EP3147918B1 - Vorrichtung und verfahren zur herstellung ringförmiger permanentmagnete - Google Patents

Vorrichtung und verfahren zur herstellung ringförmiger permanentmagnete Download PDF

Info

Publication number
EP3147918B1
EP3147918B1 EP16001814.9A EP16001814A EP3147918B1 EP 3147918 B1 EP3147918 B1 EP 3147918B1 EP 16001814 A EP16001814 A EP 16001814A EP 3147918 B1 EP3147918 B1 EP 3147918B1
Authority
EP
European Patent Office
Prior art keywords
cavity
powder
compression
core
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16001814.9A
Other languages
English (en)
French (fr)
Other versions
EP3147918A1 (de
Inventor
Martin Krengel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wilo SE
Original Assignee
Wilo SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wilo SE filed Critical Wilo SE
Publication of EP3147918A1 publication Critical patent/EP3147918A1/de
Application granted granted Critical
Publication of EP3147918B1 publication Critical patent/EP3147918B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1035Liquid phase sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • B22F5/106Tube or ring forms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1051Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by electric discharge

Definitions

  • the invention relates to a device for producing annular permanent magnets by electrical discharge sintering, comprising a plurality of, an annular cavity for receiving a magnetizable metallic powder defining tool parts and a controllable electric pulse generator, wherein at least two of the tool parts form electrodes and are electrically connected to the pulse generator, and the Tool parts at least one of the cavity in the radial direction outwardly limiting outer shape, as well as two the cavity in the axial direction limiting, relatively axially movable compression means comprise, wherein at least one of the compression means in the direction of the cavity is subjected to force or kraftbeetzschlagbar.
  • the invention relates to a method for producing annular permanent magnets by electrical discharge sintering, in particular using the aforementioned device, in which a magnetizable metallic powder is introduced into the cavity and exposed to an electric pulse current flowing between the electrodes such that the powder is at least partially melted at the same time a force is exerted in the direction of the cavity on the powder to compress the powder in the melt state.
  • Ring-shaped permanent magnets are used, for example, for rotors of modern permanent-magnet electric motors. Their production is comparatively complex, long-lasting and expensive.
  • the preparation is usually carried out by conventional sintering of magnetic powder, wherein a heating of the powder under Mechanical pressure in a conventional manner, in particular by electrical heating elements, which are integrated in a form containing the powder.
  • the heating to sintering temperature lasts comparatively long. Furthermore, the cooling of the sintered workpiece also takes time.
  • the EDS method is used to achieve densification of iron powder or a cemented carbide powder, such as tungsten carbide, by the pulsed discharge of electrical energy into the powder.
  • a corresponding device 1 for this according to the prior art shows FIG. 1 ,
  • the device comprises a plurality of tool parts 3, 4, 5, which delimit a cylindrical cavity 11, and a controllable electrical pulse current generator, which has a capacitor 9 and a pulse current transformer 8.
  • FIG. 1 is located in the cavity already to be compacted, electrically conductive powder 2.
  • the cavity 11 is limited in the radial direction to the outside by a hollow cylindrical outer mold 3 and in the axial direction by two compression means 4, 5, at least partially in the axial direction in the the cavity comprising the cavity outer shape form fit into extend.
  • At least the upper compression means 4 is axially movable and is of a mechanical force F applied, which is generated for example by a hydraulic system 10 and transmitted via a pressure pin 7a on the compression means 4.
  • the powder 2 is thereby pressed against the lower compression means 5, which is supported against a further pressure pin 7b and receives the pressure force accordingly.
  • the two force-transmitting or force-absorbing compression means 4, 5 are designed to be electrically conductive and simultaneously constitute the electrodes.
  • the current flow I and the power transmission direction are thus parallel.
  • tools and punch arrangements in EDS systems generally work with a current flow in the pressing direction.
  • the shape of the permanent magnets so produced however, one is limited to thin or flat workpieces, since the resistance of the powder with their length increases. As a result, the current decreases with increasing thickness. The melting effect of the pulse current and the degree of melting at the powder particle contact points is thus the smaller, the greater the distance between the electrodes introducing the current. The fusion is incomplete with long expansions in the pressing direction. Thus, in the case of thick workpieces, the case arises that the powder particles do not melt together well in the middle of the powder quantity. The workpieces crumble apart. Thus, only permanent magnets in the form of simple round flat slices or cuboids can be produced. By contrast, the ring-shaped permanent magnets used in the construction of permanent-magnet electric motors for the rotors can not readily be produced by the EDS method according to the prior art.
  • an apparatus for producing annular permanent magnets by means of electrical discharge sintering is proposed in which the magnetic powder receiving cavity in the radial direction outwardly by the outer shape, in the radial direction inwardly delimited by a coaxially extending to the outer core and in the axial direction by the compression means is, wherein the outer mold and the core form the electrodes and the compression means electrically isolate the electrodes from each other.
  • a method is proposed in which the pulse flow within the cavity in the radial direction between the outer mold and the core flows, and the force of at least one of the two axially limiting the compression means in the axial direction is transmitted to the powder, wherein the Compression means electrically isolate the outer mold and the core from each other.
  • the permanent magnets to be produced are in their axial height, and is correspondingly the height of the cavity, not fixed.
  • the cavity may be formed flat, i. that their radial width is greater than or equal to their axial length, so that annular disk-shaped permanent magnets can be produced.
  • the cavity can also be higher than wide, so that it increasingly has the shape of a hollow cylinder with increasing height.
  • the inventive method is thus particularly suitable for producing high hollow cylindrical permanent magnets, preferably just those in which the axial length is equal to or greater than the radial thickness. Accordingly, for the production of these permanent magnets, the cavity may have an axial length which is greater than the distance between the core and the outer wall.
  • the contour of the annular permanent magnets can basically be arbitrary. Accordingly, the geometric shape of the cavity forming the annular space is not fixed. This applies both to the outer contour of the permanent magnets or to the inner contour of the outer contour that defines the cavity outwardly, as well as to its inner contour or the outer contour of the inner cavity defining the cavity.
  • the outer contour of the core in cross section may correspond to a circular, oval, square or polygonal basic shape. Of technically greatest importance here is also a circular outer contour of the core, but also an angular outer contour is advantageous because it can form a rotation.
  • the core is pin-shaped, so that it is possible to produce permanent magnets in the form of a hollow profile.
  • At least one of the compression means has a central opening into which the core is retractable due to the relative movement of the compression means.
  • the outer mold and the core are stationary tool parts. As a result, the electrodes can be contacted better and easier. Because in contrast to the prior art no moving tool parts must be electrically contacted in this case. While in the device according to FIG. 1 the compression means 4, 5 form the electrodes, of which at least one is axially movable, the tool parts now used as electrodes outer mold and core can form immovable tool parts. This simplifies electrical contacting because the electrical connection between the movable electrode and the supply current from the pulse generator does not endure the mechanical shock experienced by the movable compression means due to extrusion of the molten powder particles or at least their surface into the interparticle spaces.
  • compression means merely expresses an involvement in the compression of the powder, but does not imply that a Force is exerted on the powder.
  • only one of the compression means actively exert a force on the powder and the other compression means passively absorb this force, so that only one-sided pressing takes place.
  • both compression means can also be subjected to a force of force in the axial direction and independently of one another in the direction of the cavity, ie. actively exert a force on the powder.
  • the two-sided pressing has the advantage that a higher total pressure acts on the powder and the powder is better compressed because the above-described press cone is reduced or becomes a double cone.
  • the compression means can consist of a ceramic material.
  • the outer mold and / or the core may be made of copper.
  • the powder can be introduced into the cavity as a loose powder bed or as a mechanically pre-pressed powder compact.
  • the compression means cause mechanical pre-compression prior to electrical discharge sintering.
  • FIG. 2 shows a schematic representation of an inventive device 1 for the production of permanent magnets with a ring shape.
  • the device 1 makes it possible to produce ring magnets of any axial length using electrical discharge sintering.
  • the device 1 provides an annular cavity 11, which serves to receive a magnetic powder 2, which is introduced into the cavity 11 as a loose powder bed or as a mechanically precompressed powder compact.
  • a magnetic powder 2 is already present in the cavity 11.
  • the cavity is delimited by four tool parts 3, 4, 5, 6, namely in the radial direction outwards by an outer mold 3, in the radial direction inwards by a core 6, and in the axial direction by two compression means 4, 5.
  • the outer mold 3 has the shape of a hollow cylinder, although it may have any outer contour. Within the outer mold 3, a cylindrical cavity is formed, which comprises the cavity 11. Coaxial with the outer mold 3, the core 6 extends through this cavity and thus forms it or the cavity 11 to form an annular space. The core 6 is pin-shaped. The distance between the core and outer shape defines the thickness D of the permanent magnet to be produced.
  • one of the two compression means 4, 5 extends at least partially positively into the cavity and thus limits it in the axial direction.
  • the distance between these compression means 4, 5 defines the height or axial length L of the permanent magnet to be produced.
  • the cavity thus has an axial length L that is greater than the thickness D.
  • the compression means 4, 5 are cylindrical and have a coaxial opening 13 either in the form of a bore over the entire axial length as in the case of the lower compression means 5 or in the form of a blind hole as in the case of the upper compression means 4, to accommodate the core 6 ,
  • the inner diameter of the opening 13 is thus adapted to the outer diameter of the core 6, so that core 6 and compression means 4, 5, can be positively inserted into each other or driven.
  • Both compression means 4, 5 are arranged axially movable. They are acted upon independently of each other in the direction of the cavity 11 by a force F and thus form against the powder 2 pressing punch.
  • the force F is generated by a respective hydraulic system 10 and transmitted via bolts 7a, 7b to the respective compression means 4, 5.
  • only one of the compression means 4, 5, is axially movable and kraftbeaufschlagt, as in the device 1 in FIG. 1 the case is.
  • the outer mold 3 and the core 6 are electrically conductive, designed for example consisting of copper. They form electrodes and are connected via a connecting cable with a controllable pulse current generator 8, 9, which is represented here schematically by a pulse transformer 8 and a capacitor 9.
  • a controllable pulse current generator 8 which is represented here schematically by a pulse transformer 8 and a capacitor 9.
  • outer mold 3 and core 6 are fixed, i. not immovable. They can be contacted better and there is no risk that the connection line 12 dissolves.
  • the pulse transformer 8 generates from the charge stored in the capacitor 9, a current pulse I of about 300kA and a few milliseconds in length, as in FIG. 1a is shown.
  • the compression means 4, 5 are made of a non-conductive material, such as a ceramic, and thus isolate outer mold 3 and core 6 from each other.
  • the current pulse I flows between outer mold 3 and core 6 through the powder 2, i. in the radial direction and thus perpendicular to the force F. This results in a short current path and a homogeneous compression by the discharge sintering.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)

Description

  • Die Erfindung betrifft eine Vorrichtung zur Herstellung ringförmiger Permanentmagnete durch elektrisches Entladungssintern, umfassend mehrere, eine ringförmige Kavität zur Aufnahme eines magnetisierbaren metallischen Pulvers definierende Werkzeugteile und einen steuerbaren elektrischen Impulsstromgenerator, wobei zumindest zwei der Werkzeugteile Elektroden bilden und mit dem Impulsstromgenerator elektrisch verbunden sind, und die Werkzeugteile zumindest eine die Kavität in radialer Richtung nach außen begrenzende Außenform, sowie zwei die Kavität in axialer Richtung begrenzende, relativ zueinander axialbewegliche Kompressionsmittel umfassen, wobei zumindest eines der Kompressionsmittel in Richtung der Kavität kraftbeaufschlagt oder kraftbeaufschlagbar ist. Des Weiteren betrifft die Erfindung ein Verfahren zur Herstellung ringförmiger Permanentmagnete durch elektrisches Entladungssintern, insbesondere unter Verwendung der vorgenannten Vorrichtung, bei dem ein magnetisierbares metallisches Pulver in die Kavität eingebracht und einem zwischen den Elektroden fließenden elektrischen Impulsstrom derart ausgesetzt wird, dass das Pulver zumindest teilweise aufgeschmolzen wird, wobei gleichzeitig eine Kraft in Richtung der Kavität auf das Pulver ausgeübt wird, um das Pulver im Schmelzzustand zu verdichten.
  • Ringförmige Permanentmagnete werden beispielsweise für Rotoren moderner permanenterregter Elektromotoren verwendet. Ihre Herstellung ist vergleichsweise aufwändig, langdauernd und teuer. Die Herstellung erfolgt in der Regel durch herkömmliches Sintern von Magnetpulver, wobei ein Aufheizen des Pulvers unter mechanischem Druck auf konventionelle Art, insbesondere durch elektrische Heizelemente, die in einer das Pulver enthaltenden Form integriert sind. Das Aufheizen auf Sintertemperatur dauert dadurch vergleichsweise lang. Ferner braucht auch das Abkühlen des gesinterten Werkstücks Zeit.
  • Demgegenüber sind Verfahren zur Pulverkompaktierung durch Kurzzeitsintern dem Fachmann als EDS (Electric Discharge Sintering) oder synonym CDS (Capacitor Discharge Sintering) bekannt. Eine diese Verfahren und entsprechende Vorrichtungen zu ihrer Ausführung ausführlich beschreibende Veröffentlichung ist "Outside Mainstream Electronic Database: Review of Studies Conducted in the USSR and Post-Soviet Countries on Electric Current-Assisted Consolidation of Powder Materials", Eugene A. Olevsky, Elena V. Aleksandrova, Alexandra M. Ilyina, Dina V. Dudina, Alexander N. Novoselov, Kirill Y. Pelve and Eugene G. Grigoryev, Materials 2013, 6, Seiten 4375-4440, doi:10.3390/ma6104375. Des Weiteren beschreiben das US-Patent US 3,241,956 das Grundprinzip des EDS. Ein Verfahren zur Anpassung der Druckkraft während der Pulverkompaktierung ist in der europäischen Patentanmeldung EP 2 198 993 A1 beschrieben. Diese Literatur wird hiermit für die Erläuterung der hier beschriebenen Erfindung in Bezug genommen. Auf ausführliche Erläuterung der Technologie wird daher verzichtet.
  • Das EDS -Verfahren wird eingesetzt, um eine Verdichtung von Eisenpulver oder einem Pulver aus Hartmetall, beispielsweise Wolframcarbid, durch die impulsartige Entladung einer elektrischen Energie in das Pulver zu erreichen. Eine entsprechende Vorrichtung 1 hierfür nach dem Stand der Technik zeigt Figur 1.
  • Die Vorrichtung umfasst mehrere Werkzeugteile 3, 4, 5, die eine zylindrische Kavität 11 begrenzen, sowie einen steuerbaren elektrischen Impulsstromgenerator, der einen Kondensator 9 und einen Impulsstromtransformator 8 aufweist. In Figur 1 befindet sich in der Kavität bereits ein zu verdichtendes, elektrisch leitfähiges Pulver 2. Die Kavität 11 wird in radialer Richtung nach außen durch eine hohlzylindrische Außenform 3 und in axialer Richtung durch zwei Kompressionsmittel 4, 5 begrenzt, die sich zumindest teilweise in axialer Richtung in den die Kavität umfassenden Hohlraum der Außenform formschlüssig hinein erstrecken. Dabei ist zumindest das obere Kompressionsmittel 4 axialbeweglich und wird von einer mechanischen Kraft F beaufschlag, die beispielsweise von einer Hydraulik 10 erzeugt und über einen Druckbolzen 7a auf das Kompressionsmittel 4 übertragen wird. Dieses überträgt die Druckkraft F wiederum auf das Pulver 2 und wirkt wie ein Stempel. Das Pulver 2 wird dadurch gegen das untere Kompressionsmittel 5 gepresst, welches sich gegen einen weiteren Druckbolzen 7b abstützt und die Druckkraft entsprechend aufnimmt. Die beiden kraftübertragenden bzw. kraftaufnehmenden Kompressionsmittel 4, 5 sind elektrisch leitend ausgeführt und stellen gleichzeitig die Elektroden dar. Der Stromfluss I und die Kraftübertragungsrichtung liegen somit parallel. Allgemein arbeiten Werkzeuge und Stempelanordnungen bei EDS-Anlagen in der Regel mit einem Stromfluss in Pressrichtung.
  • Zum Verdichten wird elektrische Energie in dem Kondensator 9 gespeichert und durch den Impulstransformator 8 innerhalb von wenigen Millisekunden in das Pulver 2 entladen. Ein Verlauf der Prozessgrößen Strom, Temperatur und Druck zeigt Figur 2. Sie zeigt den impulsförmigen Gleichstrom bei gleichzeitig konstantem Druck. Ferner zeigt die gestrichelte Linie die Temperatur im Pulver, die während des Stromimpulses auf ein Vielfaches ansteigt. Denn aufgrund des hohen Stroms von ca. 300 kA und des hohen ohmschen Widerstands zwischen den Pulverpartikelkontaktpunkten wird an diesen Kontaktpunkten Joulsche Wärme generiert, die so groß ist, dass die Pulverpartikelkontaktpunkte in eine schmelzflüssige Phase übergehen. Durch die gleichzeitig auf das Pulver ausgebübte Druckkraft wird diese Phase in die Partikelzwischenräume gepresst, wodurch das in den Zwickeln lokalisierte Porenvolumen infiltriert wird. Nach der Abkühlung des prozessierten Pulvers liegt ein dichtes Gefüge vor, das vom technologischen Standpunkt aus verschweißt und nicht gesintert wurde. Gleichwohl spricht die Fachwelt bei diesem Prozess von Sintern. Je nach Aufbau der Kondensatorladeeinheit ist eine vollständige Wiederaufladung der Kondensatoren innerhalb von weniger als 6s gewährleistet. Die schnelle Kondensatoraufladung in Verbindung mit der schnellen Verdichtung erlaubt die Herstellung von bis zu 10 Werkstücken pro Minute. Aus diesem Grund ist das Verfahren besonders im Hinblick auf eine wirtschaftliche Herstellung von pulververdichteten Werkstücken attraktiv.
  • Hinsichtlich der Form der so herstellbaren Permanentmagnete ist man jedoch auf dünne oder flache Werkstücke beschränkt, da der Widerstand der Pulvermenge mit ihrer Länge zunimmt. Dadurch nimmt der Strom mit zunehmender Dicke ab. Die Schmelzwirkung des Impulsstroms und der Schmelzgrad an den Pulverpartikelkontaktpunkten ist somit umso kleiner, je größer der Abstand zwischen den den Strom einbringenden Elektroden ist. Die Verschmelzung ist bei langen Ausdehnungen in Pressrichtung unvollständig. So tritt bei dicken Werkstücken der Fall auf, dass die Pulverpartikel in der Mitte der Pulvermenge nicht gut zusammenschmelzen. Die Werkstücke bröckeln vielmehr auseinander. So können nur Permanentmagnete in Gestalt einfacher runder flacher Scheiben oder Quader hergestellt werden. Die im Bau von permanenterregten Elektromotoren für die Rotoren verwendeten ringförmigen Permanentmagnete lassen sich mit dem EDS-Verfahren nach dem Stand der Technik dagegen nicht ohne Weiteres herstellen.
  • Es ist Aufgabe der vorliegenden Erfindung, ein Verfahren und eine Vorrichtung bereitzustellen, das bzw. die die Herstellung ringförmiger Permanentmagnete für Elektromoren in kürzeren Prozessierzeiträumen ermöglicht.
  • Diese Aufgabe wird durch eine Vorrichtung mit den Merkmalen des Anspruchs 1 und durch ein Verfahren mit den Merkmalen des Anspruchs 8 gelöst. Vorteilhafte Weiterbildungen sind in den Unteransprüchen angegeben und werden nachfolgend erläutert.
  • Erfindungsgemäß wird eine Vorrichtung zur Herstellung ringförmiger Permanentmagnete mittels elektrischem Entladungssintern vorgeschlagen, bei der die das Magnetpulver aufnehmende Kavität in radialer Richtung nach außen durch die Außenform, in radialer Richtung nach innen durch einen sich koaxial zur Außenform erstreckenden Kern sowie in axialer Richtung durch die Kompressionsmittel begrenzt ist, wobei die Außenform und der Kern die Elektroden bilden und die Kompressionsmittel die Elektroden elektrisch voneinander isolieren. Entsprechend wird ein Verfahren vorgeschlagen, bei dem der Impulsstrom innerhalb der Kavität in radialer Richtung zwischen der Außenform und dem Kern fließt, und die Kraft von zumindest einem von zwei die Kavität in axialer Richtung begrenzenden Kompressionsmitteln in axialer Richtung auf das Pulver übertragen wird, wobei die Kompressionsmittel die Außenform und den Kern elektrisch voneinander isolieren.
  • Versuche mit diesem Verfahren, respektive dieser Vorrichtung haben gezeigt, dass sich ein Magnetpulver auf dieser Weise verdichten lässt. Bei geeigneter Wahl der Prozessparameter derart, dass die Gesamttemperatur der Pulvermenge 400°C nicht überschreitet, bleiben die magnetischen Eigenschaften des Pulvers erhalten. Eine derartige Vorrichtung sowie ein derartiges Verfahren ermöglichen vor allem die Anwendung des elektrischen Entladungssinterns (EDS) zur Herstellung ringförmiger Permanentmagnete beliebiger axialer Länge, da diese Länge unabhängig vom Abstand der Elektroden zueinander ist. Stromfluss und Kraftfluss wirken rechtwinklig zueinander auf das Magnetpulver. Die Kavität bildet einen Ringraum, der homogen vom Strom durchflossen wird, so dass auch eine homogene Aufschmelzung des Magnetpulvers erreicht wird. Unter einem Magnetpulver versteht der Fachmann ein magnetisierbares metallisches, d.h. elektrische leitendes Pulver, wie es üblicherweise zur Herstellung von Permanentmagneten verwendet wird.
  • Wie bereits ausgeführt, sind die herzustellenden Permanentmagnete in ihrer axialen Höhe, und ist in entsprechender Weise die Höhe der Kavität, nicht festgelegt. So kann die Kavität flach ausgebildet sein, d.h. dass ihre radiale Breite größer oder gleich ihrer axialen Länge ist, so dass ringscheibenförmige Permanentmagnete herstellbar sind. Die Kavität kann aber auch höher als breit sein, so dass sie mit steigender Höhe zunehmend deutlich die Form eines Hohlzylinders besitzt.
  • Die besondere Stärke der erfindungsgemäßen Vorrichtung sowie des entsprechenden Verfahrens gegenüber dem Stand der Technik gemäß Fig. 1 zeigt sich, wenn das Verhältnis von Länge zur Dicke der herzustellenden Permanentmagnete das Verhältnis 1:1 deutlich überschreitet. Denn im Gegensatz zum Stand der Technik führen Dichteschwankungen über der Höhe nicht zu einer Inhomogenen Verdichtung. Vielmehr ist die Verdichtung aufgrund des radialen Stromflusses stets homogen über die axiale Länge. Hierzu sei folgender Hintergrund erläutert.
  • Bei der Ausübung einer Druckkraft auf einen Pulverhaufen nimmt diese mit zunehmendem Abstand vom Krafteinleitungsort aufgrund der Reibungsverluste zwischen den Pulverpartikeln ab. Es entsteht ein sogenannter Presskegel, der umso ausgeprägter ist, je höher der Pulverhaufen ist. Somit ist die Dichte des Pulverpresslings über die axiale Länge nicht konstant. Ein axial fließender Strom auf dem Weg von der einen Elektrode zur anderen Elektrode erfährt dann im höher verdichteten Bereich aufgrund der größeren Berührungsfläche der Pulverpartikel einen lokal geringeren Widerstand und im niedriger verdichteten Bereich einen lokal entsprechend höheren Widerstand, so dass in axialer Richtung betrachtet innerhalb des Pulvers keine homogene Wärmeerzeugung vorliegt. Somit sind auch die Schmelzebildung an den Pulverpartikelkontaktpunkten sowie die magnetischen Eigenschaften des Werkstücks nicht homogen. Es kann passieren, dass die Pulverpartikel im höher verdichteten Bereich nicht vollständig verschmelzen.
  • Dieses bei hohen Ringwerkstücken auftretende Phänomen wird bei dem erfindungsgemäßen Verfahren aufgrund des radialen Stromflusses verhindert, weil der Widerstand maßgeblich durch die Länge der Strompfade bestimmt ist und diese Länge bei radial gegenüberliegender Anordnung der Elektroden zur Herstellung hoher Permanentmagnete kleiner ist als bei einem axialen Strompfad nach dem Stand der Technik ist. Das erfindungsgemäße Verfahren eignet sich damit insbesondere, hohe hohlzylindrische Permanentmagnete herzustellen, vorzugsweise eben solche, bei denen die axiale Länge gleich oder größer als die radiale Dicke ist. Entsprechend kann zur Herstellung dieser Permanentmagnete die Kavität eine axiale Länge aufweisen, die größer als der Abstand zwischen dem Kern und der Außenwand ist.
  • Da hier die radialen Strompfade kürzer sind als sie nach dem Stand der Technik bei einem Stromfluss in axialer Richtung wären, wirken sich Dichteinhomogenitäten weniger auf die Verschmelzung der Pulverpartikel und damit weniger auf die magnetischen Eigenschaften des Endprodukts aus.
  • Die Kontur der ringförmigen Permanentmagnete kann grundsätzlich beliebig sein. Entsprechend ist auch die geometrische Form des die Kavität bildenden Ringraums nicht festgelegt. Dies gilt sowohl für Außenkontur der Permanentmagnete respektive für die dies ausbildende Innenkontur der die Kavität nach außen begrenzenden Außenform, als auch für ihre Innenkontur respektive die dies ausbildende Außenkontur des die Kavität nach innen begrenzenden Kerns.
  • So kann die Innenkontur der Außenform im Querschnitt einer kreisrunden, ovalen, quadratischen oder mehreckige Grundform entsprechen. Technisch von besonderer Bedeutung und für die Herstellung von Rotoren für Elektromotoren verwendbar sind jedoch ringförmige Permanentmagnete mit kreisförmiger Außenkontur.
  • Ferner kann die Außenkontur des Kerns im Querschnitt einer kreisrunden, ovalen, quadratischen oder mehreckige Grundform entsprechen. Von technisch größter Bedeutung ist hier ebenfalls eine kreisförmige Außenkontur des Kerns, jedoch ist auch eine eckige Außenkontur vorteilhaft, da sie eine Verdrehsicherung bilden kann.
  • Vorzugsweise ist der Kern stiftförmig, so dass sich Permanentmagnete in Form eines Hohlprofils herstellen lassen.
  • Geeigneterweise weist zumindest eines der Kompressionsmittel eine zentrale Öffnung auf, in die der Kern infolge der Relativbewegung der Kompressionsmittel zueinander einfahrbar ist.
  • Von besonderem Vorteil ist es, wenn die Außenform und der Kern stationäre Werkzeugteile sind. Hierdurch lassen sich die Elektroden besser und einfacherer kontaktieren. Denn im Gegensatz zum Stand der Technik müssen in diesem Fall keine beweglichen Werkzeugteile elektrisch kontaktiert werden. Während bei der Vorrichtung gemäß Figur 1 die Kompressionsmittel 4, 5 die Elektroden bilden, von denen zumindest eines axialbeweglich ist, können die nun als Elektroden verwendeten Werkzeugteile Außenform und Kern unbewegliche Werkzeugteile bilden. Dies vereinfacht die elektrische Kontaktierung, weil die elektrische Verbindung zwischen der beweglichen Elektrode und der den Strom vom Impulsstromgenerator zuleitenden Zuführung nicht den mechanischen Ruck aushalten, den das bewegliche Kompressionsmittel infolge des Fließpressens der aufgeschmolzenen Pulverpartikel oder zumindest ihrer Oberfläche in die Partikelzwischenräume erfährt.
  • Es sei angemerkt, dass der Begriff "Kompressionsmittel" lediglich eine Beteiligung an der Kompression des Pulvers zum Ausdruck bringt, jedoch nicht impliziert, dass eine Kraft auf das Pulver ausgeübt wird. So kann in einer Ausführungsvariante der Erfindung nur eines der Kompressionsmittel aktiv eine Kraft auf das Pulver ausüben und das andere Kompressionsmittel diese Kraft passiv aufnehmen, so dass nur ein einseitiges Pressen erfolgt.
  • Gemäß einer bevorzugten Ausführungsvariante können jedoch auch beide Kompressionsmittel axialbeweglich und unabhängig voneinander in Richtung der Kavität kraftbeaufschlagt oder kraftbeaufschlagbar sein, d.h. aktiv eine Kraft auf das Pulver ausüben. Das zweiseitige Pressen hat den Vorteil, dass ein höherer Gesamtdruck auf das Pulver wirkt und das Pulver besser verdichtet wird, weil der oben beschriebene Presskegel reduziert wird bzw. zu einem Doppelkegel wird.
  • Um die Elektroden gut voneinander zu isolieren und gleichzeitig mechanische Kräfte aufnehmen oder übertragen zu können, können die Kompressionsmittel aus einem keramischen Material bestehen. Unabhängig davon können die Außenform und/ oder der Kern aus Kupfer bestehen.
  • Zur Durchführung des Verfahrens kann das Pulver als lockere Pulverschüttung oder als mechanisch vorgepresster Pulverpressling in die Kavität eingebracht werden. In ersterem Fall bewirken die Kompressionsmittel infolge der Kraftausübung auf das Pulver eine mechanische Vorpressung vor dem elektrischen Entladungssintern.
  • Mit diesem erfindungsgemäßen Verfahren ist es möglich, Magnete in einem Prozessschritt herzustellen, wobei die Werkstücke nach dem elektrischen Entladungssintern noch magnetisiert werden müssen. Dies kann innerhalb der Vorrichtung oder außerhalb, in einer separaten Vorrichtung erfolgen, in dem die Werkstücke einem starken, entsprechend der gewünschten Magnetisierungsrichtung orientierten magnetischen Feld ausgesetzt werden. Der zweite Ansatz verfolgt das Ziel, mittels EDS zunächst ein Halbzeug herzustellen, das in einem nachfolgenden Prozessschritt durch Warmfließpressen die gewünschten mechanischen und magnetischen Eigenschaften erreicht.
  • Weitere Merkmale und Vorteile der Erfindung werden nachfolgend anhand eines Ausführungsbeispiels und der beigefügten Figur 2 beschrieben.
  • Figur 2 zeigt eine schematische Darstellung einer erfindungsgemäßen Vorrichtung 1 zur Herstellung von Permanentmagneten mit einer Ringform. Die Vorrichtung 1 ermöglicht es, Ringmagnete beliebiger axialer Länge unter Anwendung des elektrischen Entladungssinterns herzustellen.
  • Hierzu stellt die Vorrichtung 1 eine ringförmige Kavität 11 bereit, die der Aufnahme eines Magnetpulvers 2 dient, welches als lose Pulverschüttung oder als mechanisch vorkomprimierter Pulverpressling in die Kavität 11 eingebracht wird. In Figur 2 ist bereits Magnetpulver 2 in der Kavität 11 vorhanden. Die Kavität wird von vier Werkzeugteilen 3, 4, 5, 6 begrenzt, nämlich in radialer Richtung nach außen durch eine Außenform 3, in radialer Richtung nach innen durch einen Kern 6, sowie in axialer Richtung durch zwei Kompressionsmittel 4, 5.
  • Die Außenform 3 hat die Gestalt eines Hohlzylinders, obgleich sie eine beliebige Außenkontur haben kann. Innerhalb der Außenform 3 ist ein zylindrischer Hohlraum gebildet, der die Kavität 11 umfasst. Koaxial zur Außenform 3 erstreckt sich der Kern 6 durch diesen Hohlraum und formt ihn respektive die Kavität 11 somit zu einem Ringraum. Der Kern 6 ist stiftförmig ausgebildet. Der Abstand zwischen Kern und Außenform definiert die Dicke D des herzustellenden Permanentmagneten.
  • Jeweils eines der beiden Kompressionsmittel 4, 5 erstreckt sich zumindest teilweise formschlüssig in den Hohlraum hinein und begrenzt diesen somit in axialer Richtung. Der Abstand zwischen diesen Kompressionsmitteln 4, 5 definiert die Höhe bzw. axiale Länge L des herzustellenden Permanentmagneten. Die Kavität besitzt somit eine axiale Länge L, die größer als die Dicke D ist.
  • Die Kompressionsmittel 4, 5 sind zylindrisch und haben eine koaxiale Öffnung 13 entweder in Form einer Bohrung über die gesamte axiale Länge wie im Falle des unteren Kompressionsmittels 5 oder in Form eines Sacklochs wie im Falle des oberen Kompressionsmittels 4 ausgeführt ist, um den Kern 6 aufzunehmen. Der Innendurchmesser der Öffnung 13 ist somit an den Außendurchmesser des Kerns 6 angepasst, so dass Kern 6 und Kompressionsmittel 4, 5, formschlüssig ineinander geschoben oder gefahren werden können.
  • In der Ausführungsvariante gemäß Figur 2 sind beide Kompressionsmittel 4, 5 axialbeweglich angeordnet. Sie werden unabhängig voneinander in Richtung der Kavität 11 von einer Kraft F beaufschlagt und bilden somit gegen das Pulver 2 drückende Stempel. Die Kraft F wird von jeweils einer Hydraulik 10 erzeugt und über Bolzen 7a, 7b auf das jeweilige Kompressionsmittel 4, 5 übertragen. Es besteht jedoch auch die Möglichkeit, dass nur eines der Kompressionsmittel 4, 5, axialbeweglich und kraftbeaufschlagt ist, wie dies bei der Vorrichtung 1 in Figur 1 der Fall ist.
  • Die Außenform 3 und der Kern 6 sind elektrisch leitend, beispielsweise aus Kupfer bestehend ausgeführt. Sie bilden Elektroden und sind über ein Anschlusskabel mit einem steuerbaren Impulsstromgenerator 8, 9 verbunden, der hier schematisch durch einen Impulstransformator 8 und einen Kondensator 9 repräsentiert ist. Im Gegensatz zu den Kompressionsmitteln 4, 5 sind Außenform 3 und Kern 6 feststehend, d.h. nicht unbeweglich. Sie können so besser kontaktiert werden und es besteht kein Risiko, dass sich die Anschlussleitung 12 löst.
  • Der Impulstransformator 8 generiert aus der in dem Kondensator 9 gespeicherten Ladung einen Stromimpuls I von ca. 300kA und wenigen Millisekunden Länge, wie es in Figur 1a dargestellt ist. Die Kompressionsmittel 4, 5 bestehen aus einem nicht leitenden Material, beispielsweise aus einer Keramik, und isolieren somit Außenform 3 und Kern 6 voneinander.
  • Da das Magnetpulver elektrisch leitend ist, fließ der Stromimpuls I zwischen Außenform 3 und Kern 6 durch das Pulver 2, d.h. in radialer Richtung und folglich senkrecht zur Kraft F. Dadurch ergeben sich ein kurzer Strompfad und eine homogene Verdichtung durch das Entladungssintern.
  • Da die Kontaktpunkte zwischen den einzelnen Pulverpartikeln einen ohmschen Widerstand bilden, entsteht dort infolge des hohen Stroms joulsche Wärme, die so groß ist, dass zumindest die Oberfläche der Pulverpartikel zumindest teilweise aufgeschmolzen wird. Durch die gleichzeitig von den Kompressionsmitteln 4, 5 auf das Pulver 2 ausgebübte Druckkraft wird diese Schmelze in die Partikelzwischenräume gepresst und füllen somit die ehemaligen Freiräume zwischen Pulverpartikeln, d.h. das Porenvolumen aus. Dabei bewegen sich die Kompressionsmittel 4, 5 rückartig weiter in den Hohlraum hinein und verkleinern somit die Kavität 11. Es entsteht somit ein dichtes Gefüge. Fast ebenso schnell wie das Aufheizen des Pulvers erfolgte, kühlt das hergestellte Werkstück ab.
  • Dieses wird anschließend einem starken magnetischen Feld ausgesetzt und auf diese Weise magnetisiert, so dass der gewünschte Ringmagnet erhalten wird.
  • Bezugszeichenliste
  • 1
    EDS-Vorrichtung
    2
    Magnetpulver
    3
    Außenform
    4
    oberes Kompressionsmittel
    5
    unteres Kompressionsmittel
    6
    Kern
    7a, 7b
    Druckbolzen
    8
    Impulstransformator
    9
    Kondensator
    10
    Hydraulik
    11
    Kavität
    12
    Anschlusskabel
    13
    Öffnung

Claims (10)

  1. Vorrichtung (1) zur Herstellung ringförmiger Permanentmagnete durch elektrisches Entladungssintern, umfassend mehrere, eine ringförmige Kavität (11) zur Aufnahme eines magnetisierbaren metallischen Pulvers (2) definierende Werkzeugteile (3, 4, 5, 6) und einen steuerbaren elektrischen Impulsstromgenerator (8, 9), wobei zumindest zwei der Werkzeugteile (3, 4, 5, 6) Elektroden bilden und mit dem Impulsstromgenerator (8, 9) elektrisch verbunden sind, und die Werkzeugteile (3, 4, 5, 6) zumindest eine die Kavität (11) in radialer Richtung nach außen begrenzende Außenform (3), sowie zwei die Kavität (11) in axialer Richtung begrenzende, relativ zueinander axialbewegliche Kompressionsmittel (4, 5) umfassen, wobei zumindest eines der Kompressionsmittel (4, 5) in Richtung der Kavität (11) kraftbeaufschlagt oder kraftbeaufschlagbar ist, dadurch gekennzeichnet, dass die Kavität (11) in radialer Richtung nach innen durch einen koaxial zur Außenform (3) angeordneten Kern (6) begrenzt ist, wobei die Außenform (3) und der Kern (6) die Elektroden bilden und die Kompressionsmittel (4, 5) die Elektroden elektrisch voneinander isolieren.
  2. Vorrichtung (1) nach Anspruch 1, dadurch gekennzeichnet, dass die Kavität (11) eine axiale Länge (L) aufweist, die gleich oder größer als der Abstand zwischen dem Kern (6) und der Außenwand (3) ist.
  3. Vorrichtung (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Kern (6) stiftförmig ist.
  4. Vorrichtung (1) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Kavität (11) hohlzylindrisch ist, insbesondere einen hohlen Kreiszylinder bildet.
  5. Vorrichtung (1) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass zumindest eines der Kompressionsmittel (5, 6) eine zentrale Öffnung (13) aufweist, in die der Kern (6) infolge der Relativbewegung der Kompressionsmittel (5, 6) zueinander einfahrbar ist.
  6. Vorrichtung (1) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass beide Kompressionsmittel (4, 5) axialbeweglich und unabhängig voneinander in Richtung der Kavität (11) kraftbeaufschlagt oder kraftbeaufschlagbar sind.
  7. Vorrichtung (1) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Kompressionsmittel (4, 5) aus einem keramischen Material bestehen.
  8. Verfahren zur Herstellung ringförmiger Permanentmagnete durch elektrisches Entladungssintern, bei dem ein magnetisierbares metallisches Pulver (2) in eine ringförmige, durch mehrere Werkzeugteile (3, 4, 5, 6) definierte Kavität (11) eingebracht und einem zwischen zumindest zwei der Werkzeugteile (3, 4, 5, 6) fließenden elektrischen Impulsstrom (I) derart ausgesetzt wird, dass das Pulver (2) zumindest teilweise aufgeschmolzen wird, wobei gleichzeitig von zumindest einem der Werkzeugteile (5, 6) eine Kraft (F) in Richtung der Kavität auf das Pulver (2) ausgeübt wird, um das Pulver (2) im Schmelzzustand zu verdichten, dadurch gekennzeichnet, dass der Impulsstrom (I) in radialer Richtung zwischen einer die Kavität (11) nach außen begrenzenden Außenform (3) und einem die Kavität (11) nach innen begrenzenden, sich koaxial zur Außenform (3) erstreckenden Kern (6) fließt, und die Kraft (F) von zumindest einem von zwei die Kavität (11) in axialer Richtung begrenzenden Kompressionsmitteln (4, 5) in axialer Richtung auf das Pulver (2) ausgeübt wird, wobei die Kompressionsmittel (4, 5) die Außenform (3) und den Kern (6) elektrisch voneinander isolieren.
  9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass das Pulver (2) mechanisch vorverdichtet und anschließend in die Kavität (11) eingebracht wird.
  10. Verfahren nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass das von beiden Kompressionsmitteln (4, 5) eine Kraft (F) in axialer Richtung auf das Pulver (2) übertragen wird.
EP16001814.9A 2015-09-25 2016-08-18 Vorrichtung und verfahren zur herstellung ringförmiger permanentmagnete Active EP3147918B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015012412.9A DE102015012412A1 (de) 2015-09-25 2015-09-25 Vorrichtung und Verfahren zur Herstellung ringförmiger Permanentmagnete

Publications (2)

Publication Number Publication Date
EP3147918A1 EP3147918A1 (de) 2017-03-29
EP3147918B1 true EP3147918B1 (de) 2019-10-30

Family

ID=56883471

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16001814.9A Active EP3147918B1 (de) 2015-09-25 2016-08-18 Vorrichtung und verfahren zur herstellung ringförmiger permanentmagnete

Country Status (2)

Country Link
EP (1) EP3147918B1 (de)
DE (1) DE102015012412A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109894615A (zh) * 2019-04-19 2019-06-18 扬州海昌新材股份有限公司 脉冲放电闪速烧结金属基零部件近净成形工艺方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3241956A (en) 1963-05-30 1966-03-22 Inoue Kiyoshi Electric-discharge sintering
JPS59216453A (ja) 1983-05-20 1984-12-06 Hitachi Metals Ltd 円筒状永久磁石の製造方法
JP3490228B2 (ja) * 1996-03-25 2004-01-26 アルプス電気株式会社 硬磁性合金圧密体およびその製造方法
US6612826B1 (en) 1997-10-15 2003-09-02 Iap Research, Inc. System for consolidating powders
EP2198993B1 (de) 2008-12-19 2012-09-26 EPoS S.r.L. Sinterverfahren und -vorrichtung
US20130266473A1 (en) * 2012-04-05 2013-10-10 GM Global Technology Operations LLC Method of Producing Sintered Magnets with Controlled Structures and Composition Distribution

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102015012412A1 (de) 2017-03-30
EP3147918A1 (de) 2017-03-29

Similar Documents

Publication Publication Date Title
DE3013943C2 (de)
EP0013747B1 (de) Vorrichtung zum kontinuierlichen Strangpressen elektrisch-leitfähiger, granulierter, vorzugsweise pulvermetallurgischer Werkstoffe
DE2914254A1 (de) Verfahren und vorrichtung zum drucksintern
EP3253566B1 (de) Gestaltoptimierte pm-werkzeugkomponenten unter verwendung von verbindungstechnologie
DE102014003726A1 (de) Presse zum Herstellen maßhaltiger Grünlinge und Verfahren zum Herstellen
EP2618953A2 (de) Generatives herstellverfahren und pulver hierzu
WO2014202390A1 (de) Verfahren und vorrichtung zur herstellung von kontaktelementen für elektrische schaltkontakte
DE1464128A1 (de) Langgestreckte Bauelemente und Verfahren zu ihrer Herstellung
EP3741031B1 (de) Verfahren zur herstellung eines käfigläufers
DE102012110098A1 (de) Verfahren zur Herstellung elektrischer Durchführungen
EP0426101A2 (de) Extrudergehäusebauteil für einen Zweischneckenextruder und Verfahren zur Herstellung
EP3147918B1 (de) Vorrichtung und verfahren zur herstellung ringförmiger permanentmagnete
WO2019101374A1 (de) Innengekühltes ventil mit ventilboden und verfahren zu dessen herstellung
DE1197850B (de) Hochdruckpresse
WO2015090865A1 (de) Verfahren zur herstellung von kontaktmaterialstücken für vakuumschaltröhren
DE661132C (de) Verfahren zur Herstellung von Werkzeugen
DE102007037702A1 (de) Verfahren und Vorrichtung zur Herstellung eines rohrförmigen Festkörpers aus einer hochschmelzenden Wolfram-Schwermetalllegierung, insbesondere als Halbzeug für die Fertigung eines Penetrators für ein Wuchtgeschoss mit Splitterwirkung
DE1303768B (de)
WO2015189300A1 (de) Verfahren und presse zur herstellung eines grünlingsverbundes mit einer sollbruchstelle
AT525599B1 (de) Verfahren zur Herstellung eines Bauteils aus einem Metallpulver und/oder Keramikpulver
EP3822991B1 (de) Verfahren und vorrichtung zur herstellung rotationssymmetrischer permanentmagnete
EP2877999B1 (de) Verfahren zum herstellen eines anisotropen magneten
AT521006B1 (de) Verfahren zum Herstellen eines Bauteils mit weichmagnetischen Eigenschaften
DE102021006346A1 (de) Verfahren zur Herstellung von Dichtringen einer Gleitringdichtung
EP4367705A1 (de) Kontaktträger für vakuumschalter, vakuumschalter sowie herstellungsverfahren für einen kontaktträger

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20170428

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B22F 3/10 20060101ALI20190430BHEP

Ipc: H01F 41/02 20060101AFI20190430BHEP

Ipc: B22F 3/105 20060101ALI20190430BHEP

Ipc: B22F 5/10 20060101ALI20190430BHEP

INTG Intention to grant announced

Effective date: 20190603

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1197033

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016007276

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200130

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200131

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200302

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200130

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200229

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016007276

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200818

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1197033

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210818

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230615

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230720

Year of fee payment: 8

Ref country code: GB

Payment date: 20230720

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230720

Year of fee payment: 8

Ref country code: DE

Payment date: 20230720

Year of fee payment: 8