand von dem Trägerelement hält.In one embodiment, a distance between the radiator element and the carrier element is at least dependent on the wing element. In this embodiment, the distance between the radiator element and the carrier element is at least dependent on the configuration of the wing element and in particular on its geometric configuration. In an associated configuration, the wing element is at least part of a support structure which carries the steel element and thus also holds it at a distance from the support element.

In einer Ausgestaltung ist die Leiterstruktur auf dem Trägerelement aufgebracht, so dass in einer Ausgestaltung in Verbindung mit der vorgenannten Ausgestaltung sich das Strahlerelement in einem Abstand oberhalb zumindest eines Teils der Leiterstruktur befindet. Die Leiterstruktur wird somit in dieser Ausgestaltung zumindest teilweise durch das Strahlerelement verdeckt bzw. geschützt.In one configuration, the conductor structure is applied to the carrier element, so that in one configuration in conjunction with the aforementioned configuration, the radiator element is located at a distance above at least part of the conductor structure. In this embodiment, the conductor structure is thus at least partially covered or protected by the radiator element.

In einer weiteren Ausgestaltung weist die Antennenvorrichtung mindestens ein Stegelement auf. Das Stegelement ist dabei galvanisch oder kapazitiv mit einer Speisestelle der Leiterstruktur gekoppelt. Weiterhin sind das Stegelement und das Strahlerelement über die Koppelstelle kapazitiv miteinander gekoppelt. In dieser Ausgestaltung verfügt die Leiterstruktur über eine Speisestelle, an der somit elektromagnetische Signale aus der Leiterstruktur aus- bzw. in die Leiterstruktur eingekoppelt werden. Mit dieser mindestens einen Speisestelle ist ein Stegelement galvanisch oder kapazitiv gekoppelt. Schließlich sind das Stegelement und das Strahlerelement über die Koppelstelle kapazitiv miteinander gekoppelt. In einer Ausgestaltung koppeln das Stegelement und das Flügelelement kapazitiv miteinander. In einer Ausgestaltung erfolgt daher die Kopplung zwischen Leiterstruktur und Strahlerelement mittelbar über das Stegelement und das Flügelelement.In a further embodiment, the antenna device has at least one web element. The web element is galvanically or capacitively coupled to a feed point of the conductor structure. Furthermore, the bar element and the radiator element are capacitively coupled to one another via the coupling point. In this refinement, the conductor structure has a feed point at which electromagnetic signals are thus extracted from the conductor structure or coupled into the conductor structure. A web element is galvanically or capacitively coupled to this at least one feed point. Finally, the bar element and the radiator element are capacitively coupled to one another via the coupling point. In one embodiment, the web element and the wing element couple capacitively with one another. In one embodiment, the coupling between the conductor structure and the radiator element therefore takes place indirectly via the web element and the wing element.

In einer Ausgestaltung hängt ein Abstand zwischen dem Strahlerelement und dem Trägerelement zumindest von dem Stegelement ab. In dieser Ausgestaltung dient das Stegelement somit zumindest teilweise auch als Trägerelement für das Strahlerelement. In einer Ausgestaltung ist das Strahlerelement über das Flügelelement oder über das Flügelelement und ein Stegelement relativ zu dem Trägerelement befestigt. Das Flügelelement bzw. das Stegelement erlauben die elektrische - und speziell kapazitive - Verbindung zwischen dem Strahlerelement und der Leiterstruktur. In dieser Ausgestaltung wird dies erweitert um entsprechende mechanische Eigenschaften, die es dem Flügelelement und/oder dem Stegelement erlauben, das Strahlerelement zu tragen und es damit in einem vorgebbaren Abstand zum Trägerelement zu halten. Über das Flügel- oder das Stegoder über das Flügel- und das Stegelement lässt sich daher der Abstand zwischen dem Strahlerelement und der Leiterstruktur bzw. speziell dem Trägerelement - und ggf. darauf befindlichen weiteren Komponenten - gezielt einstellen, um bestimmte Effekte oder Eigenschaften der Strahlungseigenschaften der Antennenvorrichtung zu erzielen.In one embodiment, a distance between the radiator element and the carrier element depends at least on the web element. In this embodiment, the bar element thus also serves at least partially as a carrier element for the radiator element. In one embodiment, the radiator element is fastened relative to the carrier element via the wing element or via the wing element and a web element. The wing element or the web element allow the electrical - and especially capacitive - connection between the radiator element and the conductor structure. In this embodiment, this is expanded to include corresponding mechanical properties that allow the wing element and / or the web element to carry the radiator element and thus to keep it at a predeterminable distance from the carrier element. The distance between the radiator element and the conductor structure or especially the carrier element - and possibly other components located thereon - can therefore be set in a targeted manner via the wing element or the bar or via the wing element and the bar element in order to achieve certain effects or properties of the radiation properties To achieve antenna device.

Gemäß der Erfindung ist das Strahlerelement als Flächenstrahler ausgeführt. Ein Flächenstrahler unterscheidet sich von den sog. linearen Strahlern (oder auch linearen Antennen) dadurch, dass leitungsgeführte Wellen an einer Flächenausdehnung in Freiraumwellen umgewandelt werden und umgekehrt. Flächenstrahler finden beispielsweise als Richtstrahler Verwendung. Die Flächenstrahler sind somit durch eine Fläche bestimmt, die sie aufspannen bzw. überdecken.According to the invention, the radiator element is designed as a surface radiator. A surface radiator differs from the so-called linear radiators (or also linear antennas) in that conducted waves are converted into free space waves at a surface area and vice versa. Surface emitters are used, for example, as directional emitters. The surface emitters are thus determined by a surface that they span or cover.

In einer Variante ist das Strahlerelement als Flächenstrahler mit einer Außenkontur in Form eines n-Ecks ausgestaltet. Dabei ist n eine natürliche Zahl größer oder gleich drei. Der Flächenstrahler hat daher in dieser Ausgestaltung die Außenkontur eines Dreiecks, eines Vierecks oder eines anderen beliebigen n-Ecks. Die Außenkontur bezieht sich dabei in einer Ausgestaltung auf die Projektion des Strahlerelements auf das Trägerelement und daher in einer Ausgestaltung auf die Fläche, die von dem Strahlerelement überdeckt wird. An den Seiten der Außenkontur befindet sich daher zwischen den Ecken in einer Ausgestaltung jeweils mindestens ein Flügelelement. In einer alternativen Ausgestaltung befindet sich an mindestens einer Seite das Flügelelement zwischen zwei Ecken. Die Anordnung der mindestens einen Koppelstelle bzw. je nach Ausgestaltung des mindestens einen Flügelelements erfolgt in einer Ausgestaltung mittig auf der zugeordneten Seite.In one variant, the radiator element is designed as a surface radiator with an outer contour in the form of an n-corner. Here n is a natural number greater than or equal to three. In this refinement, the surface radiator therefore has the outer contour of a triangle, a square or any other n-corner. In one embodiment, the outer contour relates to the projection of the radiator element onto the carrier element and therefore, in one embodiment, to the surface that is covered by the radiator element. In one embodiment, there is therefore at least one wing element in each case between the corners on the sides of the outer contour. In an alternative embodiment, the wing element is located between two corners on at least one side. The arrangement of the at least one coupling point or, depending on the configuration of the at least one wing element, takes place in one configuration in the middle on the assigned side.

In einer Variante ist das Strahlerelement als trichterförmiger Flächenstrahler mit mittiger Absenkung ausgestaltet. Das Strahlerelement ist daher in dieser Ausgestaltung nicht flach, sondern verfügt über eine Absenkung, die es trichterförmig werden lässt. In einer Ausgestaltung ist das Strahlerelement im Sinne einer Hornantenne ausgestaltet. In einer weiteren Ausgestaltung verfügt das Strahlerelement innerhalb ihrer Außenkontur über mindestens eine Aussparung.In one variant, the radiator element is designed as a funnel-shaped surface radiator with a central depression. The radiator element is therefore not flat in this embodiment, but has a depression that makes it funnel-shaped. In one embodiment, the radiator element is designed in the sense of a horn antenna. In a further embodiment, the radiator element has at least one recess within its outer contour.

Ist das Strahlerelement als n-Eck mit n Seiten zwischen den Ecken ausgestaltet, so sieht es eine Ausgestaltung vor, dass die mindestens eine Koppelstelle im Bereich einer Seite des n-Ecks des Strahlerelements angeordnet ist. In einer Ausgestaltung ist die Koppelstelle mittig an einer Seite des n-Ecks angeordnet. In einer weiteren Ausgestaltung sind passend zum n-eckigen Strahlerelement n Koppelstellen vorhanden, die jeweils auf einer Seite des Flächenstrahlers angeordnet sind.If the radiator element is designed as an n-gon with n sides between the corners, an embodiment provides that the at least one coupling point is arranged in the area of one side of the n-gon of the radiator element. In one embodiment, the coupling point is arranged centrally on one side of the n-gon. In a further refinement, n coupling points are present to match the n-cornered radiator element, each of which is arranged on one side of the surface radiator.

In einer Ausgestaltung ist das Strahlerelement als Blech ausgestaltet. Ein Blech hat dabei eine deutlich größere Flächen- als Höhenausdehnung. Weiterhin besteht das Blech vorzugweise aus einem elektrisch leitfähigen Metall oder Metallgemisch.In one embodiment, the radiator element is designed as a sheet metal. A sheet has a significantly larger area than its height. Furthermore, the sheet preferably consists of an electrically conductive metal or metal mixture.

In einer Variante ist das Strahlerelement als Monopol ausgestaltet. Ein Monopol bzw. eine Monopolantenne ist ein Teil einer Dipolantenne (bzw. Halbwellendipolantenne) als einer linearen Antenne. Solche Antennen weisen eine linienhafte Stromverteilung in der Antennenstruktur auf. In der Umsetzung handelt es sich beispielweise um einen gegenüber der Wellenlänge dünnen elektrischen Leiter aus einem metallischen Draht oder aus einem metallischen Stab. Eine Monopolantenne (auch Viertelwellenstrahler oder Groundplane-Antenne) ist beispielweise ein Antennenstab, der beispielsweise durch eine elektrisch leitfähige Oberfläche gespiegelt wird und dadurch einen Halbwellendipol ergibt. In einer alternativen Ausgestaltung wird der Monopol durch ein planes Blech gebildet, wobei sich die Koppelstelle dann ober- oder unterhalb der Fläche des Monopols befindet.In one variant, the radiator element is designed as a monopole. A monopole or a monopole antenna is part of a dipole antenna (or half-wave dipole antenna) as a linear antenna. Such antennas have a linear current distribution in the antenna structure. The implementation involves, for example, an electrical conductor made of a metallic wire or a metallic rod that is thin compared to the wavelength. A monopole antenna (also quarter-wave radiator or ground plane antenna) is, for example, an antenna rod that is reflected, for example, by an electrically conductive surface and thus results in a half-wave dipole. In an alternative embodiment, the monopole is formed by a flat sheet metal, the coupling point then being located above or below the surface of the monopole.

In einer Ausgestaltung ist das Strahlerelement als stabförmiger Monopol ausgestaltet. Dabei befindet sich die Koppelstelle entlang einer Längsachse des stabförmigen Monopols. ,In one embodiment, the radiator element is designed as a rod-shaped monopole. The coupling point is located along a longitudinal axis of the rod-shaped monopoly. ,

In einer Ausgestaltung weist die Antennenvorrichtung eine Massefläche auf, die sich in einer weiteren Ausgestaltung auf dem Trägerelement befindet. Die Massefläche ist dabei mit einer elektrischen Masse verbunden.In one embodiment, the antenna device has a ground plane which, in a further embodiment, is located on the carrier element. The ground plane is connected to an electrical ground.

In einer Ausgestaltung weist das Strahlerelement an mehreren Seiten Koppelstellen auf. Dabei ist das Strahlerelement über mindestens eine Koppelstelle kapazitiv mit der Leiterstruktur gekoppelt. In einer weiteren Ausgestaltung ist das Strahlerelement über mehr als eine Koppelstelle kapazitiv mit der Leiterstruktur gekoppelt. In einer Ausgestaltung befinden sich die Koppelstellen bzw. die Koppelstellen aufweisenden Flügelelemente jeweils an den Seiten eines eine n-eckige Außenkontur aufweisenden Strahlerelements.In one embodiment, the radiator element has coupling points on several sides. The radiator element is capacitively coupled to the conductor structure via at least one coupling point. In a further embodiment, the radiator element is capacitively coupled to the conductor structure via more than one coupling point. In one embodiment, the coupling points or the wing elements having the coupling points are each located on the sides of a radiator element having an n-angular outer contour.

In einer Ausgestaltung weist das Strahlerelement vier Koppelstellen auf. In einer damit einhergehenden Ausgestaltung ist das Strahlerelement über alle vier Koppelstellen kapazitiv mit der Leiterstruktur gekoppelt.In one embodiment, the radiator element has four coupling points. In an associated embodiment, the radiator element is capacitively coupled to the conductor structure via all four coupling points.

In einer weiteren Ausgestaltung sind die Koppelstellen symmetrisch um das Strahlerelement herum angeordnet.In a further embodiment, the coupling points are arranged symmetrically around the radiator element.

In einer Ausgestaltung ist das Strahlerelement über mindestens eine Koppelstelle mit einer Signalquelle (z. B. in Form einer Spannungsquelle) verbunden ist. Die Signalquelle dient dabei in einer Ausgestaltung als Signalquelle für ein elektromagnetisches Signal, das über das Strahlerelement ausgestrahlt wird.In one embodiment, the radiator element is connected to a signal source (e.g. in the form of a voltage source) via at least one coupling point. In one embodiment, the signal source serves as a signal source for an electromagnetic signal that is emitted via the radiator element.

In einer alternativen oder ergänzenden Ausgestaltung ist das Strahlerelement über mindestens eine Koppelstelle mit einem Leerlauf verbunden. Die Kopplung über die Koppelstelle erfolgt dabei jeweils kapazitiv. Im Fall des Leerlaufs ist daher über die Koppelstelle keine Kopplung mit einem Verbraucher oder einem elektrischen Widerstand vorgesehen. Es liegt somit ein offenes Ende vor.In an alternative or supplementary embodiment, the radiator element is connected to an idle via at least one coupling point. The coupling via the coupling point takes place capacitively in each case. In the case of idling, therefore, no coupling to a consumer or an electrical resistor is provided via the coupling point. There is thus an open end.

In einer weiteren alternativen oder ergänzenden Ausgestaltung ist das Strahlerelement über mindestens eine Koppelstelle mit einem Kurzschluss verbunden.In a further alternative or supplementary embodiment, the radiator element is connected to a short circuit via at least one coupling point.

In einer Ausgestaltung sind mindestens zwei Strahlerelemente vorhanden. Diese mindestens zwei Strahlerelemente sind dabei in einer weiteren Ausgestaltung miteinander - insbesondere kapazitiv oder über einen Kurzschluss, also galvanisch - miteinander gekoppelt.In one embodiment, there are at least two radiator elements. In a further embodiment, these at least two radiator elements are coupled to one another, in particular capacitively or via a short circuit, that is to say galvanically.

Eine Ausgestaltung sieht vor, dass die zwei Strahlerelemente unterschiedliche Abstände zum Trägerelement aufweisen. Die Strahlerelemente sind auf unterschiedlichen Höhen aufgebracht. In einer Ausgestaltung überlappen sich die Strahlerelemente - z. B. in der Projektion senkrecht auf das Trägerelement - und sind in einer alternativen Ausgestaltung frei von einer Überlappung.One embodiment provides that the two radiator elements have different distances from the carrier element. The radiator elements are at different heights upset. In one embodiment, the radiator elements overlap - z. B. in the projection perpendicular to the carrier element - and are free from an overlap in an alternative embodiment.

In einer Ausgestaltung weist eines der zwei Strahlerelemente eine Aussparung auf, die sich beispielsweise mittig in dem als Flächenstrahler ausgestalteten Strahlerelement befindet. In einer weiteren Ausgestaltung ist das andere Strahlerelement im Bereich der Aussparung angeordnet. In einer Ausgestaltung entspricht ein Strahlerelement der Aussparung des anderen Strahlerelements und ist in einer Ausgestaltung ergänzend dazu auf einer anderen Höhe als die entsprechend zugehörige Aussparung befindlich. In der letztgenannten Ausgestaltung ist also gleichsam ein Teil eines Strahlerelements in der Höhe versetzt worden. Dabei sind vorzugweise die beiden Strahlerelemente kapazitiv miteinander gekoppelt.In one embodiment, one of the two radiator elements has a recess which is located, for example, in the center of the radiator element designed as a surface radiator. In a further embodiment, the other radiator element is arranged in the region of the recess. In one embodiment, one radiator element corresponds to the recess of the other radiator element and, in addition to this, is located at a different height than the correspondingly associated recess in one embodiment. In the last-mentioned embodiment, a part of a radiator element has, as it were, been offset in height. The two radiator elements are preferably capacitively coupled to one another.

In einer weiteren Ausgestaltung verfügt das Strahlerelement über mindestens einen Abwinklung. In dieser Ausgestaltung ist das Strahlerelement z. B. eher stabförmig oder eher als flächiges Element ausgestaltet und weist an wenigstens einer Stelle einen abgewinkelten oder abgeknickten Verlauf auf.In a further embodiment, the radiator element has at least one bend. In this embodiment, the radiator element is z. B. designed more rod-shaped or more as a flat element and has an angled or kinked course at at least one point.

Durch die erfindungsgemäße Antennenvorrichtung ergeben sich daher die Vorteile, die Abmessungen der Antennenvorrichtung zu verringern und dabei nicht bzw. nur geringfügig an Performance, wie Strahlungsverhalten bei gleichzeitiger Impedanz-Anpassung, zu verlieren. Über die Art der kapazitiven Kopplung und der daran beteiligten Bauteile lassen sich insbesondere auch Strahlungseigenschaften und eine Impedanzanpassung gezielt vorgeben bzw. einstellen.The antenna device according to the invention therefore results in the advantages of reducing the dimensions of the antenna device and thereby not or only slightly losing performance, such as radiation behavior with simultaneous impedance matching. Via the type of capacitive coupling and the components involved in it, radiation properties and an impedance matching can in particular also be specified or set in a targeted manner.

Im Einzelnen gibt es eine Vielzahl von Möglichkeiten, die erfindungsgemäße Antennenvorrichtung auszugestalten und weiterzubilden. Dazu wird verwiesen einerseits auf die Patentansprüche, andererseits auf die folgende Beschreibung von Ausführungsbeispielen in Verbindung mit der Zeichnung. Es zeigen:

Fig. 1
eine räumliche und teilweise transparente Darstellungen einer ersten Ausgestaltung einer Antennenvorrichtung,
Fig. 2
einen vergrößerten Ausschnitt der Antennenvorrichtung der Fig. 1,
Fig. 3
einen Schnitt durch die Antennenvorrichtung der Fig. 1
Fig. 4
eine weitere räumliche und teilweise transparente Darstellungen der ersten Ausgestaltung einer Antennenvorrichtung,
Fig. 5
mehrere Prinzip-Skizzen zur Verdeutlichung der Ansteuerung der Antennenvorrichtung,
Fig. 6
mehrere Prinzip-Skizzen zur Verdeutlichung der Geometrie des Strahlerelements,
Fig. 7
mehrere Prinzip-Skizzen zur Verdeutlichung der kapazitiven Ankopplung eines Strahlerelements,
Fig. 8
mehrere Prinzip-Skizzen zur Verdeutlichung der Geometrie der Flügelelemente,
Fig. 9
einen Schnitt durch eine zweite Ausgestaltung einer Antennenvorrichtung,
Fig. 10
einen Schnitt durch eine dritte Ausgestaltung einer Antennenvorrichtung,
Fig.11
eine räumliche und teilweise transparente Darstellungen einer vierten Ausgestaltung einer Antennenvorrichtung,
Fig. 12
eine weitere räumliche und teilweise transparente Darstellungen der vierten Ausgestaltung einer Antennenvorrichtung,
Fig. 13
einen vergrößerten Ausschnitt der Antennenvorrichtung der Fig. 11 und Fig. 12 und
Fig. 14
einen Schnitt durch die Antennenvorrichtung der Fig. 11 bzw. Fig. 12.
In particular, there are a large number of possibilities for designing and developing the antenna device according to the invention. For this purpose, reference is made, on the one hand, to the claims and, on the other hand, to the following description of exemplary embodiments in conjunction with the drawing. Show it:
Fig. 1
a spatial and partially transparent representation of a first embodiment of an antenna device,
Fig. 2
an enlarged section of the antenna device of Fig. 1 ,
Fig. 3
a section through the antenna device of Fig. 1
Fig. 4
a further spatial and partially transparent representation of the first embodiment of an antenna device,
Fig. 5
several principle sketches to illustrate the activation of the antenna device,
Fig. 6
several principle sketches to illustrate the geometry of the radiator element,
Fig. 7
several principle sketches to illustrate the capacitive coupling of a radiator element,
Fig. 8
several principle sketches to clarify the geometry of the wing elements,
Fig. 9
a section through a second embodiment of an antenna device,
Fig. 10
a section through a third embodiment of an antenna device,
Fig.11
a spatial and partially transparent representation of a fourth embodiment of an antenna device,
Fig. 12
a further spatial and partially transparent representation of the fourth embodiment of an antenna device,
Fig. 13
an enlarged section of the antenna device of Fig. 11 and Fig. 12 and
Fig. 14
a section through the antenna device of Fig. 11 or. Fig. 12 .

Die vorliegende Erfindung umfasst im Wesentlichen ein Antennenelement - speziell ein Strahlerelement - als Teil der Antennenvorrichtung 1, das über eine neuartige kapazitive Ankopplung gespeist wird. Dadurch kann der Durchmesser auf deutlich unter eine halbe Wellenlänge der auszustrahlenden bzw. zu empfangenen elektromagnetischen Signale reduziert werden und ermöglicht dabei eine verlustfreie bzw. verlustarme Impedanzanpassung an deutlich kleiner 100 Ohm, z. B. 50 Ohm. Dies gelingt je nach Ausgestaltung bis auf ein Viertel der Wellenlänge und darunter. Dabei ist es auch möglich, auf die im Stand der Technik für die Anpassung von Strahlern kleiner einer halben Wellenlänge erforderlichen verlustbehafteten Anpassungselemente zu verzichten. Zudem ist für die Unterdrückung der Rückstrahlung keine große Massefläche oder ein Reflektor erforderlich. Dadurch sinkt insgesamt im Stand der Technik der Wirkungsgrad des Strahlerelements 4 deutlich.The present invention essentially comprises an antenna element - specifically a radiator element - as part of the antenna device 1, which is fed via a novel capacitive coupling. As a result, the diameter of the electromagnetic signals to be emitted or received can be well below half a wavelength can be reduced and enables loss-free or low-loss impedance matching to significantly less than 100 ohms, e.g. B. 50 ohms. Depending on the design, this can be achieved up to a quarter of the wavelength and below. It is also possible here to dispense with the lossy adaptation elements required in the prior art for adapting radiators smaller than half a wavelength. In addition, no large ground plane or a reflector is required to suppress the reflection. As a result, the overall efficiency of the radiator element 4 drops significantly in the prior art.

Die Antennenvorrichtung 1 ist beispielhaft für den Betrieb bei 910 MHz ausgestaltet. Mit beispielhaften Abmessungen (quadratisches Trägerelement mit 175 mm Kantenlänge und quadratisches Strahlerelement mit 75 mm Kantenlänge) und einer Höhe von 30 mm beläuft sich der Realteil der Fußpunktimpedanz bei einer rein galvanischen Kopplung auf ca. 200 Ohm.The antenna device 1 is designed, for example, for operation at 910 MHz. With exemplary dimensions (square carrier element with 175 mm edge length and square radiator element with 75 mm edge length) and a height of 30 mm, the real part of the base point impedance amounts to approx. 200 ohms with a purely galvanic coupling.

Die Fig. 1 zeigt eine räumliche Darstellung einer Antennenvorrichtung 1 mit einem Trägerelement 2 und einem Strahlerelement 4. Auf dem Trägerelement 2 befindet sich hier noch eine Massefläche 10. Zu erkennen ist, dass das Strahlerelement 4 eine viereckige Außenkontur aufweist und sich trichterförmig absenkt. Dabei ist das Strahlerelement 4 insgesamt von dem Trägerelement 2 beabstandet und wird hier durch die vier Koppelstellen bzw. durch die vier Flügelelemente 6 gehalten bzw. getragen.The Fig. 1 shows a three-dimensional representation of an antenna device 1 with a carrier element 2 and a radiator element 4. A ground surface 10 is also located on the carrier element 2 here. It can be seen that the radiator element 4 has a square outer contour and descends in a funnel shape. The radiator element 4 is at a distance from the carrier element 2 and is held or supported here by the four coupling points or by the four wing elements 6.

Der in der Fig. 1 umkreiste Bereich ist in der Fig. 2 größer dargestellt. Zu erkennen sind die vier Flügelelemente 6, die sich an den Seiten 40 des hier viereckigen Strahlerelements 4 befinden und an ihren freien Enden 60 Koppelstellen 5 für die kapazitive Kopplung aufweisen. Von dem Trägerelement 2 gehen an den vier Speisestellen 8 vier Stegelemente 7 aus. Die Stegelemente 7 und die Flügelelemente 6 treffen sich an den Koppelstellen 5 und bewirken dort die kapazitive Kopplung.The Indian Fig. 1 circled area is in the Fig. 2 shown larger. The four wing elements 6 can be seen, which are located on the sides 40 of the here rectangular radiator element 4 and have coupling points 5 for the capacitive coupling at their free ends 60. Four web elements 7 extend from the carrier element 2 at the four feed points 8. The web elements 7 and the wing elements 6 meet at the coupling points 5 and cause the capacitive coupling there.

Im Schnitt der Fig. 3 ist ebenfalls zu erkennen, wie sich das Strahlerelement 4 mittig zum Trägerelement 2 hin absenkt. Weiterhin ist zu erkennen, dass sich die Flügelelemente 6 und dadurch die Koppelstellen 5 an den Seiten 40 des hier viereckigen Strahlerelements 4 befinden. Die Flügelelemente 6 sind hier wie das Strahlerelement 4 als Bleche ausgestaltet und sind insbesondere galvanisch mit dem Strahlerelement 4 gekoppelt. Zwischen den Flügelelementen 6 und den Stegelementen 7 befindet sich im Koppelbereich 5 jeweils ein Zwischenmedium 9, das hier als Dielektrikum ausgestaltet ist und das damit auch Auswirkungen auf die kapazitive Kopplung hat und welches eine Fixierung des Strahlerelements 4 mit definiertem Abstand zwischen Flügelelement 6 und Stegelement 7 ermöglicht. Weiterhin sind hier die Stegelemente 7 an den Speisestellen 8 galvanisch mit der Leiterstruktur auf dem Trägerelement 2 gekoppelt. Die Flügelelemente 6 und das Strahlerelement 4 bzw. dessen Außenumrandung bilden einen Winkel 14, bei dem es sich hier um einen 90°-Winkel handelt. Die Flügelelemente 6 sind hier dem Trägerelement 2 zugewandt und dabei auch von der Oberseite des Strahlerelements 4 abgewandt.In the cut of the Fig. 3 it can also be seen how the radiator element 4 lowers centrally towards the carrier element 2. It can also be seen that the wing elements 6 and thereby the coupling points 5 are located on the sides 40 of the radiator element 4, which is square here. Like the radiator element 4, the wing elements 6 are designed here as metal sheets and are in particular galvanically coupled to the radiator element 4. Between the wing elements 6 and the web elements 7 there is in each case an intermediate medium 9 in the coupling area 5, which is designed here as a dielectric and therefore also Has effects on the capacitive coupling and which enables the radiator element 4 to be fixed with a defined distance between the wing element 6 and the web element 7. Furthermore, the web elements 7 are galvanically coupled to the conductor structure on the carrier element 2 at the feed points 8. The wing elements 6 and the radiator element 4 or its outer border form an angle 14, which here is a 90 ° angle. The wing elements 6 face the carrier element 2 here and also face away from the top of the radiator element 4.

Die Leiterstruktur 3 in Form von Leiterbahnen auf dem Trägerelement 2 zeigt die Fig. 4. Die Leiterstruktur 3 befindet sich dabei unterhalb des Strahlerelements 4 und auf der gegenüberliegenden Seite der Massefläche 10, also unterhalb des Trägerelements 2. In einer alternativen Ausgestaltung befindet sich die Massefläche 10 unter- und die Leiterstruktur 3 oberhalb des Trägerelements 2. Bei einem mehrlagigen Aufbau befinden sich die Massefläche 10 oder die Leiterstruktur 3 innerhalb einer beliebigen Anzahl von geschichteten Trägerelementen 2. Die Stegelemente 7 oder ggf. vorhandene Elemente, die die Leiterstruktur 3 mit den Stegelementen 7 verbinden, ragen daher je nach Ausgestaltung durch das Trägerelement 2 hindurch.The conductor structure 3 in the form of conductor tracks on the carrier element 2 shows Fig. 4 . The conductor structure 3 is located below the radiator element 4 and on the opposite side of the ground plane 10, i.e. below the carrier element 2. In an alternative embodiment, the earth plane 10 is below and the conductor structure 3 is above the carrier element 2. In a multi-layer structure the ground plane 10 or the conductor structure 3 within any number of layered carrier elements 2. The web elements 7 or possibly existing elements that connect the conductor structure 3 to the web elements 7 therefore protrude through the carrier element 2 depending on the configuration.

Die Abbildungen Fig. 1 bis 4 zeigen somit die neuartige kapazitive Ankopplung des Strahlerelements 4 am Beispiel eines Patch mit vier Speisepunkten. Durch die Kombination einer kapazitiven Kopplung und der Speisung an vier geeignet gewählten Punkten des Strahlerelements 4 ist es möglich, dass das Strahlerelement 4 ohne eine große Massefläche 10 bzw. ohne Reflektor leicht an eine gewünschte Impedanz, häufig 50 Ohm, angepasst werden kann.The illustrations Figs. 1 to 4 thus show the novel capacitive coupling of the radiator element 4 using the example of a patch with four feed points. By combining a capacitive coupling and feeding at four suitably selected points of the radiator element 4, it is possible that the radiator element 4 can be easily adapted to a desired impedance, often 50 ohms, without a large ground plane 10 or without a reflector.

Die Koppelstellen 5 befinden sich an den Seiten 40 des Strahlerelements 4. Dazu sind an den Seiten des Strahlerelements 4 die Flügel (bzw. Flügelelemente 6) angebracht und nach unten gebogen. Von der Trägerplatine 2 ragen vier Stege hervor - ein Steg (bzw. Stegelement 7) je Speisepunkte 8 - und koppeln über ein Zwischenmedium 9 kapazitiv mit den Flügeln 7. Dadurch kann die Breite des Koppelspalts zwischen Steg 7 und Flügel 6 reduziert werden und ermöglicht außerdem einen definierten Abstand zwischen Steg 7 und Flügel 6. Dabei kann alternativ zu dem dielektrischen Material zwischen Steg 7 und Flügel 6 auch ein Luftspalt vorgesehen sein. Das Strahlerelement 4 bzw. die Flügelelemente 6 können ergänzend an den Stegen 7 befestigt werden, z. B. angeschraubt, gesteckt, verklebt oder an das Zwischenmedium zwischen Steg 7 und Flügel 6 gelötet. Durch die Breite, Höhe und den Abstand der Koppelstelle 5 ist eine nahezu beliebige Impedanzanpassung möglich, was die Entwicklung des Antennenelements 1 deutlich vereinfacht, da kein verlustbehaftetes Anpassnetzwerk benötigt wird.The coupling points 5 are located on the sides 40 of the radiator element 4. For this purpose, the wings (or wing elements 6) are attached to the sides of the radiator element 4 and are bent downwards. Four webs protrude from the carrier board 2 - one web (or web element 7) per feed point 8 - and couple capacitively with the wings 7 via an intermediate medium 9. This allows the width of the coupling gap between web 7 and wing 6 to be reduced and also enables a defined distance between web 7 and wing 6. As an alternative to the dielectric material between web 7 and wing 6, an air gap can also be provided. The radiator element 4 or the wing elements 6 can also be attached to the webs 7, for. B. screwed, plugged, glued or soldered to the intermediate medium between web 7 and wing 6. Almost any impedance matching is possible due to the width, height and spacing of the coupling point 5 possible, which significantly simplifies the development of the antenna element 1, since no lossy matching network is required.

Die Form des Strahlerelements 4 sowie die kapazitiven Koppelstellen 5 erzeugen an den Koppelstellen 5 hohe Feldstärken, in denen der Großteil der eingespeisten Energie konzentriert wird. Dies zwingt dem Strahler 4 eine breite elektrische Apertur auf, wodurch die lateralen Abmessungen des Strahlers 4 deutlich reduziert werden können.The shape of the radiator element 4 and the capacitive coupling points 5 generate high field strengths at the coupling points 5, in which the majority of the energy fed in is concentrated. This imposes a wide electrical aperture on the radiator 4, as a result of which the lateral dimensions of the radiator 4 can be significantly reduced.

Die Ankopplung über die Koppelstellen 5 an den Seiten des jeweiligen Strahlerelements 4 kann unterschiedlich gestaltet sein. Fig. 5 zeigt exemplarisch einige Varianten.The coupling via the coupling points 5 on the sides of the respective radiator element 4 can be designed differently. Fig. 5 shows examples of some variants.

Gezeigt sind unterschiedliche Ausführungen der Architektur, wobei die Beschreibung von links nach rechts erfolgt:

  1. a) Unterschiedliche Anzahl von Speise- bzw. Koppelstellen 5:
    Es kann nur eine Koppelstelle 5, mehrere oder hier beispielhaft bis zu vier Koppelstellen 5 geben. Die Anzahl der Koppelstellen 5 kann auch größer als vier sein. Dies ist abhängig von der Geometrie des Strahlerelements 4. Bei den hier gezeigten Ausgestaltungen findet über alle Koppelstellen 5 eine kapazitive Kopplung statt.
  2. b) Mit gegenüberliegenden Leerlauf (LL, 12) oder Kurzschluss (KK, 13) und einer Verbindung mit einer Spannungsquelle 11, die hier auch als Signalquelle für die abzustrahlenden elektromagnetischen Signale dienen soll.
    Die Kontaktierungen liegen alternativ an benachbarten Seiten 40 vor. Die hier gezeigten Verbindungen mit einem Leerlauf 12 bzw. einem Kurzschluss 13 erfolgen alternativ mit einer kapazitiver Kopplung bzw. Kondensator (konzentriertes Bauelement).
  3. c) Beispiele für eine lineare Polarisation.
    Die Varianten sind (von links nach rechts):
    • Eine lineare Polarisation des Strahlerelements 4 über zwei einander gegenüberliegende kapazitive Koppelstellen 5 und der Verbindung mit einer Signalquelle 11.
    • Eine duale lineare Polarisation mit vier Koppelstellen 5 und zwei Signalquellen 11. Eine duale lineare Polarisation mit Kurzschluss 13 an einer Seite des Strahlerelements 4, die der Koppelstelle 5 für die Kopplung mit einer Signalquelle 11 gegenüberliegt.
    • Alternativ wird ebenfalls eine kapazitiver Kopplung bzw. ein Kondensator (konzentriertes Bauelement) verwendet.
    • Eine duale lineare Polarisation mit Leerlauf 11.
  4. d) Eine zirkulare Polarisation mit vier Koppelstellen 5 und vier Signalquellen 11.
  5. e) Eine duale zirkulare Polarisation mit vier Koppelstellen 5 und zwei Signalquellen 11, die jeweils zwei Speisestellen 8 aufweisen. Die Speisestellen 8 einer Signalquelle 11 sind dabei jeweils mit benachbarten Koppelstellen 5 kontaktiert.
  6. f) Eine elliptische Polarisation mit drei kapazitiven Koppelstellen 5 und drei Signalquellen 11.
Different versions of the architecture are shown, the description being from left to right:
  1. a) Different number of feed or coupling points 5:
    There can be only one coupling point 5, several or here, for example, up to four coupling points 5. The number of coupling points 5 can also be greater than four. This depends on the geometry of the radiator element 4. In the configurations shown here, capacitive coupling takes place via all coupling points 5.
  2. b) With opposite open circuit (LL, 12) or short circuit (KK, 13) and a connection to a voltage source 11, which is here also intended to serve as a signal source for the electromagnetic signals to be emitted.
    The contacts are alternatively present on adjacent sides 40. The connections shown here with an open circuit 12 or a short circuit 13 are alternatively made with a capacitive coupling or capacitor (concentrated component).
  3. c) Examples of linear polarization.
    The variants are (from left to right):
    • A linear polarization of the radiator element 4 via two opposing capacitive coupling points 5 and the connection to a signal source 11.
    • A dual linear polarization with four coupling points 5 and two signal sources 11. A dual linear polarization with a short circuit 13 on one side of the radiator element 4 which is opposite the coupling point 5 for coupling to a signal source 11.
    • Alternatively, a capacitive coupling or a capacitor (concentrated component) is also used.
    • A dual linear polarization with open circuit 11.
  4. d) A circular polarization with four coupling points 5 and four signal sources 11.
  5. e) A dual circular polarization with four coupling points 5 and two signal sources 11, each of which has two feed points 8. The feed points 8 of a signal source 11 are each contacted with neighboring coupling points 5.
  6. f) An elliptical polarization with three capacitive coupling points 5 and three signal sources 11.

Das Strahlerelement 4 kann unterschiedlich geformt oder ausgestaltet sein. Fig. 6 zeigt exemplarisch einige Varianten. Gezeigt ist jeweils ein n-eckiges Strahlerelement 4, dessen Außenkontur durch das n-Eck gebildet wird. Dabei ist n eine natürliche Zahl größer als drei.The radiator element 4 can be shaped or configured differently. Fig. 6 shows examples of some variants. In each case, an n-cornered radiator element 4 is shown, the outer contour of which is formed by the n-corner. Here n is a natural number greater than three.

Die Fig. 7 zeigt Varianten mit einem Monopol als Ausführung des Strahlerelements 4. Weiterhin sind unterschiedliche Varianten für die Kopplung mit Stegelementen 7 dargestellt. Teilweise sind in den Ausgestaltungen keine Flügelelemente vorhanden, so dass das Strahlerelement 4 die mindestens eine Koppelstelle direkt an einer Seite 40 aufweist. Die Varianten der Fig. 7 a) bis e) und l) weisen nur das Strahlerelement 4 und das Stegelement 7 auf. Die Varianten der Fig. 7 f) bis k) verfügen über das Strahlerelment 4, mindestens ein Flügelelement 5 und mindestens ein Stegelement 7.The Fig. 7 shows variants with a monopole as a design of the radiator element 4. Furthermore, different variants for the coupling with web elements 7 are shown. In some of the configurations there are no wing elements, so that the radiator element 4 has the at least one coupling point directly on one side 40. The variants of the Fig. 7 a) to e) and l ) only have the radiator element 4 and the bar element 7. The variants of the Fig. 7 f) to k) have the radiator element 4, at least one wing element 5 and at least one web element 7.

Dargestellt sind in der Fig. 7 folgende Ausgestaltungen:

  1. a) einfacher Monopol 4 bei Kopplung am Speisesubstrat,
  2. b) Monopol 4 mit kapazitiver Kopplung mit dem Stegelement 7 von links,
  3. c) Monopol 4 mit kapazitiver Kopplung von rechts,
  4. d) zwei Monopole 4, die einen Dipol bilden und zweifach kapazitiv gekoppelt sind,
  5. e) zwei Monopole 4, die an den Monopolenden miteinander kapazitiv gekoppelt sind und über die Koppelstellen 5 kapazitiv mit den Stegelementen 6 gekoppelt sind und
  6. f) Kurzschluss zweier kapazitiv gekoppelter Monopole 4, woraus sich ein Dipol oder Patch ergibt. Die seitlich angebrachten Flügelelemente 6, sind unter einem Winkel 14 von 90° in Richtung der Stegelemente 7 abgewinkelt.
  7. g) gewinkelter Monopol 4 (also mit einer Abwinklung 14) mit kapazitiver Kopplung von rechts mit einem Stegelement 6,
  8. h) gewinkelter Monopol 4 mit kapazitiver Kopplung von links,
  9. i) zweifach kapazitiv gekoppelter Monopol 4 (=Dipol),
  10. j) dualer kapazitiv gekoppelter Monopol 4 (=Dipol) mit kapazitiver Kopplung der Strahlerelemente,
  11. k) dualer kapazitiv gekoppelter Monopol 4 (=Dipol) mit Kondensator (konzentriertes Bauelement) zwischen den Strahlerelementen 4.
Are shown in the Fig. 7 the following configurations:
  1. a) simple monopole 4 when coupled to the feed substrate,
  2. b) monopole 4 with capacitive coupling with the bar element 7 from the left,
  3. c) Monopole 4 with capacitive coupling from the right,
  4. d) two monopoles 4, which form a dipole and are capacitively coupled twice,
  5. e) two monopoles 4 which are capacitively coupled to one another at the monopole ends and are capacitively coupled to the web elements 6 via the coupling points 5 and
  6. f) Short circuit of two capacitively coupled monopoles 4, resulting in a dipole or patch. The laterally attached wing elements 6 are angled at an angle 14 of 90 ° in the direction of the web elements 7.
  7. g) angled monopole 4 (i.e. with a bend 14) with capacitive coupling from the right with a web element 6,
  8. h) angled monopole 4 with capacitive coupling from the left,
  9. i) double capacitively coupled monopole 4 (= dipole),
  10. j) dual capacitively coupled monopole 4 (= dipole) with capacitive coupling of the radiator elements,
  11. k) dual capacitively coupled monopole 4 (= dipole) with capacitor (concentrated component) between the radiator elements 4.

Anstelle von Monopolen in Form von Drähten oder z. B. Koaxialkabeln handelt es sich in alternativen Ausgestaltungen bei den Strahlerlementen 4 um Flächenstrahler, z. B. in Form von breiten Blechelementen. Dies zeigt die Fig. 7 I), die einen um 90° gedrehten Blick auf die Ausgestaltung der Fig. 7 b) erlaubt. Die Seite 40 des Strahlerelements 4 ist hier durch die Grundfläche gegeben. Das hier als Streifen ausgeführte Stegelement 7 befindet sich auf dieser Seite 40 durch die Koppelstelle 5 in kapazitiver Verbindung mit dem Strahlerelement 4.Instead of monopoles in the form of wires or z. B. coaxial cables, in alternative configurations, the radiator elements 4 are surface radiators, e.g. B. in the form of wide sheet metal elements. This shows the Fig. 7 I) who have a 90 ° rotated view of the design of the Fig. 7 b) allowed. The side 40 of the radiator element 4 is given here by the base area. The web element 7, designed here as a strip, is located on this side 40 through the coupling point 5 in a capacitive connection with the radiator element 4.

Auch die Flügelelemente 6 am Strahlerelement 4 können unterschiedlich gestaltet sein. Fig. 8 zeigt exemplarisch einige Varianten (Beschreibung jeweils wieder von links nach rechts):

  1. a) dreieckförmiges Flügelelement 6 mit beliebigen Innenwinkeln < 180°;
  2. b) n-Eck mit n ≥ 3 bis hin zu einem kreisförmigen oder elliptischen Flügelelement 6 oder einer Form ähnlich einem T-Stück (ganz rechts);
  3. c) beliebig abgewinkelte Flügelelemente 6, deren Anbindung an das - hier nicht dargestellte - Strahlerelement jeweils am rechten Ende erfolgen würde. Auf den freien Enden 60 befinden sich jeweils die Koppelstellen und mit den - je nach Ausgestaltung den freien Enden gegenüberliegenden - Enden sind die Flügelelemente 6 mit dem jeweiligen Strahlerelement verbunden.
The wing elements 6 on the radiator element 4 can also be designed differently. Fig. 8 shows a few examples (description again from left to right):
  1. a) triangular wing element 6 with any interior angles <180 °;
  2. b) n-gon with n ≥ 3 up to a circular or elliptical wing element 6 or a shape similar to a T-piece (far right);
  3. c) any angled wing elements 6, the connection of which to the radiator element - not shown here - would take place at the right end. The coupling points are located on each of the free ends 60 and the wing elements 6 are connected to the respective radiator element at the ends opposite the free ends, depending on the configuration.

Ebenso wie die Flügel 6 am Strahlerelement 4 können auch die Stege 7 unterschiedlich gestaltet sein. Diese können in Breite, Höhe, Dicke und Form variieren. Außerdem können diese gerade oder abgewinkelt sein. Zwischen Strahlerelement 4 und Speiseplatine 2 kann neben Luft ein Zwischenmedium 9 eingefügt sein, z. B. Dielektrika, Ferrite, Ferroelektrika und weitere. Die Befestigung der Stegelemente 7 auf der Speiseplatine als ein Beispiel für das Trägerelement 2 kann wie die Befestigung des Strahlerelements 4 an den Stegelementen 7 unterschiedlich realisiert sein, z. B. angeschraubt, gesteckt, verklebt oder gelötet.Just like the wings 6 on the radiator element 4, the webs 7 can also be designed differently. These can vary in width, height, thickness and shape. They can also be straight or angled. In addition to air, an intermediate medium 9, e.g. B. dielectrics, ferrites, ferroelectrics and others. The fastening of the web elements 7 on the feeder board as an example for the carrier element 2 can be implemented differently like the fastening of the radiator element 4 to the web elements 7, e.g. B. screwed, plugged, glued or soldered.

Die Abbildungen Fig. 9 und Fig. 10 zeigen zwei weitere Ausführungsformen mit vier Punkten zur kapazitiven Kopplung zwischen der Leiterstruktur auf dem Trägerelement 2 und dem Strahlerelement 4.The illustrations Figures 9 and 10 show two further embodiments with four points for capacitive coupling between the conductor structure on the carrier element 2 and the radiator element 4.

Dabei besteht jeweils eine kapazitive Kopplung zwischen der Leiterstruktur auf dem Trägerelement 2 und den Stegelementen 7 an den Speisestellen 8. Die Flügelelemente 6 befinden sich an den Seiten des n-eckigen Strahlerelements 4 und sind in Richtung des Trägerelements 2 gebogen.There is a capacitive coupling between the conductor structure on the carrier element 2 and the web elements 7 at the feed points 8. The wing elements 6 are located on the sides of the n-angular radiator element 4 and are bent in the direction of the carrier element 2.

In der Ausgestaltung der Fig. 9 besteht eine galvanische Kopplung zwischen den Stegelementen 7 und den Flügelelementen 6 in den hier mit Kreisen und Pfeilen hervorgehobenen Bereichen. Die Koppelstellen 5 für die kapazitive Kopplung befinden sich daher in dieser Variante im Bereich der Speisestellen 8. Die Flügelelemente 6 und die Stegelemente 7 sind dabei je nach Ausgestaltung galvanisch miteinander gekoppelt oder sind einteilig ausgeführt. In der letzten Variante münden daher quasi die Flügelelemente 6 mit ihren Koppelstellen 5 auf den freien Enden 60 auf dem Trägerelement 2.In the design of the Fig. 9 there is a galvanic coupling between the web elements 7 and the wing elements 6 in the areas highlighted here with circles and arrows. The coupling points 5 for the capacitive coupling are therefore in this variant in the area of the feed points 8. The wing elements 6 and the web elements 7 are galvanically coupled to one another or are made in one piece, depending on the design. In the last variant, the wing elements 6 with their coupling points 5 quasi open onto the free ends 60 on the carrier element 2.

In der Ausgestaltung der Fig. 10 besteht eine kapazitive Kopplung - hier insbesondere über einen Luftspalt - zwischen Stegelement 7 und Flügelelement 6, so dass sich zwischen beiden auch die kapazitive Koppelstelle 5 befindet. Dabei besteht weiterhin eine kapazitive Kopplung zwischen dem Stegelement 7 und der Speisestelle 8. Dies im Gegensatz zur galvanischen Kopplung zwischen den Flügelelementen 6 und dem Strahlerelement 4. Die Flügelelemente 6 sind hier auch als Blechstreifen zu erkennen, die an den Seiten des Strahlerelements 4 befestigt und nach unten umgebogen sind. Auch ist zu erkennen, dass über die Ausgestaltungen von Flügelelementen 6 und Stegelementen 7 der Abstand zwischen dem Strahlerelement 6 und dem Trägerelement 2 oder z. B. einer Massefläche auf dem Trägerelement 2 einstellbar sind.In the design of the Fig. 10 there is a capacitive coupling - here in particular via an air gap - between the web element 7 and the wing element 6, so that the capacitive coupling point 5 is also located between the two. There is still a capacitive coupling between the web element 7 and the feed point 8. This in contrast to the galvanic coupling between the wing elements 6 and the radiator element 4. The wing elements 6 can also be seen here as sheet metal strips that are attached to the sides of the radiator element 4 and are bent downwards. It can also be seen that, via the configurations of wing elements 6 and web elements 7, the distance between the radiator element 6 and the carrier element 2 or z. B. a ground plane on the carrier element 2 are adjustable.

In einer Ausgestaltung ist das mindestens eine Strahlerelement 4 aus einem Blech gefertigt, wobei die Flügelelemente 6 und die Stegelemente 7 ebenfalls aus Blech bestehen.In one embodiment, the at least one radiator element 4 is made from sheet metal, the wing elements 6 and the web elements 7 also being made from sheet metal.

Die Abbildungen Fig. 11 bis Fig. 14 zeigen eine weitere Ausgestaltung der Antennenvorrichtung 1 mit zwei Strahlerelementen 4, 4'. Dies ist beispielweise ein "Stacked Patch", z. B. für Dual-Band-Design oder erweitertes breitbandiges Design.The illustrations FIGS. 11 to 14 show a further embodiment of the antenna device 1 with two radiator elements 4, 4 '. This is, for example, a "stacked patch", e.g. B. for dual-band design or extended broadband design.

Die Fig. 11 zeigt die zwei unterschiedlich ausgestaltete Strahlerelemente 4, 4', die beide von dem Trägerelement 2 beabstandet sind. Das höher befindliche Strahlerelement 4 (auch erstes Strahlerelement) weist eine viereckige Außenkontur und eine mittige viereckige Aussparung 21 auf. Andere Außenkonturen sind ebenfalls möglich. Das zweite Strahlerelement 4' befindet sich innerhalb der Aussparung 21 und näher am Trägerelement 2. Dabei ist das zweite Strahlerelement 4' in der dargestellten Ausgestaltung ebenfalls viereckig ausgestaltet. Beide Strahlerelemente 4, 4' sind hier plan ausgestaltet und befinden sich hier im Wesentlichen parallel zum Trägerelement 2. Zu erkennen ist die Leiterstruktur 3 in Form von Leiterbahnen auf dem Trägerelement 2 mit den vier Speisestellen 8, mit denen jeweils ein Stegelement 7 verbunden ist. Dies erfolgt hier passend zu den vier Koppelstellen 5 an den Flügelelementen 6 an den vier Außenseiten 40 des oberen Strahlerelements 4.The Fig. 11 shows the two differently configured radiator elements 4, 4 ′, both of which are spaced apart from the carrier element 2. The radiator element 4 located higher (also the first radiator element) has a square outer contour and a central square recess 21. Other outer contours are also possible. The second radiator element 4 'is located within the recess 21 and closer to the carrier element 2. The second radiator element 4' in the illustrated embodiment is also designed to be square. Both radiator elements 4, 4 'are designed flat here and are here essentially parallel to the carrier element 2. The conductor structure 3 can be seen in the form of conductor tracks on the carrier element 2 with the four feed points 8, each of which is connected to a web element 7. This is done here to match the four coupling points 5 on the wing elements 6 on the four outer sides 40 of the upper radiator element 4.

Die Fig. 12 lässt die unterschiedliche Ausgestaltung der zwei Strahlerelemente 4, 4' und deren Anordnung zueinander erkennen. Zu sehen ist auch, dass sich die Flügelelemente 6 an den Seiten 40 des oberen bzw. ersten viereckigen Strahlerelements 4 befinden und von dort in Richtung des Trägerelements 2 ragen. Die kapazitiven Koppelstellen 5 befinden sich daher ebenfalls auf den Seiten. Zu erkennen ist auch der flächige Verlauf der Flügelelement, die von den Seiten des oberen Strahlerelements 4 ausgehen und hier in Richtung des Trägerelements 2 abgewinkelt sind.The Fig. 12 shows the different configuration of the two radiator elements 4, 4 'and their arrangement with respect to one another. It can also be seen that the wing elements 6 are located on the sides 40 of the upper or first square radiator element 4 and protrude from there in the direction of the carrier element 2. The capacitive coupling points 5 are therefore also on the sides. The flat course of the wing elements can also be seen, which extend from the sides of the upper radiator element 4 and are angled here in the direction of the carrier element 2.

Die Fig. 13 zeigt den vergrößerten Ausschnitt des Teils der Antennenvorrichtung 1 der Fig. 12. Von den Koppelstellen 5 ragen Zungenelemente 15 zu dem weiter in Richtung des Trägerelements 2 befindlichen Strahlerelement 4' und erzeugen daher auch eine elektrische - hier insbesondere kapazitive - Kopplung zu diesem - zweiten - Strahlerelement 4'. Insgesamt sind also die zwei Strahlelemente 4, 4' miteinander kapazitiv gekoppelt und ist eines der zwei Strahlerelemente 4 über die Flügelelemente 6 kapazitiv mit der Leiterstruktur 3 gekoppelt.The Fig. 13 shows the enlarged section of the part of the antenna device 1 of FIG Fig. 12 . Tongue elements 15 protrude from the coupling points 5 to the radiator element 4 'located further in the direction of the carrier element 2 and therefore also generate an electrical - here in particular capacitive - coupling to this - second - radiator element 4'. Overall, the two radiating elements 4, 4 ′ are capacitively coupled to one another and one of the two radiating elements 4 is capacitively coupled to the conductor structure 3 via the wing elements 6.

Der Schnitt der Fig. 14 zeigt noch einmal, dass das obere - erste - Strahlerelement 4 über die Verbindung aus seitlich befindlichen Flügelelementen 6 und Stegelementen 7 auf dem Trägerelement 2 ruht und kapazitiv - über die Koppelstellen 5 - mit den Speisestellen 8 gekoppelt ist. Dabei befindet sich zwischen den Stegelementen 7 und den Flügelelementen 6 ein Dielektrikum als Zwischenmedium 9. In Richtung des unteren - zweiten - Strahlerelements 4' verlaufen die Zungenelemente 15, die ebenfalls eine elektrische und hier kapazitive Kontaktierung bewirken.The cut of the Fig. 14 shows once again that the upper - first - radiator element 4 rests on the carrier element 2 via the connection of laterally located wing elements 6 and web elements 7 and is capacitively coupled to the feed points 8 via the coupling points 5. A dielectric is located between the web elements 7 and the wing elements 6 as an intermediate medium 9. The tongue elements 15 run in the direction of the lower - second - radiator element 4 ′, which also effect electrical and, here, capacitive contact.

Zusätzlich ist noch aufgetragen, dass das Trägerelement 2 eine Breite von 175 mm und das obere Strahlerelement 4 eine Seitenlänge von 75 mm aufweist. Dabei befindet sich die - hier insbesondere viereckige - Außenkontur des oberen Strahlerelements 4 ungefähr 25 mm oberhalb des Trägerelements 2.In addition, it is also applied that the carrier element 2 has a width of 175 mm and the upper radiator element 4 has a side length of 75 mm. The outer contour - here in particular square - of the upper radiator element 4 is located approximately 25 mm above the carrier element 2.

Die kapazitive Ankopplung mindestens eines Strahlerelements an - vorzugsweise vier - Stellen bietet folgende Vorteile:

  1. a) Die lateralen Abmessungen des Strahlerelements können deutlich kleiner als die halbe Wellenlänge bei der Arbeitsfrequenz sein. So sind Abmessungen von einem Viertel der Wellenlänge oder weniger möglich.
  2. b) Die wirksame Apertur des Strahlerelements ist größer als die laterale Ausdehnung, da die Form des Strahlers und die damit verbundene Position der Koppelstellen eine hohe Konzentration der Energie bzw. Feldstärke an den Koppelstellen hervorruft.
  3. c) Es ist eine einfache, verlustarme Impedanzanpassung möglich.
  4. d) Es ermöglicht trotz der geringen Volumenabmessungen eine hohe relative Bandbreite, sowohl für die Impedanzanpassung als auch für die Richtcharakteristik.
  5. e) Es bedarf keiner großen Massefläche und/oder Reflektors, um die Rückstrahlung zu reduzieren. Der Durchmesser der Massefläche kann beispielsweise eine halbe Wellenlänge oder kleiner sein.
  6. f) Das Strahlerelement kann sehr kostengünstig aufgebaut werden, da keine teuren Substrate, wie Keramiken, erforderlich sind. Im einfachsten Fall sind bereits Stanzund Biegeteile aus Blech (z. B. Aluminium) ausreichend.
  7. g) Sehr geringe Bauhöhe, was dem Einsatz für flache Antennen entgegenkommt, z.B. für UHF-RFID-Anwendungen.
The capacitive coupling of at least one radiator element to - preferably four - points offers the following advantages:
  1. a) The lateral dimensions of the radiator element can be significantly smaller than half the wavelength at the working frequency. Dimensions of a quarter of the wavelength or less are possible.
  2. b) The effective aperture of the radiator element is larger than the lateral extent, since the shape of the radiator and the associated position of the coupling points cause a high concentration of energy or field strength at the coupling points.
  3. c) Simple, low-loss impedance matching is possible.
  4. d) Despite the small volume dimensions, it enables a high relative bandwidth, both for the impedance matching and for the directional characteristic.
  5. e) There is no need for a large ground plane and / or reflector to reduce the reflection. The diameter of the ground plane can be, for example, half a wavelength or less.
  6. f) The radiator element can be constructed very inexpensively, since no expensive substrates such as ceramics are required. In the simplest case, stamped and bent parts made of sheet metal (e.g. aluminum) are sufficient.
  7. g) Very low overall height, which is useful for flat antennas, e.g. for UHF RFID applications.

Ein technisches Anwendungsgebiet bieten beispielsweise UHF-RFID-Antennen für den Einsatz in Logistik, Produktion oder Automatisierung. Dazu gehören beispielsweise Tordurchfahrten u. a. mit Pulklesung (Erfassung vieler Transponder in kurzer Zeit), automatisierte Inventur oder Personenkontrollen (z. B. Healthcare). Eine weitere Anwendungsmöglichkeit bieten mobile Terminals für die Satelliten- oder die terrestrische Mobilkommunikation. Weitere Anwendungen liegen im Automotiv-Bereich bzw. im Bereich der Vernetzung von Fahrzeugen oder Verkehrsteilnehmern (sog. Car2X).UHF RFID antennas for use in logistics, production or automation, for example, offer a technical field of application. These include, for example, gate passages with bulk reading (recording of many transponders in a short time), automated inventory or personal checks (e.g. healthcare). Another possible application is mobile terminals for satellite or terrestrial mobile communication. Further applications are in the automotive sector or in the area of networking vehicles or road users (so-called Car2X).

Die oben beschriebenen Ausführungsbeispiele stellen lediglich eine Veranschaulichung der Prinzipien der vorliegenden Erfindung dar. Es versteht sich, dass Modifikationen und Variationen der hierin beschriebenen Anordnungen und Einzelheiten anderen Fachleuten einleuchten werden. Deshalb ist beabsichtigt, dass die Erfindung lediglich durch den Schutzumfang der nachstehenden Patentansprüche und nicht durch die spezifischen Einzelheiten, die anhand der Beschreibung und der Erläuterung der Ausführungsbeispiele hierin präsentiert wurden, beschränkt sei.The embodiments described above are merely illustrative of the principles of the present invention. It is to be understood that modifications and variations of the arrangements and details described herein will be apparent to other skilled persons. It is therefore intended that the invention be limited only by the scope of protection of the following patent claims and not by the specific details presented herein with reference to the description and explanation of the exemplary embodiments.

Referenzen:Credentials:

  1. [1] A. E. Popugaev and R. Wansch, "A novel miniaturization technique in microstrip feed network design," in Proc. of the 3rd European Conference on Antennas and Propagation, EuCAP 2009, Berlin, Mar. 2009, pp. 2309 - 2313 .[1] AE Popugaev and R. Wansch, "A novel miniaturization technique in microstrip feed network design," in Proc. of the 3rd European Conference on Antennas and Propagation, EuCAP 2009, Berlin, Mar. 2009, pp. 2309 - 2313 .
  2. [2] A. E. Popugaev, R. Wansch, S. Urquijo, "A NOVEL HIGH PERFORMANCE ANTENNA FOR GNSS APPLICATIONS," in Proc. of the 2nd Second European Conference on Antennas and Propagation (EuCAP), Edinburgh, UK, Nov. 11-16, 2007 .[2] AE Popugaev, R. Wansch, S. Urquijo, "A NOVEL HIGH PERFORMANCE ANTENNA FOR GNSS APPLICATIONS," in Proc. of the 2nd Second European Conference on Antennas and Propagation (EuCAP), Edinburgh, UK, Nov. 11-16, 2007 .
  3. [3] L. Weisgerber and A. E. Popugaev, "Multibeam antenna array for RFID applications," in Proc. of the 2013 European Microwave Conference (EuMC), Nuremberg, Oct. 2013, pp. 84 - 87 .[3] L. Weisgerber and AE Popugaev, "Multibeam antenna array for RFID applications," in Proc. of the 2013 European Microwave Conference (EuMC), Nuremberg, Oct. 2013, pp. 84 - 87 .

Claims (14)

  1. Antenna device (1)
    comprising an emitter element (4) for emitting and/or receiving electromagnetic signals,
    wherein the emitter element (4) comprises at least one coupling point (5), the coupling point (5) being connected to a side (40) of the emitter element (4), and
    wherein the coupling point (5) is implemented for capacitively coupling electromagnetic signals in and/or out,
    said antenna device (1) comprising a conductive pattern (3) for conducting electromagnetic signals, and
    wherein the conductive pattern (3) and the emitter element (4) are capacitively coupled to each other via the coupling point (5),
    wherein the emitter element (4) comprises at least one blade element (6), wherein the emitter element (4) and the blade element (6) are galvanically coupled to each other,
    wherein the blade element (6) is arranged on the side (40) of the emitter element (4),
    wherein the emitter element (4) and the blade element (6) form an angle (14) with each other,
    wherein the blade element (6) comprises the coupling point (5),
    said antenna device (1) comprising at least one bridge element (7), wherein the bridge element (7) is galvanically or capacitively coupled to a feeding point (8) of the conductive pattern (3), and
    wherein the bridge element (7) and the emitter element (4) are capacitively coupled to each other via the coupling point (5),
    the antenna device (1) comprising a carrier element (2),
    wherein the blade element (6) is angulated away from the emitter element (4) in the direction of the carrier element (2), and the coupling point (5) is located at a free end (60) of the blade element (6), characterized in that the emitter element (4) is configured as a surface emitter.
  2. Antenna device (1) as claimed in claim 1,
    wherein an intermediate medium (9) is located in the area of the coupling point (5) and wherein capacitive coupling is effected via the intermediate medium (9).
  3. Antenna device (1) as claimed in claims 1 or 2,
    wherein the emitter element (4) is attached at a distance from the carrier element (2).
  4. Antenna device (1) as claimed in claim 1,
    wherein the emitter element (4) is implemented as a surface emitter having an outer contour in the form of an n-gon, and
    wherein n is a natural number larger than or equal to three.
  5. Antenna device (1) as claimed in claims 1 or 4,
    wherein the emitter element (4) is implemented as a funnel-shaped surface emitter having a central dip.
  6. Antenna device (1) as claimed in claim 4,
    wherein the coupling point (5) is arranged centrally in the area of a side of the n-gon of the emitter element (4).
  7. Antenna device (1) as claimed in any of claims 4 to 6,
    wherein the emitter element (4) is implemented as a metal sheet.
  8. Antenna device (1) as claimed in any of claims 1 to 7,
    wherein the emitter element (4) comprises coupling points (5) on several sides (40), and
    wherein the emitter element (4) is capacitively coupled to the conductive pattern (3) via at least one coupling point (5).
  9. Antenna device (1) as claimed in claim 8,
    wherein the emitter element (4) is connected to an open circuit (12) via at least one coupling point (5), so that there is an open end.
  10. Antenna device (1) as claimed in claim 8,
    wherein the emitter element (4) is connected to a short circuit (13) via at least one coupling point (5).
  11. Antenna device (1) as claimed in any of claims 1 to 10,
    wherein the antenna device (1) comprises at least two emitter elements (4, 4').
  12. Antenna device (1) as claimed in claim 11,
    wherein the two emitter elements (4, 4') are coupled to each other, in particular capacitively or galvanically.
  13. Antenna device (1) as claimed in claims 11 or 12,
    wherein the two emitter elements (4, 4') have different distances from the carrier element (2).
  14. Antenna device (1) as claimed in any of claims 11 to 13,
    wherein an emitter element (4) of the two emitter elements (4, 4') comprises a recess (21) and wherein another emitter element (4') of the two emitter elements (4, 4') is arranged in the area of the recess (21).
EP17716202.1A 2016-04-07 2017-04-06 Antenna device Active EP3440738B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102016205842 2016-04-07
DE102016207434.2A DE102016207434B4 (en) 2016-04-07 2016-04-29 antenna device
PCT/EP2017/058278 WO2017174736A1 (en) 2016-04-07 2017-04-06 Antenna device

Publications (2)

Publication Number Publication Date
EP3440738A1 EP3440738A1 (en) 2019-02-13
EP3440738B1 true EP3440738B1 (en) 2021-04-21

Family

ID=59930125

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17716202.1A Active EP3440738B1 (en) 2016-04-07 2017-04-06 Antenna device

Country Status (6)

Country Link
US (1) US11223131B2 (en)
EP (1) EP3440738B1 (en)
JP (1) JP6795614B2 (en)
CN (1) CN109219906B (en)
DE (1) DE102016207434B4 (en)
WO (1) WO2017174736A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101609665B1 (en) * 2014-11-11 2016-04-06 주식회사 케이엠더블유 Antenna of mobile communication station
DE102018201575B3 (en) 2018-02-01 2019-06-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. antenna device
EP3671951A1 (en) * 2018-12-21 2020-06-24 FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V. Antenna device
US20220200151A1 (en) * 2019-05-24 2022-06-23 Commscope Technologies Llc Wireless communication systems having patch-type antenna arrays therein that support large scan angle radiation
KR20210152347A (en) * 2020-06-08 2021-12-15 삼성전자주식회사 Antenna sturcture and electronic device including the same
CN111786078B (en) * 2020-08-04 2021-06-25 大连海事大学 Broadband radio frequency identification reader-writer antenna with circularly polarized beam width
KR20220039133A (en) * 2020-09-21 2022-03-29 삼성전자주식회사 Antenna structure and electronic device including the same
CN113422200B (en) * 2021-07-05 2023-11-10 江苏方天电力技术有限公司 Back reflection multi-frequency-point hollowed-out built-in antenna and design method thereof
CN114400442B (en) * 2022-03-25 2022-05-31 成都天锐星通科技有限公司 Dual circularly polarized antenna unit and dual circularly polarized array antenna
CN115101930B (en) * 2022-07-15 2022-11-15 广东工业大学 Dual-frequency satellite navigation antenna with edge-loaded resonant branches
DE102022132788A1 (en) * 2022-12-09 2024-06-20 Fuba Automotive Electronics Gmbh Satellite antenna

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030174098A1 (en) * 2002-01-29 2003-09-18 Mitsmi Electric Co., Ltd. Four-point feeding loop antenna capable of easily obtaining an impednace match

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2073309B1 (en) * 2007-12-21 2015-02-25 Alcatel Lucent Dual polarised radiating element for cellular base station antennas
DE102010035934A1 (en) * 2010-08-31 2012-03-01 Heinz Lindenmeier Receiving antenna for circularly polarized satellite radio signals
RU2587105C2 (en) * 2011-11-04 2016-06-10 Катрайн-Верке Кг Patch radiator
US8890766B2 (en) * 2011-12-01 2014-11-18 Sony Corporation Low profile multi-band antennas and related wireless communications devices
DE102012101443B4 (en) * 2012-02-23 2017-02-09 Turck Holding Gmbh Planar antenna arrangement
CN202797284U (en) * 2012-10-10 2013-03-13 华为技术有限公司 Feed network, antenna and dual-polarized antenna array feed circuit
US9246222B2 (en) * 2013-03-15 2016-01-26 Tyco Electronics Corporation Compact wideband patch antenna
US9634396B2 (en) * 2013-07-09 2017-04-25 Galtronics Corporation Ltd. Extremely low-profile antenna
US9711853B2 (en) * 2013-08-07 2017-07-18 Huawei Technologies Co., Ltd. Broadband low-beam-coupling dual-beam phased array
CN109075445B (en) * 2016-04-26 2020-06-26 东莞阿尔倍莱科技有限公司 Antenna device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030174098A1 (en) * 2002-01-29 2003-09-18 Mitsmi Electric Co., Ltd. Four-point feeding loop antenna capable of easily obtaining an impednace match

Also Published As

Publication number Publication date
DE102016207434A1 (en) 2017-10-12
CN109219906B (en) 2020-12-01
WO2017174736A1 (en) 2017-10-12
US11223131B2 (en) 2022-01-11
DE102016207434B4 (en) 2017-11-23
JP6795614B2 (en) 2020-12-02
JP2019514285A (en) 2019-05-30
EP3440738A1 (en) 2019-02-13
CN109219906A (en) 2019-01-15
US20190044238A1 (en) 2019-02-07

Similar Documents

Publication Publication Date Title
EP3440738B1 (en) Antenna device
DE102017103161B4 (en) Antenna device and antenna array
EP1842262B1 (en) Aperture-coupled antenna
EP3411921B1 (en) Dual-polarized antenna
DE102005010894B4 (en) Planar multiband antenna
EP2721690B1 (en) Patch radiator
EP2664025B1 (en) Multiband reception antenna for the combined reception of satellite signals and terrestrially emitted radio signals
DE102008023030B4 (en) Radar antenna array
EP2135324B1 (en) Antenna apparatus for transmitting and receiving electromagnetic signals
DE602005002330T2 (en) Logarithmic periodic microstrip array antenna with grounded semi-coplanar waveguide to microstrip line transition
EP2256673B1 (en) RFID transponder for mounting on metal and production method for same
DE60213902T2 (en) M-shaped antenna
DE102011076209B4 (en) antenna
DE102015007503A1 (en) Dipole radiator arrangement
EP2367233A1 (en) Planar antenna system
DE102005030631B3 (en) Motor vehicle antenna for e.g. terrestial mobile radio, has discone/cone antenna with electrically conductive surface formed according to type of cone or triangle or trapezoid, where surface is aligned transverse to base/measuring surface
DE102012101443B4 (en) Planar antenna arrangement
EP3753073A1 (en) Antenna for communicating with a transponder
EP3707775B1 (en) Coupling and decoupling device between a circuit carrier and a waveguide
DE102004050598A1 (en) Micro strip line antenna for use in automobile industry for transmitting and receiving e.g. circularly polarized satellite radio signal, has resonant unit enclosing recesses whose form deviates from rectangular form
DE102014018573B4 (en) Antenna arrangement with planar slotted patch antenna of high bandwidth
EP3827478B1 (en) Circuit board antenna

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181004

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201104

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017010138

Country of ref document: DE

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1385614

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210515

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210722

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210821

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210823

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017010138

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210821

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220406

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220406

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1385614

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220406

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240423

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240418

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240423

Year of fee payment: 8