EP3150056A1 - Selbstfahrende landwirtschaftliche arbeitsmaschine - Google Patents

Selbstfahrende landwirtschaftliche arbeitsmaschine Download PDF

Info

Publication number
EP3150056A1
EP3150056A1 EP16177699.2A EP16177699A EP3150056A1 EP 3150056 A1 EP3150056 A1 EP 3150056A1 EP 16177699 A EP16177699 A EP 16177699A EP 3150056 A1 EP3150056 A1 EP 3150056A1
Authority
EP
European Patent Office
Prior art keywords
information
assistance system
driver assistance
sensor
environment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP16177699.2A
Other languages
English (en)
French (fr)
Other versions
EP3150056B1 (de
Inventor
Boris Kettelhoit
Burkhard Sagemüller
Thilo Krause
Christian Laing
Jesper Vilander
Benjamin Heyne
Morten Rufus Blas
Kasper Lundberg Lykkegaard
Johann Ingibergsson
Ertbolle Madsen Madsen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Claas E Systems GmbH
Original Assignee
Claas E Systems KGaA mbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=56321842&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3150056(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Claas E Systems KGaA mbH and Co KG filed Critical Claas E Systems KGaA mbH and Co KG
Publication of EP3150056A1 publication Critical patent/EP3150056A1/de
Application granted granted Critical
Publication of EP3150056B1 publication Critical patent/EP3150056B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D75/00Accessories for harvesters or mowers
    • A01D75/18Safety devices for parts of the machines
    • A01D75/185Avoiding collisions with obstacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B76/00Parts, details or accessories of agricultural machines or implements, not provided for in groups A01B51/00 - A01B75/00
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D41/00Combines, i.e. harvesters or mowers combined with threshing devices
    • A01D41/12Details of combines
    • A01D41/127Control or measuring arrangements specially adapted for combines
    • A01D41/1278Control or measuring arrangements specially adapted for combines for automatic steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/11Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths for generating image signals from visible and infrared light wavelengths
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • A01B69/001Steering by means of optical assistance, e.g. television cameras
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • A01B69/007Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow
    • A01B69/008Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow automatic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • B60W2050/143Alarm means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • B60W2050/146Display means

Definitions

  • the invention relates to a self-propelled agricultural working machine according to the preamble of claim 1.
  • self-propelled agricultural machine includes not only harvesters such as combine harvesters and forage harvesters, but also tractors such as tractors or the like.
  • the well-known self-propelled agricultural machine ( WO 2015/000839 A1 ), from which the invention proceeds, is designed as a tractor having a sensor-based device for avoiding collisions with environmental objects.
  • the work machine is equipped with a driver assistance system that generates control actions within the work machine based on the signals of a sensor arrangement.
  • a control action is, for example, a steering action with which the driver assistance system initiates an evasive movement about a detected environment object.
  • the sensor arrangement of the known work machine has two 3D cameras, which detect on the one hand the geometric extent of the load to be pulled by the tractor and on the other hand the surroundings of the work machine in the direction of travel. It has also become known in this connection to use laser rangefinders or time-of-flight cameras instead of the 3D cameras.
  • a challenge in the known agricultural machine is the achievement of a high operating efficiency while maintaining high reliability.
  • the reason for this is that a high level of operational reliability Although this can be achieved with a high sensitivity of the sensor arrangement, which generally leads to a comparatively high error detection rate, thus to frequent unnecessary interruptions in operation and as a result to a reduced operating efficiency.
  • the lowering of the sensitivity of the sensor arrangement leads to a low reliability of the sensor arrangement, which in turn impairs the reliability.
  • the invention is based on the problem, the known self-propelled agricultural work machine to design and further develop that both their reliability and their operating efficiency can be increased.
  • the proposed teaching is based on the fundamental realization that a generation of the control actions oriented towards a high level of operational reliability and at the same time a high operating efficiency can be achieved by assigning an urgency level to the environment information. Based on the urgency level, the driver assistance system can decide which control action should be performed in which intensity.
  • the driver assistance system each assigns an urgency level to the environment information and generates the control actions based on the environment information and the respective assigned urgency levels.
  • the driver assistance system With the introduction of urgency levels, the response to less urgent environmental information, such as the detection of an earthquake that does not endanger the harvesting operation, can be postponed.
  • a Urgent environmental information such as the detection of a person in the immediate vicinity of the attachment of a combine harvester, the driver assistance system in turn treat with the highest priority by the corresponding control action, such as the braking of the machine, immediately with high intensity, ie with high braking power generated.
  • the driver assistance system converts the control actions attributed to the surroundings information as a function of the respective priority level with priority or with subordinate priority to other pending control actions. In the case of the priority implementation of the control actions, this can be implemented in software with a mechanism in the manner of an interrupt.
  • the further preferred embodiments according to claims 10 to 12 relate to variants for determining the priority level of the respective environment information. It can be provided that a weighting of the introduced in the claims 9 to 11 influencing factors, for example, the driving speed on the one hand and the object category on the other hand, is made.
  • an environment information is composed of the sensor information of two different sensors.
  • different is meant here that the sensors capture their respective sensor information based on different physical properties of the environment object.
  • This makes it possible, for example, to capture an environment object by means of a normal light camera on the one hand and a thermal camera on the other hand. While the normal light camera provides information about the shape, the color scheme or the like of the environmental object, the temperature of the environment object can be determined by means of the thermal camera. From this sensor information can be generated by the driver assistance system environment information that includes, for example, detailed information about whether the environment object of the object category "alive" or the object category "not In turn, the driver assistance system can deduce how to react to the detected environment object.
  • the sensor arrangement has at least one further sensor which detects further sensor information based on a further physical property of the environment object, wherein the driver assistance system generates surroundings information about the environment object from the first sensor information and the further sensor information.
  • the environment information can result from the combination of the sensor information of the sensors.
  • preprocessing of the sensor information takes place here, in particular that derived variables such as the geometric outline, the temperature distribution, the position and / or movement of an environment object are determined from the sensor information and associated with the environment information.
  • the detection of the environment object by means of two differently operating sensors allows a differentiated reaction to the environment object as a function of its object category or of the object type still to be explained. This not only increases operational safety, but also operational efficiency.
  • a further increase in the operating efficiency can be achieved by the sensors having a common detection range, and / or by the two sensors simultaneously generating sensor information for the environmental information about the environment object.
  • the sensor information of all sensors of the sensor array are present at the same time, which further increases the evaluation speed and thus the operating efficiency.
  • the sensor information for the environmental information about the environmental object is present in a sequential manner, for example because the individual detection ranges of the sensors do not overlap or overlap only slightly.
  • the first sensor of the sensor arrangement is based on the reflection of radiation, in particular of electromagnetic radiation, as is the case with a normal light camera, wherein the further sensor of the sensor arrangement is based on the emission of radiation, in particular of electromagnetic radiation works, as is the case with a thermal camera.
  • a subdivision of the environment objects in different object categories (claim 5) and in different object types (claim 6) is made, which simplifies a differentiated generation of the control actions by the driver assistance system.
  • the object type is here and preferably a subcategory of the respective object category.
  • the driver assistance system preferably generates the respective control action as a function of the object category and / or the object type.
  • control actions generated by the driver assistance system may include a warning action, a braking action, a steering action or an adjustment action of a work organ. Which of these actions is performed in which intensity is decided by the driver assistance system according to predetermined criteria.
  • the proposed solution can be applied to a wide range of self-propelled agricultural machines. These include combines, forage harvesters, tractors, in particular tractors, o. The like .. In the illustrated and so far preferred embodiment, it is in the working machine 1 to a combine harvester, which is equipped in a conventional manner with a header 2. All versions of a combine harvester apply to all other types of machinery accordingly.
  • the proposed working machine 1 is equipped with at least one working member 3-8.
  • a work machine 1 designed as a combine harvester preferably has the working elements travel drive 3, cutting unit 4, threshing unit 5, separation device 6, cleaning device 7 and distribution device 8.
  • the work machine 1 is further equipped with a driver assistance system 9 for generating control actions within the work machine 1.
  • the control actions can relate to the display of information for the user and, on the other hand, to the control and parameterization of the working elements 3-8.
  • a sensor arrangement 10 for generating surroundings information 11-14, wherein the driver assistance system 9 generates the control actions based on the surroundings information 11-14.
  • the sensor arrangement 10 preferably has a first sensor 15, which generates a first sensor information 16-19 based on a first physical property of an environment object 20, 21 in the environment of the work machine 1.
  • the first sensor 15 is preferably a normal-light camera, so that the first sensor information 16-19 is a corresponding image of the environmental object 20, 21 in the visible spectrum.
  • the environment object 20, 21 may be any object in the vicinity of the work machine 1, which in some way is from the environment of the work machine 1 is otherwise distinguishable.
  • Typical environment objects are animals 20 ( Fig. 2 ) or obstacles such as trees 21 ( Fig. 3 ), Stones or the like
  • the sensor arrangement 10 has at least one further sensor 22, which detects a further sensor information 23-26 based on a further physical property of the environment object 20, 21.
  • the sensor arrangement 10 has exactly one further sensor 22. All relevant explanations apply to all additionally provided further sensors accordingly.
  • the exemplary embodiment illustrated and in this respect is a thermal sensor, as will also be explained below.
  • the thermal sensor generates an image of the environmental object 20, 21 in the invisible infrared spectrum.
  • the driver assistance system 9 generates from the first sensor information 16-19 and the further sensor information 23-26 a resulting environment information 11-14 to one and the same environment object 20, 21.
  • the information content of the environment information 11-14 is determined by the combination of the first sensor information and the Further sensor information particularly high because the two sensors 15, 22 each based on different physical properties of the environment object 20, 21 work and provide corresponding complementary information to the environment object 20, 21.
  • the first sensor 15 and the further sensor 22 are preferably designed and arranged such that the sensors 15, 22 have a common detection region 27 ( Fig. 1 ). This means that the detection ranges of the sensors 15, 22 overlap, at least insofar as a common detection range 27 results. The individual detection ranges of the sensors 15, 22 do not have to be identical to one another accordingly.
  • the first sensor 15 and the further sensor 22 simultaneously generate sensor information 16-19, 23-26 for the environment information 11-14 to one and the same environment object 20, 21.
  • the generation of the environment information 11-14 with high repetition frequency is possible, which further increases the reliability.
  • the, here and preferably two, sensors 15, 22 are arranged on the driver's cab 29 of the work machine 1.
  • the sensors 15, 22 are arranged next to one another, in particular on a horizontally extending imaginary line 30.
  • the sensors 15, 22 are arranged symmetrically relative to one another with respect to a center plane 31 extending vertically along the working machine 1, which allows a correspondingly symmetrical extent of the common detection area 27.
  • the two sensors 15, 22 operate on the basis of different physical properties of the environment object 20, 21, so that a particularly high information content results for the respectively resulting environment information 11-14.
  • the first sensor 15 of the sensor arrangement 10 generates the first sensor information 16-19, preferably based on the reflection of electromagnetic radiation, in particular laser radiation or visible light radiation, from the environment object 20, 21.
  • the first sensor 15 is preferably a laser sensor
  • the first sensor 15 is designed as a normal light camera, in particular as a 3D camera or as a time-of-flight camera (TOF camera).
  • TOF camera time-of-flight camera
  • the first sensor 15 is designed as a radar sensor, which is in particular a 3D radar sensor.
  • the first sensor 15 may be configured in a particularly cost-effective embodiment as an ultrasonic sensor.
  • the first sensor information 16-19 can give information about the environment object 20, 21 quite differently.
  • the first sensor information 16-19 may be a shaping and / or coloring and / or a movement speed and / or a movement characteristic of the environment object 20, 21. It is also conceivable that the first sensor information 16-19 only comprises the direction of movement of the environment object 20, 21.
  • the further sensor 22 of the sensor arrangement 10 generates the further sensor information 23-26, preferably based on the emission of electromagnetic radiation, in particular of infrared radiation, of the environment object 20, 21. Accordingly, the further sensor information 23-26 is preferably a temperature or a temperature spectrum of the surrounding object 20, 21.
  • the respective environment information 11-14 comprises one or more description parameters for the relevant environment object 20, 21, which allow an association of the environment object 20, 21 to predefined categories or types of environment objects.
  • the driver assistance system 9 assigns an object category 32, 33 from the object categories "living” and “not living” to the environment object 20, 21 based on the surroundings information 11-14.
  • first sensor information 16 the environment object 20 shown there could basically be a small tree or the like.
  • further sensor information 23 that, according to the determined temperature of the environmental object 20, it must be an animal and, in view of the shape determined after the first sensor information 16, must be a deer.
  • first sensor information 17 could provide information that the environment object 21 is a human being.
  • further sensor information 24 that the environment object 21, the object category "not alive" is assigned. From these two sensor information 17, 24, the driver assistance system 9 generates the environmental information that the environment object 21 is a tree.
  • a corresponding prescription is stored in a memory of the driver assistance system 9.
  • the driver assistance system 9 makes the assignment of the object category and / or the object type dependent on whether a first necessary condition relating to the first sensor information 16-19, in particular a predetermined shaping of the surrounding object 20, 21, and a second necessary condition regarding the further sensor information 23-26, in particular a predetermined temperature range is met.
  • simple rules can be set up for the object categories or object types, which enable a good coverage of the expected environment objects 20, 21 and which, in particular, can be processed automatically.
  • the driver assistance system 9 in a monitoring step, the sensor information 23-26 of the other sensor 22 then monitors whether in the common detection area 27 at all an environment object 20, 21 is present. In the event that an environment object 20, 21 has been detected, the driver assistance system 9 determines the object category 32, 33 and / or the one in an evaluation step from the sensor information 16-19 of the first sensor 15 and the sensor information 23-26 of the further sensor 22 Object type of environment object 20, 21.
  • the driver assistance system 9 can generate the control actions in dependence on precisely this information.
  • the environment information includes not only the object category 32, 33 or the object type of the environment object 20, 21, but also position information or movement information relative to the work machine 1, so that this additional information can also be considered in the generation of the control actions.
  • the different operation of the sensors 15, 22 results in a particularly high information content of the surroundings information.
  • the driver assistance system 9, the sensor information 16-19, 23-26 of the sensors 15, 22 of the sensor assembly 10 in response to the illumination of the common detection area 27th considered differently.
  • both sensors 15, 22 are taken into account during the daytime, while at night the recourse is primarily made to the further sensor 22, which is preferably designed as a thermal sensor.
  • control actions generated by the driver assistance system 9 based on the environment information 11-14 may be designed quite differently depending on the environment information.
  • the control actions include a warning action for the operator via a man-machine interface 34 and / or a braking action by controlling a brake assembly, not shown, and / or a steering action by driving a steering assembly, not shown, and / or a Verstell risk a working organ 3-8 such raising and / or switching off the cutting unit 4 of a working machine 1 designed as a combine harvester.
  • the warning action for the operator via the man-machine interface 34 may be, for example, the output of audible or visual warning signals or the display of camera images. It is conceivable that a camera image, the corresponding warning information, in particular an indication of the detected environment object 20, 21 is superimposed.
  • the braking action can, as indicated above, be the activation of a brake arrangement or the triggering of an engine brake.
  • the braking action may also include a brake command to the operator via the man-machine interface 34.
  • the steering action may include an evasive movement planned and performed by the driver assistance system 9, in particular on the basis of GPS navigation data. It is also conceivable, however, for the steering action to include only one steering limit in order to avoid that the operator generates a collision situation with the detected environment object 20, 21. Other control actions are conceivable.
  • the driver assistance system 9 each assigns an emergency level 35-38 to the environment information 11-14 and generates the control actions as explained above based on the environment information 11-14 and the respective assigned priority levels 35-38. Through this systematization of the urgency of environment information 11-14, the assignment can easily be carried out automatically.
  • the driver assistance system 9 derives the respective urgency level 35-38 from the distance of the environment object 20, 21 from the work machine 1 and / or from the travel speed of the work machine 1. The direction of movement and / or the speed of movement of the environment object 20, 21 can also enter into the determination of the respective priority level.
  • the driver assistance system 9 the respective priority level 35-38 from the determined object category and / or derived from the determined object type. For example, the determination of an environment object 20, 21 of the object category "living" and the object type "human” should always be provided with a high level of urgency in order to exclude any risk of injury to a person.
  • At least one sensor 15, 22 of the sensor arrangement 10 is assigned a predetermined priority level. This is the case, for example, if the respective sensor is a working machine 1 configured directly on the cutting unit 4 of a machine 1 designed as a combine harvester and having a small detection area. In the event that any environment object 20, 21 lands in the detection range of this collision sensor, the relevant environment information 11-14 is always assigned a high level of urgency.
  • the driver assistance system 9 converts the control actions based on the environment information 11-14 as a function of the respective priority level 35-38 with priority or subordinate to other pending control actions.
  • a mechanism in the manner of an interrupt can basically be used, as has already been indicated above.
  • At least one priority level 35-38 is assigned to a predetermined control action.
  • a predetermined control action For example, it may be provided that exactly three urgency levels 35-38 are provided, which are each assigned to one of the control actions warning action, steering action and braking action to be explained.
  • the clear assignment of urgency levels 35-38 to control actions simplifies the determination of the control actions by the driver assistance system 9.
  • the control actions in particular the above three control actions, may each comprise a plurality of sub-actions which may be triggered depending on the environment information.
  • the driver assistance system 9 changes the control actions, which are based on the environment information 11-14, as a function of the respective priority level 35-38 Control parameters, in particular in varying intensity implemented. This has already been mentioned in connection with the braking action.
  • Fig. 4 shows a preferred operation of the driver assistance system 9.
  • the sensor assembly 10 for different situations first sensor information 16-19 (left) and further sensor information 23-26 (right) generated.
  • the respectively associated sensor information 16, 23; 17, 24; 18, 25; 19, 26 are processed into environment information 11-14, which are categorized or typed in an evaluation step 39 as explained above.
  • the environment information 11-14 in a prioritization step 40, as also explained, provided with priority levels 35-38.
  • the driver assistance system 9 determines the adequate control action 42-44, in which it can be found in the Fig. 4 shown exemplary overview to a warning action 42, a steering action 43 or a braking action 44 can act. It is also conceivable here to trigger the other control actions mentioned above.
  • Fig. 4 shows in the result that a differentiated detection of environment objects 20, 21 and further a differentiated reaction to the detection of environment objects 20, 21 is possible, resulting from the systematization of the detection with at least two sensors, 15, 22 and from the assignment of urgency levels an automatable process results, which ensures a high operational safety as well as a high operating efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Soil Sciences (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Traffic Control Systems (AREA)
  • Guiding Agricultural Machines (AREA)

Abstract

Die Erfindung betrifft eine selbstfahrende landwirtschaftliche Arbeitsmaschine mit mindestens einem Arbeitsorgan (3-8), insbesondere einem Fahrantrieb (3), und mit einem Fahrerassistenzsystem (9) zum Erzeugen von Steueraktionen innerhalb der Arbeitsmaschine (1), wobei eine Sensoranordnung (10) zum Erzeugen von Umfeldinformationen (11-14) vorgesehen ist, wobei das Fahrerassistenzsystem (9) die Steueraktionen basierend auf den Umfeldinformationen (11-14) erzeugt. Es wird vorgeschlagen, dass das Fahrerassistenzsystem (9) den Umfeldinformationen (11-14) jeweils eine Dringlichkeitsstufe (35-38) zuordnet und die Steueraktionen basierend auf den Umfeldinformationen (11-14) und den jeweils zugeordneten Dringlichkeitsstufen (35-38) erzeugt.

Description

  • Die Erfindung betrifft eine selbstfahrende landwirtschaftliche Arbeitsmaschine gemäß dem Oberbegriff von Anspruch 1.
  • Der Begriff "selbstfahrende landwirtschaftliche Arbeitsmaschine" ist vorliegend weit zu verstehen. Darunter fallen nicht nur Erntemaschinen wie Mähdrescher und Feldhäcksler, sondern auch Zugmaschinen wie Traktoren o. dgl..
  • Mit den immer steigenden Abmessungen der in Rede stehenden landwirtschaftlichen Arbeitsmaschine stellt sich die für die jeweilige Situation richtige Reaktion auf Objekte im Umfeld der Arbeitsmaschine als immer größere Herausforderung für den Bediener dar. Solche Objekte, bei denen es sich um Menschen, Tiere, ortsfeste oder sich bewegende Gegenstände im Umfeld der Arbeitsmaschine handeln kann, werden vorliegend ganz allgemein als "Umfeldobjekte" bezeichnet.
  • Die bekannte selbstfahrende landwirtschaftliche Arbeitsmaschine ( WO 2015/000839 A1 ), von der die Erfindung ausgeht, ist als Traktor ausgestaltet, der eine sensorgestützte Einrichtung zur Vermeidung von Kollisionen mit Umfeldobjekten aufweist. Im Einzelnen ist die Arbeitsmaschine mit einem Fahrerassistenzsystem ausgestattet, das basierend auf den Signalen einer Sensoranordnung Steueraktionen innerhalb der Arbeitsmaschine erzeugt. Eine solche Steueraktion ist beispielsweise eine Lenkaktion, mit der das Fahrerassistenzsystem eine Ausweichbewegung um ein detektiertes Umfeldobjekt einleitet.
  • Die Sensoranordnung der bekannten Arbeitsmaschine weist zwei 3D-Kameras auf, die einerseits die geometrische Ausdehnung der von dem Traktor zu ziehenden Last und andererseits das Umfeld der Arbeitsmaschine in Fahrtrichtung erfassen. Es ist in diesem Zusammenhang auch bekannt geworden, anstelle der 3D-Kameras Laserentfernungsmesser oder Time-of-Flight-Kameras anzuwenden.
  • Eine Herausforderung bei der bekannten landwirtschaftlichen Arbeitsmaschine stellt das Erreichen einer hohen Betriebseffizienz bei gleichzeitig hoher Betriebssicherheit dar. Der Grund hierfür besteht darin, dass sich eine hohe Betriebssicherheit zwar mit einer hohen Empfindlichkeit der Sensoranordnung erreichen lässt, die allgemeinhin aber zu einer vergleichsweise hohen Fehlerkennungsrate, damit zu häufigen unnötigen Betriebsunterbrechungen und im Ergebnis zu einer reduzierten Betriebseffizienz führt. Das Absenken der Empfindlichkeit der Sensoranordnung dagegen führt zu einer geringen Zuverlässigkeit der Sensoranordnung, was wiederum die Betriebssicherheit beeinträchtigt.
  • Weiter nachteilig bei der bekannten landwirtschaftlichen Arbeitsmaschine ist die Tatsache, dass auch solche sich anbahnende Kollisionen, die sich mit hoher Wahrscheinlichkeit überhaupt nicht realisieren, zu einem Stillstand der Arbeitsmaschine führen, was die Betriebseffizienz beträchtlich reduzieren kann.
  • Der Erfindung liegt das Problem zugrunde, die bekannte selbstfahrende landwirtschaftliche Arbeitsmaschine derart auszugestalten und weiterzubilden, dass sowohl deren Betriebssicherheit als auch deren Betriebseffizienz erhöht werden.
  • Das obige Problem wird bei einer selbstfahrenden landwirtschaftlichen Arbeitsmaschine gemäß dem Oberbegriff von Anspruch 1 durch die Merkmale des kennzeichnenden Teils von Anspruch 1 gelöst.
  • Die vorschlagsgemäße Lehre beruht auf der grundsätzlichen Erkenntnis, dass sich eine auf eine hohe Betriebssicherheit und gleichzeitig eine hohe Betriebseffizienz ausgerichtete Erzeugung der Steueraktionen dadurch erreichen lässt, dass den Umfeldinformationen jeweils eine Dringlichkeitsstufe zugeordnet wird. Basierend auf der Dringlichkeitsstufe kann das Fahrerassistenzsystem entscheiden, welche Steueraktion in welcher Intensität durchgeführt werden soll.
  • Ganz allgemein wird vorgeschlagen, dass das Fahrerassistenzsystem den Umfeldinformationen jeweils eine Dringlichkeitsstufe zuordnet und die Steueraktionen basierend auf den Umfeldinformationen und den jeweils zugeordneten Dringlichkeitsstufen erzeugt.
  • Mit der Einführung von Dringlichkeitsstufen kann die Reaktion auf eine weniger dringliche Umfeldinformation, wie beispielsweise das Erfassen einer den Erntebetrieb nicht gefährdenden Erdanhäufung, zunächst zurückgestellt werden. Eine dringliche Umfeldinformation, beispielsweise die Erfassung eines Menschen in unmittelbarer Nähe des Vorsatzgerätes eines Mähdreschers, kann das Fahrerassistenzsystem wiederum mit allerhöchster Priorität behandeln, indem es die entsprechende Steueraktion, beispielsweise das Bremsen der Arbeitsmaschine, unverzüglich mit hoher Intensität, also mit hoher Bremsleistung, erzeugt. Dies ist Gegenstand des bevorzugten Anspruchs 4, nach dem das Fahrerassistenzsystem die auf die Umfeldinformationen zurückgehenden Steueraktionen in Abhängigkeit von der jeweiligen Dringlichkeitsstufe vorrangig oder nachrangig gegenüber anderen anstehenden Steueraktionen umsetzt. Bei der vorrangigen Umsetzung der Steueraktionen kann dies softwaremäßig mit einem Mechanismus nach Art eines Interrupts realisiert sein.
  • Bei der besonders bevorzugten Ausgestaltung gemäß Anspruch 9 ergibt sich eine besonders einfache Ermittlung der Steueraktionen, da mindestens eine Dringlichkeitsstufe einer vorbestimmten Steueraktion fest zugeordnet ist.
  • Die weiter bevorzugten Ausgestaltungen gemäß den Ansprüchen 10 bis 12 betreffen Varianten für die Festlegung der Dringlichkeitsstufe der jeweiligen Umfeldinformationen. Dabei kann es vorgesehen sein, dass eine Wichtung der in den Ansprüchen 9 bis 11 vorgestellten Einflussfaktoren, beispielsweise der Fahrgeschwindigkeit einerseits und der Objektkategorie andererseits, vorgenommen wird.
  • Die Erzeugung von Umfeldinformationen zu einem Umfeldobjekt in differenzierter Weise ist dadurch möglich, dass sich eine Umfeldinformation aus den Sensorinformationen zweier unterschiedlicher Sensoren zusammensetzt. Mit "unterschiedlich" ist hier gemeint, dass die Sensoren ihre jeweiligen Sensorinformationen basierend auf unterschiedlichen physikalischen Eigenschaften des Umfeldobjekts erfassen. Damit ist es beispielsweise möglich, ein Umfeldobjekt mittels einer Normallichtkamera einerseits und einer Thermokamera andererseits zu erfassen. Während die Normallichtkamera Aufschluss über die Formgebung, die Farbgebung o. dgl. des Umfeldobjekts gibt, lässt sich mittels der Thermokamera die Temperatur des Umfeldobjekts ermitteln. Aus diesen Sensorinformationen lässt sich mittels des Fahrerassistenzsystems eine Umfeldinformation erzeugen, die beispielsweise Detailinformationen darüber umfasst, ob das Umfeldobjekt der Objektkategorie "lebend" oder der Objektkategorie "nicht lebend" zuzuordnen ist. Daraus wiederum kann das Fahrerassistenzsystem ableiten, wie auf das detektierte Umfeldobjekt reagiert werden soll.
  • Ganz allgemein ist es vorzugsweise so, dass die Sensoranordnung mindestens einen weiteren Sensor aufweist, der eine weitere Sensorinformation basierend auf einer weiteren physikalischen Eigenschaft des Umfeldobjekts erfasst, wobei das Fahrerassistenzsystem aus der ersten Sensorinformation und der weiteren Sensorinformation eine Umfeldinformation zu dem Umfeldobjekt erzeugt. Dabei kann sich die Umfeldinformation im einfachsten Fall aus der Kombination der Sensorinformationen der Sensoren ergeben. Es ist aber auch denkbar, dass hier eine Vorverarbeitung der Sensorinformationen stattfindet, insbesondere, dass abgeleitete Größen wie der geometrische Umriß, die Temperaturverteilung, die Position und/oder Bewegung eines Umfeldobjekts aus den Sensorinformationen ermittelt und der Umfeldinformation zugeordnet werden.
  • Wie oben erläutert, erlaubt die Erfassung des Umfeldobjekts mittels zweier unterschiedlich arbeitender Sensoren eine differenzierte Reaktion auf das Umfeldobjekt in Abhängigkeit von dessen Objektkategorie oder von dessen noch zu erläuterndem Objekttyp. Damit wird nicht nur die Betriebssicherheit, sondern auch die Betriebseffizienz gesteigert.
  • Eine weitere Steigerung der Betriebseffizienz lässt sich erreichen, indem die Sensoren einen gemeinsamen Erfassungsbereich aufweisen, und/oder, indem die beiden Sensoren gleichzeitig Sensorinformationen für die Umfeldinformation zu dem Umfeldobjekt erzeugen. Damit ist es ohne Weiteres möglich, dass die Sensorinformationen aller Sensoren der Sensoranordnung gleichzeitig vorliegen, was die Auswertegeschwindigkeit und damit die Betriebseffizienz weiter erhöht. Grundsätzlich ist es aber auch denkbar, dass die Sensorinformationen für die Umfeldinformation zu dem Umfeldobjekt sequentiell vorliegen, beispielsweise, weil die einzelnen Erfassungsbereiche der Sensoren sich nicht oder nur geringfügig überlappen.
  • Weiter vorzugsweise ist es so, dass der erste Sensor der Sensoranordnung auf der Reflektion von Strahlung, insbesondere von elektromagnetischer Strahlung, beruht, wie dies bei einer Normallichtkamera der Fall ist, wobei der weitere Sensor der Sensoranordnung basierend auf der Emission von Strahlung, insbesondere von elektromagnetischer Strahlung, arbeitet, wie es bei einer Thermokamera der Fall ist. Die Vorteilhaftigkeit der Kombination zweier solcher Sensoren wurde weiter oben bereits erläutert.
  • Bei den besonders bevorzugten Ausgestaltungen gemäß den Ansprüchen 5 bis 7 wird eine Unterteilung der Umfeldobjekte in unterschiedliche Objektkategorien (Anspruch 5) und in unterschiedliche Objekttypen (Anspruch 6) vorgenommen, was eine differenzierte Erzeugung der Steueraktionen durch das Fahrerassistenzsystem vereinfacht. Der Objekttyp ist hier und vorzugsweise eine Unterkategorie der jeweiligen Objektkategorie. Vorzugsweise erzeugt das Fahrerassistenzsystem die jeweilige Steueraktion in Abhängigkeit von der Objektkategorie und/oder dem Objekttyp.
  • Für die von dem Fahrerassistenzsystem basierend auf den Umfeldinformationen erzeugten Steueraktionen sind verschiedene Varianten denkbar. Gemäß Anspruch 8 können diese Steueraktionen eine Warnaktion, eine Bremsaktion, eine Lenkaktion oder eine Verstellaktion eines Arbeitsorgans umfassen. Welche dieser Aktionen in welcher Intensität durchgeführt wird, entscheidet das Fahrerassistenzsystem nach vorbestimmten Kriterien.
  • Im Folgenden wird die Erfindung anhand einer lediglich ein Ausführungsbeispiel darstellenden Zeichnung näher erläutert. In der Zeichnung zeigt
  • Fig. 1
    eine vorschlagsgemäße selbstfahrende landwirtschaftliche Arbeitsmaschine in einer Ansicht von vorne,
    Fig. 2
    die Arbeitsmaschine gemäß Fig. 1 in einer ersten Betriebssituation,
    Fig. 3
    die Arbeitsmaschine gemäß Fig. 1 in einer zweiten Betriebssituation und
    Fig. 4
    eine schematische Darstellung der sensorbasierten Erzeugung von Steueraktionen durch das Fahrerassistenzsystem der Arbeitsmaschine gemäß Fig. 1.
  • Die vorschlagsgemäße Lösung lässt sich auf einen weiten Bereich selbstfahrender landwirtschaftlicher Arbeitsmaschinen anwenden. Dazu gehören Mähdrescher, Feldhäcksler, Zugmaschinen, insbesondere Traktoren, o. dgl.. Bei dem dargestellten und insoweit bevorzugten Ausführungsbeispiel handelt es sich bei der Arbeitsmaschine 1 um einen Mähdrescher, der in an sich üblicher Weise mit einem Vorsatzgerät 2 ausgestattet ist. Alle Ausführungen zu einem Mähdrescher gelten für alle anderen Arten von Arbeitsmaschinen entsprechend.
  • Die vorschlagsgemäße Arbeitsmaschine 1 ist mit mindestens einem Arbeitsorgan 3-8 ausgestattet. Eine als Mähdrescher ausgestaltete Arbeitsmaschine 1 weist vorzugsweise die Arbeitsorgane Fahrantrieb 3, Schneidwerk 4, Dreschwerk 5, Abscheidevorrichtung 6, Reinigungsvorrichtung 7 und Verteilvorrichtung 8 auf.
  • Die Arbeitsmaschine 1 ist ferner mit einem Fahrerassistenzsystem 9 zum Erzeugen von Steueraktionen innerhalb der Arbeitsmaschine 1 ausgestattet. Die Steueraktionen können einerseits die Anzeige von Informationen für den Benutzer und andererseits die Ansteuerung und Parametrierung der Arbeitsorgane 3-8 betreffen.
  • Es lässt sich den Darstellungen gemäß den Fig. 1 bis 3 entnehmen, dass eine Sensoranordnung 10 zum Erzeugen von Umfeldinformationen 11-14 vorgesehen ist, wobei das Fahrerassistenzsystem 9 die Steueraktionen jeweils basierend auf den Umfeldinformationen 11-14 erzeugt. Hierfür weist die Sensoranordnung 10 vorzugsweise einen ersten Sensor 15 auf, der eine erste Sensorinformation 16-19 basierend auf einer ersten physikalischen Eigenschaft eines Umfeldobjekts 20, 21 im Umfeld der Arbeitsmaschine 1 erzeugt. Bei dem ersten Sensor 15 handelt es sich vorzugsweise um eine Normallichtkamera, so dass die erste Sensorinformation 16-19 eine entsprechende Abbildung des Umfeldobjekts 20, 21 im sichtbaren Spektrum ist.
  • Bei dem Umfeldobjekt 20, 21 kann es sich um jedwedes Objekt im Umfeld der Arbeitsmaschine 1 handeln, das in irgendeiner Weise vom Umfeld der Arbeitsmaschine 1 im Übrigen unterscheidbar ist. Typische Umfeldobjekte sind Tiere 20 (Fig. 2) oder Hindernisse wie Bäume 21 (Fig. 3), Steine o. dgl..
  • Weiter vorzugsweise weist die Sensoranordnung 10 mindestens einen weiteren Sensor 22 auf, der eine weitere Sensorinformation 23-26 basierend auf einer weiteren physikalischen Eigenschaft des Umfeldobjekts 20, 21 erfasst. Hier und vorzugsweise weist die Sensoranordnung 10 genau einen weiteren Sensor 22 auf. Alle diesbezüglichen Ausführungen gelten für alle zusätzlich vorgesehenen, weiteren Sensoren entsprechend.
  • Bei dem weiteren Sensor 22 handelt es sich bei dem dargestellten und insoweit bevorzugten Ausführungsbeispiel um einen Thermosensor, wie ebenfalls noch erläutert wird. Der Thermosensor erzeugt eine Abbildung des Umfeldobjekts 20, 21 im nicht sichtbaren Infrarotspektrum.
  • Vorzugsweise erzeugt das Fahrerassistenzsystem 9 aus der ersten Sensorinformation 16-19 und der weiteren Sensorinformation 23-26 eine resultierende Umfeldinformation 11-14 zu ein und demselben Umfeldobjekt 20, 21. Der Informationsgehalt der Umfeldinformation 11-14 ist durch die Kombination der ersten Sensorinformation und der weiteren Sensorinformation besonders hoch, da die beiden Sensoren 15, 22 jeweils basierend auf unterschiedlichen physikalischen Eigenschaften des Umfeldobjekts 20, 21 arbeiten und entsprechend komplementäre Informationen zu dem Umfeldobjekt 20, 21 liefern.
  • Der erste Sensor 15 und der weitere Sensor 22 sind vorzugsweise derart ausgestaltet und angeordnet, dass die Sensoren 15, 22 einen gemeinsamen Erfassungsbereich 27 aufweisen (Fig. 1). Dies bedeutet, dass sich die Erfassungsbereiche der Sensoren 15, 22 zumindest insoweit überlappen, als sich ein gemeinsamer Erfassungsbereich 27 ergibt. Die einzelnen Erfassungsbereiche der Sensoren 15, 22 müssen entsprechend nicht zueinander identisch sein.
  • Ferner ist es vorzugsweise so, dass der erste Sensor 15 und der weitere Sensor 22 gleichzeitig Sensorinformationen 16-19, 23-26 für die Umfeldinformation 11-14 zu ein und demselben Umfeldobjekt 20, 21 erzeugen. Durch die gleichzeitige Bereitstellung der Sensorinformationen 16-19, 23-26 beider Sensoren 15, 22 ist die Erzeugung der Umfeldinformationen 11-14 mit hoher Wiederholfrequenz möglich, was die Betriebssicherheit weiter erhöht.
  • Vorzugsweise liegt der gemeinsame Erfassungsbereich 27 der Sensoren 15, 22 im Umfeld der Arbeitsmaschine 1, vorzugsweise hinsichtlich der Vorfahrtrichtung 28 vor der Arbeitsmaschine 1, wie in der Zeichnung dargestellt.
  • Es lässt sich der Detaildarstellung gemäß Fig. 1 entnehmen, dass die, hier und vorzugsweise zwei, Sensoren 15, 22 an der Fahrerkabine 29 der Arbeitsmaschine 1 angeordnet sind. Ganz allgemein ist es bevorzugt, dass die Sensoren 15, 22 nebeneinander, insbesondere auf einer horizontal verlaufenden, gedachten Linie 30 angeordnet sind. In besonders bevorzugter Ausgestaltung sind die Sensoren 15, 22 bezogen auf eine längs der Arbeitsmaschine 1 vertikal verlaufende Mittelebene 31 symmetrisch zueinander angeordnet, was eine entsprechend symmetrische Erstreckung des gemeinsamen Erfassungsbereichs 27 ermöglicht.
  • Wie oben angesprochen, arbeiten die beiden Sensoren 15, 22 basierend auf unterschiedlichen physikalischen Eigenschaften des Umfeldobjekts 20, 21, so dass sich für die jeweils resultierende Umfeldinformation 11-14 ein besonders hoher Informationsgehalt ergibt.
  • Der erste Sensor 15 der Sensoranordnung 10 erzeugt die erste Sensorinformation 16-19 vorzugsweise basierend auf der Reflektion elektromagnetischer Strahlung, insbesondere von Laserstrahlung oder von sichtbarer Lichtstrahlung, von dem Umfeldobjekt 20, 21. Entsprechend handelt es sich bei dem ersten Sensor 15 vorzugsweise um einen Lasersensor, insbesondere einen 3D-Lasersensor, einen Laserscanner o. dgl.. In besonders bevorzugter Ausgestaltung ist der erste Sensor 15 jedoch als Normallichtkamera, insbesondere als 3D-Kamera oder als Time-of-Flight-Kamera (TOF-Kamera) ausgestaltet. Denkbar ist auch, dass der erste Sensor 15 als Radarsensor ausgestaltet ist, bei dem es sich insbesondere um einen 3D-Radarsensor handelt. Schließlich kann der erste Sensor 15 in einer besonders kostengünstigen Ausgestaltung als Ultraschallsensor ausgestaltet sein.
  • In Abhängigkeit von der Ausgestaltung des ersten Sensors 15 kann die erste Sensorinformation 16-19 ganz unterschiedlich Aufschluss über das Umfeldobjekt 20, 21 geben. Je nach Sensor 15 kann die erste Sensorinformation 16-19 eine Formgebung und/oder eine Farbgebung und/oder eine Bewegungsgeschwindigkeit und/oder eine Bewegungscharakteristik des Umfeldobjekts 20, 21 sein. Denkbar ist auch, dass die erste Sensorinformation 16-19 lediglich die Bewegungsrichtung des Umfeldobjekts 20, 21 umfasst.
  • Der weitere Sensor 22 der Sensoranordnung 10 erzeugt die weitere Sensorinformation 23-26 vorzugsweise basierend auf der Emission elektromagnetischer Strahlung, insbesondere von Infrarotstrahlung, des Umfeldobjekts 20, 21. Entsprechend handelt es sich bei der weiteren Sensorinformation 23-26 vorzugsweise um eine Temperatur oder ein Temperaturspektrum des Umfeldobjekts 20,21.
  • Die jeweilige Umfeldinformation 11-14 umfasst einen oder mehrere Beschreibungsparameter für das betreffende Umfeldobjekt 20, 21, die eine Zuordnung des Umfeldobjekts 20, 21 zu vordefinierten Kategorien oder Typen von Umfeldobjekten ermöglichen.
  • Entsprechend ist es zunächst einmal vorgesehen, dass das Fahrerassistenzsystem 9 dem Umfeldobjekt 20, 21 basierend auf den Umfeldinformationen 11-14 eine Objektkategorie 32, 33 aus den Objektkategorien "lebend" und "nicht lebend" zuordnet. Bei der in Fig. 2 links dargestellten, ersten Sensorinformation 16 könnte es sich bei dem dort gezeigten Umfeldobjekt 20 grundsätzlich um einen kleinen Baum o. dgl. handeln. Allerdings zeigt die in Fig. 2 rechts dargestellte, weitere Sensorinformation 23, dass es sich nach der ermittelten Temperatur des Umfeldobjekts 20 um ein Tier und im Hinblick auf die nach der ersten Sensorinformation 16 ermittelten Formgebung um einen Hirsch handeln muss. Mit der vorschlagsgemäßen Lösung ist es also nicht nur möglich, die Objektkategorien "lebend" und "nicht lebend" zu ermitteln, sondern auch den jeweiligen Objekttyp wie "Tier", "Mensch", "starrer Gegenstand" oder "Fahrzeug mit Motor".
  • Bei der in Fig. 3 gezeigten Situation ist es dagegen so, dass die in Fig. 3 links dargestellte, erste Sensorinformation 17 Aufschluss darüber geben könnte, dass es sich bei dem Umfeldobjekt 21 um einen Menschen handelt. Allerdings zeigt die in Fig. 3 rechts dargestellte, weitere Sensorinformation 24, dass dem Umfeldobjekt 21 die Objektkategorie "nicht lebend" zuzuordnen ist. Aus diesen beiden Sensorinformationen 17, 24 erzeugt das Fahrerassistenzsystem 9 die Umfeldinformation, dass es sich bei dem Umfeldobjekt 21 um einen Baum handelt.
  • Für die Zuordnung der Objektkategorie und/oder des Objekttyps zu dem Umfeldobjekt 20, 21 ist in einem Speicher des Fahrerassistenzsystems 9 eine entsprechende Vorschrift abgelegt. Hier und vorzugsweise ist es so, dass das Fahrerassistenzsystem 9 die Zuordnung der Objektkategorie und/oder des Objekttyps davon abhängig macht, ob eine erste notwendige Bedingung betreffend die erste Sensorinformation 16-19, insbesondere eine vorbestimmte Formgebung des Umfeldobjekts 20, 21, und eine zweite notwendige Bedingung betreffend die weitere Sensorinformation 23-26, insbesondere ein vorbestimmter Temperaturbereich, erfüllt ist. Hier lassen sich für die Objektkategorien bzw. Objekttypen einfache Regeln aufstellen, die eine gute Abdeckung der zu erwartenden Umfeldobjekte 20, 21 ermöglichen und die insbesondere automatisiert abgearbeitet werden können.
  • Es sind unterschiedliche vorteilhafte Varianten für die Reihenfolge bei der Auswertung der verschiedenen Sensorinformationen 16-19, 23-26 denkbar. Hier und vorzugsweise ist es so, dass das Fahrerassistenzsystem 9 in einem Überwachungsschritt die Sensorinformationen 23-26 des weiteren Sensors 22 daraufhin überwacht, ob im gemeinsamen Erfassungsbereich 27 überhaupt ein Umfeldobjekt 20, 21 vorliegt. Für den Fall, dass ein Umfeldobjekt 20, 21 detektiert worden ist, ermittelt das Fahrerassistenzsystem 9 in einem Auswerteschritt aus den Sensorinformationen 16-19 des ersten Sensors 15 und den Sensorinformationen 23-26 des weiteren Sensors 22 die Objektkategorie 32, 33 und/oder den Objekttyp des Umfeldobjekts 20, 21.
  • Nachdem die Objektkategorie 32, 33 und/oder der Objekttyp des Umfeldobjekts 20, 21 feststeht, kann das Fahrerassistenzsystem 9 in Abhängigkeit von eben diesen Informationen die Steueraktionen erzeugen. Dabei ist es vorzugsweise so, dass die Umfeldinformationen nicht nur die Objektkategorie 32, 33 bzw. den Objekttyp des Umfeldobjekts 20, 21 umfassen, sondern auch Positionsinformationen oder Bewegungsinformationen relativ zu der Arbeitsmaschine 1, so dass diese zusätzlichen Informationen ebenfalls bei der Erzeugung der Steueraktionen berücksichtigt werden können.
  • Wie oben erläutert, ergibt sich durch die unterschiedliche Arbeitsweise der Sensoren 15, 22 ein besonders hoher Informationsgehalt der Umfeldinformationen. Im Sinne einer hohen Qualität der Sensorinformationen 16-19, 23-26 kann es vorteilhafterweise vorgesehen sein, dass das Fahrerassistenzsystem 9 die Sensorinformationen 16-19, 23-26 der Sensoren 15, 22 der Sensoranordnung 10 in Abhängigkeit von der Beleuchtung des gemeinsamen Erfassungsbereichs 27 unterschiedlich berücksichtigt. Beispielsweise kann es vorgesehen sein, dass bei Tage beide Sensoren 15, 22 berücksichtigt werden, während bei Nacht in erster Linie auf den weiteren Sensor 22, der vorzugsweise als thermischer Sensor ausgestaltet ist, zurückgegriffen wird.
  • Die von dem Fahrerassistenzsystem 9 basierend auf den Umfeldinformationen 11-14 erzeugten Steueraktionen können in Abhängigkeit von der Umfeldinformation ganz unterschiedlich gestaltet sein. Beispielsweise umfassen die Steueraktionen eine Warnaktion für den Bediener über eine Mensch-Maschine-Schnittstelle 34 und/oder eine Bremsaktion durch Ansteuerung einer nicht dargestellten Bremsanordnung und/oder eine Lenkaktion durch Ansteuerung einer nicht dargestellten Lenkanordnung und/oder eine Verstellaktion eines Arbeitsorgans 3-8 wie das Hochsetzen und/oder Abschalten des Schneidwerks 4 einer als Mähdrescher ausgestalteten Arbeitsmaschine 1.
  • Die Warnaktion für den Bediener über die Mensch-Maschine-Schnittstelle 34 kann beispielsweise die Ausgabe akustischer oder optischer Warnsignale oder die Anzeige von Kamerabildern sein. Dabei ist es denkbar, dass einem Kamerabild die entsprechende Warninformation, insbesondere ein Hinweis auf das detektierte Umfeldobjekt 20, 21 überlagert ist.
  • Bei der Bremsaktion kann es sich, wie oben angedeutet, um die Ansteuerung einer Bremsanordnung oder um das Auslösen einer Motorbremse handeln. Grundsätzlich kann die Bremsaktion auch eine Bremsanweisung an den Bediener über die Mensch-Maschine-Schnittstelle 34 umfassen.
  • Die Lenkaktion kann grundsätzlich eine von dem Fahrerassistenzsystem 9 geplante und durchgeführte Ausweichbewegung, insbesondere auf der Basis von GPS-Navigationsdaten, umfassen. Denkbar ist aber auch, dass die Lenkaktion lediglich eine Lenkbegrenzung umfasst, um zu vermeiden, dass der Bediener eine Kollisionssituation mit dem detektierten Umfeldobjekt 20, 21 erzeugt. Andere Steueraktionen sind denkbar.
  • Es ergibt sich aus einer Zusammenschau der Fig. 2 und 3, dass sich in Abhängigkeit von der Objektkategorie und/oder dem Objekttyp und/oder der Position und/oder der Bewegung des detektierten Umfeldobjekts 20, 21 resultierende Steueraktionen mit unterschiedlicher Dringlichkeit ergeben. Beispielsweise ist bei einer Bewegung eines lebenden Umfeldobjekts 20, 21 in den Arbeitsbereich der Arbeitsmaschine 1 die Steueraktion eines unmittelbaren Bremsens in hoher Intensität, also hoher Bremsleistung, gefordert (Fig. 2). Handelt es sich bei dem Umfeldobjekt 20, 21 dagegen um einen starren Gegenstand, der sich noch in sicherer Entfernung befindet, ist die Dringlichkeit der anstehenden Steueraktion, nämlich dem Einleiten einer Ausweichbewegung, vergleichsweise gering (Fig. 3).
  • Entsprechend wird vorgeschlagen, dass das Fahrerassistenzsystem 9 den Umfeldinformationen 11-14 jeweils eine Dringlichkeitsstufe 35-38 zuordnet und die Steueraktionen wie oben erläutert basierend auf den Umfeldinformationen 11-14 und den jeweils zugeordneten Dringlichkeitsstufen 35-38 erzeugt. Durch diese Systematisierung der Dringlichkeit einer Umfeldinformation 11-14 lässt sich die Zuordnung leicht automatisiert durchführen.
  • Für die Ermittlung der jeweiligen Dringlichkeitsstufe 35-38 sind verschiedene vorteilhafte Varianten denkbar. Hier und vorzugsweise leitet das Fahrerassistenzsystem 9 die jeweilige Dringlichkeitsstufe 35-38 aus der Entfernung des Umfeldobjekts 20, 21 von der Arbeitsmaschine 1 und/oder aus der Fahrgeschwindigkeit der Arbeitsmaschine 1 ab. Auch die Bewegungsrichtung und/oder die Bewegungsgeschwindigkeit des Umfeldobjekts 20, 21 kann bzw. können in die Ermittlung der jeweiligen Dringlichkeitsstufe eingehen.
  • Alternativ oder zusätzlich kann es vorgesehen sein, dass das Fahrerassistenzsystem 9 die jeweilige Dringlichkeitsstufe 35-38 aus der ermittelten Objektkategorie und/oder aus dem ermittelten Objekttyp ableitet. Beispielsweise ist die Ermittlung eines Umfeldobjekts 20, 21 der Objektkategorie "lebend" und des Objekttyps "Mensch" stets mit einer hohen Dringlichkeitsstufe zu versehen, um jegliche Verletzungsgefahren eines Menschen auszuschließen.
  • Grundsätzlich kann es aber auch vorgesehen sein, dass mindestens einem Sensor 15, 22 der Sensoranordnung 10 eine vorbestimmte Dringlichkeitsstufe zugeordnet ist. Dies ist beispielsweise der Fall, wenn es sich bei dem jeweiligen Sensor um einen unmittelbar am Schneidwerk 4 einer als Mähdrescher ausgestalteten Arbeitsmaschine 1 handelt, der einen kleinen Erfassungsbereich aufweist. Für den Fall, dass irgendein Umfeldobjekt 20, 21 im Erfassungsbereich dieses Kollisionssensors landet, ist der betreffenden Umfeldinformation 11-14 stets eine hohe Dringlichkeitsstufe zuzuordnen.
  • Das Fahrerassistenzsystem 9 setzt die auf die Umfeldinformationen 11-14 zurückgehenden Steueraktionen in Abhängigkeit von der jeweiligen Dringlichkeitsstufe 35-38 vorrangig oder nachrangig gegenüber anderen anstehenden Steueraktionen um. Bei einer Steueraktion, die aus einer Umfeldinformation hoher Dringlichkeitsstufe 35-38 hervorgeht, kann grundsätzlich ein Mechanismus nach Art eines Interrupts Anwendung finden, wie weiter oben bereits angedeutet worden ist.
  • Grundsätzlich kann es vorgesehen sein, dass mindestens eine Dringlichkeitsstufe 35-38 einer vorbestimmten Steueraktion zugeordnet ist. Beispielsweise kann es vorgesehen sein, dass genau drei Dringlichkeitsstufen 35-38 vorgesehen sind, die jeweils einer der noch zu erläuternden Steueraktionen Warnaktion, Lenkaktion und Bremsaktion zugeordnet sind. Die eindeutige Zuordnung von Dringlichkeitsstufen 35-38 zu Steueraktionen vereinfacht die Ermittlung der Steueraktionen durch das Fahrerassistenzsystem 9. Dabei ist zu berücksichtigen, dass die Steueraktionen, insbesondere die obigen drei Steueraktionen, jeweils mehrere Unteraktionen umfassen können, die je nach Umfeldinformation ausgelöst werden können.
  • Alternativ oder zusätzlich kann es vorgesehen sein, dass das Fahrerassistenzsystem 9 die auf die Umfeldinformationen 11-14 zurückgehenden Steueraktionen in Abhängigkeit von der jeweiligen Dringlichkeitsstufe 35-38 mit unterschiedlichen Steuerparametern, insbesondere in unterschiedlicher Intensität, umsetzt. Dies wurde im Zusammenhang mit der Bremsaktion bereits angesprochen.
  • Fig. 4 zeigt eine bevorzugte Arbeitsweise des Fahrerassistenzsystems 9. Im unteren Block ist gezeigt, dass die Sensoranordnung 10 für unterschiedliche Situationen erste Sensorinformationen 16-19 (links) und weitere Sensorinformationen 23-26 (rechts) erzeugt. Die jeweils zugehörigen Sensorinformationen 16, 23; 17, 24; 18, 25; 19, 26 werden zu Umfeldinformationen 11-14 verarbeitet, die in einem Auswerteschritt 39 wie oben erläutert, kategorisiert bzw. typisiert werden. Anschließend werden die Umfeldinformationen 11-14 in einem Priorisierungsschritt 40, wie ebenfalls erläutert, mit Dringlichkeitsstufen 35-38 versehen. Schließlich ermittelt das Fahrerassistenzsystem 9 in einem Planungsschritt 41 die adäquate Steueraktion 42-44, bei der es sich in der in Fig. 4 gezeigten beispielhaften Übersicht um eine Warnaktion 42, eine Lenkaktion 43 oder um eine Bremsaktion 44 handeln kann. Denkbar ist hier auch das Auslösen der weiter oben genannten, weiteren Steueraktionen.
  • Fig. 4 zeigt im Ergebnis, dass eine differenzierte Erfassung von Umfeldobjekten 20, 21 und weiter eine differenzierte Reaktion auf die Detektion der Umfeldobjekte 20, 21 möglich ist, wobei sich aus der Systematisierung der Detektion mit mindestens zwei Sensoren, 15, 22 und aus der Zuordnung von Dringlichkeitsstufen ein automatisierbarer Ablauf ergibt, der neben einer hohen Betriebssicherheit auch eine hohe Betriebseffizienz gewährleistet.
  • Bezugszeichenliste
  • 1
    Arbeitsmaschine
    2
    Vorsatzgerät
    3
    Fahrantrieb
    4
    Schneidwerk
    5
    Dreschwerk
    6
    Abscheidevorrichtung
    7
    Reinigungsvorrichtung
    8
    Verteilvorrichtung
    9
    Fahrerassistenzsystem
    10
    Sensoranordnung
    11, 12, 13, 14
    Umfeldinformation
    15
    1. Sensor
    16, 17, 18, 19
    1. Sensorinformation
    20, 21
    Umfeldobjekt
    22
    weiterer Sensor
    23, 24, 25, 26
    weitere Sensorinformation
    27
    Erfassungsbereich
    28
    Vorfahrtrichtung
    29
    Fahrerkabine
    30
    horizontale Linie
    31
    Mittelebene
    32, 33
    Objektkategorie
    34
    Mensch-Maschine-Schnittstelle
    35, 36, 37, 38
    Dringlichkeitsstufe
    39
    Auswerteschritt
    40
    Priorisierungsschritt
    41
    Planungsschritt
    42, 43, 44
    Steueraktion

Claims (13)

  1. Selbstfahrende landwirtschaftliche Arbeitsmaschine mit mindestens einem Arbeitsorgan (3-8), insbesondere einem Fahrantrieb (3), und mit einem Fahrerassistenzsystem (9) zum Erzeugen von Steueraktionen innerhalb der Arbeitsmaschine (1), wobei eine Sensoranordnung (10) zum Erzeugen von Umfeldinformationen (11-14) vorgesehen ist, wobei das Fahrerassistenzsystem (9) die Steueraktionen basierend auf den Umfeldinformationen (11-14) erzeugt, dadurch gekennzeichnet,
    dass das Fahrerassistenzsystem (9) den Umfeldinformationen (11-14) jeweils eine Dringlichkeitsstufe (35-38) zuordnet und die Steueraktionen basierend auf den Umfeldinformationen (11-14) und den jeweils zugeordneten Dringlichkeitsstufen (35-38) erzeugt.
  2. Selbstfahrende landwirtschaftliche Arbeitsmaschine nach Anspruch 1, dadurch gekennzeichnet, dass die Sensoranordnung (10) einen ersten Sensor (15) aufweist, der eine erste Sensorinformation (16-19) basierend auf einer ersten physikalischen Eigenschaft eines Umfeldobjekts (20, 21) im Umfeld der Arbeitsmaschine (1) erfasst.
  3. Selbstfahrende landwirtschaftliche Arbeitsmaschine nach Anspruch 2, dadurch gekennzeichnet, dass die Sensoranordnung (10) mindestens einen weiteren Sensor (22) aufweist, der eine weitere Sensorinformation (23-26) basierend auf einer weiteren physikalischen Eigenschaft des Umfeldobjekts (20, 21) erfasst und dass das Fahrerassistenzsystem (9) aus der ersten Sensorinformation (16-19) und der weiteren Sensorinformation (23-26) eine Umfeldinformation (11-14) zu dem Umfeldobjekt (20, 21) erzeugt.
  4. Selbstfahrende landwirtschaftliche Arbeitsmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Fahrerassistenzsystem (9) die auf die Umfeldinformation (11-14) zurückgehenden Steueraktion in Abhängigkeit von der jeweiligen Dringlichkeitsstufe (35-38) vorrangig oder nachrangig gegenüber anderen anstehenden Steueraktionen umsetzt.
  5. Selbstfahrende landwirtschaftliche Arbeitsmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Fahrerassistenzsystem (9) dem Umfeldobjekt (20, 21) basierend auf den Umfeldinformationen (11-14) eine Objektkategorie (32, 33) aus den Objektkategorien "lebend" und "nicht lebend" zuordnet.
  6. Selbstfahrende landwirtschaftliche Arbeitsmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Fahrerassistenzsystem (9) dem Umfeldobjekt (20, 21) basierend auf den Umfeldinformationen (11-14) innerhalb der jeweiligen Objektkategorie (32, 33) einen Objekttyp wie "Tier", "Mensch", "starrer Gegenstand" oder "Fahrzeug mit Motor" zugeordnet.
  7. Selbstfahrende landwirtschaftliche Arbeitsmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Fahrerassistenzsystem (9) die Zuordnung der Objektkategorie (32, 33) und/oder des Objekttyps davon abhängig macht, ob eine erste notwendige Bedingung betreffend die erste Sensorinformation (16-19), insbesondere eine vorbestimmte Formgebung, und eine zweite notwendige Bedingung betreffend die weitere Sensorinformation (23-26), insbesondere ein vorbestimmter Temperaturbereich, erfüllt ist.
  8. Selbstfahrende landwirtschaftliche Arbeitsmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die von dem Fahrerassistenzsystem (9) basierend auf den Umfeldinformationen (11-14) erzeugten Steueraktionen eine Warnaktion für den Bediener über eine Mensch-Maschine-Schnittstelle (34) und/oder eine Bremsaktion durch Ansteuerung einer Bremsanordnung und/oder eine Lenkaktion durch Ansteuerung einer Lenkanordnung und/oder eine Verstellaktion eines Arbeitsorgans (3-8) umfassen.
  9. Selbstfahrende landwirtschaftliche Arbeitsmaschine nach Anspruch 8, dadurch gekennzeichnet, dass mindestens eine Dringlichkeitsstufe (35-38) einer vorbestimmten Steueraktion zugeordnet ist.
  10. Selbstfahrende landwirtschaftliche Arbeitsmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Fahrerassistenzsystem (9) die Dringlichkeitsstufe (35-38) aus der Entfernung des Umfeldobjekts (20, 21) von der Arbeitsmaschine (1) und/oder aus der Fahrgeschwindigkeit der Arbeitsmaschine (1) ableitet.
  11. Selbstfahrende landwirtschaftliche Arbeitsmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Fahrerassistenzsystem (9) die Dringlichkeitsstufe (35-38) aus der Objektkategorie (32, 33) und/oder dem Objekttyp ableitet.
  12. Selbstfahrende landwirtschaftliche Arbeitsmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mindestens einem Sensor (15, 22) der Sensoranordnung (10) eine vorbestimmte Dringlichkeitsstufe (35-38) zugeordnet ist.
  13. Selbstfahrende landwirtschaftliche Arbeitsmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Fahrerassistenzsystem (9) die auf die Umfeldinformationen (11-14) zurückgehenden Steueraktionen in Abhängigkeit von der jeweiligen Dringlichkeitsstufe (35-38) mit unterschiedlichen Steuerparametern, insbesondere in unterschiedlicher Intensität, umsetzt.
EP16177699.2A 2015-09-30 2016-07-04 Selbstfahrende landwirtschaftliche arbeitsmaschine Active EP3150056B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015116574.0A DE102015116574A1 (de) 2015-09-30 2015-09-30 Selbstfahrende landwirtschaftliche Arbeitsmaschine

Publications (2)

Publication Number Publication Date
EP3150056A1 true EP3150056A1 (de) 2017-04-05
EP3150056B1 EP3150056B1 (de) 2019-12-04

Family

ID=56321842

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16177699.2A Active EP3150056B1 (de) 2015-09-30 2016-07-04 Selbstfahrende landwirtschaftliche arbeitsmaschine

Country Status (3)

Country Link
US (1) US20170088132A1 (de)
EP (1) EP3150056B1 (de)
DE (1) DE102015116574A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107650914A (zh) * 2017-09-29 2018-02-02 上海汽车集团股份有限公司 先进驾驶辅助系统的车辆接口测试方法
EP3466239A1 (de) * 2017-09-29 2019-04-10 CLAAS Selbstfahrende Erntemaschinen GmbH Verfahren für den betrieb einer selbstfahrenden landwirtschaftlichen arbeitsmaschine
DE102022115392A1 (de) 2022-06-21 2023-12-21 Deere & Company Kontrollanordnung zur selbsttätigen Steuerung einer landwirtschaftlichen Arbeitsmaschine, Arbeitsmaschine und Verfahren

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015118767A1 (de) * 2015-11-03 2017-05-04 Claas Selbstfahrende Erntemaschinen Gmbh Umfelddetektionseinrichtung für landwirtschaftliche Arbeitsmaschine
US10742494B2 (en) * 2017-04-27 2020-08-11 Veoneer Us, Inc. System and method for configuring at least one sensor system of a vehicle
DE102018122683A1 (de) * 2018-09-17 2020-03-19 Claas Selbstfahrende Erntemaschinen Gmbh Landwirtschaftliche Erntemaschine
US20220210971A1 (en) * 2019-04-25 2022-07-07 Kubota Corporation Agricultural Work Machine Such as Harvester
JP7162571B2 (ja) * 2019-06-24 2022-10-28 株式会社クボタ 作業車
JP7187413B2 (ja) * 2019-09-18 2022-12-12 株式会社クボタ 農業機械
US11533847B2 (en) * 2019-12-23 2022-12-27 Cnh Industrial America Llc Control of a header of a harvester during a non-harvesting mode
US20220232769A1 (en) * 2021-01-28 2022-07-28 Cnh Industrial America Llc Compact and moveable harvesting system for harvesting around obstacles in a field
DE102022129533A1 (de) 2021-12-01 2023-06-01 Wiedenmann Gmbh Vorrichtung und Verfahren zur Rasenpflege mit Spurerkennung
GB202213882D0 (en) * 2022-09-23 2022-11-09 Agco Int Gmbh Operator assistance system
GB202213881D0 (en) * 2022-09-23 2022-11-09 Agco Int Gmbh Operator assistance system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1524638A1 (de) * 2003-10-17 2005-04-20 Fuji Jukogyo Kabushiki Kaisha Vorrichtung und Methode zur Anzeige von Informationen
WO2007115942A1 (de) * 2006-04-10 2007-10-18 Continental Automotive Gmbh Vorrichtung für eine landmaschine zum erkennen störender objekte
WO2008043852A1 (de) * 2006-10-13 2008-04-17 Continental Teves Ag & Co. Ohg System zur bestimmung von objekten
DE102008001672A1 (de) * 2008-05-09 2009-11-12 Robert Bosch Gmbh Verfahren zur Fusion von Zustandsdaten erfasster Sensorobjekte
US20100104199A1 (en) * 2008-04-24 2010-04-29 Gm Global Technology Operations, Inc. Method for detecting a clear path of travel for a vehicle enhanced by object detection
US20110050482A1 (en) * 2008-09-05 2011-03-03 Toyota Jidosha Kabushiki Kaisha Object detecting device
WO2014167680A1 (ja) * 2013-04-10 2014-10-16 トヨタ自動車株式会社 車両運転支援装置
WO2015000839A1 (de) 2013-07-03 2015-01-08 Deere & Company Antikollisionssystem für ein landwirtschaftliches fahrzeug mit selbsttätiger erkennung der abmessungen einer last
US20150183370A1 (en) * 2012-09-20 2015-07-02 Komatsu Ltd. Work vehicle periphery monitoring system and work vehicle

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19919216C2 (de) 1999-04-29 2001-10-18 Daimler Chrysler Ag Informationssystem in einem Fahrzeug
DE10016688C2 (de) 2000-04-04 2003-12-24 Deutsch Zentr Luft & Raumfahrt Verfahren zur Detektion von Tieren und/oder Gelegen von Bodenbrütern in deren natürlichem Lebensraum sowie Einrichtungen zur Durchführung des Verfahrens
DE10244822A1 (de) 2002-09-26 2004-04-08 Deere & Company, Moline Überwachungseinrichtung für eine Maschine
DE102005025318A1 (de) 2005-06-02 2006-12-14 Deere & Company, Moline Landwirtschaftliche Erntemaschine mit einer Austrageinrichtung und einem Kollisionssensor
DE102010041490A1 (de) 2010-09-27 2012-03-29 Carl Zeiss Microimaging Gmbh Optisches Instrument und Verfahren zur optischen Überwachung
DE102013210928A1 (de) 2013-06-12 2014-12-18 Robert Bosch Gmbh Verfahren zur Unterscheidung zwischen echten Hindernissen und Scheinhindernissen in einem Fahrerassistenzsystem für Kraftfahrzeuge

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1524638A1 (de) * 2003-10-17 2005-04-20 Fuji Jukogyo Kabushiki Kaisha Vorrichtung und Methode zur Anzeige von Informationen
WO2007115942A1 (de) * 2006-04-10 2007-10-18 Continental Automotive Gmbh Vorrichtung für eine landmaschine zum erkennen störender objekte
WO2008043852A1 (de) * 2006-10-13 2008-04-17 Continental Teves Ag & Co. Ohg System zur bestimmung von objekten
US20100104199A1 (en) * 2008-04-24 2010-04-29 Gm Global Technology Operations, Inc. Method for detecting a clear path of travel for a vehicle enhanced by object detection
DE102008001672A1 (de) * 2008-05-09 2009-11-12 Robert Bosch Gmbh Verfahren zur Fusion von Zustandsdaten erfasster Sensorobjekte
US20110050482A1 (en) * 2008-09-05 2011-03-03 Toyota Jidosha Kabushiki Kaisha Object detecting device
US20150183370A1 (en) * 2012-09-20 2015-07-02 Komatsu Ltd. Work vehicle periphery monitoring system and work vehicle
WO2014167680A1 (ja) * 2013-04-10 2014-10-16 トヨタ自動車株式会社 車両運転支援装置
EP2985746A1 (de) * 2013-04-10 2016-02-17 Toyota Jidosha Kabushiki Kaisha Hilfsvorrichtung zum führen eines fahrzeugs
WO2015000839A1 (de) 2013-07-03 2015-01-08 Deere & Company Antikollisionssystem für ein landwirtschaftliches fahrzeug mit selbsttätiger erkennung der abmessungen einer last

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107650914A (zh) * 2017-09-29 2018-02-02 上海汽车集团股份有限公司 先进驾驶辅助系统的车辆接口测试方法
EP3466239A1 (de) * 2017-09-29 2019-04-10 CLAAS Selbstfahrende Erntemaschinen GmbH Verfahren für den betrieb einer selbstfahrenden landwirtschaftlichen arbeitsmaschine
CN107650914B (zh) * 2017-09-29 2020-05-12 上海汽车集团股份有限公司 先进驾驶辅助系统的车辆接口测试方法
DE102022115392A1 (de) 2022-06-21 2023-12-21 Deere & Company Kontrollanordnung zur selbsttätigen Steuerung einer landwirtschaftlichen Arbeitsmaschine, Arbeitsmaschine und Verfahren

Also Published As

Publication number Publication date
EP3150056B1 (de) 2019-12-04
US20170088132A1 (en) 2017-03-30
DE102015116574A1 (de) 2017-03-30

Similar Documents

Publication Publication Date Title
EP3150056B1 (de) Selbstfahrende landwirtschaftliche arbeitsmaschine
EP3150055B1 (de) Selbstfahrende landwirtschaftliche arbeitsmaschine
EP3300579B1 (de) Selbstfahrende landwirtschaftliche arbeitsmaschine
EP3466240B1 (de) Verfahren für den betrieb einer selbstfahrenden landwirtschaftlichen arbeitsmaschine
EP3494770A1 (de) Verfahren für den betrieb einer selbstfahrenden landwirtschaftlichen arbeitsmaschine
DE102016120559A1 (de) Verfahren und System zur Steuerung eines Roboters
EP3386825B1 (de) Verfahren zum erkennen einer möglichen kollision zwischen einem kraftfahrzeug und einem objekt unter berücksichtigung einer räumlichen unsicherheit, steuereinrichtung, fahrerassistenzsystem sowie kraftfahrzeug
DE102010002105A1 (de) Verfahren zur Unterstützung eines Fahrers eines Fahrzeugs bei einem Fahrmanöver
DE102009009211A1 (de) Verfahren und Assistenzsystem zum Erfassen von Objekten im Umfeld eines Fahrzeugs
EP2113437A2 (de) Verfahren zur Bestimmung von freien Bereichen in der, insbesondere für die Fahrzeugführung relevanten Umgebung eines Kraftfahrzeugs
DE102006042666A1 (de) Verfahren zur Vermeidung bzw. Folgenminderung der Kollision eines Fahrzeugs mit mindestens einem Objekt
DE10151982A1 (de) Optoelektronische Erfassungseinrichtung
DE102018122374B4 (de) Verfahren zum Bestimmen eines ein Kraftfahrzeug umgebenden Freiraums, Computerprogrammprodukt, Freiraumbestimmungseinrichtung und Kraftfahrzeug
DE102012205293A1 (de) Fahrerunterstützungssystem gegen tote Winkel für den Fahrer
DE102018119867A1 (de) Autonome Verhaltenssteuerung unter Verwendung von Richtlinienauslösung und -ausführung
EP3793854A1 (de) Verfahren, vorrichtung und system zum beeinflussen zumindest eines fahrassistenzsystems eines kraftfahrzeugs
EP2873577A2 (de) Verfahren zum Betrieb eines Fahrerassistenzsystems zum Schutz eines Kraftfahrzeugs vor Beschädigungen bei einem Rangiervorgang und Kraftfahrzeug
EP1518133A2 (de) Verfahren und vorrichtung zur ueberwachung der umgebung eines gegenstandes mit einstellbaren ueberwachungskriterien
DE102007016799B4 (de) Fahrerassistenzsystem, Lenkung und Verfahren zum Unterstützen des Fahrers eines Fahrzeugs
DE102018103698A1 (de) Straßenabtastverfahren
DE102018127061B3 (de) Verfahren zum Betrieb eines Assistenzsystems eines Fahrzeuges, Vorrichtung zur Durchführung des Verfahrens und Fahrzeug
DE102016223909A1 (de) Verfahren und Vorrichtung zur sensorgestützten Fahrerzustandsbewertung
EP3018008A1 (de) Kraftfahrzeug
DE102018122929A1 (de) Straßenabtastverfahren
EP3769599B1 (de) Verfahren zur erkennung eines hindernisses

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171005

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CLAAS E-SYSTEMS KGAA MBH & CO KG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CLAAS E-SYSTEMS GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: A01D 75/18 20060101AFI20190709BHEP

Ipc: A01B 69/04 20060101ALI20190709BHEP

Ipc: A01B 69/00 20060101ALI20190709BHEP

INTG Intention to grant announced

Effective date: 20190807

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1208226

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016007831

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191204

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200305

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502016007831

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200404

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

26 Opposition filed

Opponent name: DEERE & COMPANY/JOHN DEERE GMBH & CO. KG

Effective date: 20200729

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200704

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200704

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1208226

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210704

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230516

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 502016007831

Country of ref document: DE

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20230811

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240719

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240725

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240730

Year of fee payment: 9