EP3146299A1 - Dispositif de mesure du débit volumétrique d'un fluide - Google Patents

Dispositif de mesure du débit volumétrique d'un fluide

Info

Publication number
EP3146299A1
EP3146299A1 EP15720627.7A EP15720627A EP3146299A1 EP 3146299 A1 EP3146299 A1 EP 3146299A1 EP 15720627 A EP15720627 A EP 15720627A EP 3146299 A1 EP3146299 A1 EP 3146299A1
Authority
EP
European Patent Office
Prior art keywords
overvoltage
measuring
holding voltage
control
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP15720627.7A
Other languages
German (de)
English (en)
Inventor
Thomas Budmiger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Endress and Hauser Flowtec AG
Original Assignee
Endress and Hauser Flowtec AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress and Hauser Flowtec AG filed Critical Endress and Hauser Flowtec AG
Publication of EP3146299A1 publication Critical patent/EP3146299A1/fr
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/56Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
    • G01F1/58Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters
    • G01F1/60Circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/56Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
    • G01F1/58Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters
    • G01F1/586Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters constructions of coils, magnetic circuits, accessories therefor

Definitions

  • the invention relates to a device for measuring the volume flow of a fluid, which flows through a measuring tube in the direction of the longitudinal axis, with a coil arrangement, with at least two with the fluid coupling
  • Measuring electrodes and with a control / evaluation unit which generates in connection with the coil arrangement a periodically changing the polarity, extending substantially transverse to the longitudinal axis of the measuring tube magnetic field and during a measurement phase at a substantially constant magnetic field based on a voltage induced in the measuring electrodes, the volume flow of the fluid in the measuring tube.
  • the at least two measuring electrodes are galvanically or capacitively coupled to the fluid.
  • the coil arrangement preferably has two diametrically arranged coils, usually each with an integrated coil core. Depending on the configuration, only one coil with or without a winding core can be provided, or more than two coils are used each with or without a coil core.
  • Corresponding measuring devices are called magnetic-inductive
  • Magnetic-inductive flowmeters use the principle of electrodynamic induction for volumetric flow measurement:
  • Charge carriers of the fluid moved perpendicular to a magnetic field induce a voltage in measuring electrodes which are likewise arranged substantially perpendicular to the flow direction of the fluid. This voltage induced in the measuring electrodes is proportional to that across the cross section of the
  • Measuring tube averaged flow velocity of the medium it is therefore proportional to the volume flow.
  • the current profile in the coil arrangement corresponds to the course of the magnetic field. Due to eddy currents, which occur during the switching of the magnetic field in the pole shoes and cores of the coil assembly, occur in reality deviations from the ideal case. Of the coil current measured outside the coil arrangement therefore corresponds to the sum of the current flowing in the coil arrangement and the current generated by the eddy currents. If the current measured outside the coil arrangement is used as the controlled variable, then the current is not constant but the magnetic field is constant. This applies until the eddy currents have subsided.
  • the magnetic field has a constant magnetic field value corresponding to the constant current setpoint when the current maximum is reached.
  • the duration of the switching phase is given by the characteristic of the coil current. Since the stability of the measurement signal u.a. is also affected by the inductive coupling of the coil assembly to the measuring electrodes, both the voltage across the coil assembly and the current through the coils must be constant during the measurement of the voltage difference between the measuring electrodes. In the solution known from the prior art, this is only the case because of the asymptotic approach to the final value when the
  • the holding voltage depends on
  • Holding voltage defined as the product of resistance and rated current. Since the resistance is temperature-dependent, the holding voltage changes at a constant overvoltage. Since the overvoltage is usually unregulated, fluctuations in the overvoltage can also lead to an uncontrolled one
  • the invention has for its object to ensure an improved stability of the zero point in a magnetic-inductive device or in a magnetic-inductive method for measuring the volume flow.
  • control / evaluation unit acts on the coil arrangement during a deceleration phase with an overvoltage, wherein the deceleration phase for
  • Time of switching the polarity of the magnetic field begins and ends at the time of the beginning of the measurement phase, and that the control / evaluation unit, the coil assembly during the period of
  • control / evaluation unit the ratio of
  • control / evaluation unit controls the ratio of overvoltage to holding voltage by a corresponding change of the overvoltage to a substantially constant value.
  • control / evaluation unit regulates the ratio of overvoltage to holding voltage to a substantially constant value by determining the duration of the
  • Overvoltage to holding voltage is greater than 1.
  • the predetermined value of the ratio of overvoltage to holding voltage is preferably between 2 and 10. The predetermined value depends in particular on the desired measuring speed and / or the sensor type used of the electromagnetic flowmeter and / or on the application in which the sensor type is used ,
  • control / evaluation selects in the case of
  • the predetermined value of the ratio of overvoltage to holding voltage as large as it is possible in the context of the available power. Furthermore, an advantageous embodiment of the magnetic-inductive flowmeter suggests that the control / evaluation unit in the case of an application, which is located in a hazardous area, the predetermined value of the ratio of overvoltage to holding voltage so low that the power consumption allowed for the hazardous area is not exceeded.
  • Time of switching the polarity of the magnetic field begins and at the time of the beginning of the measuring phase ends, and that the coil assembly is applied during the period of the measuring phase with a substantially constant holding voltage, wherein the ratio of overvoltage to holding voltage is regulated to a substantially constant value ,
  • FIG. 1 shows a schematic representation of a first embodiment of the device according to the invention
  • FIG. 3 is a diagram showing the time course of the coil voltage U s at different ratios of overvoltage to holding voltage
  • Device according to the invention. 1 shows a schematic representation of a first embodiment of the device 1 according to the invention.
  • the measuring tube 2 is traversed by the fluid 1 1 in the direction of the longitudinal axis of the measuring tube 3.
  • the fluid 1 1 is at least to a small extent electrically conductive.
  • the measuring tube 2 itself is made of a non-conductive material, or it is lined at least on its inner surface with a non-conductive material.
  • the perpendicular to the flow direction of the fluid 1 1 aligned magnetic field B is generated via the diametrically arranged coil assembly 6, 7 or via two electromagnets. Under the influence of the magnetic field B, charge carriers located in the fluid 1 1 migrate depending on the polarity to the two oppositely poled measuring electrodes 4, 5. The to the
  • Measuring electrodes 4, 5 voltage is proportional to the averaged over the cross section of the measuring tube 2 flow rate of the fluid 1 1, d. H. it is a measure of the volume flow of the fluid 1 1 in the measuring tube 2.
  • the measuring tube 2 is incidentally via connecting elements, for. As flanges, which are not shown separately in the drawing, connected to a pipe system through which the fluid flows through 1 1.
  • the measuring electrodes 4, 5 are in direct contact with the fluid 11; however, the coupling can also be capacitive in nature.
  • the control / evaluation unit 8 is connected via the connecting line 16 to an input / output unit 9.
  • the evaluation / control unit 8 is associated with the memory unit 10.
  • the current profile corresponds to the profile of the magnetic field B generated by the coil arrangement 6, 7.
  • the coils of a coil arrangement 6, 7 which are used in magnetic-inductive sensors usually have coil cores and / or pole shoes on.
  • the control / evaluation Unit 8 is applied to the coil assembly 6, 7 so that the magnetic field B periodically changes its direction.
  • the coil current I L is constant, opposite and equal in magnitude. Due to the eddy currents produced in the pole shoes and coil cores, this ideal case does not occur in reality. Rather, the current i M measured outside the coil arrangement 6, 7 always corresponds to that
  • FIG. 2 A corresponding equivalent circuit diagram of the coil arrangement 6, 7 is shown in FIG. 2.
  • control / evaluation unit acts on the
  • Switching the polarity of the magnetic field B begins and ends at the time of the beginning of the measuring phase.
  • the control / evaluation unit 8 loads the coil arrangement 6, 7 with a substantially constant holding voltage. According to the invention, the control / evaluation unit 8 regulates the ratio of overvoltage
  • control / evaluation unit 8 controls the ratio of overvoltage
  • Holding voltage by appropriate change of the overvoltage to a substantially constant value Alternatively regulates the control / evaluation unit 8, the ratio of overvoltage to holding voltage to a in
  • Power supply is limited to a maximum allowable value, it is not possible in many applications in industrial metrology, to increase the surge as desired.
  • FIG. 4 shows a circuit arrangement which is used in the magnetic-inductive flowmeter 1 according to the invention and which is suitable for carrying out the method according to the invention.
  • Flowmeter 1 periodically switched.
  • an H-circuit is usually used: in the first half-period, the two switches S2 and S3 are closed, and the two switches S1, S4 are open. In the following half-period, the two switches S2, S3 are opened, and the two switches S1, S4 are closed.
  • the coil current I M measured outside the coil arrangement 6, 7 flows through the coil arrangement 6, 7 in two successive half-periods in the reverse direction. This is accompanied by a change in the polarity of the magnetic field B.
  • the voltage difference AU S across the two coils of the coil arrangement 6, 7 tapped voltages are from an A / D converter 17th
  • the voltage difference AU S is fed to the microcontroller 21.
  • the actual value of the coil current I M is measured across the resistor R sense , digitized by the AD converter 18 and also the
  • the coil arrangement 6, 7 during the period of the measuring phase with a substantially constant holding voltage
  • Overvoltage to hold voltage controls to a substantially constant value.
  • the ratio of overvoltage to holding voltage is in the
  • Ratio of overvoltage to holding voltage by corresponding change of overvoltage
  • the default value of the ratio of overvoltage and holding voltage is application-dependent. If a high measuring speed is desired - for example because the volume flow shows high dynamics - then the predetermined value of the ratio should be as large as possible: the higher the overvoltage, the lower the time duration of the deceleration phase and the faster the measured values can be in subsequent measuring phases Will be provided. In the case of an application in which a high measuring speed is required due to high dynamics, the control / evaluation unit 8 preferably selects the predetermined value of the ratio of overvoltage to holding voltage as large as is possible within the scope of the available power.
  • an advantageous embodiment of the magnetic-inductive flowmeter suggests that the control / evaluation unit 8 in the case of an application, which is located in a hazardous area, the predetermined value of the ratio of overvoltage to holding voltage so low chooses that for the explosion-endangered Range allowed power consumption is not exceeded. If the two boundary conditions mentioned above are to be fulfilled at the same time, then the control / evaluation unit will make a compromise proposal. In addition to specifying values for the ratio of overvoltage to
  • Holding voltage through the control / evaluation unit there is also the Possibility for the user to be able to adapt the default value to the real application by optimizing the input.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measuring Volume Flow (AREA)

Abstract

L'invention concerne un dispositif de mesure du débit volumique d'un fluide (11) qui traverse un tube de mesure (2) dans le sens de l'axe longitudinal (3), le dispositif comportant un agencement de bobines (6, 7), au moins deux électrodes de mesure (4, 5) couplées au fluide (11) et une unité de régulation/évaluation (8) qui, en liaison avec l'agencement de bobines (6, 7), génère un champ magnétique (B) sensiblement transversal à l'axe longitudinal (3) et dont la polarité change périodiquement, et qui détermine le débit volumique du fluide (11) dans le tube de mesure (2) pendant une phase de mesure en présence d'un champ magnétique (B) sensiblement constant sur la base d'une tension induite dans les électrodes de mesure (4, 5). L'unité de régulation/évaluation (8) soumet l'agencement de bobines (6, 7) à une surtension pendant une phase de retardement, la phase de retardement débutant au moment de l'inversion de la polarité du champ magnétique (B) et finissant au moment du début de la phase de mesure. L'unité de régulation/évaluation (8) soumet l'agencement de bobines (6, 7) à une tension de maintien sensiblement constante pendant la durée de la phase de mesure, l'unité de régulation/évaluation (8) régulant le rapport entre la surtension et la tension de maintien à une valeur sensiblement constante.
EP15720627.7A 2014-05-22 2015-04-20 Dispositif de mesure du débit volumétrique d'un fluide Ceased EP3146299A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014107200.6A DE102014107200A1 (de) 2014-05-22 2014-05-22 Vorrichtung zum Messen des Volumenstroms eines Fluids
PCT/EP2015/058481 WO2015176891A1 (fr) 2014-05-22 2015-04-20 Dispositif de mesure du débit volumétrique d'un fluide

Publications (1)

Publication Number Publication Date
EP3146299A1 true EP3146299A1 (fr) 2017-03-29

Family

ID=53052811

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15720627.7A Ceased EP3146299A1 (fr) 2014-05-22 2015-04-20 Dispositif de mesure du débit volumétrique d'un fluide

Country Status (5)

Country Link
US (1) US10215602B2 (fr)
EP (1) EP3146299A1 (fr)
CN (1) CN106461433B (fr)
DE (1) DE102014107200A1 (fr)
WO (1) WO2015176891A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014107200A1 (de) 2014-05-22 2015-11-26 Endress + Hauser Flowtec Ag Vorrichtung zum Messen des Volumenstroms eines Fluids
DE102016110024A1 (de) * 2016-05-31 2017-11-30 Endress + Hauser Flowtec Ag Verfahren zum Betreiben eines magnetisch-induktiven Durchflussmessgeräts zur Messung der Durchflussgeschwindigkeit oder des Volumendurchflusses eines Mediums in einem Messrohr
DE102016112742A1 (de) * 2016-07-12 2018-01-18 Endress+Hauser Flowtec Ag Verfahren zum Messen der Durchflussgeschwindigkeit oder des Volumendurchflusses eines Mediums mittels eines magnetisch-induktiven Durchflussmessgeräts und ein magnetisch-induktives Durchflussmessgerät
DE102016122495B4 (de) 2016-11-22 2022-03-17 Endress + Hauser Flowtec Ag Verfahren zum Betreiben eines magnetisch-induktiven Durchflussmessgeräts
DE102018115628B4 (de) 2018-06-28 2020-02-13 Endress+Hauser Flowtec Ag Verfahren zur Inbetriebnahme eines magnetisch-induktiven Durchflussmessgerätes und ein magnetisch-induktives Durchflussmessgerät
DE102021118264A1 (de) * 2021-07-14 2023-01-19 Endress+Hauser Flowtec Ag Magnetisch-induktive Durchflussmessvorrichtung
DE102021131692A1 (de) * 2021-12-01 2023-06-01 Endress + Hauser Flowtec Ag Magnetisch-induktive Durchflussmessvorrichtung
DE102021131698A1 (de) * 2021-12-01 2023-06-01 Endress+Hauser Flowtec Ag Magnetisch-induktive Durchflussmessvorrichtung
DE102021131693A1 (de) * 2021-12-01 2023-06-01 Endress + Hauser Flowtec Ag Magnetisch-induktive Durchflussmessvorrichtung

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3396314A (en) * 1965-04-13 1968-08-06 Rca Corp Overdrive circuit for inductive loads
BE759189A (fr) * 1969-11-28 1971-05-21 Cit Alcatel Circuit de commande de courant dans une charge inductive
US4204240A (en) * 1978-10-26 1980-05-20 Fischer & Porter Co. High-voltage impulse driver for electromagnetic flowmeter
US4784000A (en) * 1987-01-15 1988-11-15 Emerson Electric Co. Magnetic flowmeter coil driver and method
JPH06258113A (ja) * 1993-03-08 1994-09-16 Yamatake Honeywell Co Ltd 電磁流量計
EP0969268A1 (fr) 1998-07-03 2000-01-05 Endress + Hauser Flowtec AG Méthode de régulation de courant de bobine d'un capteur de débit électromagnétique
US6031740A (en) * 1998-07-03 2000-02-29 Endress + Hauser Flowtec Ag Method of regulating the coil current of electromagnetic flow sensors
JP3043757B2 (ja) * 1998-07-03 2000-05-22 エンドレス ウント ハウザー フローテック アクチエンゲゼルシャフト コイルアセンブリを流れるコイル電流の調整方法
DE10312058A1 (de) * 2003-03-18 2004-09-30 Endress + Hauser Flowtec Ag, Reinach Vorrichtung zum Messen des Volumenstroms eines Messmediums in einem Messrohr
US7260486B2 (en) * 2004-09-22 2007-08-21 Endress + Hauser Flowtec Ag Method for operating and/or reviewing a magneto-inductive flow meter
DE102005031665A1 (de) * 2005-07-05 2007-01-11 Endress + Hauser Flowtec Ag Verfahren zur Bestimmung des Arbeitspunktes eines magnetisch-induktiven Durchflussmessgeräts
DE502005009845D1 (de) * 2005-09-21 2010-08-12 Siemens Ag Verfahren zum betreiben eines elektromagnetischen durchflussmessers sowie elektromagnetischer durchflussmesser
JP4754932B2 (ja) * 2005-10-17 2011-08-24 株式会社山武 電磁流量計
DE102005050655A1 (de) * 2005-10-20 2007-04-26 Endress + Hauser Flowtec Ag Magnetisch-induktives Durchflussmessgerät
DE102006023916A1 (de) * 2006-05-19 2007-11-22 Endress + Hauser Flowtec Ag Magnetisch-induktives Durchflussmessgerät
DE102006054635A1 (de) * 2006-11-17 2008-05-21 Endress + Hauser Flowtec Ag Vorrichtung zum Messen des Volumen- oder Massestroms eines Mediums in einer Rohrleitung
DE102007014469A1 (de) * 2007-03-22 2008-09-25 Endress + Hauser Flowtec Ag Verfahren zur vorausschauenden Wartung und/oder Verfahren zur Bestimmung der elektrischen Leitfähigkeit bei einem magnetischinduktiven Durchflussmessgerät
DE102009002539A1 (de) * 2009-04-21 2010-10-28 Endress + Hauser Flowtec Ag Magnetisch-induktive Durchflussmesseinrichtung und Verfahren zum Betreiben derselben
DE102010029762A1 (de) * 2010-06-07 2011-12-08 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Verfahren zur Bestimmung einer Restkopplung eines induktiven Leitfähigkeitssensors
DE102012105716A1 (de) * 2012-06-28 2014-01-02 Endress + Hauser Flowtec Ag Verfahren zur Steuerung eines Spulenstroms eines magnetisch- induktiven Durchflussmessgerätes
DE102012107534A1 (de) * 2012-08-16 2014-02-20 Endress + Hauser Flowtec Ag Magnetisch-induktives Durchflussmessgerät
DE102014107200A1 (de) 2014-05-22 2015-11-26 Endress + Hauser Flowtec Ag Vorrichtung zum Messen des Volumenstroms eines Fluids
DE102015116771B4 (de) * 2015-10-02 2021-07-01 Krohne Messtechnik Gmbh Verfahren zum Einstellen einer konstanten Magnetfeldstärke eines Magnetfelds bei einem magnetisch-induktiven Durchflussmessgerät und diesbezügliches magnetisch-induktives Durchflussmessgerät

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2015176891A1 *

Also Published As

Publication number Publication date
DE102014107200A1 (de) 2015-11-26
CN106461433B (zh) 2019-12-17
US10215602B2 (en) 2019-02-26
US20170146377A1 (en) 2017-05-25
CN106461433A (zh) 2017-02-22
WO2015176891A1 (fr) 2015-11-26

Similar Documents

Publication Publication Date Title
EP3146299A1 (fr) Dispositif de mesure du débit volumétrique d'un fluide
EP1031820B1 (fr) Débitmètre électromagnétique
DE102015116771B4 (de) Verfahren zum Einstellen einer konstanten Magnetfeldstärke eines Magnetfelds bei einem magnetisch-induktiven Durchflussmessgerät und diesbezügliches magnetisch-induktives Durchflussmessgerät
EP3171139B1 (fr) Procede de mesure de debit a l'aide d'un debitmetre magneto-inductif
EP1899684B1 (fr) Procédé pour déterminer la période de mesure d'un débitmètre magnétique inductif
EP1915593A1 (fr) Debitmetre a induction magnetique
EP1460394B1 (fr) Verfahren zum Regeln des Spulenstroms von magnetisch-induktiven Durchflussaufnehmern
EP2024715B1 (fr) Procédé et dispositif pour déterminer le débit volumique ou massique
EP3293499A1 (fr) Procédé de fonctionnement d'un débitmètre magnétique inductif et débitmètre magnétique inductif
EP3545268B1 (fr) Procédé de fonctionnement d'un appareil de mesure d'écoulement magnéto-inductif ainsi qu'appareil de mesure magnéto-inductif
EP3559603B1 (fr) Procédé permettant de faire fonctionner un débitmètre à induction magnétique et débitmètre à induction magnétique
EP2885613B1 (fr) Débitmètre électromagnétique
WO2015014479A1 (fr) Débitmètre magnéto-inductif et procédé permettant de faire fonctionner un débitmètre magnéto-inductif
EP3465101B1 (fr) Procédé permettant de faire fonctionner un débitmètre à induction magnétique pour la mesure de la vitesse d'écoulement ou du débit volumique d'un milieu dans un tube de mesure
DE102005050655A1 (de) Magnetisch-induktives Durchflussmessgerät
EP3559604A1 (fr) Procédé permettant de faire fonctionner un débitmètre à induction magnétique et débitmètre à induction magnétique
DE1194167B (de) Wiegevorrichtung
DE102006016564A1 (de) Vorrichtung zum Bestimmen des Volumen- oder Massestroms eines Mediums
DE102008034566A1 (de) Elektromagnetischer Durchflussmesser sowie Verfahren zum Betrieb eines elektromagnetischen Durchflussmessers
DE19843808A1 (de) Vorrichtung und Verfahren zur Messung des Massen- und Volumendurchflusses elektrisch nicht leitender Medien durch dielektrische Polarisation im Magnetfeld
EP3092421B1 (fr) Valve pour fluide magnetorheologique
EP1273891A1 (fr) Procédé d'alimentation d'un débitmètre électromagnétique
DE102021131698A1 (de) Magnetisch-induktive Durchflussmessvorrichtung
DE102008034565A1 (de) Elektromagnetischer Durchflussmesser sowie Verfahren zum Betrieb eines elektromagnetischen Durchflussmessers
DE102013113332A1 (de) Einrichtung zur Durchflussüberwachung eines Mediums

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20161021

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20180530

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20200604