EP3143173B2 - Method for producing an engine component, engine component, and use of an aluminum alloy - Google Patents

Method for producing an engine component, engine component, and use of an aluminum alloy Download PDF

Info

Publication number
EP3143173B2
EP3143173B2 EP15720740.8A EP15720740A EP3143173B2 EP 3143173 B2 EP3143173 B2 EP 3143173B2 EP 15720740 A EP15720740 A EP 15720740A EP 3143173 B2 EP3143173 B2 EP 3143173B2
Authority
EP
European Patent Office
Prior art keywords
aluminium alloy
silicon
engine component
iron
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15720740.8A
Other languages
German (de)
French (fr)
Other versions
EP3143173B1 (en
EP3143173A1 (en
Inventor
Roman Morgenstern
Silvio Stephan
Scott Kenningley
Philipp Koch
Isabella Sobota
Martin Popp
Robert Willard
Klaus Lades
Rainer Weiss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Federal Mogul Nuernberg GmbH
Original Assignee
Federal Mogul Nuernberg GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=53052874&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3143173(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Federal Mogul Nuernberg GmbH filed Critical Federal Mogul Nuernberg GmbH
Publication of EP3143173A1 publication Critical patent/EP3143173A1/en
Publication of EP3143173B1 publication Critical patent/EP3143173B1/en
Application granted granted Critical
Publication of EP3143173B2 publication Critical patent/EP3143173B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/0084Pistons  the pistons being constructed from specific materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/007Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D25/00Special casting characterised by the nature of the product
    • B22D25/02Special casting characterised by the nature of the product by its peculiarity of shape; of works of art
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • C22C21/04Modified aluminium-silicon alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/14Alloys based on aluminium with copper as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F2200/00Manufacturing
    • F02F2200/06Casting

Definitions

  • the present invention relates to a method for producing and using an engine component, in particular a piston for an internal combustion engine, in which an aluminum alloy is cast using the gravity die casting method, an engine component which consists at least partially of an aluminum alloy, and the use of an aluminum alloy for producing such an engine component .
  • a piston for an internal combustion engine must have high heat resistance and at the same time be as light and strong as possible. It is of particular importance how the microstructural distribution, morphology, composition and thermal stability of high-temperature phases are developed. Such optimization usually takes into account a minimal content of pores and oxidic inclusions.
  • the material sought must be optimized in terms of both isothermal fatigue strength (HCF) and thermomechanical fatigue strength (TMF).
  • HCF isothermal fatigue strength
  • TMF thermomechanical fatigue strength
  • the microstructure of the material should always be as fine as possible. A fine microstructure reduces the risk of microplasticity or microcracks developing in relatively large primary phases (particularly in primary silicon precipitations) and thus also the risk of crack initiation and propagation.
  • microplasticities or microcracks appear in relatively large primary phases, in particular in primary silicon precipitations, due to different coefficients of expansion of the individual components of the alloy, namely the matrix and the primary phases, which can significantly reduce the service life of the piston material. To increase the service life, it is known to keep the primary phases as small as possible.
  • JP 2004-256873A describes an alloy that is used in particular for pistons.
  • the DE 44 04 420 A1 describes an alloy that can be used in particular for pistons and components that are exposed to high temperatures and are subject to high mechanical stress.
  • the aluminum alloy described comprises 8.0 to 10.0% by weight silicon, 0.8 to 2.0% by weight magnesium, 4.0 to 5.9% by weight copper, 1.0 to 3.0 wt% nickel, 0.2 to 0.4 wt% manganese, less than 0.5 wt% iron, and at least one element selected from antimony, zirconium, titanium, strontium, cobalt, chromium, and vanadium , wherein at least one of these elements is present in an amount >0.3% by weight, the sum of these elements being ⁇ 0.8% by weight.
  • the EP 0 924 310 B1 describes an aluminium-silicon alloy which is used in the production of pistons, in particular for pistons in internal combustion engines.
  • the aluminum alloy has the following composition: 10.5 to 13.5% by weight silicon, 2.0 to less than 4.0% by weight copper 0.8 to 1.5% by weight magnesium, 0. 5 to 2.0 wt% nickel, 0.3 to 0.9 wt% cobalt, at least 20 ppm phosphorus and either 0.05 to 0.2 wt% titanium or up to 0.2 wt% -% zirconium and/or up to 0.2% by weight vanadium and balance aluminum and unavoidable impurities.
  • the WO 00/71767 A1 describes an aluminum alloy suitable for high temperature applications such as highly loaded pistons or other internal combustion engine applications.
  • the aluminum alloy is composed of the following elements: 6.0 to 14.0% by weight silicon, 3.0 to 8.0% by weight copper, 0.01 to 0.8% by weight iron, 0 .5 to 1.5 wt% magnesium, 0.05 to 1.2 wt% nickel, 0.01 to 1.0 wt% manganese, 0.05 to 1.2 wt% titanium , 0.05 to 1.2% by weight zirconium, 0.05 to 1.2% by weight vanadium, 0.001 to 0.10% by weight strontium and the balance aluminum.
  • the DE 103 33 103 B4 describes a piston made of an aluminum cast alloy, the aluminum cast alloy containing: 0.2% by weight or less magnesium, 0.05 to 0.3% by weight titanium, 10 to 21% by weight silicon, 2 to 3, 5% by weight copper, 0.1 to 0.7% by weight iron, 1 to 3% by weight nickel, 0.001 to 0.02% by weight phosphorus, 0.02 to 0.3% by weight % zirconium and balance aluminum and impurities.
  • the size of a nonmetallic inclusion present inside the bulb is less than 100 ⁇ m.
  • the EP 1 975 262 B1 describes a cast aluminum alloy consisting of: 6 to 9% silicon, 1.2 to 2.5% copper, 0.2 to 0.6% magnesium, 0.2 to 3% nickel, 0.1 to 0.7% iron, 0.1 to 0.3% titanium, 0.03 to 0.5% zirconium, 0.1 to 0.7% manganese, 0.01 to 0.5% vanadium and one or more of the following elements: strontium 0.003 to 0.05%, antimony 0.02 to 0.2% and sodium 0.001 to 0.03%, with the total amount of titanium and zirconium being less than 0.5% and aluminum and unavoidable impurities making up the balance when the total amount is as 100 percent by mass is used.
  • the WO 2010/025919 A2 describes a method for producing a piston of an internal combustion engine, in which a piston blank is cast from an aluminum-silicon alloy with the addition of copper and then finish-machined.
  • the invention provides that the copper content is a maximum of 5.5% of the aluminium-silicon alloy and that proportions of titanium (Ti), zirconium (Zr), chromium (Cr) or vanadium (V) are added to the aluminium-silicon alloy and the sum of all components is 100%.
  • the registration UK 102011083969 relates to a method for producing an engine component, in particular a piston for an internal combustion engine, in which an aluminum alloy is cast using the gravity die casting method, an engine component which consists at least partially of an aluminum alloy, and the use of an aluminum alloy for producing an engine component.
  • the aluminum alloy has the following alloying elements: 6 to 10% by weight silicon, 1.2 to 2% by weight nickel, 8 to 10% by weight copper, 0.5 to 1.5% by weight magnesium , 0.1 to 0.7 wt% iron, 0.1 to 0.4 wt% manganese, 0.2 to 0.4 wt% zirconium, 0.1 to 0.3 wt% vanadium, 0.1 to 0.5% by weight titanium and aluminum and the balance, avoidable impurities.
  • This alloy preferably has a phosphorus content of less than 30 ppm.
  • An object of the present invention is to provide a method for producing an engine component, in particular a piston for an internal combustion engine, in which an aluminum alloy is cast using the gravity die casting method, so that a highly heat-resistant engine component can be produced using the gravity die casting method.
  • a further object of the invention is to provide an engine component, in particular a piston for an internal combustion engine, which is highly heat-resistant and at the same time consists at least partially of an aluminum alloy.
  • the aluminum alloy selected makes it possible to use gravity die casting to produce an engine component that has a high proportion of finely divided, highly heat-resistant, thermally stable phases and a fine microstructure.
  • the susceptibility to crack initiation and crack propagation, e.g. on oxides or primary phases, is reduced by the choice of the alloy according to the invention compared to the previously known manufacturing processes for pistons and similar engine components, and the TMF-HCF service life is increased.
  • the alloy according to the invention in particular the comparatively low silicon content, also means that, at least in the case of a piston produced according to the invention, comparatively less and finer primary silicon is present in its thermally highly stressed bowl edge area, so that the alloy leads to particularly good properties of a piston produced according to the invention.
  • a highly heat-resistant engine component can be manufactured using the gravity die casting process.
  • the alloy properties can be optimized specifically for the application by a targeted selection of the Cu content in the range according to the invention.
  • Higher Cu contents improve the high-temperature strength of the alloy in particular.
  • Lower contents allow increasing the thermal conductivity and reducing the density of the alloy.
  • the proportions of cobalt and phosphorus according to the invention are advantageous in that cobalt increases the hardness and (high-temperature) strength of the alloy and phosphorus, as a nucleating agent for primary silicon precipitations, contributes to the fact that these are precipitated particularly finely and evenly distributed.
  • Zirconium and cobalt also contribute to increases in strength at elevated temperatures, particularly in the bowl edge area.
  • the aluminum alloys mentioned advantageously contain preferably 0.6% by weight to 0.8% by weight magnesium, which in the preferred concentration range contributes in particular to the effective formation of secondary, strength-increasing phases without excessive oxide formation occurring.
  • the alloy preferably has 0.4% by weight to 0.6% by weight iron, which advantageously reduces the tendency of the alloy to stick in the casting mold, with the formation of plate-like phases remaining limited in the concentration range mentioned.
  • the aluminum alloys described above can also contain from about 0.0005, preferably from >about 0.006 and more preferably from about 0.01% by weight up to about 0.5, preferably up to about ⁇ about 0.1% by weight beryllium (Be) included, wherein the content of calcium is limited to ⁇ about 0.0005% by weight.
  • Be beryllium
  • the aluminum alloy defined in claims 1 and 9 compulsorily contains 0.0005% by weight to 0.5% by weight of beryllium.
  • the addition of beryllium results in particularly good castability of the alloy. Its addition to the melt causes a dense oxide skin on the melt, which acts as a diffusion barrier and reduces oxidation and hydrogen absorption in the melt. Also, the diffusion of aluminum and magnesium to the outside can be prevented. The above effects are particularly relevant when using holding furnaces.
  • a fine/thin oxide layer is formed on the solidification front during casting, for example in a mold, which improves flowability. Overall, thin walls and fine mold structures can thus be filled better and without additional auxiliary measures.
  • the addition of beryllium improves the overall strength characteristics of the alloy. A higher density of strength-increasing precipitations can be achieved during aging.
  • the addition of beryllium complements the beneficial effects of the present aluminum alloys by reducing melt oxidation, contributing to better castability, particularly in gravity die casting, and improving the strength of the alloy.
  • composition A B C D si at least 9 9 9 7 Max ⁇ 10.5 ⁇ 10.5 ⁇ 12 ⁇ 14.5 no at least > 2.0 > 1.2 2 Max ⁇ 3.5 ⁇ 2.0 ⁇ 3.5 ⁇ 4 Cu at least > 5.2 > 5.2 > 3.7 Max ⁇ 10 ⁇ 10 5.2 ⁇ 5.5 co at least Max ⁇ 1 ⁇ 1 ⁇ 1 ⁇ 1 mg at least 0.5 0.5 0.5 0.1 Max 1.5 1.5 1.5 1.2 feet at least 0.1 0.1 0.1 Max 0.7 0.7 ⁇ 0.7 Mn at least 0.1 0.1 0.1 Max 0.4 0.4 ⁇ 0.7 Zr at least 0.2 0.2 0.2 > 0.1 Max ⁇ 0.4 ⁇ 0.4 ⁇ 0.5 V at least > 0.1 > 0.1 0.1 Max ⁇ 0.2 ⁇ 0.2 0.3 ⁇ 0.3 Ti at least 0.05 0.05 0.1 Max ⁇ 0.2 ⁇ 0.2 0.5 V at least > 0.1 > 0.1 0.1 Max ⁇ 0.2 ⁇ 0.2 0.3 ⁇ 0.3 Ti at least 0.05 0.05 0.1
  • Alloys A, B and C realize the technical advantages mentioned above.
  • the comparatively high Cu and Zr content of alloy A proves to be advantageous, which causes an increase in precipitations that increase strength.
  • the comparatively increased content of Zr, V and Ti in alloy C also contributes to the increase in strength-increasing precipitations.
  • an increased Zr content causes a further improvement in strength.
  • Alloy C particularly preferably has an Si content of ⁇ 10.5% by weight.
  • Alloy D not the subject of this invention, is advantageous in that the addition of beryllium as described above improves the oxidation and flow behavior of the melt as well as the strength of the alloy.
  • Alloy D can also have the alloying elements in the following preferred concentration ranges: nickel (Ni) from about 2 to ⁇ about 3.5% by weight, copper (Cu) from > about 3.7 to about 5.2% by weight , magnesium (Mg) from > about 0.65 to ⁇ about 0.8% by weight, iron (Fe) from about 0.4 to about 0.6% by weight, manganese (Mn) from about 0.1 to about 0.4% by weight and for beryllium, the preferred concentration limits set forth above.
  • nickel (Ni) from about 2 to ⁇ about 3.5% by weight
  • copper (Cu) from > about 3.7 to about 5.2% by weight
  • magnesium (Mg) from > about 0.65 to ⁇ about 0.8% by weight
  • iron (Fe) from about 0.4 to about 0.6% by weight
  • manganese (Mn) from about 0.1 to about 0.4% by weight
  • the presence/addition of beryllium to improve the oxidation, flow and strength properties is also possible in/to alloys A, B and C.
  • the calcium content should also be considered be limited to the specified low level so as not to counteract the beneficial effects of the beryllium. Overall, there is a certain combinability between alloys A, B and C, so that their advantageous technical effects can also be realized together in a single alloy.
  • the weight ratio of iron to manganese in the aluminum alloys mentioned is at most about 5:1, preferably about 2.5:1.
  • the aluminum alloy contains at most five parts iron to one part manganese, preferably about 2.5 parts iron to one part manganese.
  • Particularly advantageous strength properties of the engine component are achieved as a result of this relationship.
  • the nickel concentration is ⁇ 3.5% by weight, otherwise too large, plate-like (primary, nickel-rich) phases can form in the structure, which can reduce the strength and/or service life due to their notch effect.
  • the preferred nickel concentrations greater than >1.2 wt% a thermally stable primary phase network with connectivity and contiguity is created.
  • the sum of nickel and cobalt in the aluminum alloys mentioned is >2.0% by weight and ⁇ 3.8% by weight.
  • the lower limit thereby ensures an advantageous strength of the alloy and the upper limit advantageously ensures a fine microstructure and avoids the formation of coarse, plate-like phases which would reduce the strength.
  • the aluminum alloys advantageously have a fine microstructure with a low content of pores and inclusions and/or little and small primary silicon, particularly in the highly stressed bowl edge area.
  • a low content of pores should preferably be understood to mean a porosity of ⁇ 0.01% and a small amount of primary silicon to be ⁇ 1%.
  • the fine microstructure is advantageously described in that the average length of the primary silicon is approximately ⁇ 5 ⁇ m and its maximum length is approximately ⁇ 10 ⁇ m and the intermetallic phases and/or primary precipitations have lengths of approximately ⁇ 30 ⁇ m and on average have a maximum of ⁇ 50 ⁇ m.
  • the fine microstructure contributes in particular to improving the thermomechanical fatigue strength. Limiting the size of the primary phases can reduce the susceptibility to crack initiation and crack propagation, thus significantly increasing the TMF-HCF lifetime. Furthermore, due to the notch effect of pores and inclusions, it is particularly advantageous to keep their content low.
  • An engine component according to the invention consists at least partially of one of the aluminum alloys mentioned above.
  • a further independent aspect of the invention lies in the use of the aluminum alloys listed above for the production of an engine component, in particular a piston of an internal combustion engine, according to claim 17.
  • the aluminum alloys found are processed in the gravity die casting process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Description

Technisches Gebiettechnical field

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung und Verwendung eines Motorbauteils, insbesondere eines Kolbens für einen Verbrennungsmotor, bei dem eine Aluminiumlegierung im Schwerkraftkokillengussverfahren abgegossen wird, ein Motorbauteil, das zumindest teilweise aus einer Aluminiumlegierung besteht, und die Verwendung einer Aluminiumlegierung zur Herstellung eines solchen Motorbauteils.The present invention relates to a method for producing and using an engine component, in particular a piston for an internal combustion engine, in which an aluminum alloy is cast using the gravity die casting method, an engine component which consists at least partially of an aluminum alloy, and the use of an aluminum alloy for producing such an engine component .

Stand der TechnikState of the art

In den letzten Jahren wurden zunehmend Forderungen nach besonders ökonomischen und damit ökologischen Transportmitteln laut, die hohen Verbrauchs- und Emissionsanforderungen gerecht werden müssen. Zudem besteht jeher das Bedürfnis, Motoren möglichst leistungsfähig und verbrauchsarm zu gestalten. Ein entscheidender Faktor bei der Entwicklung von leistungsfähigen und emissionsarmen Verbrennungsmotoren sind Kolben, die bei immer höheren Verbrennungstemperaturen und Verbrennungsdrücken eingesetzt werden können, was im Wesentlichen durch immer leistungsfähigere Kolbenwerkstoffe ermöglicht wird.In recent years, there have been increasing demands for particularly economical and therefore ecological means of transport that have to meet high consumption and emission requirements. In addition, there has always been a need to design engines that are as powerful and fuel-efficient as possible. A decisive factor in the development of powerful and low-emission internal combustion engines are pistons, which can be used at ever higher combustion temperatures and combustion pressures, which is essentially made possible by ever more powerful piston materials.

Grundsätzlich muss ein Kolben für einen Verbrennungsmotor eine hohe Warmfestigkeit aufweisen und dabei gleichzeitig möglichst leicht und fest sein. Dabei ist es von besonderer Bedeutung, wie die mikrostrukturelle Verteilung, Morphologie, Zusammensetzung und thermische Stabilität höchstwarmfester Phasen ausgebildet sind. Eine diesbezügliche Optimierung berücksichtigt üblicherweise einen minimalen Gehalt an Poren und oxidischen Einschlüssen.Basically, a piston for an internal combustion engine must have high heat resistance and at the same time be as light and strong as possible. It is of particular importance how the microstructural distribution, morphology, composition and thermal stability of high-temperature phases are developed. Such optimization usually takes into account a minimal content of pores and oxidic inclusions.

Der gesuchte Werkstoff muss sowohl hinsichtlich isothermer Schwingfestigkeit (HCF) als auch hinsichtlich thermomechanischer Ermüdungsfestigkeit (TMF) optimiert werden. Um die TMF optimal auszugestalten ist stets eine möglichst feine Mikrostruktur des Werkstoffs anzustreben. Eine feine Mikrostruktur reduziert die Gefahr des Entstehens von Mikroplastizität bzw. von Mikrorissen an relativ großen primären Phasen (insbesondere an primären Siliziumausscheidungen) und damit auch die Gefahr von Rissinitiierung und - ausbreitung.The material sought must be optimized in terms of both isothermal fatigue strength (HCF) and thermomechanical fatigue strength (TMF). In order to optimally design the TMF, the microstructure of the material should always be as fine as possible. A fine microstructure reduces the risk of microplasticity or microcracks developing in relatively large primary phases (particularly in primary silicon precipitations) and thus also the risk of crack initiation and propagation.

Unter TMF-Beanspruchung treten an relativ großen primären Phasen, insbesondere an primären Siliziumausscheidungen, aufgrund unterschiedlicher Ausdehnungskoeffizienten der einzelnen Bestandteile der Legierung, nämlich der Matrix und der primären Phasen, Mikroplastizitäten bzw. Mikrorisse auf, welche die Lebensdauer des Kolbenwerkstoffs erheblich senken können. Zur Erhöhung der Lebensdauer ist bekannt, die primären Phasen möglichst klein zu halten.Under TMF stress, microplasticities or microcracks appear in relatively large primary phases, in particular in primary silicon precipitations, due to different coefficients of expansion of the individual components of the alloy, namely the matrix and the primary phases, which can significantly reduce the service life of the piston material. To increase the service life, it is known to keep the primary phases as small as possible.

Beim verwendeten Schwerkraftkokillenguss gibt es eine Konzentrationsobergrenze, bis zu der Legierungselemente eingebracht werden sollten und bei deren Überschreiten die Gießbarkeit der Legierung verringert oder Gießen unmöglich wird. Darüber hinaus kommt es bei zu hohen Konzentrationen von festigkeitssteigernden Elementen zur Bildung großer plattenförmiger intermetallischer Phasen, welche die Ermüdungsfestigkeit drastisch absenken.When gravity die casting is used, there is an upper concentration limit up to which alloying elements should be introduced, and above which the castability of the alloy is reduced or casting becomes impossible. In addition, if the concentration of strength-increasing elements is too high, large plate-like intermetallic phases are formed, which drastically reduce the fatigue strength.

Die JP 2004-256873A beschreibt eine Legierung die insbesondere für Kolben verwendet wird.the JP 2004-256873A describes an alloy that is used in particular for pistons.

Die DE 44 04 420 A1 beschreibt eine Legierung die insbesondere für Kolben und für Bauteile verwendet werden kann, die hohen Temperaturen ausgesetzt werden und mechanisch stark beansprucht werden. Die beschriebene Aluminiumlegierung umfasst 8,0 bis 10,0 Gew.-% Silizium, 0,8 bis 2,0 Gew.-% Magnesium, 4,0 bis 5,9 Gew.-% Kupfer, 1,0 bis 3,0 Gew.-% Nickel, 0,2 bis 0,4 Gew.-% Mangan, weniger als 0,5 Gew.-% Eisen sowie mindestens ein Element, ausgewählt aus Antimon, Zirkonium, Titan, Strontium, Kobalt, Chrom, und Vanadium, wobei mindestens eines dieser Elemente in einer Menge von >0,3 Gew.-% vorhanden ist wobei die Summe dieser Elemente <0,8 Gew.-% ist.the DE 44 04 420 A1 describes an alloy that can be used in particular for pistons and components that are exposed to high temperatures and are subject to high mechanical stress. The aluminum alloy described comprises 8.0 to 10.0% by weight silicon, 0.8 to 2.0% by weight magnesium, 4.0 to 5.9% by weight copper, 1.0 to 3.0 wt% nickel, 0.2 to 0.4 wt% manganese, less than 0.5 wt% iron, and at least one element selected from antimony, zirconium, titanium, strontium, cobalt, chromium, and vanadium , wherein at least one of these elements is present in an amount >0.3% by weight, the sum of these elements being <0.8% by weight.

Die EP 0 924 310 B1 beschreibt eine Aluminium-Siliziumlegierung die ihre Anwendung in der Herstellung von Kolben, insbesondere für Kolben in Brennkraftmaschinen hat. Die Aluminiumlegierung weist die folgende Zusammensetzung auf: 10,5 bis 13,5 Gew.-% Silizium, 2,0 bis weniger als 4,0 Gew.-% Kupfer 0,8 bis 1,5 Gew.-% Magnesium, 0,5 bis 2,0 Gew.-% Nickel, 0,3 bis 0,9 Gew.-% Kobalt, wenigstens 20 ppm Phosphor und entweder 0,05 bis 0,2 Gew.-% Titan oder bis zu 0,2 Gew.-% Zirkonium und/oder bis zu 0,2 Gew.-% Vanadium und als Rest Aluminium und unvermeidbare Verunreinigungen.the EP 0 924 310 B1 describes an aluminium-silicon alloy which is used in the production of pistons, in particular for pistons in internal combustion engines. The aluminum alloy has the following composition: 10.5 to 13.5% by weight silicon, 2.0 to less than 4.0% by weight copper 0.8 to 1.5% by weight magnesium, 0. 5 to 2.0 wt% nickel, 0.3 to 0.9 wt% cobalt, at least 20 ppm phosphorus and either 0.05 to 0.2 wt% titanium or up to 0.2 wt% -% zirconium and/or up to 0.2% by weight vanadium and balance aluminum and unavoidable impurities.

Die WO 00/71767 A1 beschreibt eine Aluminiumlegierung die geeignet für Hochtemperaturanwendungen ist, wie z.B. hochbelastete Kolben oder andere Anwendungen in Brennkraftmaschinen. Die Aluminiumlegierung setzt sich dabei aus folgenden Elementen zusammen: 6,0 bis 14,0 Gew.-% Silizium, 3,0 bis 8,0 Gew.-% Kupfer, 0,01 bis 0,8 Gew.-% Eisen, 0,5 bis 1,5 Gew.-% Magnesium, 0,05 bis 1,2 Gew.-% Nickel, 0,01 bis 1,0 Gew.-% Mangan, 0,05 bis 1,2 Gew.-% Titan, 0,05 bis 1,2 Gew.-% Zirkonium, 0,05 bis 1,2 Gew.-% Vanadium, 0,001 bis 0,10 Gew.-% Strontium und als Rest Aluminium.the WO 00/71767 A1 describes an aluminum alloy suitable for high temperature applications such as highly loaded pistons or other internal combustion engine applications. The aluminum alloy is composed of the following elements: 6.0 to 14.0% by weight silicon, 3.0 to 8.0% by weight copper, 0.01 to 0.8% by weight iron, 0 .5 to 1.5 wt% magnesium, 0.05 to 1.2 wt% nickel, 0.01 to 1.0 wt% manganese, 0.05 to 1.2 wt% titanium , 0.05 to 1.2% by weight zirconium, 0.05 to 1.2% by weight vanadium, 0.001 to 0.10% by weight strontium and the balance aluminum.

Die DE 103 33 103 B4 beschreibt einen Kolben der aus einer Aluminiumgusslegierung gefertigt ist, wobei die Aluminiumgusslegierung enthält: 0,2 oder weniger Gew.-% Magnesium, 0,05 bis 0,3 Masse% Titan, 10 bis 21 Gew.-% Silizium, 2 bis 3,5 Gew.-% Kupfer, 0,1 bis 0,7 Gew.-% Eisen, 1 bis 3 Gew.-% Nickel, 0,001 bis 0,02 Gew.-% Phosphor, 0,02 bis 0,3 Gew.-% Zirkonium und als Rest Aluminium und Verunreinigungen.the DE 103 33 103 B4 describes a piston made of an aluminum cast alloy, the aluminum cast alloy containing: 0.2% by weight or less magnesium, 0.05 to 0.3% by weight titanium, 10 to 21% by weight silicon, 2 to 3, 5% by weight copper, 0.1 to 0.7% by weight iron, 1 to 3% by weight nickel, 0.001 to 0.02% by weight phosphorus, 0.02 to 0.3% by weight % zirconium and balance aluminum and impurities.

Weiter wird beschrieben, dass die Größe von einem nicht-metallischen Einschluss, der innerhalb des Kolbens vorhanden ist, geringer als 100 µm ist.Further, it is described that the size of a nonmetallic inclusion present inside the bulb is less than 100 µm.

Die EP 1 975 262 B1 beschreibt eine Aluminiumgusslegierung bestehend aus: 6 bis 9 % Silizium, 1,2 bis 2,5 % Kupfer, 0,2 bis 0,6 % Magnesium, 0,2 bis 3 % Nickel, 0,1 bis 0,7 % Eisen, 0,1 bis 0,3 % Titan, 0,03 bis 0,5 % Zirkonium, 0,1 bis 0,7 % Mangan, 0,01 bis 0,5 % Vanadium und einem oder mehreren der folgenden Elemente: Strontium 0,003 bis 0,05 %, Antimon 0,02 bis 0,2 % und Natrium 0,001 bis 0,03 %, wobei die Gesamtmenge aus Titan und Zirkonium weniger als 0,5 % beträgt und Aluminium und unvermeidbare Verunreinigungen den Rest bilden, wenn die Gesamtmenge als 100 Massenprozent angesetzt wird.the EP 1 975 262 B1 describes a cast aluminum alloy consisting of: 6 to 9% silicon, 1.2 to 2.5% copper, 0.2 to 0.6% magnesium, 0.2 to 3% nickel, 0.1 to 0.7% iron, 0.1 to 0.3% titanium, 0.03 to 0.5% zirconium, 0.1 to 0.7% manganese, 0.01 to 0.5% vanadium and one or more of the following elements: strontium 0.003 to 0.05%, antimony 0.02 to 0.2% and sodium 0.001 to 0.03%, with the total amount of titanium and zirconium being less than 0.5% and aluminum and unavoidable impurities making up the balance when the total amount is as 100 percent by mass is used.

Die WO 2010/025919 A2 beschreibt ein Verfahren zur Herstellung eines Kolbens einer Brennkraftmaschine, wobei ein Kolbenrohling aus einer Aluminium-Siliziumlegierung unter Zugabe von Kupferanteilen gegossen und danach fertig bearbeitet wird. Die Erfindung sieht dabei vor, dass der Kupferanteil maximal 5,5 % der Aluminium-Siliziumlegierung beträgt und, dass der Aluminium-Siliziumlegierung Anteile von Titan (Ti), Zirkonium (Zr), Chrom (Cr) bzw. Vanadium (V) beigemischt werden und die Summe aller Bestandteile 100 % beträgt.the WO 2010/025919 A2 describes a method for producing a piston of an internal combustion engine, in which a piston blank is cast from an aluminum-silicon alloy with the addition of copper and then finish-machined. The invention provides that the copper content is a maximum of 5.5% of the aluminium-silicon alloy and that proportions of titanium (Ti), zirconium (Zr), chromium (Cr) or vanadium (V) are added to the aluminium-silicon alloy and the sum of all components is 100%.

Die Anmeldung DE 102011083969 betrifft ein Verfahren zur Herstellung eines Motorbauteils, insbesondere eines Kolbens für einen Verbrennungsmotor, bei dem eine Aluminiumlegierung im Schwerkraftkokillengussverfahren abgegossen wird, ein Motorbauteil, das zumindest teilweise aus einer Aluminiumlegierung besteht, und die Verwendung einer Aluminiumlegierung zur Herstellung eines Motorbauteils. Dabei weist die Aluminiumlegierung die folgenden Legierungselemente auf: 6 bis 10 Gew.-% Silizium, 1,2 bis 2 Gew.-% Nickel, 8 bis 10 Gew.-% Kupfer, 0,5 bis 1,5 Gew.-% Magnesium, 0,1 bis 0,7 Gew.-% Eisen, 0,1 bis 0,4 Gew.-% Mangan, 0,2 bis 0,4 Gew.-% Zirkonium, 0,1 bis 0,3 Gew-% Vanadium, 0,1 bis 0,5 Gew.-% Titan und Aluminium sowie vermeidbare Verunreinigungen als Rest. Vorzugsweise weist diese Legierung einen Phosphorgehalt von weniger als 30 ppm auf.The registration UK 102011083969 relates to a method for producing an engine component, in particular a piston for an internal combustion engine, in which an aluminum alloy is cast using the gravity die casting method, an engine component which consists at least partially of an aluminum alloy, and the use of an aluminum alloy for producing an engine component. The aluminum alloy has the following alloying elements: 6 to 10% by weight silicon, 1.2 to 2% by weight nickel, 8 to 10% by weight copper, 0.5 to 1.5% by weight magnesium , 0.1 to 0.7 wt% iron, 0.1 to 0.4 wt% manganese, 0.2 to 0.4 wt% zirconium, 0.1 to 0.3 wt% vanadium, 0.1 to 0.5% by weight titanium and aluminum and the balance, avoidable impurities. This alloy preferably has a phosphorus content of less than 30 ppm.

Abschließend soll die EP 1 340 827 B1 genannt werden, welche die Effekte von Beryllium in einer Aluminium-Silizium-Gusslegierung mit relativ geringer Magnesiumkonzentration beschreibt. Zugaben von 5 - 100 ppm Beryllium tragen dabei zur Bildung einer vorteilhaften, dünnen, stöchiometrischen MgO-Schicht bei, welche die Fließfähigkeit und das Kurzzeitoxidationsverhalten der Legierung begünstigt.Finally, the EP 1 340 827 B1 be mentioned, which describes the effects of beryllium in an aluminium-silicon cast alloy with a relatively low magnesium concentration. Additions of 5 - 100 ppm beryllium contribute to the formation of an advantageous, thin, stoichiometric MgO layer, which promotes the fluidity and short-term oxidation behavior of the alloy.

Darstellung der ErfindungPresentation of the invention

Eine Aufgabe der vorliegenden Erfindung liegt darin, ein Verfahren zur Herstellung eines Motorbauteils, insbesondere eines Kolbens für einen Verbrennungsmotor bereitzustellen, bei dem eine Aluminiumlegierung im Schwerkraftkokillengussverfahren abgegossen wird, so dass ein höchstwarmfestes Motorbauteil im Schwerkraftkokillengussverfahren hergestellt werden kann.An object of the present invention is to provide a method for producing an engine component, in particular a piston for an internal combustion engine, in which an aluminum alloy is cast using the gravity die casting method, so that a highly heat-resistant engine component can be produced using the gravity die casting method.

Die Lösung dieser Aufgabe wird durch die Verfahren gemäß den Ansprüchen 1 bis 4 bereitgestellt. Weitere bevorzugte Ausführungsformen der Erfindung ergeben sich aus den diesbezüglichen Unteransprüchen.The solution to this problem is provided by the methods according to claims 1 to 4. Further preferred embodiments of the invention result from the relevant dependent claims.

Eine weitere Aufgabe der Erfindung liegt darin, ein Motorbauteil, insbesondere einen Kolben für einen Verbrennungsmotor, bereitzustellen, das/der höchstwarmfest ist und dabei zumindest teilweise aus einer Aluminiumlegierung besteht.A further object of the invention is to provide an engine component, in particular a piston for an internal combustion engine, which is highly heat-resistant and at the same time consists at least partially of an aluminum alloy.

Diese Aufgabe wird durch den Gegenstand der Ansprüche 9 bis 12 gelöst und weitere bevorzugte Ausführungsformen ergeben sich aus den diesbezüglichen Unteransprüchen.This object is solved by the subject matter of claims 9 to 12 and further preferred embodiments result from the relevant subclaims.

Bei einem erfindungsgemäßen Verfahren weist die Aluminiumlegierung eine chemische Zusammensetzung gemäß der Definition in den angehängten Ansprüchen auf. Innerhalb der durch die unabhängigen Ansprüche vorgegebenen Grenzen können die Gehalte der jeweiligen Legierungselemente wie folgt variiert werden:

  • Silizium (Si) von etwa 7, bevorzugt von etwa 9 Gew.-% bis zu < etwa 14,5, bevorzugt bis zu < etwa 12, weiter bevorzugt bis zu < etwa 10,5 und noch weiter bevorzugt bis zu < etwa 10 Gew.-%;
  • Nickel (Ni) von > etwa 1,2, bevorzugt von > etwa 2 Gew.-% t bis zu < etwa 3,5 und weiter bevorzugt bis zu < etwa 2 Gew.-%;
  • Kupfer (Cu) von > etwa 3,7, bevorzugt von > etwa 5,2 und weiter bevorzugt von > 5,5 Gew.-% bis zu < etwa 10, bevorzugt bis zu < etwa 8, weiter bevorzugt bis zu ≤ etwa 5,5 und noch weiter bevorzugt bis zu etwa 5,2 Gew.-%;
  • Kobalt (Co) bis zu < etwa 1 Gew.-%, bevorzugt von > etwa 0,2 Gew.-% bis < etwa 1 Gew.-%;
  • Magnesium (Mg) von etwa 0,1, bevorzugt von etwa 0,5, weiter bevorzugt von etwa 0,6, noch weiter bevorzugt von > etwa 0,65 und insbesondere bevorzugt ≥ etwa 1,2 bis zu etwa 1,5, bevorzugt bis zu etwa 1,2 Gew.-% und noch weiter bevorzugt bis zu ≤ etwa 0,8 Gew.-%;
  • Eisen (Fe) von etwa 0,1, bevorzugt von etwa 0,4 Gew.-% bis zu ≤ etwa 0,7, bevorzugt bis zu etwa 0,6 Gew.-%;
  • Mangan (Mn) von etwa 0,1 Gew.-% bis zu ≤ etwa 0,7 und bevorzugt bis zu etwa 0,4 Gew.-%;
  • Zirkonium (Zr) von > etwa 0,1, bevorzugt von etwa > 0,2 Gew.-% bis zu < etwa 0,5, bevorzugt bis zu ≤ etwa 0,4 und weiter bevorzugt bis zu < etwa 0,2 Gew.-%;
  • Vanadium (V) von ≥ etwa 0,1 Gew.-% bis zu ≤ etwa 0,3, bevorzugt bis zu < etwa 0,2 Gew.-%;
  • Titan (Ti) von etwa 0,05, bevorzugt von etwa 0,1 Gew.-% bis zu etwa 0,5, bevorzugt bis zu ≤ etwa 0,2 Gew.-%;
  • Phosphor (P) von etwa 0,004 Gew.-% bis zu etwa ≤ 0,05, bevorzugt bis zu etwa 0,008 Gew.-%.
Als Verunreinigungen können ferner oben nicht genannte Elemente angesehen werden. Das Verunreinigungsniveau kann beispielsweise 0,01 Gew.-% je Verunreinigungselement bzw. 0,2 Gew.-% in Summe betragen.In a method according to the invention, the aluminum alloy has a chemical composition as defined in the appended claims. Within the limits specified by the independent claims, the contents of the respective alloying elements can be varied as follows:
  • Silicon (Si) from about 7, preferably from about 9 wt.% up to <about 14.5, preferably up to <about 12, more preferably up to <about 10.5 and even more preferably up to <about 10 wt %;
  • nickel (Ni) from > about 1.2, preferably from > about 2 wt% t up to < about 3.5 and more preferably up to < about 2 wt%;
  • Copper (Cu) from > about 3.7, preferably from > about 5.2 and more preferably from > 5.5% by weight up to < about 10, preferably up to < about 8, more preferably up to ≤ about 5 .5 and even more preferably up to about 5.2% by weight;
  • cobalt (Co) up to < about 1% by weight, preferably from > about 0.2% by weight to < about 1% by weight;
  • Magnesium (Mg) from about 0.1, preferably from about 0.5, more preferably from about 0.6, even more preferably from >about 0.65 and particularly preferably ≥ about 1.2 up to about 1.5 up to about 1.2% by weight, and even more preferably up to ≤ about 0.8% by weight;
  • iron (Fe) from about 0.1, preferably from about 0.4% by weight up to ≤ about 0.7, preferably up to about 0.6% by weight;
  • manganese (Mn) from about 0.1 wt% up to ≤ about 0.7 and preferably up to about 0.4 wt%;
  • Zirconium (Zr) from > about 0.1, preferably from about > 0.2% by weight up to < about 0.5, preferably up to ≤ about 0.4 and more preferably up to < about 0.2% by weight. -%;
  • vanadium (V) from ≥ about 0.1% by weight up to ≤ about 0.3% by weight, preferably up to < about 0.2% by weight;
  • titanium (Ti) from about 0.05, preferably from about 0.1% by weight up to about 0.5, preferably up to ≤ about 0.2% by weight;
  • Phosphorus (P) from about 0.004% by weight up to about ≤ 0.05%, preferably up to about 0.008% by weight.
Elements not mentioned above can also be regarded as impurities. The impurity level can be, for example, 0.01% by weight per impurity element or 0.2% by weight in total.

Durch die gewählte Aluminiumlegierung ist es möglich, im Schwerkraftkokillengussverfahren ein Motorbauteil herzustellen, das einen hohen Anteil fein verteilter, hochwarmfester, thermisch stabiler Phasen und eine feine Mikrostruktur aufweist. Die Anfälligkeit gegenüber Rissinitiierung und Rissausbreitung z.B. an Oxiden oder primären Phasen wird durch die Wahl der erfindungsgemäßen Legierung gegenüber den bisher bekannten Herstellungsverfahren von Kolben und ähnlichen Motorbauteilen reduziert und die TMF-HCF-Lebensdauer erhöht.The aluminum alloy selected makes it possible to use gravity die casting to produce an engine component that has a high proportion of finely divided, highly heat-resistant, thermally stable phases and a fine microstructure. The susceptibility to crack initiation and crack propagation, e.g. on oxides or primary phases, is reduced by the choice of the alloy according to the invention compared to the previously known manufacturing processes for pistons and similar engine components, and the TMF-HCF service life is increased.

Die erfindungsgemäße Legierung, insbesondere der vergleichsweise geringe Siliziumgehalt, führt auch dazu, dass zumindest bei einem erfindungsgemäß hergestellten Kolben in dessen thermisch hochbelastetem Muldenrandbereich vergleichsweise weniger und feineres primäres Silizium vorliegt, sodass die Legierung zu besonders guten Eigenschaften eines erfindungsgemäß hergestellten Kolbens führt. Somit kann ein höchstwarmfestes Motorbauteil im Schwerkraftkokillengussverfahren hergestellt werden. Die erfindungsgemäßen Anteile an Kupfer, Zirkonium, Vanadium und Titan, insbesondere der vergleichsweise hohe Gehalt an Zirkonium, Vanadium und Titan bewirken einen vorteilhaften Anteil festigkeitssteigernder Ausscheidungen, ohne dabei jedoch große plattenförmige intermetallische Phasen zu verursachen. Beispielsweise können die Legierungseigenschaften durch eine gezielte Auswahl des Cu-Gehalts in dem erfindungsgemäßen Bereich anwendungsspezifisch optimiert werden. Höhere Cu-Gehalte verbessern insbesondere die Warmfestigkeit der Legierung. Geringere Gehalte erlauben hingegen die Erhöhung der Wärmeleitfähigkeit und Verringerung der Dichte der Legierung. Ferner sind die erfindungsgemäßen Anteile an Kobalt und Phosphor vorteilhaft darin, dass Kobalt die Härte und (Warm-)Festigkeit der Legierung erhöht und Phosphor als Keimbildner für primäre Siliziumausscheidungen dazu beiträgt, dass diese besonders fein und gleichmäßig verteilt ausgeschieden werden. Zirkonium und Kobalt tragen zudem, insbesondere im Muldenrandbereich, zu Festigkeitssteigerungen bei erhöhten Temperaturen bei.The alloy according to the invention, in particular the comparatively low silicon content, also means that, at least in the case of a piston produced according to the invention, comparatively less and finer primary silicon is present in its thermally highly stressed bowl edge area, so that the alloy leads to particularly good properties of a piston produced according to the invention. Thus, a highly heat-resistant engine component can be manufactured using the gravity die casting process. The proportions of copper, zirconium, vanadium and titanium according to the invention, in particular the comparatively high content of zirconium, vanadium and titanium, bring about an advantageous proportion of strength-increasing precipitations without, however, causing large plate-like intermetallic phases. For example, the alloy properties can be optimized specifically for the application by a targeted selection of the Cu content in the range according to the invention. Higher Cu contents improve the high-temperature strength of the alloy in particular. Lower contents, on the other hand, allow increasing the thermal conductivity and reducing the density of the alloy. Furthermore, the proportions of cobalt and phosphorus according to the invention are advantageous in that cobalt increases the hardness and (high-temperature) strength of the alloy and phosphorus, as a nucleating agent for primary silicon precipitations, contributes to the fact that these are precipitated particularly finely and evenly distributed. Zirconium and cobalt also contribute to increases in strength at elevated temperatures, particularly in the bowl edge area.

Mit Vorteil weisen die genannten Aluminiumlegierungen bevorzugt 0,6 Gew.-% bis 0,8 Gew.-% Magnesium auf, das in dem bevorzugten Konzentrationsbereich insbesondere zur wirkungsvollen Ausbildung sekundärer, festigkeitssteigernder Phasen beiträgt, ohne dass eine übermäßige Oxidbildung auftritt. Ferner weist die Legierung alternativ oder zusätzlich bevorzugt 0,4 Gew.-% bis 0,6 Gew.-% Eisen auf, das die Klebeneigung der Legierung in der Gießkokille vorteilhaft vermindert, wobei in dem genannten Konzentrationsbereich die Bildung plattenförmiger Phasen begrenzt bleibt.The aluminum alloys mentioned advantageously contain preferably 0.6% by weight to 0.8% by weight magnesium, which in the preferred concentration range contributes in particular to the effective formation of secondary, strength-increasing phases without excessive oxide formation occurring. Alternatively or additionally, the alloy preferably has 0.4% by weight to 0.6% by weight iron, which advantageously reduces the tendency of the alloy to stick in the casting mold, with the formation of plate-like phases remaining limited in the concentration range mentioned.

Die oben beschriebenen Aluminiumlegierungen können zudem von etwa 0,0005, bevorzugt von > etwa 0,006 und weiter bevorzugt von etwa 0,01 Gew.-% bis zu etwa 0,5, bevorzugt bis zu etwa < etwa 0,1 Gew.-% Beryllium (Be) enthalten, wobei der Gehalt an Kalzium auf ≤ etwa 0,0005 Gew.-% begrenzt ist. Die in den Ansprüchen 1 und 9 definierte Aluminiumlegierung beinhaltet zwingend 0,0005 Gew.-% bis 0,5 Gew.-% Beryllium. Aus der Zugabe von Beryllium resultiert eine besonders gute Gießbarkeit der Legierung. Dessen Zugabe in die Schmelze bewirkt eine dichte Oxidhaut auf der Schmelze, welche als Diffusionsbarriere fungiert und die Oxidation und Wasserstoffaufnahme der Schmelze reduziert. Auch kann die Diffusion von Aluminium und Magnesium nach außer verhindert werden. Obige Effekte sind insbesondere beim Einsatz von Warmhalteöfen relevant. Zusätzlich kommt es zur Bildung einer feinen/dünnen Oxidschicht an der Erstarrungsfront beim Gießen, zum Beispiel in einer Kokille, welche das Fließvermögen verbessert. Insgesamt können somit dünne Wände und feine Formstrukturen besser und ohne zusätzliche Hilfsmaßnahmen gefüllt werden. Zusätzlich dazu verbessert die Zugabe von Beryllium die Festigkeitskennwerte der Legierung insgesamt. Während der Alterung ist eine höhere Dichte an festigkeitssteigernden Ausscheidungen erzielbar. Die Zugabe von Beryllium ergänzt die vorteilhaften Effekte der vorliegenden Aluminiumlegierungen um eine Reduzierung der Oxidation der Schmelze, trägt zur besseren Gießbarkeit, insbesondere im Schwerkraftkokillenguss, bei und verbessert die Festigkeit der Legierung. Gleichzeitig ist es bevorzugt, den Kalziumgehalt auf das obige niedrige Niveau zu begrenzen. Die gleichzeitige Anwesenheit von darüber hinausgehenden Gehalten an Kalzium kann den vorteilhaften Effekten des Berylliums entgegenwirken und die Oxidation verstärken. Diesbezüglich ist ein möglichst geringer Kalziumgehalt vorteilhaft.The aluminum alloys described above can also contain from about 0.0005, preferably from >about 0.006 and more preferably from about 0.01% by weight up to about 0.5, preferably up to about <about 0.1% by weight beryllium (Be) included, wherein the content of calcium is limited to ≤ about 0.0005% by weight. The aluminum alloy defined in claims 1 and 9 compulsorily contains 0.0005% by weight to 0.5% by weight of beryllium. The addition of beryllium results in particularly good castability of the alloy. Its addition to the melt causes a dense oxide skin on the melt, which acts as a diffusion barrier and reduces oxidation and hydrogen absorption in the melt. Also, the diffusion of aluminum and magnesium to the outside can be prevented. The above effects are particularly relevant when using holding furnaces. In addition, a fine/thin oxide layer is formed on the solidification front during casting, for example in a mold, which improves flowability. Overall, thin walls and fine mold structures can thus be filled better and without additional auxiliary measures. In addition, the addition of beryllium improves the overall strength characteristics of the alloy. A higher density of strength-increasing precipitations can be achieved during aging. The addition of beryllium complements the beneficial effects of the present aluminum alloys by reducing melt oxidation, contributing to better castability, particularly in gravity die casting, and improving the strength of the alloy. At the same time, it is preferable to limit the calcium content to the above low level. The simultaneous presence of higher levels of calcium can counteract the beneficial effects of beryllium and increase oxidation. In this regard, the lowest possible calcium content is advantageous.

Besonders bevorzugte Aluminiumlegierungen A, B und C der vorliegenden Erfindung ergeben sich aus nachfolgender Tabelle (Angaben in Gew.-%): Zusammensetzung A B C D Si min 9 9 9 7 max < 10,5 < 10,5 < 12 < 14,5 Ni min > 2,0 > 1,2 2 max < 3,5 < 2,0 < 3,5 ≤ 4 Cu min > 5,2 > 5,2 > 3,7 max < 10 < 10 5,2 ≤ 5,5 Co min max < 1 < 1 < 1 < 1 Mg min 0,5 0,5 0,5 0,1 max 1,5 1,5 1,5 1,2 Fe min 0,1 0,1 0,1 max 0,7 0,7 0,7 ≤ 0,7 Mn min 0,1 0,1 0,1 max 0,4 0,4 0,4 ≤ 0,7 Zr min 0,2 0,2 0,2 > 0,1 max < 0,4 < 0,4 0,4 < 0,5 V min > 0,1 > 0,1 0,1 max < 0,2 < 0,2 0,3 ≤ 0,3 Ti min 0,05 0,05 0,1 max < 0,2 < 0,2 0,5 ≤ 0,2 P min 0,004 0,004 0,004 max 0,008 0,008 0,008 ≤ 0,05 Be min - - - 0,0005 max - - - 0,5 Ca min - - - max - - - ≤ 0,0005 Rest Al und nicht zu vermeidende Verunreinigungen Particularly preferred aluminum alloys A, B and C of the present invention result from the table below (data in % by weight): composition A B C D si at least 9 9 9 7 Max < 10.5 < 10.5 < 12 < 14.5 no at least > 2.0 > 1.2 2 Max < 3.5 < 2.0 < 3.5 ≤ 4 Cu at least > 5.2 > 5.2 > 3.7 Max < 10 < 10 5.2 ≤ 5.5 co at least Max < 1 < 1 < 1 < 1 mg at least 0.5 0.5 0.5 0.1 Max 1.5 1.5 1.5 1.2 feet at least 0.1 0.1 0.1 Max 0.7 0.7 0.7 ≤ 0.7 Mn at least 0.1 0.1 0.1 Max 0.4 0.4 0.4 ≤ 0.7 Zr at least 0.2 0.2 0.2 > 0.1 Max < 0.4 < 0.4 0.4 < 0.5 V at least > 0.1 > 0.1 0.1 Max < 0.2 < 0.2 0.3 ≤ 0.3 Ti at least 0.05 0.05 0.1 Max < 0.2 < 0.2 0.5 ≤ 0.2 P at least 0.004 0.004 0.004 Max 0.008 0.008 0.008 ≤ 0.05 Be at least - - - 0.0005 Max - - - 0.5 Approx at least - - - Max - - - ≤ 0.0005 rest Al and unavoidable impurities

Die Legierungen A, B und C realisieren die oben gennannten technischen Vorteile. Darüber hinaus erweist sich bei Legierung A der vergleichsweise hohe Cu- und Zr-Gehalt als vorteilhaft, welcher eine Anhebung festigkeitssteigernder Ausscheidungen bewirkt. Gleiches gilt für die bevorzugte Legierung B, wobei diese einen verringerten Nickelgehalt aufweist, der ferner zur Senkung der Legierungskosten beiträgt. Der in Legierung C vergleichsweise erhöhte Gehalt an Zr, V und Ti trägt ebenfalls zusätzlich zur Anhebung festigkeitssteigernder Ausscheidungen bei. Generell bewirkt ein erhöhter Zr-Gehalt eine weitere Verbesserung der Festigkeit. Legierung C weist besonders bevorzugt einen Si- Gehalt < 10,5 Gew.-% auf. Legierung D, nicht Gegenstand dieser Erfindung, ist vorteilhaft darin, dass die Zugabe von Beryllium, wie oben beschrieben, das Oxidations- und Fließverhalten der Schmelze sowie die Festigkeit der Legierung verbessert. Dieser Effekt wird noch durch den vergleichsweise geringen Mg-Gehalt und den auf ein niedriges Niveau begrenzten Ca-Gehalt weiter gesteigert. Legierung D kann zudem noch die Legierungselemente in folgenden bevorzugten Konzentrationsbereichen aufweisen: Nickel (Ni) von etwa 2 bis < etwa 3,5 Gew.-%, Kupfer (Cu) von > etwa 3,7 bis etwa 5,2 Gew.-%, Magnesium (Mg) von > etwa 0,65 bis < etwa 0,8 Gew.-%, Eisen (Fe) von etwa 0,4 bis etwa 0,6 Gew.-%, Mangan (Mn) von etwa 0,1 bis etwa 0,4 Gew.-% und für Beryllium, die oben genannten bevorzugten Konzentrationsgrenzen. Optional ist die Anwesenheit/Zugabe von Beryllium zur Verbesserung der Oxidations-, Fließ- und Festigkeitseigenschaften auch in/zu den Legierungen A, B und C möglich. Dabei sollte ebenfalls der Kalziumgehalt auf das angegebene niedrige Niveau begrenzt werden, um den vorteilhaften Effekten des Berylliums nicht entgegenzuwirken. Insgesamt besteht zwischen den Legierungen A, B und C eine gewisse Kombinierbarkeit, sodass deren vorteilhafte technische Effekte auch zusammen in einer einzelnen Legierung realisiert werden können.Alloys A, B and C realize the technical advantages mentioned above. In addition, the comparatively high Cu and Zr content of alloy A proves to be advantageous, which causes an increase in precipitations that increase strength. The same applies to the preferred alloy B, which has a reduced nickel content, which also contributes to reducing the alloy costs. The comparatively increased content of Zr, V and Ti in alloy C also contributes to the increase in strength-increasing precipitations. In general, an increased Zr content causes a further improvement in strength. Alloy C particularly preferably has an Si content of <10.5% by weight. Alloy D, not the subject of this invention, is advantageous in that the addition of beryllium as described above improves the oxidation and flow behavior of the melt as well as the strength of the alloy. This effect is further increased by the comparatively low Mg content and the Ca content, which is limited to a low level. Alloy D can also have the alloying elements in the following preferred concentration ranges: nickel (Ni) from about 2 to <about 3.5% by weight, copper (Cu) from > about 3.7 to about 5.2% by weight , magnesium (Mg) from > about 0.65 to < about 0.8% by weight, iron (Fe) from about 0.4 to about 0.6% by weight, manganese (Mn) from about 0.1 to about 0.4% by weight and for beryllium, the preferred concentration limits set forth above. Optionally, the presence/addition of beryllium to improve the oxidation, flow and strength properties is also possible in/to alloys A, B and C. The calcium content should also be considered be limited to the specified low level so as not to counteract the beneficial effects of the beryllium. Overall, there is a certain combinability between alloys A, B and C, so that their advantageous technical effects can also be realized together in a single alloy.

Mit Vorteil beträgt das Gewichtsverhältnis von Eisen zu Mangan in den genannten Aluminiumlegierungen höchstens etwa 5:1 bevorzugt etwa 2,5:1. In dieser Ausführungsform enthält die Aluminiumlegierung also höchstens fünf Teile Eisen gegenüber einem Teil Mangan, bevorzugt etwa 2,5 Teile Eisen gegenüber einem Teil Mangan. Durch dieses Verhältnis werden besonders vorteilhafte Festigkeitseigenschaften des Motorbauteils erzielt.Advantageously, the weight ratio of iron to manganese in the aluminum alloys mentioned is at most about 5:1, preferably about 2.5:1. Thus, in this embodiment, the aluminum alloy contains at most five parts iron to one part manganese, preferably about 2.5 parts iron to one part manganese. Particularly advantageous strength properties of the engine component are achieved as a result of this relationship.

Die Nickelkonzentration beträgt < 3,5 Gew.-%, da sich ansonsten zu große, plattenförmige (primäre, nickelreiche) Phasen im Gefüge ausbilden können, die aufgrund ihrer Kerbwirkung die Festigkeit und/oder Lebensdauer herabsetzen können. Bei den bevorzugten Nickelkonzentrationen größer > 1,2 Gew.-% wird ein thermisch stabiles Primärphasennetzwerk mit Konnektivität und Kontiguität erzeugt.The nickel concentration is < 3.5% by weight, otherwise too large, plate-like (primary, nickel-rich) phases can form in the structure, which can reduce the strength and/or service life due to their notch effect. At the preferred nickel concentrations greater than >1.2 wt%, a thermally stable primary phase network with connectivity and contiguity is created.

Ferner ist es bevorzugt, dass die Summe aus Nickel und Kobalt in den genannten Aluminiumlegierungen > 2,0 Gew.-% und < 3,8 Gew.-% beträgt. Die untere Grenze stellt dabei eine vorteilhafte Festigkeit der Legierung sicher und die obere Grenze gewährleistet mit Vorteil eine feine Mikrostruktur und vermeidet die Bildung grober, plattenförmiger Phasen, welche die Festigkeit verringern würden.Furthermore, it is preferred that the sum of nickel and cobalt in the aluminum alloys mentioned is >2.0% by weight and <3.8% by weight. The lower limit thereby ensures an advantageous strength of the alloy and the upper limit advantageously ensures a fine microstructure and avoids the formation of coarse, plate-like phases which would reduce the strength.

Mit Vorteil weisen die Aluminiumlegierungen eine feine Mikrostruktur mit einem geringen Gehalt von Poren und Einschlüssen und/oder wenig und kleines primäres Silizium, insbesondere im hochbelasteten Muldenrandbereich, auf. Dabei ist unter einem geringen Gehalt von Poren vorzugsweise eine Porosität von < 0,01 % und unter wenig primärem Silizium < 1 % zu verstehen. Ferner ist die feine Mikrostruktur vorteilhaft dadurch beschrieben, dass die mittlere Länge des primären Silizium ca. < 5 µm und dessen maximale Länge ca. < 10 µm beträgt und die intermetallischen Phasen und/oder primären Ausscheidungen Längen von im Mittel ca. < 30 µm und maximal < 50 µm aufweisen. Die feine Mikrostruktur trägt insbesondere zur Verbesserung der thermomechanischen Ermüdungsfestigkeit bei. Eine Begrenzung der Größe der Primärphasen kann die Anfälligkeit gegen Rissinitiierung und Rissausbreitung verringern und so die TMF-HCF-Lebensdauer signifikant erhöhen. Ferner ist es auf Grund der Kerbwirkung von Poren und Einschlüssen besonders vorteilhaft deren Gehalt gering zu halten.The aluminum alloys advantageously have a fine microstructure with a low content of pores and inclusions and/or little and small primary silicon, particularly in the highly stressed bowl edge area. A low content of pores should preferably be understood to mean a porosity of <0.01% and a small amount of primary silicon to be <1%. Furthermore, the fine microstructure is advantageously described in that the average length of the primary silicon is approximately <5 μm and its maximum length is approximately <10 μm and the intermetallic phases and/or primary precipitations have lengths of approximately <30 μm and on average have a maximum of <50 µm. The fine microstructure contributes in particular to improving the thermomechanical fatigue strength. Limiting the size of the primary phases can reduce the susceptibility to crack initiation and crack propagation, thus significantly increasing the TMF-HCF lifetime. Furthermore, due to the notch effect of pores and inclusions, it is particularly advantageous to keep their content low.

Ein erfindungsgemäßes Motorbauteil besteht zumindest teilweise aus einer der oben genannten Aluminiumlegierungen. Ein weiterer unabhängiger Aspekt der Erfindung liegt in der Verwendung der oben ausgeführten Aluminiumlegierungen für die Herstellung eines Motorbauteils, insbesondere eines Kolbens eines Verbrennungsmotors, nach Anspruch 17. Insbesondere werden die aufgefundenen Aluminiumlegierungen dabei im Schwerkraftkokillengussverfahren verarbeitet. An engine component according to the invention consists at least partially of one of the aluminum alloys mentioned above. A further independent aspect of the invention lies in the use of the aluminum alloys listed above for the production of an engine component, in particular a piston of an internal combustion engine, according to claim 17. In particular, the aluminum alloys found are processed in the gravity die casting process.

Claims (17)

  1. Method for producing an engine component, in particular a piston for an internal combustion engine, in which an aluminium alloy is cast using the gravity die casting process, wherein the aluminium alloy has the following alloy elements: silicon: 7 wt.% to < 14.5 wt.%, nickel: > 1.2 wt.% to < 3.5 wt.%, copper: > 3.7 wt.% to < 10 wt.%, cobalt: to < 1 wt.%, magnesium: 0.1 wt.% to 1.5 wt.%, iron: 0.1 wt.% to ≤ 0.7 wt.%, manganese: 0.1 wt.% to ≤ 0.7 wt.%, zirconium: > 0.1 wt.% to < 0.5 wt.%, vanadium: ≥ 0.1 wt.% to ≤ 0.3 wt.%, titanium: 0.05 wt.% to 0.5 wt.%, phosphorus: 0.004 wt.% to ≤ 0.05 wt.%, beryllium: 0.0005 wt.% to 0.5 wt.% and optionally calcium: to ≤ 0.0005 wt.%
    and aluminium and unavoidable impurities as the remainder.
  2. Method for producing an engine component, in particular a piston for an internal combustion engine, in which an aluminium alloy is cast using the gravity die casting process, wherein the aluminium alloy has: silicon: 9 wt.% to < 10.5 wt.%, nickel: > 2 wt.% to < 3.5 wt.%, copper: > 5.2 wt.% to < 10 wt.%, cobalt: to < 1 wt.%, magnesium: 0.5 wt.% to 1.5 wt.%, iron: 0.1 wt.% to 0.7 wt.%, manganese: 0.1 wt.% to 0.4 wt.%, zirconium: 0.2 wt.% to < 0.4 wt.%, vanadium: > 0.1 wt.% to < 0.2 wt.%, titanium: 0.05 wt.% to < 0.2 wt.%, phosphorus: 0.004 wt.% to 0.008 wt.%, optionally beryllium: 0.0005 wt.% to 0.5 wt.% and optionally calcium: to ≤ 0.0005 wt.%
    and aluminium and unavoidable impurities as the remainder.
  3. Method for producing an engine component, in particular a piston for an internal combustion engine, in which an aluminium alloy is cast using the gravity die casting process, wherein the aluminium alloy has: silicon: 9 wt.% to < 10.5 wt.%, nickel: > 1.2 wt.% to < 2.0 wt.%, copper: > 5.2 wt.% to < 10 wt.%, cobalt: to < 1 wt.%, magnesium: 0.5 wt.% to 1.5 wt.%, iron: 0.1 wt.% to 0.7 wt.%, manganese: 0.1 wt.% to 0.4 wt.%, zirconium: 0.2 wt.% to < 0.4 wt.%, vanadium: > 0.1 wt.% to < 0.2 wt.%, titanium: 0.05 wt.% to < 0.2 wt.%, phosphorus: 0.004 wt.% to 0.008 wt.%, optionally beryllium: 0.0005 wt.% to 0.5 wt.% and optionally calcium: to ≤ 0.0005 wt.%
    and aluminium and unavoidable impurities as the remainder.
  4. Method for producing an engine component, in particular a piston for an internal combustion engine, in which an aluminium alloy is cast using the gravity die casting process, wherein the aluminium alloy has: silicon: 9 wt.% to < 12 wt.%, nickel: 2 wt.% to < 3.5 wt.%, copper: > 3.7 wt.% to 5.2 wt.%, cobalt: to < 1 wt.%, magnesium: 0.5 wt.% to 1.5 wt.%, iron: 0.1 wt.% to 0.7 wt.%, manganese: 0.1 wt.% to 0.4 wt.%, zirconium: 0.2 wt.% to 0.4 wt.%, vanadium: 0.1 wt.% to 0.3 wt.%, titanium: 0.1 wt.% to 0.5 wt.%, phosphorus: 0.004 wt.% to 0.008 wt.%, optionally beryllium: 0.0005 wt.% to 0.5 wt.% and optionally calcium: to ≤ 0.0005 wt.%
    and aluminium and unavoidable impurities as the remainder.
  5. Method according to claim 1, wherein the aluminium alloy has: silicon: 7 wt.% to < 14.5 wt.%, nickel: > 1.2 wt.% to < 3.5 wt.%, copper: > 3.7 wt.% to ≤ 5.5 wt.%, cobalt: to < 1 wt.%, magnesium: 0.1 wt.% to 1.2 wt.%, iron: 0.1 wt.% to < 0.7 wt.%, manganese: 0.1 wt.% to ≤ 0.7 wt.%, zirconium: > 0.1 wt.% to < 0.5 wt.%, vanadium: ≥ 0.1 wt.% to ≤ 0.3 wt.%, titanium: 0.05 wt.% to ≤ 0.2 wt.%, phosphorus: 0.004 wt.% to ≤ 0.05 wt.%, beryllium: 0.0005 wt.% to 0.5 wt.%, calcium: to ≤ 0.0005 wt.%
    and aluminium and unavoidable impurities as the remainder.
  6. Method according to any of the preceding claims 1 to 5, wherein in the aluminium alloy a weight ratio of iron to manganese is at most approximately 5:1, preferably the weight ratio of iron to manganese is approximately 2.5:1.
  7. Method according to any of the preceding claims 1 to 6, wherein a sum of nickel and cobalt is preferably > 2.0 wt.% and < 3.8 wt.%.
  8. Method according to any of the preceding claims 1 to 7, wherein the aluminium alloy has a fine microstructure with a low content of pores and inclusions and/or few and small primary silicon, in particular in a trough rim area of the engine component, wherein the porosity is < 0.01 % and/or the content of primary silicon is < 1 %, wherein the primary silicon has mean lengths of < 5 µm and/or maximum lengths of < 10 µm, and the intermetallic phases and/or primary precipitations have mean lengths of < 30 µm and/or maximum lengths of < 50 µm.
  9. Engine component, in particular piston for an internal combustion engine, which consists at least partially of an aluminium alloy,
    wherein the aluminium alloy has the following alloy elements: silicon: 7 wt.% to < 14.5 wt.%, nickel: >1.2 wt.% to < 3.5 wt.%, copper: > 3.7 wt.% to < 10 wt.%, cobalt: to < 1 wt.%, magnesium: 0.1 wt.% to 1.5 wt.%, iron: 0.1 wt.% to ≤ 0.7 wt.%, manganese: 0.1 wt.% to ≤ 0.7 wt.%, zirconium: > 0.1 wt.% to < 0.5 wt.%, vanadium: ≥ 0.1 wt.% to ≤ 0.3 wt.%, titanium: 0.05 wt.% to 0.5 wt.%, phosphorus: 0.004 wt.% to ≤ 0.05 wt.%, beryllium: 0.0005 wt.% to 0.5 wt.% and optionally calcium: to ≤ 0.0005 wt.%
    and aluminium and unavoidable impurities as the remainder.
  10. Engine component, in particular piston for an internal combustion engine, which consists at least partially of an aluminium alloy, wherein the aluminium alloy has: silicon: 9 wt.% to < 10.5 wt.%, nickel: > 2 wt.% to < 3.5 wt.%, copper: > 5.2 wt.% to < 10 wt.%, cobalt: to < 1 wt.%, magnesium: 0.5 wt.% to 1.5 wt.%, iron: 0.1 wt.% to 0.7 wt.%, manganese: 0.1 wt.% to 0.4 wt.%, zirconium: 0.2 wt.% to < 0.4 wt.%, vanadium: > 0.1 wt.% to < 0.2 wt.%, titanium: 0.05 wt.% to < 0.2 wt.%, phosphorus: 0.004 wt.% to 0.008 wt.%, optionally beryllium: 0.0005 wt.% to 0.5 wt.% and optionally calcium: to ≤ 0.0005 wt.%
    and aluminium and unavoidable impurities as the remainder.
  11. Engine component, in particular piston for an internal combustion engine, which consists at least partially of an aluminium alloy, wherein the aluminium alloy has: silicon: 9 wt.% to < 10.5 wt.%, nickel: > 1.2 wt.% to < 2.0 wt.%, copper: > 5.2 wt.% to < 10 wt.%, cobalt: to < 1 wt.%, magnesium: 0.5 wt.% to 1.5 wt.%, iron: 0.1 wt.% to 0.7 wt.%, manganese: 0.1 wt.% to 0.4 wt.%, zirconium: 0.2 wt.% to < 0.4 wt.%, vanadium: > 0.1 wt.% to < 0.2 wt.%, titanium: 0.05 wt.% to < 0.2 wt.%, phosphorus: 0.004 wt.% to 0.008 wt.%, optionally beryllium: 0.0005 wt.% to 0.5 wt.% and optionally calcium: to ≤ 0.0005 wt.%
    and aluminium and unavoidable impurities as the remainder.
  12. Engine component, in particular piston for an internal combustion engine, which consists at least partially of an aluminium alloy, wherein the aluminium alloy has: silicon: 9 wt.% to < 12 wt.%, nickel: 2 wt.% to < 3.5 wt.%, copper: > 3.7 wt.% to 5.2 wt.%, cobalt: to < 1 wt.%, magnesium: 0.5 wt.% to 1.5 wt.%, iron: 0.1 wt.% to 0.7 wt.%, manganese: 0.1 wt.% to 0.4 wt.%, zirconium: 0.2 wt.% to 0.4 wt.%, vanadium: 0.1 wt.% to 0.3 wt.%, titanium: 0.1 wt.% to 0.5 wt.%, phosphorus: 0.004 wt.% to 0.008 wt.%, optionally beryllium: 0.0005 wt.% to 0.5 wt.% and optionally calcium: to ≤ 0.0005 wt.%
    and aluminium and unavoidable impurities as the remainder.
  13. Engine component according to claim 9, wherein the aluminium alloy has: silicon: 7 wt.% to < 14.5 wt.%, nickel: > 1.2 wt.% to < 3.5 wt.%, copper: > 3.7 wt.% to ≤ 5.5 wt.%, cobalt: to < 1 wt.%, magnesium: 0.1 wt.% to 1.2 wt.%, iron: 0.1 wt.% to ≤ 0.7 wt.%, manganese: 0.1 wt.% to ≤ 0.7 wt.%, zirconium: > 0.1 wt.% to < 0.5 wt.%, vanadium: ≥ 0.1 wt.% to ≤ 0.3 wt.%, titanium: 0.05 wt.% to ≤ 0.2 wt.%, phosphorus: 0.004 wt.% to ≤ 0.05 wt.%, beryllium: 0.0005 wt.% to 0.5 wt.%, calcium: to ≤ 0.0005 wt.%
    and aluminium and unavoidable impurities as the remainder.
  14. Engine component according to any of the preceding claims 9 to 13, wherein in the aluminium alloy a weight ratio of iron to manganese is at most approximately 5:1, preferably the weight ratio of iron manganese is approximately 2.5:1.
  15. Engine component according to any of the preceding claims 9 to 14, wherein a sum of nickel and cobalt is preferably > 2.0 wt.% and < 3.8 wt.%.
  16. Engine component according to any of the preceding claims 9 to 15, wherein the aluminium alloy has a fine microstructure with a low content of pores and inclusions and/or few and small primary silicon, in particular in a trough rim area of the engine component, wherein the porosity is < 0.01 % and/or the content of primary silicon is < 1 %, wherein the primary silicon has mean lengths of < 5 µm and/or maximum lengths of < 10 µm, and the intermetallic phases and/or primary precipitations have mean lengths of < 30 µm and/or maximum lengths of < 50 µm.
  17. Use of an aluminium alloy for producing an engine component, in particular a piston of an internal combustion engine,
    wherein the aluminium alloy has the alloy composition specified in any of claims 1 to 7.
EP15720740.8A 2014-05-14 2015-05-11 Method for producing an engine component, engine component, and use of an aluminum alloy Active EP3143173B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014209102.0A DE102014209102A1 (en) 2014-05-14 2014-05-14 Method for producing an engine component, engine component and use of an aluminum alloy
PCT/EP2015/060319 WO2015173172A1 (en) 2014-05-14 2015-05-11 Method for producing an engine component, engine component, and use of an aluminum alloy

Publications (3)

Publication Number Publication Date
EP3143173A1 EP3143173A1 (en) 2017-03-22
EP3143173B1 EP3143173B1 (en) 2019-12-11
EP3143173B2 true EP3143173B2 (en) 2022-08-10

Family

ID=53052874

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15720740.8A Active EP3143173B2 (en) 2014-05-14 2015-05-11 Method for producing an engine component, engine component, and use of an aluminum alloy

Country Status (9)

Country Link
US (1) US11280292B2 (en)
EP (1) EP3143173B2 (en)
JP (1) JP2017519105A (en)
KR (1) KR102379579B1 (en)
CN (1) CN106795591B (en)
BR (1) BR112016026554A2 (en)
DE (1) DE102014209102A1 (en)
MX (1) MX2016014860A (en)
WO (1) WO2015173172A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015205895A1 (en) * 2015-04-01 2016-10-06 Federal-Mogul Nürnberg GmbH Cast aluminum alloy, method of making an engine component, engine component and use of an aluminum casting alloy to make an engine component
CZ2015749A3 (en) * 2015-10-25 2017-05-24 Univerzita J. E. Purkyně V Ústí Nad Labem An aluminium alloy, especially for the production of thin-walled and dimensionally complex castings
KR101896806B1 (en) 2016-12-15 2018-09-07 현대자동차주식회사 Alluminum alloy for insert ring, alluminum insert ring using the same and piston manufacturing method using the same
CN107937767B (en) * 2017-12-28 2019-07-26 苏州仓松金属制品有限公司 A kind of novel high-performance aluminum alloy materials and preparation method thereof
CN109355534A (en) * 2018-12-14 2019-02-19 广东省海洋工程装备技术研究所 A kind of multi-element eutectic Al-Si alloy material and preparation method thereof and piston
DE102020205193A1 (en) 2019-05-16 2020-11-19 Mahle International Gmbh Process for producing an engine component, engine component and the use of an aluminum alloy
CN114729425A (en) * 2019-12-04 2022-07-08 日之出控股株式会社 Aluminum alloy for casting and aluminum casting cast using same
CN113444927B (en) * 2021-06-18 2022-11-25 中铝材料应用研究院有限公司 Aluminum alloy piston material and preparation method thereof
CN113502417A (en) * 2021-07-14 2021-10-15 无锡华星机电制造有限公司 High-heat-strength aluminum-silicon alloy material and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0539328A1 (en) 1991-10-23 1993-04-28 ALUMINIUM RHEINFELDEN GmbH Process for grain refining aluminium casting alloy, especially aluminium-silicon casting alloys
DE102011083969A1 (en) 2011-10-04 2013-04-04 Federal-Mogul Nürnberg GmbH Method for producing an engine component and engine component
WO2014076174A1 (en) 2012-11-14 2014-05-22 Federal-Mogul Nürnberg GmbH Method for producing an engine component, engine component, and use of an aluminium alloy

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4648918A (en) * 1984-03-02 1987-03-10 Kabushiki Kaisha Kobe Seiko Sho Abrasion resistant aluminum alloy
DE4404420C2 (en) 1994-02-11 1997-07-17 Alcan Gmbh Aluminum-silicon alloy and its use
JPH08104937A (en) * 1994-10-03 1996-04-23 Nippon Light Metal Co Ltd Aluminum alloy for internal combustion engine piston excellent in high temperature strength and its production
JP3875338B2 (en) * 1997-02-19 2007-01-31 株式会社日立製作所 Aluminum alloy for piston
GB2332448B (en) * 1997-12-20 2002-06-26 Ae Goetze Automotive Ltd Aluminium alloy
WO2000071767A1 (en) 1999-05-25 2000-11-30 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration (Nasa) Aluminum-silicon alloy having improved properties at elevated temperatures and articles cast therefrom
DE10206035A1 (en) * 2002-02-14 2003-08-28 Ks Kolbenschmidt Gmbh Aluminum-based alloy used in the production of a piston for use in an internal combustion engine contains alloying additions of silicon, magnesium, vanadium and beryllium
US6918970B2 (en) * 2002-04-10 2005-07-19 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration High strength aluminum alloy for high temperature applications
US7682469B2 (en) 2002-07-22 2010-03-23 Kabushiki Kaisha Toyota Chuo Kenkyusho Piston made of aluminum cast alloy and method of manufacturing the same
JP2004256873A (en) * 2003-02-26 2004-09-16 Nippon Light Metal Co Ltd Aluminum alloy for casting having excellent high temperature strength
CN1563456A (en) * 2004-03-21 2005-01-12 浙江瑞明汽车部件有限公司 Cylinder block made from wearable aluminum alloy and manufacturing technique
JP4396576B2 (en) 2005-05-13 2010-01-13 トヨタ自動車株式会社 Piston manufacturing method
ES2524005T5 (en) 2006-02-13 2018-12-10 Hydro Aluminium Rolled Products Gmbh Aluminum alloy carbide free aluminum
EP1978120B1 (en) 2007-03-30 2012-06-06 Technische Universität Clausthal Aluminium-silicon alloy and method for production of same
JP5344527B2 (en) 2007-03-30 2013-11-20 株式会社豊田中央研究所 Aluminum alloy for casting, aluminum alloy casting and method for producing the same
DE502007002411D1 (en) * 2007-05-24 2010-02-04 Rheinfelden Aluminium Gmbh Heat-resistant aluminum alloy
CN101294875B (en) 2008-06-07 2011-01-26 中国铝业股份有限公司 Production method of multi-element aluminum alloy standard sample
DE102009039838A1 (en) 2008-09-05 2010-04-29 Ks Kolbenschmidt Gmbh Method for producing a piston of an internal combustion engine, consisting of an improved aluminum-silicon alloy
US9222151B2 (en) 2010-07-16 2015-12-29 Nippon Light Metal Company, Ltd. Aluminum alloy excellent in high temperature strength and heat conductivity and method of production of same
DE102011083968A1 (en) * 2011-10-04 2013-04-04 Federal-Mogul Nürnberg GmbH Method for producing an engine component and engine component
DE102011083972A1 (en) * 2011-10-04 2013-04-04 Federal-Mogul Nürnberg GmbH Method for producing an engine component and engine component
DE102011083967A1 (en) * 2011-10-04 2013-04-04 Federal-Mogul Nürnberg GmbH Method for producing an engine component and engine component
JP5910206B2 (en) * 2012-03-16 2016-04-27 いすゞ自動車株式会社 Aluminum alloy
JP6028546B2 (en) * 2012-11-30 2016-11-16 いすゞ自動車株式会社 Aluminum alloy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0539328A1 (en) 1991-10-23 1993-04-28 ALUMINIUM RHEINFELDEN GmbH Process for grain refining aluminium casting alloy, especially aluminium-silicon casting alloys
DE102011083969A1 (en) 2011-10-04 2013-04-04 Federal-Mogul Nürnberg GmbH Method for producing an engine component and engine component
WO2014076174A1 (en) 2012-11-14 2014-05-22 Federal-Mogul Nürnberg GmbH Method for producing an engine component, engine component, and use of an aluminium alloy

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Giesserei-Lexikon 2008, Schiele & Schön, 19. Auflage

Also Published As

Publication number Publication date
CN106795591B (en) 2018-10-26
US20170226957A1 (en) 2017-08-10
DE102014209102A1 (en) 2015-11-19
EP3143173B1 (en) 2019-12-11
US11280292B2 (en) 2022-03-22
CN106795591A (en) 2017-05-31
BR112016026554A2 (en) 2017-08-15
KR20170007404A (en) 2017-01-18
WO2015173172A1 (en) 2015-11-19
KR102379579B1 (en) 2022-03-29
EP3143173A1 (en) 2017-03-22
MX2016014860A (en) 2017-06-27
JP2017519105A (en) 2017-07-13

Similar Documents

Publication Publication Date Title
EP3143173B2 (en) Method for producing an engine component, engine component, and use of an aluminum alloy
EP2920334B1 (en) Method for producing an engine component, engine component, and use of an aluminium alloy
EP1978120B1 (en) Aluminium-silicon alloy and method for production of same
DE102009012073B4 (en) Use of an aluminum casting alloy
EP2748347B1 (en) Method for producing an engine component and engine component
DE602004004028T2 (en) Aluminum casting alloy, aluminum casting alloys and their manufacturing processes
WO2009010264A2 (en) Cast aluminum alloy, and use thereof
WO2007124915A2 (en) Copper-nickel-tin alloy and its use
DE102020205193A1 (en) Process for producing an engine component, engine component and the use of an aluminum alloy
DE4404420C2 (en) Aluminum-silicon alloy and its use
DE102004007704A1 (en) Production of a material based on an aluminum alloy used for producing motor vehicle engine components comprises forming an aluminum base alloy containing silicon and magnesium, hot deforming and heat treating
DE1921359C3 (en) Process for increasing the ductility at high temperatures of cast nickel-based alloys
EP2455505A1 (en) Cylinder head for combustion engines made of an aluminium alloy
EP3810818B1 (en) Aluminum alloy, method for producing an engine component, engine component, and use of an aluminum alloy to produce an engine component
EP2742164B1 (en) Method for producing an engine component and engine component
WO2013050357A1 (en) Method for producing an engine component and engine component
EP2748346B1 (en) Method for producing an engine component, and engine component
DE102014224229A1 (en) Method for producing an engine component, engine component and use of an aluminum alloy
DE102008024531A1 (en) Aluminum cast alloy used for cylinder heads, pistons of combustion engines, crank housings or engine blocks contains alloying additions of silicon, magnesium, titanium and vanadium
EP1646732A1 (en) Cast iron material
DE102019118944A1 (en) HYPEREUTECTIC ALLOY WITH IMPROVED EXPANSION AND IMPACT RESISTANCE
EP3763845B1 (en) Magnesium alloy and its process of manufacture
EP3277854B1 (en) Aluminium casting alloy, a process for the manufacture of an engine component, engine component and the use of an aluminium casting alloy for the manufacture of an engine component
DE102019209245A1 (en) Method for manufacturing an engine component and an engine component

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20161209

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180307

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190801

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1212247

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015011199

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191211

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200312

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200411

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502015011199

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: MAHLE INTERNATIONAL GMBH

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200531

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200511

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200511

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1212247

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20220810

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502015011199

Country of ref document: DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230419

Year of fee payment: 9