EP3143173A1 - Method for producing an engine component, engine component, and use of an aluminum alloy - Google Patents

Method for producing an engine component, engine component, and use of an aluminum alloy

Info

Publication number
EP3143173A1
EP3143173A1 EP15720740.8A EP15720740A EP3143173A1 EP 3143173 A1 EP3143173 A1 EP 3143173A1 EP 15720740 A EP15720740 A EP 15720740A EP 3143173 A1 EP3143173 A1 EP 3143173A1
Authority
EP
European Patent Office
Prior art keywords
weight
silicon
aluminum alloy
aluminum
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP15720740.8A
Other languages
German (de)
French (fr)
Other versions
EP3143173B1 (en
EP3143173B2 (en
Inventor
Roman Morgenstern
Silvio Stephan
Scott Kenningley
Philipp Koch
Isabella Sobota
Martin Popp
Robert Willard
Klaus Lades
Rainer Weiss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Federal Mogul Nuernberg GmbH
Original Assignee
Federal Mogul Nuernberg GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=53052874&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3143173(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Federal Mogul Nuernberg GmbH filed Critical Federal Mogul Nuernberg GmbH
Publication of EP3143173A1 publication Critical patent/EP3143173A1/en
Publication of EP3143173B1 publication Critical patent/EP3143173B1/en
Application granted granted Critical
Publication of EP3143173B2 publication Critical patent/EP3143173B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/0084Pistons  the pistons being constructed from specific materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/007Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D25/00Special casting characterised by the nature of the product
    • B22D25/02Special casting characterised by the nature of the product by its peculiarity of shape; of works of art
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • C22C21/04Modified aluminium-silicon alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/14Alloys based on aluminium with copper as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F2200/00Manufacturing
    • F02F2200/06Casting

Definitions

  • the present invention relates to a method for producing and using an engine component, in particular a piston for an internal combustion engine, in which an aluminum alloy is gravity-cast, an engine component at least partially made of an aluminum alloy, and the use of an aluminum alloy for producing such an engine component ,
  • a piston for an internal combustion engine must have a high heat resistance and at the same time be as light and strong as possible. It is of particular importance how the microstructural distribution, morphology, composition and thermal stability of highly heat-resistant phases are formed. An optimization in this regard usually takes into account a minimum content of pores and oxide inclusions.
  • the material sought must be optimized for both isothermal fatigue strength (HCF) and thermo-mechanical fatigue strength (TMF).
  • HCF isothermal fatigue strength
  • TMF thermo-mechanical fatigue strength
  • a fine microstructure reduces the risk of microplasticity or microcracks on relatively large primary phases (in particular of primary silicon precipitates) and thus also the risk of crack initiation and propagation.
  • DE 44 04 420 A1 describes an alloy which can be used in particular for pistons and for components which are exposed to high temperatures and are mechanically stressed.
  • the described aluminum alloy comprises 8.0 to 10.0% by weight of silicon, 0.8 to 2.0% by weight of magnesium, 4.0 to 5.9% by weight of copper, 1.0 to 3.0 Wt .-% nickel, 0.2 to 0.4 wt .-% manganese, less than 0.5 wt .-% iron and at least one element selected from antimony, zirconium, titanium, strontium, cobalt, chromium, and vanadium wherein at least one of these elements is present in an amount of> 0.3% by weight, the sum of these elements being ⁇ 0.8% by weight.
  • EP 0 924 310 B1 describes an aluminum-silicon alloy which has its application in the production of pistons, in particular for pistons in internal combustion engines.
  • the aluminum alloy has the following composition: 10.5 to 13.5% by weight of silicon, 2.0 to less than 4.0% by weight of copper 0.8 to 1.5% by weight of magnesium, 0, 5 to 2.0% by weight of nickel, 0.3 to 0.9% by weight of cobalt, at least 20 ppm of phosphorus and either 0.05 to 0.2% by weight of titanium or up to 0.2% by weight. % Zirconium and / or up to 0.2% by weight vanadium and balance aluminum and unavoidable impurities.
  • WO 00/71767 A1 describes an aluminum alloy suitable for high temperature applications, e.g. highly stressed pistons or other applications in internal combustion engines.
  • the aluminum alloy is composed of the following elements: 6.0 to 14.0% by weight of silicon, 3.0 to 8.0% by weight of copper, 0.01 to 0.8% by weight of iron, 0 , 5 to 1.5% by weight of magnesium, 0.05 to 1.2% by weight of nickel, 0.01 to 1.0% by weight of manganese, 0.05 to 1.2% by weight of titanium , 0.05 to 1.2 wt .-% zirconium, 0.05 to 1.2 wt .-% vanadium, 0.001 to 0.10 wt .-% strontium and balance aluminum.
  • DE 103 33 103 B4 describes a piston which is made of an aluminum casting alloy, wherein the aluminum casting alloy contains: 0.2 or less wt .-% magnesium, 0.05 to 0.3 mass% titanium, 10 to 21 wt .-% Silicon, 2 to 3.5% by weight of copper, 0.1 to 0.7% by weight of iron, 1 to 3% by weight of nickel, 0.001 to 0.02% by weight of phosphorus, 0.02 to 0.3 wt .-% zirconium and balance aluminum and impurities. It is further described that the size of a non-metal inclusion present within the bulb is less than 100 microns.
  • EP 1 975 262 B1 describes an aluminum casting alloy consisting of: 6 to 9% silicon, 1, 2 to 2.5% copper, 0.2 to 0.6% magnesium, 0.2 to 3% nickel, 0.1 to 0.7% iron, 0.1 to 0.3% titanium, 0.03 to 0.5% zirconium, 0.1 to 0.7% manganese, 0.01 to 0.5% vanadium and one or more of the strontium 0.003 to 0.05%, antimony 0.02 to 0.2%, and sodium 0.001 to 0.03%, the total amount of titanium and zirconium being less than 0.5%, and aluminum and unavoidable impurities the balance form when the total amount is set at 100 mass%.
  • WO 2010/025919 A2 describes a method for producing a piston of an internal combustion engine, wherein a piston blank of an aluminum-silicon alloy is poured with the addition of copper fractions and then finished.
  • the invention provides that the copper content is at most 5.5% of the aluminum-silicon alloy and that the aluminum-silicon alloy portions of titanium (Tl), zirconium (Zr), chromium (Cr) or vanadium (V) are admixed and the sum of all ingredients is 100%.
  • the application DE 102011083969 relates to a method for producing an engine component, in particular a piston for an internal combustion engine, in which an aluminum alloy is cast by gravity die casting, a motor body, which consists at least partially of an aluminum alloy, and the use of an aluminum alloy for producing an engine component.
  • the Aluminiumtegados the following alloying elements: 6 to 10 wt .-% silicon, 1, 2 to 2 wt .-% nickel, 8 to 10 wt .-% copper, 0.5 to 1, 5 wt .-% magnesium , 0.1 to 0.7% by weight of iron, 0.1 to 0.4% by weight of manganese, 0.2 to 0.4% by weight of zirconium, 0.1 to 0.3% by weight Vanadium, 0.1 to 0.5 wt .-% of titanium and aluminum and avoidable impurities as the remainder.
  • this alloy has a phosphorus content of less than 30 ppm.
  • EP 1 340 827 B1 which describes the effects of beryllium in an aluminum-silicon casting alloy with a relatively low magnesium concentration. Additions of 5-100 ppm beryllium contribute to the formation of an advantageous, thin, stoichiometric MgO layer, which promotes the flowability and the short-time oxidation behavior of the alloy.
  • An object of the present invention is to provide a method for producing an engine component, in particular a piston for an internal combustion engine, wherein an aluminum alloy is poured in the gravity coke casting process, so that a highly heat resistant Motorbautetl can be produced by gravity die casting process.
  • a further object of the invention is to provide an engine component, in particular a piston for an internal combustion engine, which is highly heat-resistant and at least partially consists of an aluminum alloy.
  • the aluminum alloy has the following alloying elements:
  • Co Co up to ⁇ about 1 wt%, preferably from> about 0.2 wt% to ⁇ about 1 wt%;
  • Manganese (Mn) of about 0.1% by weight to ⁇ about 0.7, and preferably up to about 0.4% by weight; Zirconium (Zr) of> about 0.1, preferably from about> 0.2% by weight to ⁇ about 0.5, preferably up to about 0.4, and more preferably up to ⁇ about 0.2% by weight. -%;
  • V Vanadium (V) of from about 0.1% by weight to ⁇ about 0.3, preferably up to ⁇ about 0.2% by weight;
  • Phosphorus (P) of about 0.004 wt .-% to about ⁇ 0.05, preferably up to about 0.008 wt .-% and balance aluminum and unavoidable impurities, on.
  • impurities non-mentioned elements can be further considered above.
  • the impurity level may be, for example, 0.01% by weight per impurity element or 0.2% by weight in total.
  • the selected aluminum alloy it is possible to produce a motor component in the gravity die casting process, which has a high proportion of finely divided, highly heat-resistant, thermally stable phases and a fine microstructure. Susceptibility to crack initiation and crack propagation e.g. of oxides or primary phases and the TMF-HCF lifetime is reduced by the choice of the alloy according to the invention over the previously known production methods of pistons and similar engine components.
  • the alloy according to the invention in particular the comparatively low silicon content, also results in comparatively less and finer primary silicon being present in the thermally highly stressed edge region of the invention, so that the alloy leads to particularly good properties of a piston produced according to the invention.
  • a highly heat resistant engine component can be produced by the gravity die casting method.
  • the proportions of copper, zirconium, vanadium and titanium according to the invention, in particular the comparatively high content of zirconium, vanadium and titanium bring about an advantageous proportion of finely chain-increasing precipitates, without, however, causing large plate-shaped intermetallic phases.
  • the alloy properties can be optimized in an application-specific manner by a targeted selection of the Cu content in the range according to the invention.
  • the cobalt and phosphorus contents of the present invention are advantageous in that cobalt increases the hardness and (warm) strength of the alloy and contributes phosphorus as a nucleating agent for primary silicon precipitates, that these are excreted very finely and evenly distributed.
  • Zirconium and cobalt also contribute, especially in the Muidenrand Scheme, to increases in strength at elevated temperatures.
  • the said aluminum alloys preferably comprise 0.6% by weight to 0.8% by weight of magnesium, which in the preferred concentration range contributes, in particular, to the effective formation of secondary, strength-increasing phases without excessive oxide formation occurring.
  • the alloy alternatively or additionally preferably has from 0.4% by weight to 0.6% by weight of iron, which advantageously reduces the tendency of the alloy to tilt in the casting mold, wherein the formation of plate-shaped phases remains limited in the concentration range mentioned.
  • the above-described aiuminium alloys may also be from about 0.0005, preferably from> about 0.006, and more preferably from about 0.01% to about 0.5, preferably to about ⁇ about 0.1% by weight beryllium (Be), wherein the content of calcium is limited to ⁇ about 0.0005 wt .-%.
  • Be beryllium
  • the addition of beryllium results in a particularly good castability of the alloy. Its addition to the melt causes a dense oxide skin on the melt, which acts as a diffusion barrier and reduces the oxidation and hydrogen uptake of the melt. The diffusion of aluminum and magnesium can also be prevented. The above effects are particularly relevant when using holding furnaces.
  • a fine / thin oxide layer is formed on the solidification front during casting, for example, in a mold, which improves flowability. Overall, thus thin walls and fine mold structures can be filled better and without additional assistance.
  • the addition of beryllium improves the strength characteristics of the alloy as a whole. During aging, a higher density of strength enhancing precipitates is achievable.
  • the addition of beryllium supplements the beneficial effects of the present Auminiumiegtechniken to a reduction in the oxidation of the melt, contributes to better castability, especially in gravity chill casting, and improves the strength of the alloy.
  • Aiuminiumiegierache A, B, C and D of the present invention are shown in the following table (in wt .-%): Composition AB c D min 9 9 9 7
  • alloys A, B, C and D realize the above-mentioned technical advantages, Moreover, in alloy A, the comparatively high Cu and Zr content proves to be advantageous, which causes an increase Festig keitssteigernder excretions. The same applies to the preferred alloy B, which has a reduced nickel content, which further contributes to the reduction of alloying costs.
  • the relatively high content of Zr, V and Ti in Alloy C also adds to the increase in strength-enhancing precipitates. In general, an increased Zr content causes a further improvement in strength. Alloy C particularly preferably has an Si content ⁇ 10.5% by weight.
  • Alloy D is advantageous in that the addition of beryllium, as described above, improves the oxidation and flow behavior of the melt as well as the strength of the alloy. This effect is further increased by the comparatively low Mg content and the limited to a low level Ca content. Alloy D may also have the alloying elements in the following preferred concentration ranges: nickel (Ni) from about 2 to about 3.5 wt%, copper (Cu) from about 3.7 to about 5.2 wt%.
  • the presence / addition of beryllium to improve the oxidation, flow and strength properties is also possible in / to the alloys A, B and C.
  • the calcium content should also be limited to the stated low level in order not to counteract the advantageous effects of beryllium. Overall, a certain combinability exists between the alloys A, B, C and D, so that their advantageous technical effects are also realized together in a single alloy can be.
  • the weight ratio of iron to manganese in said aluminum alloys is at most about 5: 1, preferably about 2.5: 1.
  • the aluminum alloy contains at most five parts iron versus one part manganese, preferably about 2.5 parts iron versus one part manganese.
  • the nickel concentrations are particularly preferably ⁇ 3.5% by weight, since otherwise too large, plate-shaped (primary, nickel-rich) phases can form in the microstructure, which due to their notch effect can reduce the strength and / or service life.
  • plate-shaped (primary, nickel-rich) phases can form in the microstructure, which due to their notch effect can reduce the strength and / or service life.
  • a thermally stable primary phase network is produced with connectivity and contiguity.
  • the sum of nickel and cobalt in said aluminum alloys is> 2.0 wt% and ⁇ 3.8 wt%.
  • the lower limit ensures an advantageous strength of the alloy and the upper limit advantageously ensures a fine microstructure and avoids the formation of coarse, plate-shaped phases which would reduce the strength.
  • the aluminum alloys have a fine microstructure with a low content of pores and inclusions and / or little and small primary silicon, especially in the highly loaded bowl rim area.
  • a low content of pores is preferably to be understood as meaning a porosity of ⁇ 0.01% and less than a few primary silicon ⁇ 1%.
  • the fine microstructure is advantageously described by the fact that the average length of the primary silicon about ⁇ 5 ⁇ and its maximum length is about ⁇ 10 ⁇ and the intermetallic phases and / or primary precipitates lengths of on average about ⁇ 30 ⁇ and maximum ⁇ 50 pm.
  • the fine microstructure contributes in particular to the improvement of the thermomechanical fatigue strength. Limiting the size of the primary phases can reduce the susceptibility to crack initiation and crack propagation and thus significantly increase the TMF-HCF lifetime. Furthermore, it is particularly advantageous due to the notch effect of pores and inclusions to keep their content low.
  • An engine component according to the invention consists at least partially of one of the abovementioned aluminum alloys.
  • Another independent aspect of the invention resides in the use of the above-described aluminum alloys for the manufacture of an engine component, in particular a piston of an internal combustion engine, according to claim 19 and the related subclaim.
  • the aluminum alloys found are processed by gravity die casting.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

The invention relates to a method for producing an engine component, in particular a piston for an internal combustion engine, wherein an aluminum alloy is cast in the gravity die casting process and wherein the aluminum alloy has 7 to < 14.5 wt% silicon, > 1.2 to ≤ 4 wt% nickel, > 3.7 to < 10 wt% copper, < 1 wt% cobalt, 0.1 to 1.5 wt% magnesium, 0.1 to ≤ 0.7 wt% iron, 0.1 to ≤ 0.7 wt% manganese, > 0.1 to < 0.5 wt% zirconium, ≥ 0.1 to ≤ 0.3 wt% vanadium, 0.05 to 0.5 wt% titanium, and 0.004 to ≤ 0.05 wt% phosphorus as alloying elements and aluminum and unavoidable contaminants as the remainder. The aluminum alloy can optionally comprise beryllium, wherein the calcium content is limited to a low level. The invention further relates to an engine component, in particular a piston for an internal combustion engine, wherein the engine component is composed at least partially of an aluminum alloy, and to the use of an aluminum alloy to produce an engine component, in particular a piston of an internal combustion engine.

Description

Verfahren zur Herstellung eines Motorbauteils, Motorbauteii und Verwendung einer  Method for producing an engine component, engine components and use of a
Aluminiumlegierung  aluminum alloy
Technisches Gebiet  Technical area
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung und Verwendung eines Motorbauteils, insbesondere eines Kolbens für einen Verbrennungsmotor, bei dem eine Aluminiumlegierung im Schwerkraftkokillengussverfahren abgegossen wird, ein Motorbauteil, das zumindest teilweise aus einer Aluminiumlegierung besteht, und die Verwendung einer Aluminiumlegierung zur Herstellung eines solchen Motorbauteils. The present invention relates to a method for producing and using an engine component, in particular a piston for an internal combustion engine, in which an aluminum alloy is gravity-cast, an engine component at least partially made of an aluminum alloy, and the use of an aluminum alloy for producing such an engine component ,
Stand der Technik State of the art
In den letzten Jahren wurden zunehmend Forderungen nach besonders ökonomischen und damit ökologischen Transportmitteln laut, die hohen Verbrauchs- und Emissionsanforderungen gerecht werden müssen. Zudem besteht jeher das Bedürfnis, Motoren möglichst leistungsfähig und verbrauchsarm zu gestalten. Ein entscheidender Faktor bei der Entwicklung von leistungsfähigen und emissionsarmen Verbrennungsmotoren sind Kolben, die bei immer höheren Verbrennungstemperaturen und Verbrennungsdrücken eingesetzt werden können, was im Wesentlichen durch immer leistungsfähigere Kolben Werkstoffe ermöglicht wird. In recent years there has been an increasing demand for particularly economical and thus ecological means of transport, which have to meet high consumption and emission requirements. In addition, there is always the need to make engines as powerful and low-consumption. A key factor in the development of high-performance and low-emission internal combustion engines are pistons, which can be used at ever higher combustion temperatures and combustion pressures, which is essentially made possible by more efficient piston materials.
Grundsätzlich muss ein Kolben für einen Verbrennungsmotor eine hohe Warmfestigkeit aufweisen und dabei gleichzeitig möglichst leicht und fest sein. Dabei ist es von besonderer Bedeutung, wie die mikrostrukturelle Verteilung, Morphologie, Zusammensetzung und thermische Stabilität höchstwarmfester Phasen ausgebildet sind. Eine diesbezügliche Optimierung berücksichtigt üblicherweise einen minimalen Gehalt an Poren und oxidischen Einschlüssen. Basically, a piston for an internal combustion engine must have a high heat resistance and at the same time be as light and strong as possible. It is of particular importance how the microstructural distribution, morphology, composition and thermal stability of highly heat-resistant phases are formed. An optimization in this regard usually takes into account a minimum content of pores and oxide inclusions.
Der gesuchte Werkstoff muss sowohl hinsichtlich isothermer Schwingfestigkeit (HCF) als auch hinsichtlich thermomechanischer Ermüdungsfestigkeit (TMF) optimiert werden. Um die TMF optimal auszugestalten ist stets eine möglichst feine Mikrostruktur des Werkstoffs anzustreben. Eine feine Mikrostruktur reduziert die Gefahr des Entstehens von Mikroplastizität bzw. von Mikrorissen an relativ großen primären Phasen (insbesondere an primären Siliziumausscheidungen) und damit auch die Gefahr von Rissinitiierung und - ausbreitung. The material sought must be optimized for both isothermal fatigue strength (HCF) and thermo-mechanical fatigue strength (TMF). In order to optimally design the TMF, it is always desirable to have the finest possible microstructure of the material. A fine microstructure reduces the risk of microplasticity or microcracks on relatively large primary phases (in particular of primary silicon precipitates) and thus also the risk of crack initiation and propagation.
Unter TMF-Beanspruchung treten an relativ großen primären Phasen, insbesondere an primären Siliziumausscheidungen, aufgrund unterschiedlicher Ausdehnungskoeffizienten der einzelnen Bestandteile der Legierung, nämlich der Matrix und der primären Phasen, Mikroplastizitäten bzw. Mtkrorisse auf, welche die Lebensdauer des Kolbenwerkstoffs erheblich senken können. Zur Erhöhung der Lebensdauer ist bekannt, die primären Phasen möglichst klein zu halten. Under TMF stress occur on relatively large primary phases, in particular on primary silicon precipitates, due to different expansion coefficients of the individual components the alloy, namely the matrix and the primary phases, microplasticities or Mt. cracks, which can significantly reduce the life of the piston material. To increase the life is known to keep the primary phases as small as possible.
Beim verwendeten Schwerkraftkokillenguss gibt es eine Konzentrationsobergrenze, bis zu der Legierungselemente eingebracht werden sollten und bei deren Überschreiten die Gießbarkeit der Legierung verringert oder Gießen unmöglich wird. Darüber hinaus kommt es bei zu hohen Konzentrationen von festigkeitssteigernden Elementen zur Bildung graßer piattenformiger intermetallischer Phasen, welche die Ermüdungsfestigkeit drastisch absenken. In the gravity die casting used, there is an upper limit of the concentration up to which alloying elements should be introduced and, if exceeded, the castability of the alloy is reduced or casting becomes impossible. In addition, too high concentrations of strength-enhancing elements result in the formation of thin piantate intermetallic phases which drastically reduce fatigue strength.
Die DE 44 04 420 A1 beschreibt eine Legierung die insbesondere für Kolben und für Bauteile verwendet werden kann, die hohen Temperaturen ausgesetzt werden und mechanisch stark beansprucht werden. Die beschriebene Aluminiumlegierung umfasst 8,0 bis 10,0 Gew.-% Silizium, 0,8 bis 2,0 Gew.-% Magnesium, 4,0 bis 5,9 Gew.-% Kupfer, 1,0 bis 3,0 Gew.-% Nickel, 0,2 bis 0,4 Gew.-% Mangan, weniger als 0,5 Gew.-% Eisen sowie mindestens ein Element, ausgewählt aus Antimon, Zirkonium, Titan, Strontium, Kobalt, Chrom, und Vanadium, wobei mindestens eines dieser Elemente in einer Menge von >0,3 Gew.-% vorhanden ist wobei die Summe dieser Elemente <0,8 Gew.-% ist. DE 44 04 420 A1 describes an alloy which can be used in particular for pistons and for components which are exposed to high temperatures and are mechanically stressed. The described aluminum alloy comprises 8.0 to 10.0% by weight of silicon, 0.8 to 2.0% by weight of magnesium, 4.0 to 5.9% by weight of copper, 1.0 to 3.0 Wt .-% nickel, 0.2 to 0.4 wt .-% manganese, less than 0.5 wt .-% iron and at least one element selected from antimony, zirconium, titanium, strontium, cobalt, chromium, and vanadium wherein at least one of these elements is present in an amount of> 0.3% by weight, the sum of these elements being <0.8% by weight.
Die EP 0 924 310 B1 beschreibt eine Aluminium-Siliziumlegierung die ihre Anwendung in der Herstellung von Kolben, insbesondere für Kolben in Brennkraftmaschinen hat. Die Aluminiumlegierung weist die folgende Zusammensetzung auf: 10,5 bis 13,5 Gew.-% Silizium, 2,0 bis weniger als 4,0 Gew.-% Kupfer 0,8 bis 1,5 Gew.-% Magnesium, 0,5 bis 2,0 Gew.-% Nickel, 0,3 bis 0,9 Gew.-% Kobalt, wenigstens 20 ppm Phosphor und entweder 0,05 bis 0,2 Gew.-% Titan oder bis zu 0,2 Gew.-% Zirkonium und/oder bis zu 0,2 Gew.-% Vanadium und als Rest Aluminium und unvermeidbare Verunreinigungen. EP 0 924 310 B1 describes an aluminum-silicon alloy which has its application in the production of pistons, in particular for pistons in internal combustion engines. The aluminum alloy has the following composition: 10.5 to 13.5% by weight of silicon, 2.0 to less than 4.0% by weight of copper 0.8 to 1.5% by weight of magnesium, 0, 5 to 2.0% by weight of nickel, 0.3 to 0.9% by weight of cobalt, at least 20 ppm of phosphorus and either 0.05 to 0.2% by weight of titanium or up to 0.2% by weight. % Zirconium and / or up to 0.2% by weight vanadium and balance aluminum and unavoidable impurities.
Die WO 00/71767 A1 beschreibt eine Aluminiumlegierung die geeignet für Hochtemperaturanwendungen ist, wie z.B. hochbelastete Kolben oder andere Anwendungen in Brennkraftmaschinen. Die Aluminiumlegierung setzt sich dabei aus folgenden Elementen zusammen: 6,0 bis 14,0 Gew.-% Silizium, 3,0 bis 8,0 Gew.-% Kupfer, 0,01 bis 0,8 Gew.-% Eisen, 0,5 bis 1,5 Gew.-% Magnesium, 0,05 bis 1,2 Gew.-% Nickel, 0,01 bis 1,0 Gew.-% Mangan, 0,05 bis 1,2 Gew.-% Titan, 0,05 bis 1,2 Gew.-% Zirkonium, 0,05 bis 1,2 Gew.-% Vanadium, 0,001 bis 0,10 Gew.-% Strontium und als Rest Aluminium. WO 00/71767 A1 describes an aluminum alloy suitable for high temperature applications, e.g. highly stressed pistons or other applications in internal combustion engines. The aluminum alloy is composed of the following elements: 6.0 to 14.0% by weight of silicon, 3.0 to 8.0% by weight of copper, 0.01 to 0.8% by weight of iron, 0 , 5 to 1.5% by weight of magnesium, 0.05 to 1.2% by weight of nickel, 0.01 to 1.0% by weight of manganese, 0.05 to 1.2% by weight of titanium , 0.05 to 1.2 wt .-% zirconium, 0.05 to 1.2 wt .-% vanadium, 0.001 to 0.10 wt .-% strontium and balance aluminum.
Die DE 103 33 103 B4 beschreibt einen Kolben der aus einer Aluminiumgusslegierung gefertigt ist, wobei die Aluminiumgusslegierung enthält: 0,2 oder weniger Gew.-% Magnesium, 0,05 bis 0,3 Masse% Titan, 10 bis 21 Gew.-% Silizium, 2 bis 3,5 Gew.-% Kupfer, 0,1 bis 0,7 Gew.-% Eisen, 1 bis 3 Gew.-% Nickel, 0,001 bis 0,02 Gew.-% Phosphor, 0,02 bis 0,3 Gew.-% Zirkonium und als Rest Aluminium und Verunreinigungen. Weiter wird beschrieben, dass die Größe von einem nicht-metailischen Einschluss, der innerhalb des Kolbens vorhanden ist, geringer als 100 im ist. DE 103 33 103 B4 describes a piston which is made of an aluminum casting alloy, wherein the aluminum casting alloy contains: 0.2 or less wt .-% magnesium, 0.05 to 0.3 mass% titanium, 10 to 21 wt .-% Silicon, 2 to 3.5% by weight of copper, 0.1 to 0.7% by weight of iron, 1 to 3% by weight of nickel, 0.001 to 0.02% by weight of phosphorus, 0.02 to 0.3 wt .-% zirconium and balance aluminum and impurities. It is further described that the size of a non-metal inclusion present within the bulb is less than 100 microns.
Die EP 1 975 262 B1 beschreibt eine Aluminiumgusslegierung bestehend aus: 6 bis 9 % Silizium, 1 ,2 bis 2,5 % Kupfer, 0,2 bis 0,6 % Magnesium, 0,2 bis 3 % Nickel, 0,1 bis 0,7 % Eisen, 0,1 bis 0,3 % Titan, 0,03 bis 0,5 % Zirkonium, 0,1 bis 0,7 % Mangan, 0,01 bis 0,5 % Vanadium und einem oder mehreren der folgenden Elemente: Strontium 0,003 bis 0,05 %, Antimon 0,02 bis 0,2 % und Natrium 0,001 bis 0,03 %, wobei die Gesamtmenge aus Titan und Zirkonium weniger als 0,5 % beträgt und Aluminium und unvermeidbare Verunreinigungen den Rest bilden, wenn die Gesamtmenge als 100 Massenprozent angesetzt wird. EP 1 975 262 B1 describes an aluminum casting alloy consisting of: 6 to 9% silicon, 1, 2 to 2.5% copper, 0.2 to 0.6% magnesium, 0.2 to 3% nickel, 0.1 to 0.7% iron, 0.1 to 0.3% titanium, 0.03 to 0.5% zirconium, 0.1 to 0.7% manganese, 0.01 to 0.5% vanadium and one or more of the strontium 0.003 to 0.05%, antimony 0.02 to 0.2%, and sodium 0.001 to 0.03%, the total amount of titanium and zirconium being less than 0.5%, and aluminum and unavoidable impurities the balance form when the total amount is set at 100 mass%.
Die WO 2010/025919 A2 beschreibt ein Verfahren zur Herstellung eines Kolbens einer Brennkraftmaschine, wobei ein Kolbenrohling aus einer Aluminium-Siliziumlegierung unter Zugabe von Kupferanteilen gegossen und danach fertig bearbeitet wird. Die Erfindung sieht dabei vor, dass der Kupferanteil maximal 5,5 % der Aluminium-Siliziumlegierung beträgt und, dass der Aluminium-Siliziumlegierung Anteile von Titan (Tl), Zirkonium (Zr), Chrom (Cr) bzw. Vanadium (V) beigemischt werden und die Summe aller Bestandteile 100 % beträgt. WO 2010/025919 A2 describes a method for producing a piston of an internal combustion engine, wherein a piston blank of an aluminum-silicon alloy is poured with the addition of copper fractions and then finished. The invention provides that the copper content is at most 5.5% of the aluminum-silicon alloy and that the aluminum-silicon alloy portions of titanium (Tl), zirconium (Zr), chromium (Cr) or vanadium (V) are admixed and the sum of all ingredients is 100%.
Die Anmeldung DE 102011083969 betrifft ein Verfahren zur Herstellung eines Motorbauteils, insbesondere eines Kolbens für einen Verbrennungsmotor, bei dem eine Aluminiumlegierung im Schwerkraftkokillengussverfahren abgegossen wird, ein Motorbauteit, das zumindest teilweise aus einer Aluminiumlegierung besteht, und die Verwendung einer Aluminiumlegierung zur Herstellung eines Motorbauteils. Dabei weist die Aluminiumtegierung die folgenden Legierungselemente auf: 6 bis 10 Gew.-% Silizium, 1 ,2 bis 2 Gew.-% Nickel, 8 bis 10 Gew.-% Kupfer, 0,5 bis 1 ,5 Gew.-% Magnesium, 0,1 bis 0,7 Gew.- % Eisen, 0,1 bis 0,4 Gew.-% Mangan, 0,2 bis 0,4 Gew.-% Zirkonium, 0,1 bis 0,3 Gew-% Vanadium, 0,1 bis 0,5 Gew.-% Titan und Aluminium sowie vermeidbare Verunreinigungen als Rest. Vorzugsweise weist diese Legierung einen Phosphorgehalt von weniger als 30 ppm auf. The application DE 102011083969 relates to a method for producing an engine component, in particular a piston for an internal combustion engine, in which an aluminum alloy is cast by gravity die casting, a motor body, which consists at least partially of an aluminum alloy, and the use of an aluminum alloy for producing an engine component. In this case, the Aluminiumtegierung the following alloying elements: 6 to 10 wt .-% silicon, 1, 2 to 2 wt .-% nickel, 8 to 10 wt .-% copper, 0.5 to 1, 5 wt .-% magnesium , 0.1 to 0.7% by weight of iron, 0.1 to 0.4% by weight of manganese, 0.2 to 0.4% by weight of zirconium, 0.1 to 0.3% by weight Vanadium, 0.1 to 0.5 wt .-% of titanium and aluminum and avoidable impurities as the remainder. Preferably, this alloy has a phosphorus content of less than 30 ppm.
Abschließend soll die EP 1 340 827 B1 genannt werden, welche die Effekte von Beryllium in einer Aluminium- Silizium-Gusslegierung mit relativ geringer Magnesiumkonzentration beschreibt. Zugaben von 5 - 100 ppm Beryllium tragen dabei zur Bildung einer vorteilhaften, dünnen, stöchiometrischen MgO-Schicht bei, welche die Fliefifähigkeit und das Kurzzeitoxidationsverhalten der Legierung begünstigt. Finally, EP 1 340 827 B1 is to be mentioned, which describes the effects of beryllium in an aluminum-silicon casting alloy with a relatively low magnesium concentration. Additions of 5-100 ppm beryllium contribute to the formation of an advantageous, thin, stoichiometric MgO layer, which promotes the flowability and the short-time oxidation behavior of the alloy.
Darstellung der Erfindung Presentation of the invention
Eine Aufgabe der vorliegenden Erfindung liegt darin, ein Verfahren zur Herstellung eines Motorbauteils, insbesondere eines Kolbens für einen Verbrennungsmotor bereitzustellen, bei dem eine Aluminiumlegierung im Schwerkraftkokiilengussverfahren abgegossen wird, so dass ein höchstwarmfestes Motorbautetl im Schwerkraftkokillengussverfahren hergestellt werden kann. An object of the present invention is to provide a method for producing an engine component, in particular a piston for an internal combustion engine, wherein an aluminum alloy is poured in the gravity coke casting process, so that a highly heat resistant Motorbautetl can be produced by gravity die casting process.
Die Lösung dieser Aufgabe wird durch das Verfahren nach Anspruch 1 gegeben. Weitere bevorzugte Ausführungsformen der Erfindung ergeben sich aus den diesbezüglichen Unteransprüchen. The solution to this problem is given by the method according to claim 1. Further preferred embodiments of the invention will become apparent from the relevant subclaims.
Eine weitere Aufgabe der Erfindung liegt darin, ein Motorbauteil, insbesondere einen Kolben für einen Verbrennungsmotor, bereitzustellen, das/der höchstwarmfest ist und dabei zumindest teilweise aus einer Aluminiumlegierung besteht. A further object of the invention is to provide an engine component, in particular a piston for an internal combustion engine, which is highly heat-resistant and at least partially consists of an aluminum alloy.
Diese Aufgabe wird durch den Gegenstand des Anspruchs 10 gelöst und weitere bevorzugte Ausführungsformen ergeben sich aus den diesbezüglichen Unteransprüchen. This object is achieved by the subject matter of claim 10 and further preferred embodiments will become apparent from the relevant subclaims.
Bei einem erfindungsgemäßen Verfahren weist die Aiuminiumlegierung die folgenden Legierungselemente: In a method according to the invention, the aluminum alloy has the following alloying elements:
Silizium (Si) von etwa 7, bevorzugt von etwa 9 Gew.-% bis zu < etwa 14,5, bevorzugt bis zu < etwa 12, weiter bevorzugt bis zu < etwa 10,5 und noch weiter bevorzugt bis zu < etwa 10 Gew.-%; Silicon (Si) of about 7, preferably from about 9 wt .-% to <about 14.5, preferably up to <about 12, more preferably up to <about 10.5 and even more preferably up to <about 10 wt .-%;
Nickel (Ni) von > etwa 1 ,2, bevorzugt von > etwa 2 Gew.-% bis zu £ etwa 4, bevorzugt bis zu < etwa 3,5 und weiter bevorzugt bis zu < etwa 2 Gew.-%; Nickel (Ni) of> about 1.2, preferably from> about 2 wt% to about 4, preferably to <about 3.5 and more preferably to <about 2 wt%;
Kupfer (Cu) von > etwa 3,7, bevorzugt von > etwa 5,2 und weiter bevorzugt von > 5,5 Gew.-% bis zu < etwa 10, bevorzugt bis zu < etwa 8, weiter bevorzugt bis zu < etwa 5,5 und noch weiter bevorzugt bis zu etwa 5,2 Gew.-%; Copper (Cu) of> about 3.7, preferably> about 5.2 and more preferably> 5.5% by weight to <about 10, preferably up to <about 8, more preferably up to <about 5 , 5 and even more preferably up to about 5.2% by weight;
Kobalt (Co) bis zu < etwa 1 Gew.-%, bevorzugt von > etwa 0,2 Gew.-% bis < etwa 1 Gew.-%; Cobalt (Co) up to <about 1 wt%, preferably from> about 0.2 wt% to <about 1 wt%;
Magnesium (Mg) von etwa 0,1 , bevorzugt von etwa 0,5, weiter bevorzugt von etwa 0,6, noch weiter bevorzugt von > etwa 0,65 und insbesondere bevorzugt a etwa 1 ,2 bis zu etwa 1 ,5, bevorzugt bis zu etwa 1,2 Gew.-% und noch weiter bevorzugt bis zu £ etwa 0,8 Gew.-%; Magnesium (Mg) of about 0.1, preferably from about 0.5, more preferably from about 0.6, even more preferably from> about 0.65, and most preferably from about 1.2 to about 1.5, more preferably up to about 1.2% by weight, and more preferably up to about 0.8% by weight;
Eisen (Fe) von etwa 0,1 , bevorzugt von etwa 0,4 Gew.-% bis zu ^ etwa 0,7, bevorzugt bis zu etwa 0,6 Gew.-%; Iron (Fe) of about 0.1, preferably from about 0.4% to about 0.7, preferably up to about 0.6% by weight;
Mangan (Mn) von etwa 0,1 Gew.-% bis zu < etwa 0,7 und bevorzugt bis zu etwa 0,4 Gew.-%; Zirkonium (Zr) von > etwa 0,1, bevorzugt von etwa > 0,2 Gew.-% bis zu < etwa 0,5, bevorzugt bis zu £ etwa 0,4 und weiter bevorzugt bis zu < etwa 0,2 Gew.-%; Manganese (Mn) of about 0.1% by weight to <about 0.7, and preferably up to about 0.4% by weight; Zirconium (Zr) of> about 0.1, preferably from about> 0.2% by weight to <about 0.5, preferably up to about 0.4, and more preferably up to <about 0.2% by weight. -%;
Vanadium (V) von ä etwa 0,1 Gew.-% bis zu < etwa 0,3, bevorzugt bis zu < etwa 0,2 Gew.-%; Vanadium (V) of from about 0.1% by weight to <about 0.3, preferably up to <about 0.2% by weight;
Titan (Ti) von etwa 0,05, bevorzugt von etwa 0,1 Gew.-% bis zu etwa 0,5, bevorzugt bis zu £ etwa 0,2 Gew.-%;  Titanium (Ti) of about 0.05, preferably from about 0.1 weight percent to about 0.5, preferably up to about 0.2 weight percent;
Phosphor (P) von etwa 0,004 Gew.-% bis zu etwa < 0,05, bevorzugt bis zu etwa 0,008 Gew.-% und als Rest Aluminium und nicht zu vermeidende Verunreinigungen, auf. Als Verunreinigungen können ferner oben nicht genannte Elemente angesehen werden. Das Verunreinigungsniveau kann beispielsweise 0,01 Gew.-% je Verunreinigungselement bzw. 0,2 Gew.-% in Summe betragen. Phosphorus (P) of about 0.004 wt .-% to about <0.05, preferably up to about 0.008 wt .-% and balance aluminum and unavoidable impurities, on. As impurities, non-mentioned elements can be further considered above. The impurity level may be, for example, 0.01% by weight per impurity element or 0.2% by weight in total.
Durch die gewählte Aluminiumlegierung ist es möglich, im Schwerkraftkokillengussverfahren ein Motorbauteil herzustellen, das einen hohen Anteil fein verteilter, hochwarmfester, thermisch stabiler Phasen und eine feine Mikrostruktur aufweist. Die Anfälligkeit gegenüber Rissinitiierung und Rissausbreitung z.B. an Oxiden oder primären Phasen und die TMF-HCF-Lebensdauer wird durch die Wahl der erfindungsgemäßen Legierung gegenüber den bisher bekannten Herstellungsverfahren von Kolben und ähnlichen Motorbauteilen reduziert. By the selected aluminum alloy, it is possible to produce a motor component in the gravity die casting process, which has a high proportion of finely divided, highly heat-resistant, thermally stable phases and a fine microstructure. Susceptibility to crack initiation and crack propagation e.g. of oxides or primary phases and the TMF-HCF lifetime is reduced by the choice of the alloy according to the invention over the previously known production methods of pistons and similar engine components.
Die erfindungsgemäße Legierung, insbesondere der vergleichsweise geringe Siliziumgehalt, führt auch dazu, dass zumindest bei einem erfindungsgemäß hergestellten Kolben in dessen thermisch hochbelastetem Muidenrandbereich vergleichsweise weniger und feineres primäres Silizium vorliegt, sodass die Legierung zu besonders guten Eigenschaften eines erfindungsgemäß hergestellten Kolbens führt. Somit kann ein höchstwarmfestes Motorbauteil im Schwerkraftkokillengussverfahren hergestellt werden. Die erfindungsgemäßen Anteile an Kupfer, Zirkonium, Vanadium und Titan, insbesondere der vergleichsweise hohe Gehalt an Zirkonium, Vanadium und Titan bewirken einen vorteilhaften Anteil festig kettssteigernder Ausscheidungen, ohne dabei jedoch große plattenförmige intermetallische Phasen zu verursachen. Beispielsweise können die Legierungseigenschaften durch eine gezielte Auswahl des Cu-Gehalts in dem erfindungsgemäßen Bereich anwendungsspezifisch optimiert werden. Höhere Cu-Gehalte verbessern insbesondere die Warmfestigkeit der Legierung. Geringere Gehalte erlauben hingegen die Erhöhung der Wärmeleitfähigkeit und Verringerung der Dichte der Legierung, Ferner sind die erfindungsgemäßen Anteile an Kobalt und Phosphor vorteilhaft darin, dass Kobalt die Härte und (Warm-) Festigkeit der Legierung erhöht und Phosphor als Keimbildner für primäre Siliziumausscheidungen dazu beiträgt, dass diese besonders fein und gleichmäßig verteilt ausgeschieden werden. Zirkonium und Kobalt tragen zudem, insbesondere im Muidenrandbereich, zu Festigkeitssteigerungen bei erhöhten Temperaturen bei. Mit Vorteil weisen die genannten Aluminiumlegierungen bevorzugt 0,6 Gew.-% bis 0,8 Gew.-% Magnesium auf, das in dem bevorzugten Konzentrationsbereich insbesondere zur wirkungsvollen Ausbildung sekundärer, festigkeitssteigernder Phasen beiträgt, ohne dass eine übermäßige Oxidbildung auftritt. Ferner weist die Legierung alternativ oder zusätzlich bevorzugt 0,4 Gew.-% bis 0,6 Gew.-% Eisen auf, das die Kiebeneigung der Legierung in der Gießkokille vorteilhaft vermindert, wobei in dem genannten Konzentrationsbereich die Bildung plattenförmiger Phasen begrenzt bleibt. The alloy according to the invention, in particular the comparatively low silicon content, also results in comparatively less and finer primary silicon being present in the thermally highly stressed edge region of the invention, so that the alloy leads to particularly good properties of a piston produced according to the invention. Thus, a highly heat resistant engine component can be produced by the gravity die casting method. The proportions of copper, zirconium, vanadium and titanium according to the invention, in particular the comparatively high content of zirconium, vanadium and titanium, bring about an advantageous proportion of finely chain-increasing precipitates, without, however, causing large plate-shaped intermetallic phases. For example, the alloy properties can be optimized in an application-specific manner by a targeted selection of the Cu content in the range according to the invention. In particular, higher Cu contents improve the heat resistance of the alloy. On the other hand, the cobalt and phosphorus contents of the present invention are advantageous in that cobalt increases the hardness and (warm) strength of the alloy and contributes phosphorus as a nucleating agent for primary silicon precipitates, that these are excreted very finely and evenly distributed. Zirconium and cobalt also contribute, especially in the Muidenrandbereich, to increases in strength at elevated temperatures. Advantageously, the said aluminum alloys preferably comprise 0.6% by weight to 0.8% by weight of magnesium, which in the preferred concentration range contributes, in particular, to the effective formation of secondary, strength-increasing phases without excessive oxide formation occurring. Furthermore, the alloy alternatively or additionally preferably has from 0.4% by weight to 0.6% by weight of iron, which advantageously reduces the tendency of the alloy to tilt in the casting mold, wherein the formation of plate-shaped phases remains limited in the concentration range mentioned.
Die oben beschriebenen Aiuminiumiegierungen können zudem von etwa 0,0005, bevorzugt von > etwa 0,006 und weiter bevorzugt von etwa 0,01 Gew.-% bis zu etwa 0,5, bevorzugt bis zu etwa < etwa 0,1 Gew.-% Beryllium (Be) enthalten, wobei der Gehalt an Kalzium auf ί etwa 0,0005 Gew.-% begrenzt ist. Aus der Zugabe von Beryllium resultiert eine besonders gute Gießbarkeit der Legierung. Dessen Zugabe in die Schmelze bewirkt eine dichte Oxidhaut auf der Schmelze, welche als Diffusionsbarriere fungiert und die Oxidation und Wasserstoffaufnahme der Schmelze reduziert. Auch kann die Diffusion von Aluminium und Magnesium nach außer verhindert werden. Obige Effekte sind insbesondere beim Einsatz von Warmhalteöfen relevant. Zusätzlich kommt es zur Bildung einer feinen/dünnen Oxidschicht an der Erstarrungsfront beim Gießen, zum Beispiel in einer Kokille, welche das Fließvermögen verbessert. Insgesamt können somit dünne Wände und feine Formstrukturen besser und ohne zusätzliche Hilfsmaßnahmen gefüllt werden. Zusätzlich dazu verbessert die Zugabe von Beryllium die Festigkeitskennwerte der Legierung insgesamt. Während der Alterung ist eine höhere Dichte an festigkeitssteigernden Ausscheidungen erzielbar. Die Zugabe von Beryllium ergänzt die vorteilhaften Effekte der vorliegenden Aiuminiumiegierungen um eine Reduzierung der Oxidation der Schmelze, trägt zur besseren Gießbarkeit, insbesondere im Schwerkraftkokillenguss, bei und verbessert die Festigkeit der Legierung. Gleichzeitig ist es bevorzugt, den Kalziumgehalt auf das obige niedrige Niveau zu begrenzen. Die gleichzeitige Anwesenheit von darüber hinausgehenden Gehalten an Kalzium kann den vorteilhaften Effekten des Berylliums entgegenwirken und die Oxidation verstärken. Diesbezüglich ist ein möglichst geringer Kalziumgehalt vorteilhaft. The above-described aiuminium alloys may also be from about 0.0005, preferably from> about 0.006, and more preferably from about 0.01% to about 0.5, preferably to about <about 0.1% by weight beryllium (Be), wherein the content of calcium is limited to ί about 0.0005 wt .-%. The addition of beryllium results in a particularly good castability of the alloy. Its addition to the melt causes a dense oxide skin on the melt, which acts as a diffusion barrier and reduces the oxidation and hydrogen uptake of the melt. The diffusion of aluminum and magnesium can also be prevented. The above effects are particularly relevant when using holding furnaces. In addition, a fine / thin oxide layer is formed on the solidification front during casting, for example, in a mold, which improves flowability. Overall, thus thin walls and fine mold structures can be filled better and without additional assistance. In addition, the addition of beryllium improves the strength characteristics of the alloy as a whole. During aging, a higher density of strength enhancing precipitates is achievable. The addition of beryllium supplements the beneficial effects of the present Auminiumiegierungen to a reduction in the oxidation of the melt, contributes to better castability, especially in gravity chill casting, and improves the strength of the alloy. At the same time, it is preferable to limit the calcium content to the above low level. The simultaneous presence of excess levels of calcium can counteract the beneficial effects of beryllium and enhance oxidation. In this regard, the lowest possible calcium content is advantageous.
Besonders bevorzugte Aiuminiumiegierungen A, B, C und D der vorliegenden Erfindung ergeben sich aus nachfolgender Tabelle (Angaben in Gew.-%): Zusammensetzung A B c D min 9 9 9 7Particularly preferred Aiuminiumiegierungen A, B, C and D of the present invention are shown in the following table (in wt .-%): Composition AB c D min 9 9 9 7
Si Si
max < 10,5 < 10,5 <12 < 14,5 min >2,0 > 1,2 2  max <10.5 <10.5 <12 <14.5 min> 2.0> 1.2 2
Ni  Ni
max < 3,5 < 2,0 <3,5 <4 min >5,2 >5,2 >3.7  max <3.5 <2.0 <3.5 <4 min> 5.2> 5.2> 3.7
Cu  Cu
max <10 <10 5,2 <5,5 min  max <10 <10 5,2 <5,5 min
Co  Co
max <1 <1 <1 <1 min 0,5 0,5 0,5 0,1 max <1 <1 <1 <1 min 0.5 0.5 0.5 0.1
Mg mg
max 1,5 1,5 1,5 1,2 min 0,1 0,1 0,1  max 1.5 1.5 1.5 1.2 min 0.1 0.1 0.1
Fe  Fe
max 0,7 0,7 0,7 £0, min 0,1 0,1 0,1  max 0.7 0.7 0.7 £ 0, min 0.1 0.1 0.1
Mn  Mn
max 0,4 0,4 0,4 <0J min 0,2 0,2 0,2 >0,1 max 0.4 0.4 0.4 <0J min 0.2 0.2 0.2> 0.1
Zr Zr
max <0,4 <0,4 0,4 <0,5 min >0,1 > 0,1 0,1  max <0.4 <0.4 0.4 <0.5 min> 0.1> 0.1 0.1
V  V
max <0,2 <0,2 0,3 £0,3 min 0,05 0,05 0,1  max <0.2 <0.2 0.3 lbs 0.3 min 0.05 0.05 0.1
Ti  Ti
max < 0,2 <0,2 0,5 £0,2 min 0,004 0,004 0,004  max <0.2 <0.2 0.5 £ 0.2 min 0.004 0.004 0.004
P  P
max 0,008 0,008 0,008 < 0,05 min - - - 0,0005 max 0.008 0.008 0.008 <0.05 min - - - 0.0005
Be Be
max - - - 0,5 min - - - max - - - 0,5 min - - -
Ca Ca
max - - < 0,0005 max - - <0.0005
Rest AI und nicht zu vermeidende Verunreinigungen Die Legierungen A, B, C und D realisieren die oben gennannten technischen Vorteile, Darüber hinaus erweist sich bei Legierung A der vergleichsweise hohe Cu- und Zr-Gehalt als vorteilhaft, welcher eine Anhebung festig keitssteigernder Ausscheidungen bewirkt. Gleiches gilt für die bevorzugte Legierung B, wobei diese einen verringerten Nickelgehalt aufweist, der ferner zur Senkung der Legierungskosten betträgt. Der in Legierung C vergleichsweise erhöhte Gehalt an Zr, V und Ti trägt ebenfalls zusätzlich zur Anhebung festig keitssteigernder Ausscheidungen bei. Generell bewirkt ein erhöhter Zr-Gehalt eine weitere Verbesserung der Festigkeit. Legierung C weist besonders bevorzugt einen Si- Gehalt < 10,5 Gew.-% auf. Legierung D ist vorteilhaft darin, dass die Zugabe von Beryllium, wie oben beschrieben, das Oxidations- und Fließ verhalten der Schmelze sowie die Festigkeit der Legierung verbessert. Dieser Effekt wird noch durch den vergleichsweise geringen Mg-Gehalt und den auf ein niedriges Niveau begrenzten Ca-Gehalt weiter gesteigert. Legierung D kann zudem noch die Legierungselemente in folgenden bevorzugten Konzentrationsbereichen aufweisen: Nickel (Ni) von etwa 2 bis < etwa 3,5 Gew.-%, Kupfer (Cu) von > etwa 3,7 bis etwa 5,2 Gew.-%, Magnesium (Mg) von > etwa 0,65 bis < etwa 0,8 Gew.-%, Eisen (Fe) von etwa 0,4 bis etwa 0,6 Gew.-%, Mangan (Mn) von etwa 0,1 bis etwa 0,4 Gew.-% und für Beryllium, die oben genannten bevorzugten Konzentrationsgrenzen. Optional ist die Anwesenheit/Zugabe von Beryllium zur Verbesserung der Oxidations-, Fließ- und Festigkeitseigenschaften auch in/zu den Legierungen A, B und C möglich. Dabei sollte ebenfalls der Kalziumgehalt auf das angegebene niedrige Niveau begrenzt werden, um den vorteilhaften Effekten des Berylliums nicht entgegenzuwirken, insgesamt besteht zwischen den Legierungen A, B, C und D eine gewisse Kombinierbarkeit, sodass deren vorteilhafte technische Effekte auch zusammen in einer einzelnen Legierung realisiert werden können. Rest AI and unavoidable impurities The alloys A, B, C and D realize the above-mentioned technical advantages, Moreover, in alloy A, the comparatively high Cu and Zr content proves to be advantageous, which causes an increase Festig keitssteigernder excretions. The same applies to the preferred alloy B, which has a reduced nickel content, which further contributes to the reduction of alloying costs. The relatively high content of Zr, V and Ti in Alloy C also adds to the increase in strength-enhancing precipitates. In general, an increased Zr content causes a further improvement in strength. Alloy C particularly preferably has an Si content <10.5% by weight. Alloy D is advantageous in that the addition of beryllium, as described above, improves the oxidation and flow behavior of the melt as well as the strength of the alloy. This effect is further increased by the comparatively low Mg content and the limited to a low level Ca content. Alloy D may also have the alloying elements in the following preferred concentration ranges: nickel (Ni) from about 2 to about 3.5 wt%, copper (Cu) from about 3.7 to about 5.2 wt%. , Magnesium (Mg) of> about 0.65 to <about 0.8 wt%, iron (Fe) of about 0.4 to about 0.6 wt%, manganese (Mn) of about 0.1 to about 0.4% by weight, and for beryllium, the preferred concentration limits mentioned above. Optionally, the presence / addition of beryllium to improve the oxidation, flow and strength properties is also possible in / to the alloys A, B and C. The calcium content should also be limited to the stated low level in order not to counteract the advantageous effects of beryllium. Overall, a certain combinability exists between the alloys A, B, C and D, so that their advantageous technical effects are also realized together in a single alloy can be.
Mit Vorteil beträgt das Gewichtsverhältnis von Eisen zu Mangan in den genannten Aluminiumlegierungen höchstens etwa 5:1 bevorzugt etwa 2,5:1. In dieser Ausführungsform enthält die Aluminiumlegierung also höchstens fünf Teile Eisen gegenüber einem Teil Mangan, bevorzugt etwa 2,5 Teile Eisen gegenüber einem Teil Mangan. Durch dieses Verhältnis werden besonders vorteilhafte Festigkeitseigenschaften des Motorbauteils erzielt. Advantageously, the weight ratio of iron to manganese in said aluminum alloys is at most about 5: 1, preferably about 2.5: 1. Thus, in this embodiment, the aluminum alloy contains at most five parts iron versus one part manganese, preferably about 2.5 parts iron versus one part manganese. By this ratio particularly advantageous strength properties of the engine component can be achieved.
Besonders bevorzugt beträgt die Nickelkonzentrationen < 3,5 Gew.-%, da sich ansonsten zu große, plattenförmige (primäre, nickeireiche) Phasen im Gefüge ausbilden können, die aufgrund ihrer Kerbwirkung die Festigkeit und/oder Lebensdauer herabsetzen können. Bei den bevorzugten Nickelkonzentrationen größer > 1,2 Gew.-% wird ein thermisch stabiles Primärphasennetzwerk mit Konnektivität und Kontiguität erzeugt. The nickel concentrations are particularly preferably <3.5% by weight, since otherwise too large, plate-shaped (primary, nickel-rich) phases can form in the microstructure, which due to their notch effect can reduce the strength and / or service life. At the preferred nickel concentrations greater than 1.2 wt%, a thermally stable primary phase network is produced with connectivity and contiguity.
Ferner ist es bevorzugt, dass die Summe aus Nickel und Kobalt in den genannten Aluminiumlegierungen > 2,0 Gew.-% und < 3,8 Gew.-% beträgt. Die untere Grenze stellt dabei eine vorteilhafte Festigkeit der Legierung sicher und die obere Grenze gewährleistet mit Vorteil eine feine Mikrostruktur und vermeidet die Bildung grober, plattenförmiger Phasen, welche die Festigkeit verringern würden. Mit Vorteil weisen die Aluminiumlegierungen eine feine Mikrostruktur mit einem geringen Gehalt von Poren und Einschlüssen und/oder wenig und kleines primäres Silizium, insbesondere im hochbelasteten Muldenrandbereich, auf. Dabei ist unter einem geringen Gehait von Poren vorzugsweise eine Porosität von < 0,01 % und unter wenig primärem Silizium < 1 % zu verstehen. Ferner ist die feine Mikrostruktur vorteilhaft dadurch beschrieben, dass die mittlere Länge des primären Silizium ca. < 5 μηι und dessen maximale Länge ca. < 10 μηι beträgt und die intermetallischen Phasen und/oder primären Ausscheidungen Längen von im Mittel ca. < 30 μιη und maximal < 50 pm aufweisen. Die feine Mikrostruktur trägt insbesondere zur Verbesserung der thermomechanischen Ermüdungsfestigkeit bei. Eine Begrenzung der Größe der Primärphasen kann die Anfälligkeit gegen Rissinititerung und Rissausbreitung verringern und so die TMF- HCF-Lebensdauer signifikant erhöhen. Ferner ist es auf Grund der Kerbwirkung von Poren und Einschlüssen besonders vorteilhaft deren Gehalt gering zu halten. Further, it is preferable that the sum of nickel and cobalt in said aluminum alloys is> 2.0 wt% and <3.8 wt%. The lower limit ensures an advantageous strength of the alloy and the upper limit advantageously ensures a fine microstructure and avoids the formation of coarse, plate-shaped phases which would reduce the strength. Advantageously, the aluminum alloys have a fine microstructure with a low content of pores and inclusions and / or little and small primary silicon, especially in the highly loaded bowl rim area. Here, a low content of pores is preferably to be understood as meaning a porosity of <0.01% and less than a few primary silicon <1%. Furthermore, the fine microstructure is advantageously described by the fact that the average length of the primary silicon about <5 μηι and its maximum length is about <10 μηι and the intermetallic phases and / or primary precipitates lengths of on average about <30 μιη and maximum <50 pm. The fine microstructure contributes in particular to the improvement of the thermomechanical fatigue strength. Limiting the size of the primary phases can reduce the susceptibility to crack initiation and crack propagation and thus significantly increase the TMF-HCF lifetime. Furthermore, it is particularly advantageous due to the notch effect of pores and inclusions to keep their content low.
Ein erfindungsgemäßes Motorbauteil besteht zumindest teilweise aus einer der oben genannten Aluminiumlegierungen. Ein weiterer unabhängiger Aspekt der Erfindung liegt in der Verwendung der oben ausgeführten Aluminiumlegierungen für die Herstellung eines Motorbauteiis, insbesondere eines Kolbens eines Verbrennungsmotors, nach Anspruch 19 und dem diesbezüglichen Unteranspruch. Insbesondere werden die aufgefundenen Aluminiumlegierungen dabei im Schwerkraftkokillengussverfahren verarbeitet. An engine component according to the invention consists at least partially of one of the abovementioned aluminum alloys. Another independent aspect of the invention resides in the use of the above-described aluminum alloys for the manufacture of an engine component, in particular a piston of an internal combustion engine, according to claim 19 and the related subclaim. In particular, the aluminum alloys found are processed by gravity die casting.

Claims

Patentansprüche claims
1. Verfahren zur Herstellung eines Motorbauteils, insbesondere eines Kolbens für einen Verbrennungsmotor, bei dem eine Aluminiumlegierung im Schwerkraftkokillengussverfahren abgegossen wird, 1. A method for producing an engine component, in particular a piston for an internal combustion engine, in which an aluminum alloy is poured by gravity die casting method,
wobei die Aluminiumlegierung die folgenden Legierungseiemente: the aluminum alloy being the following alloy elements:
Silizium: 7 Gew.-% bis < 14,5 Gew.-%,Silicon: 7% by weight to <14.5% by weight,
Nickel: > 1 ,2 Gew.-% bis 4 Ge .-%,Nickel:> 1, 2 wt .-% to 4 Ge .-%,
Kupfer: > 3,7 Gew.-% bis < 10 Gew.-%,Copper:> 3.7% by weight to <10% by weight,
Kobalt: bis < 1 Gew.-%, Cobalt: up to <1% by weight,
Magnesium: 0,1 Gew.-% bis 1 ,5 Gew.-%, Magnesium: 0.1% by weight to 1.5% by weight,
Eisen: 0,1 Gew.-% bis < 0,7 Gew.-%,Iron: 0.1% by weight to <0.7% by weight,
Mangan: 0,1 Gew.-% bis < 0,7 Gew.-%,Manganese: 0.1% by weight to <0.7% by weight,
Zirkonium: > 0.1 Gew.-% bis < 0,5 Gew.-%,Zirconium:> 0.1% by weight to <0.5% by weight,
Vanadium: ä 0,1 Gew.-% bis < 0,3 Gew.-%,Vanadium: from 0.1% by weight to <0.3% by weight,
Titan: 0,05 Gew.-% bis 0,5 Gew.-%, Titanium: 0.05% to 0.5% by weight,
Phosphor: 0,004 Gew.-% bis 0,05 Gew.-%,  Phosphorus: 0.004 wt% to 0.05 wt%,
und als Rest Aluminium und nicht zu vermeidende Verunreinigungen aufweist. and the remainder aluminum and unavoidable impurities.
2. Verfahren nach Anspruch 1 , wobei die Aluminiumlegierung ferner aufweist: 2. The method of claim 1, wherein the aluminum alloy further comprises:
Beryllium: 0,0005 Gew.-% bis 0,5 Gew.-% und  Beryllium: 0.0005 wt .-% to 0.5 wt .-% and
Kalzium: bis < 0,0005 Gew.-%.  Calcium: up to <0.0005% by weight.
3. Verfahren nach Anspruch 1 oder 2, wobei die Aiuminiumlegierung aufweist: 3. The method of claim 1 or 2, wherein the Aiuminiumlegierung comprises:
Silizium: 9 Gew.-% bis < 10,5 Gew.-%, Silicon: 9% by weight to <10.5% by weight,
Nickel: > 2 Gew.-% bis < 3,5 Gew.- ,Nickel:> 2% by weight to <3.5% by weight,
Kupfer: > 5,2 Gew.-% bis < 10 Gew.-%,Copper:> 5.2% by weight to <10% by weight,
Kobalt: bis < 1 Gew.-%, Cobalt: up to <1% by weight,
Magnesium: 0,5 Gew.-% bis 1 ,5 Gew.-%, Magnesium: 0.5% by weight to 1.5% by weight,
Eisen: 0,1 Gew.-% bis 0,7 Gew.-%,Iron: 0.1% to 0.7% by weight,
Mangan: 0,1 Gew.-% bis 0,4 Gew.-%,Manganese: 0.1% to 0.4% by weight,
Zirkonium: 0,2 Gew.-% bis < 0,4 Gew.-%,Zirconium: from 0.2% to <0.4% by weight,
Vanadium > 0,1 Gew.-% bis < 0,2 Gew.-%,Vanadium> 0.1% by weight to <0.2% by weight,
Titan: 0,05 Gew.-% bis < 0,2 Gew.-%, Titanium: 0.05% by weight to <0.2% by weight,
Phosphor: 0,004 Gew.-% bis 0,008 Gew.-%,  Phosphorus: 0.004 wt% to 0.008 wt%,
und als Rest Aluminium und nicht zu vermeidende Verunreinigungen. and the balance aluminum and unavoidable impurities.
4. Verfahren nach Anspruch 1 oder 2, wobei die Aiuminiumiegierung aufweist: 4. A method according to claim 1 or 2, wherein the aiuminium alloy has:
Silizium: 9 Gew.-% bis < 10,5 Gew.-%, Silicon: 9% by weight to <10.5% by weight,
Nickel: > 1 ,2 Gew.-% bis < 2,0 Gew.-%,Nickel:> 1, 2 wt .-% to <2.0 wt .-%,
Kupfer: > 5,2 Gew.-% bis < 10 Gew.-%,Copper:> 5.2% by weight to <10% by weight,
Kobalt: bis < 1 Gew.-%, Cobalt: up to <1% by weight,
Magnesium: 0,5 Gew.-% bis 1 ,5 Gew.-%, Magnesium: 0.5% by weight to 1.5% by weight,
Eisen: 0,1 Gew.-% bis 0,7 Gew.-%,Iron: 0.1% to 0.7% by weight,
Mangan: 0,1 Gew.-% bis 0,4 Gew.-%,Manganese: 0.1% to 0.4% by weight,
Zirkonium: 0,2 Gew,-% bis < 0,4 Gew.-%,Zirconium: 0.2% by weight to <0.4% by weight,
Vanadium: > 0,1 Gew.-% bis < 0,2 Gew.-%,Vanadium:> 0.1% by weight to <0.2% by weight,
Titan: 0,05 Gew.-% bis < 0,2 Gew.-%, Titanium: 0.05% by weight to <0.2% by weight,
Phosphor: 0,004 Gew.-% bis 0,008 Gew.-%,  Phosphorus: 0.004 wt% to 0.008 wt%,
und als Rest Aluminium und nicht zu vermeidende Verunreinigungen. and the balance aluminum and unavoidable impurities.
5. Verfahren nach Anspruch 1 oder 2, wobei die Aiuminiumiegierung aufweist: 5. The method of claim 1 or 2, wherein the Aiuminiumiegierung comprises:
Silizium: 9 Gew.-% bis < 12 Gew.-%, Silicon: 9% by weight to <12% by weight,
Nickel: 2 Gew.-% bis < 3,5 Gew.-%,Nickel: 2% by weight to <3.5% by weight,
Kupfer: > 3,7 Gew.-% bis 5,2 Gew.-%,Copper:> 3.7% by weight to 5.2% by weight,
Kobalt: bis < 1 Gew.-%, Cobalt: up to <1% by weight,
Magnesium: 0,5 Gew.-% bis 1 ,5 Gew.-%, Magnesium: 0.5% by weight to 1.5% by weight,
Eisen: 0,1 Gew.-% bis 0,7 Gew.-%,Iron: 0.1% to 0.7% by weight,
Mangan: 0,1 Gew.-% bis 0,4 Gew.-%,Manganese: 0.1% to 0.4% by weight,
Zirkonium: 0,2 Gew.-% bis 0,4 Gew.-%,Zirconium: 0.2% to 0.4% by weight,
Vanadium: 0,1 Gew.-% bis 0,3 Gew.-%,Vanadium: 0.1% to 0.3% by weight,
Titan: 0,1 Gew.-% bis 0,5 Gew .-%, Titanium: 0.1% to 0.5% by weight,
Phosphor: 0,004 Gew.-% bis 0,008 Gew.-%,  Phosphorus: 0.004 wt% to 0.008 wt%,
und als Rest Aluminium und nicht zu vermeidende Verunreinigungen. and the balance aluminum and unavoidable impurities.
6. Verfahren nach Anspruch 1 , wobei die Aiuminiumiegierung aufweist: 6. The method of claim 1, wherein the aiuminium alloy has:
Silizium: 7 Gew.-% bis < 14,5 Gew.-%, Silicon: 7% by weight to <14.5% by weight,
Nickel: bis < 4 Gew.-%,Nickel: up to <4% by weight,
Kupfer: bis £ 5,5 Gew.-%,Copper: up to 5.5% by weight,
Kobalt: bis < 1 Gew.-%, Cobalt: up to <1% by weight,
Magnesium: 0,1 Gew.-% bis 1 ,2 Gew.-%, Magnesium: 0.1% to 1, 2% by weight,
Eisen: 0,1 Gew.-% bis < 0,7 Gew.-%,Iron: 0.1% by weight to <0.7% by weight,
Mangan: 0,1 Gew.-% bis 0,7 Gew.-%, Zirkonium: > 0,1 Gew.-% bis < 0,5 Gew.-%,Manganese: 0.1% to 0.7% by weight, Zirconium:> 0.1% by weight to <0.5% by weight,
Vanadium: bis -S 0,3 Gew.-%,Vanadium: to -S 0.3% by weight,
Titan: bis < 0,2 Gew.-%, Titanium: up to <0.2% by weight,
Phosphor: bis £ 0,05 Gew.-%,  Phosphorus: up to 0.05% by weight,
Beryllium: 0,0005 Gew.-% bis 0,5 Gew.-%,  Beryllium: 0.0005% to 0.5% by weight,
Kalzium: bis < 0,0005 Gew,-%  Calcium: up to <0.0005%, -%
und als Rest Aluminium und nicht zu vermeidende Verunreinigungen. and the balance aluminum and unavoidable impurities.
7. Verfahren gemäß einem der vorangegangenen Ansprüche 1 bis 6, wobei in der Aluminiumiegierung ein Gewichtsverhältnis von Eisen zu Mangan höchstens etwa 5:1 , bevorzugt das Gewichtsverhältnis von Eisen zu Mangan etwa 2,5:1 beträgt. 7. The method according to any one of the preceding claims 1 to 6, wherein in the aluminum alloy, a weight ratio of iron to manganese is at most about 5: 1, preferably the weight ratio of iron to manganese is about 2.5: 1.
8. Verfahren gemäß einem der vorangegangenen Ansprüche 1 bis 7, wobei eine Summe aus Nickel und Kobalt bevorzugt > 2,0 Gew.-% und < 3,8 Gew.-% beträgt. 8. The method according to any one of the preceding claims 1 to 7, wherein a sum of nickel and cobalt is preferably> 2.0 wt .-% and <3.8 wt .-%.
9. Verfahren gemäß einem der vorangegangenen Ansprüche 1 bis 8, wobei die Aluminiumlegierung eine feine Mikrostruktur mit einem geringen Gehalt von Poren und Einschlüssen und/oder wenig und kleines primäres Silizium, insbesondere in einem Muldenrandbereich des Motorbauteils, aufweist, wobei die Porosität < 0,01 % und/oder der Gehalt an primärem Silizium < 1 % beträgt, wobei das primäre Silizium Längen von im Mittel < 5 pm und/oder maximale Längen < 10 pm aufweist, und die intermetallischen Phasen und/oder primären Ausscheidungen Längen von im Mittel < 30 pm und/oder maximale Längen < 50 pm aufweisen. 9. The method according to any one of the preceding claims 1 to 8, wherein the aluminum alloy has a fine microstructure with a low content of pores and inclusions and / or little and small primary silicon, in particular in a trough edge region of the engine component, wherein the porosity <0, 01% and / or the content of primary silicon is <1%, wherein the primary silicon has lengths of on average <5 pm and / or maximum lengths <10 pm, and the intermetallic phases and / or primary precipitates have lengths of on average < 30 pm and / or maximum lengths <50 pm.
Motorbauteil, insbesondere Kolben für einen Verbrennungsmotor, das zumindest teilweise aus einerEngine component, in particular piston for an internal combustion engine, at least partially from a
Aluminiumiegierung besteht, wobei die Aluminiumiegierung die folgenden Legierungselemente: Silizium: 7 Gew,-% bis < 14,5 Gew.-%, Nickel: > 1 ,2 Gew.-% bis < 4 Gew.-%, Kupfer: > 3,7 Gew.-% bis < 10 Gew.-%, Kobalt: bis < 1 Gew.-%, Aluminum alloy, the aluminum alloy comprising the following alloying elements: silicon: 7% by weight to <14.5% by weight, nickel:> 1, 2% by weight to <4% by weight, copper:> 3, 7% by weight to <10% by weight, cobalt: to <1% by weight,
Magnesium: 0,1 Gew.-% bis 1 ,5 Gew.-%, Eisen: 0,1 Gew.-% bis < 0,7 Gew.-%, Mangan: 0,1 Gew.-% bis 0,7 Gew.-%, Zirkonium: > 0,1 Gew.-% bis < 0,5 Gew.-%, Vanadium: 0,1 Gew.-% bis < 0,3 Gew.-%, Titan: 0,05 Gew.-% bis 0,5 Gew.-%,  Magnesium: 0.1% by weight to 1.5% by weight, iron: 0.1% by weight to <0.7% by weight, manganese: 0.1% by weight to 0.7 % By weight, zirconium:> 0.1% by weight to <0.5% by weight, vanadium: 0.1% by weight to <0.3% by weight, titanium: 0.05% by weight % to 0.5% by weight,
Phosphor: 0,004 Gew.-% bis < 0,05 Gew.-%, und als Rest Aluminium und nicht zu vermeidende Verunreinigungen aufweist. Phosphorus: 0.004 wt% to <0.05 wt%, and the remainder aluminum and unavoidable impurities.
11. Motorbauteil nach Anspruch 10, wobei die Aluminiumiegierung ferner aufweist: 11. The engine component of claim 10, wherein the aluminum alloy further comprises:
Beryllium: 0,0005 Gew.-% bis 0,5 Gew.-% und  Beryllium: 0.0005 wt .-% to 0.5 wt .-% and
Kalzium: bis < 0,0005 Gew.-%.  Calcium: up to <0.0005% by weight.
12. Motorbauteil nach Anspruch 10 oder 11, wobei die Aluminiumiegierung aufweist: 12. An engine component according to claim 10 or 11, wherein the aluminum alloy comprises:
Silizium: 9 Gew.-% bis < 10,5 Gew.-%, Silicon: 9% by weight to <10.5% by weight,
Nickel: > 2 Gew.-% bis < 3,5 Gew.-%,Nickel:> 2% by weight to <3.5% by weight,
Kupfer: > 5,2 Gew.-% bis < 10 Gew.-%,Copper:> 5.2% by weight to <10% by weight,
Kobalt: bis < 1 Gew.-%, Cobalt: up to <1% by weight,
Magnesium: 0,5 Gew.-% bis 1,5 Gew.-%, Magnesium: 0.5% to 1.5% by weight,
Eisen: 0,1 Gew.-% bis 0,7 Gew.-%,Iron: 0.1% to 0.7% by weight,
Mangan: 0,1 Gew.-% bis 0,4 Gew.-%,Manganese: 0.1% to 0.4% by weight,
Zirkonium: 0,2 Gew.-% bis < 0,4 Gew.-%,Zirconium: from 0.2% to <0.4% by weight,
Vanadium: > 0,1 Gew.-% bis < 0,2 Gew.-%,Vanadium:> 0.1% by weight to <0.2% by weight,
Titan: 0,05 Gew.-% bis < 0,2 Gew.-%, Titanium: 0.05% by weight to <0.2% by weight,
Phosphor: 0,004 Gew.-% bis 0,008 Gew.-%,  Phosphorus: 0.004 wt% to 0.008 wt%,
und als Rest Aluminium und nicht zu vermeidende Verunreinigungen. 3. Motorbauteil nach Anspruch 10 oder 11, wobei die Aluminiumiegierung aufweist: and the balance aluminum and unavoidable impurities. 3. The engine component according to claim 10 or 11, wherein the aluminum alloy comprises:
Silizium: 9 Gew.-% bis < 10,5 Gew.-%, Silicon: 9% by weight to <10.5% by weight,
Nickel: > 1,2 Gew.-% bis < 2,0 Gew.-%,Nickel:> 1.2% by weight to <2.0% by weight,
Kupfer: > 5,2 Gew.-% bis < 10 Gew.-%,Copper:> 5.2% by weight to <10% by weight,
Kobalt: bis < 1 Gew.-%, Cobalt: up to <1% by weight,
Magnesium: 0,5 Gew.-% bis 1,5 Gew.-%, Magnesium: 0.5% to 1.5% by weight,
Eisen: 0,1 Gew.-% bis 0,7 Gew.-%,Iron: 0.1% to 0.7% by weight,
Mangan: 0,1 Gew.-% bis 0,4 Gew.-%,Manganese: 0.1% to 0.4% by weight,
Zirkonium: 0,2 Gew.-% bis < 0,4 Gew.-%,Zirconium: from 0.2% to <0.4% by weight,
Vanadium: > 0,1 Gew.-% bis < 0,2 Gew.-%,Vanadium:> 0.1% by weight to <0.2% by weight,
Titan: 0,05 Gew.-% bis < 0,2 Gew.-%, Titanium: 0.05% by weight to <0.2% by weight,
Phosphor: 0,004 Gew.-% bis 0,008 Gew.-%,  Phosphorus: 0.004 wt% to 0.008 wt%,
und als Rest Aluminium und nicht zu vermeidende Verunreinigungen. and the balance aluminum and unavoidable impurities.
14. Motorbauteü nach Anspruch 10 oder 11, wobei die Aluminiumtegierung aufweist. 14. Motorbauteü according to claim 10 or 11, wherein the Aluminiumtegierung has.
Silizium: 9 Gew.-% bis < 12 Gew.-%, Silicon: 9% by weight to <12% by weight,
Nickel: 2 Gew.-% bis < 3,5 Gew.-%,Nickel: 2% by weight to <3.5% by weight,
Kupfer: > 3,7 Gew.-% bis 5,2 Gew.-%,Copper:> 3.7% by weight to 5.2% by weight,
Kobalt: bis < 1 Gew.-%, Cobalt: up to <1% by weight,
Magnesium: 0,5 Gew.-% bis 1,5 Gew.-%, Magnesium: 0.5% to 1.5% by weight,
Eisen: 0,1 Gew.-% bis 07 Gew.-%,Iron: 0.1% to 07% by weight,
Mangan: 0,1 Gew.-% bis 0,4 Gew.-%,Manganese: 0.1% to 0.4% by weight,
Zirkonium: 0,2 Gew.-% bis 0,4 Gew.-%,Zirconium: 0.2% to 0.4% by weight,
Vanadium: 0,1 Gew.-% bis 0,3 Gew.-%,Vanadium: 0.1% to 0.3% by weight,
Titan: 0,1 Gew.-% bis 0,5 Gew.-%, Titanium: 0.1% to 0.5% by weight,
Phosphor: 0,004 Gew.-% bis 0,008 Gew.-%,  Phosphorus: 0.004 wt% to 0.008 wt%,
und als Rest Aluminium und nicht zu vermeidende Verunreinigungen, and the remainder being aluminum and unavoidable impurities,
15. Motorbauteil nach Anspruch 10, wobei die Alurniniumlegterung aufweist: 15. The engine component of claim 10, wherein the aluminum lining comprises:
Silizium: 7 Gew.-% bis < 14,5  Silicon: 7% by weight to <14.5
Nickel: bis s 4  Nickel: up to s 4
Kupfer: bis s 5,5  Copper: up to s 5.5
Kobalt: bis < 1 Gew.-%,  Cobalt: up to <1% by weight,
Magnesium: 0,1 Gew.-% bis 1,2  Magnesium: 0.1% by weight to 1.2
Eisen: bis £ 0,7  Iron: up to £ 0.7
Mangan: bis £ (  Manganese: to £ (
Zirkonium: > 0,1 Gew.-% bis < 0,5  Zirconium:> 0.1% by weight to <0.5
Vanadium: bis s 0,3  Vanadium: to s 0.3
Titan: bis < 0,2 Gew.-%,  Titanium: up to <0.2% by weight,
Phosphor: bis s 0,05 Gew.-%,  Phosphorus: to s 0.05 wt%,
Beryllium: 0,0005 Gew.-% bis 0,5 Gew.-%,  Beryllium: 0.0005% to 0.5% by weight,
Kalzium: bis < 0,0005 Gew.-%  Calcium: up to <0.0005% by weight
und als Rest Aluminium und nicht zu vermeidende Verunreinigungen. and the balance aluminum and unavoidable impurities.
16. Motorbauteü gemäß einem der vorangegangenen Ansprüche 10 bis 15, wobei in der Aluminiumlegierung ein Gewichtsverhältnis von Eisen zu Mangan höchstens etwa 5:1, bevorzugt das Gewichtsverhältnis von Eisen zu Mangan etwa 2,5:1 beträgt, 16. Motorbauteü according to one of the preceding claims 10 to 15, wherein in the aluminum alloy, a weight ratio of iron to manganese at most about 5: 1, preferably the weight ratio of iron to manganese is about 2.5: 1,
17. Motorbauteil gemäß einem der vorangegangenen Ansprüche 10 bis 16, wobei eine Summe aus Nickel und Kobalt bevorzugt > 2,0 Gew.-% und < 3,8 Gew.-% betragen soll. 17. Motor component according to one of the preceding claims 10 to 16, wherein a sum of nickel and cobalt should preferably be> 2.0 wt .-% and <3.8 wt .-%.
18. Motorbautei! gemäß einem der vorangegangenen Ansprüche 10 bis 17, wobei die Aluminiumlegierung eine feine Mikrostruktur mit einem geringen Gehalt von Poren und Einschlüssen und/oder wenig und kleines primäres Silizium, insbesondere in einem Muldenrandbereich des Bauteils, aufweist, wobei die Porosität < 0,01 % und/oder der Gehalt an primärem Silizium < 1 % beträgt, wobei das primäre Silizium Längen von im Mittel < 5 Mm und/oder maximale Längen < 10 μπ aufweist, und die intermetallischen Phasen und/oder primären Ausscheidungen Längen von im Mittel < 30 μιη und/oder maximale Längen < 50 μιη aufweisen. 18. Motor Components! The aluminum alloy according to any one of the preceding claims 10 to 17, wherein the aluminum alloy has a fine microstructure with a low content of pores and inclusions and / or little and small primary silicon, in particular in a trough edge region of the component, wherein the porosity <0.01% and or the content of primary silicon is <1%, wherein the primary silicon has lengths of on average <5 μm and / or maximum lengths <10 μm, and the intermetallic phases and / or primary precipitates have lengths of on average <30 μm and / or maximum lengths <50 μιη have.
Verwendung einer Alumintum!egierung zur Herstellung eines Motorbauteils, insbesondere einesUse of an aluminoum alloy for producing an engine component, in particular one
Kolbens eines Verbrennungsmotors, wobei die Aluminiumlegierung die folgenden Legierungselemente:Piston of an internal combustion engine, the aluminum alloy comprising the following alloying elements:
Silizium: 7 Gew.-% bis < 14,5 Gew.-%,Silicon: 7% by weight to <14.5% by weight,
Nickel: > 1,2 Gew.-% bis < 4 Gew.-%,Nickel:> 1.2% by weight to <4% by weight,
Kupfer: > 3,7 Gew.-% bis < 10 Gew.-%,Copper:> 3.7% by weight to <10% by weight,
Kobalt: bis < 1 Gew.-% Cobalt: up to <1% by weight
Magnesium: 0,1 Gew.-% bis 1,5 Gew.-%, Magnesium: 0.1% to 1.5% by weight,
Eisen: 0,1 Gew.-% bis s 0,7 Gew.-%,Iron: 0.1 wt.% To s 0.7 wt.%,
Mangan: 0,1 Gew.-% bis < 0,7 Gew.-%,Manganese: 0.1% by weight to <0.7% by weight,
Zirkonium: > 0,1 Gew.-% bis < 0,5 Gew.-%,Zirconium:> 0.1% by weight to <0.5% by weight,
Vanadium: > 0,1 Gew.~% bis < 0,3 Gew.-%,Vanadium:> 0.1% by weight to <0.3% by weight,
Titan: 0,05 Gew.-% bis 0,5 Gew.-%, Titanium: 0.05% to 0.5% by weight,
Phosphor: 0,004 Gew.-% bis < 0,05 Gew.-%,  Phosphorus: 0.004 wt% to <0.05 wt%,
und als Rest Aluminium und nicht zu vermeidende Verunreinigungen aufweist. and the remainder aluminum and unavoidable impurities.
20. Verwendung nach Anspruch 19, wobei die Aluminiumlegierung ferner aufweist: 20. Use according to claim 19, wherein the aluminum alloy further comprises:
Beryllium: 0,0005 Gew.~% bis 0,5 Gew.-% und  Beryllium: 0.0005% by weight to 0.5% by weight and
Kalzium: bis < 0,0005 Gew.-%.  Calcium: up to <0.0005% by weight.
EP15720740.8A 2014-05-14 2015-05-11 Method for producing an engine component, engine component, and use of an aluminum alloy Active EP3143173B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014209102.0A DE102014209102A1 (en) 2014-05-14 2014-05-14 Method for producing an engine component, engine component and use of an aluminum alloy
PCT/EP2015/060319 WO2015173172A1 (en) 2014-05-14 2015-05-11 Method for producing an engine component, engine component, and use of an aluminum alloy

Publications (3)

Publication Number Publication Date
EP3143173A1 true EP3143173A1 (en) 2017-03-22
EP3143173B1 EP3143173B1 (en) 2019-12-11
EP3143173B2 EP3143173B2 (en) 2022-08-10

Family

ID=53052874

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15720740.8A Active EP3143173B2 (en) 2014-05-14 2015-05-11 Method for producing an engine component, engine component, and use of an aluminum alloy

Country Status (9)

Country Link
US (1) US11280292B2 (en)
EP (1) EP3143173B2 (en)
JP (1) JP2017519105A (en)
KR (1) KR102379579B1 (en)
CN (1) CN106795591B (en)
BR (1) BR112016026554A2 (en)
DE (1) DE102014209102A1 (en)
MX (1) MX2016014860A (en)
WO (1) WO2015173172A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015205895A1 (en) * 2015-04-01 2016-10-06 Federal-Mogul Nürnberg GmbH Cast aluminum alloy, method of making an engine component, engine component and use of an aluminum casting alloy to make an engine component
CZ2015749A3 (en) * 2015-10-25 2017-05-24 Univerzita J. E. Purkyně V Ústí Nad Labem An aluminium alloy, especially for the production of thin-walled and dimensionally complex castings
KR101896806B1 (en) 2016-12-15 2018-09-07 현대자동차주식회사 Alluminum alloy for insert ring, alluminum insert ring using the same and piston manufacturing method using the same
CN107937767B (en) * 2017-12-28 2019-07-26 苏州仓松金属制品有限公司 A kind of novel high-performance aluminum alloy materials and preparation method thereof
CN109355534A (en) * 2018-12-14 2019-02-19 广东省海洋工程装备技术研究所 A kind of multi-element eutectic Al-Si alloy material and preparation method thereof and piston
DE102020205193A1 (en) 2019-05-16 2020-11-19 Mahle International Gmbh Process for producing an engine component, engine component and the use of an aluminum alloy
WO2021112155A1 (en) * 2019-12-04 2021-06-10 ヒノデホールディングス株式会社 Aluminum alloy for casting and aluminum cast product made using same
CN113444927B (en) * 2021-06-18 2022-11-25 中铝材料应用研究院有限公司 Aluminum alloy piston material and preparation method thereof
CN113502417A (en) * 2021-07-14 2021-10-15 无锡华星机电制造有限公司 High-heat-strength aluminum-silicon alloy material and manufacturing method thereof

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4648918A (en) * 1984-03-02 1987-03-10 Kabushiki Kaisha Kobe Seiko Sho Abrasion resistant aluminum alloy
CH684800A5 (en) 1991-10-23 1994-12-30 Rheinfelden Aluminium Gmbh A method for grain refining of aluminum cast alloys, in particular aluminum-silicon casting alloys.
DE4404420C2 (en) 1994-02-11 1997-07-17 Alcan Gmbh Aluminum-silicon alloy and its use
JPH08104937A (en) * 1994-10-03 1996-04-23 Nippon Light Metal Co Ltd Aluminum alloy for internal combustion engine piston excellent in high temperature strength and its production
JP3875338B2 (en) * 1997-02-19 2007-01-31 株式会社日立製作所 Aluminum alloy for piston
GB2332448B (en) * 1997-12-20 2002-06-26 Ae Goetze Automotive Ltd Aluminium alloy
WO2000071767A1 (en) 1999-05-25 2000-11-30 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration (Nasa) Aluminum-silicon alloy having improved properties at elevated temperatures and articles cast therefrom
DE10206035A1 (en) * 2002-02-14 2003-08-28 Ks Kolbenschmidt Gmbh Aluminum-based alloy used in the production of a piston for use in an internal combustion engine contains alloying additions of silicon, magnesium, vanadium and beryllium
US6918970B2 (en) * 2002-04-10 2005-07-19 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration High strength aluminum alloy for high temperature applications
US7682469B2 (en) 2002-07-22 2010-03-23 Kabushiki Kaisha Toyota Chuo Kenkyusho Piston made of aluminum cast alloy and method of manufacturing the same
JP2004256873A (en) * 2003-02-26 2004-09-16 Nippon Light Metal Co Ltd Aluminum alloy for casting having excellent high temperature strength
CN1563456A (en) * 2004-03-21 2005-01-12 浙江瑞明汽车部件有限公司 Cylinder block made from wearable aluminum alloy and manufacturing technique
JP4396576B2 (en) 2005-05-13 2010-01-13 トヨタ自動車株式会社 Piston manufacturing method
ES2524005T5 (en) 2006-02-13 2018-12-10 Hydro Aluminium Rolled Products Gmbh Aluminum alloy carbide free aluminum
EP1978120B1 (en) 2007-03-30 2012-06-06 Technische Universität Clausthal Aluminium-silicon alloy and method for production of same
JP5344527B2 (en) 2007-03-30 2013-11-20 株式会社豊田中央研究所 Aluminum alloy for casting, aluminum alloy casting and method for producing the same
EP1997924B1 (en) * 2007-05-24 2009-12-23 ALUMINIUM RHEINFELDEN GmbH High-temperature aluminium alloy
CN101294875B (en) 2008-06-07 2011-01-26 中国铝业股份有限公司 Production method of multi-element aluminum alloy standard sample
JP2012502176A (en) 2008-09-05 2012-01-26 カーエス コルベンシュミット ゲゼルシャフト ミット ベシュレンクテル ハフツング Method of manufacturing pistons for internal combustion engines made of improved aluminum silicon alloy
JP5482899B2 (en) * 2010-07-16 2014-05-07 日本軽金属株式会社 Aluminum alloy excellent in high temperature strength and thermal conductivity and method for producing the same
DE102011083972A1 (en) * 2011-10-04 2013-04-04 Federal-Mogul Nürnberg GmbH Method for producing an engine component and engine component
DE102011083967A1 (en) * 2011-10-04 2013-04-04 Federal-Mogul Nürnberg GmbH Method for producing an engine component and engine component
DE102011083968A1 (en) * 2011-10-04 2013-04-04 Federal-Mogul Nürnberg GmbH Method for producing an engine component and engine component
DE102011083969A1 (en) 2011-10-04 2013-04-04 Federal-Mogul Nürnberg GmbH Method for producing an engine component and engine component
JP5910206B2 (en) * 2012-03-16 2016-04-27 いすゞ自動車株式会社 Aluminum alloy
DE102012220765A1 (en) 2012-11-14 2014-05-15 Federal-Mogul Nürnberg GmbH Method for producing an engine component, engine component and use of an aluminum alloy
JP6028546B2 (en) * 2012-11-30 2016-11-16 いすゞ自動車株式会社 Aluminum alloy

Also Published As

Publication number Publication date
US11280292B2 (en) 2022-03-22
DE102014209102A1 (en) 2015-11-19
EP3143173B1 (en) 2019-12-11
EP3143173B2 (en) 2022-08-10
CN106795591B (en) 2018-10-26
KR102379579B1 (en) 2022-03-29
JP2017519105A (en) 2017-07-13
KR20170007404A (en) 2017-01-18
CN106795591A (en) 2017-05-31
US20170226957A1 (en) 2017-08-10
WO2015173172A1 (en) 2015-11-19
BR112016026554A2 (en) 2017-08-15
MX2016014860A (en) 2017-06-27

Similar Documents

Publication Publication Date Title
EP3143173B1 (en) Method for producing an engine component, engine component, and use of an aluminum alloy
EP2920334B1 (en) Method for producing an engine component, engine component, and use of an aluminium alloy
DE102009012073B4 (en) Use of an aluminum casting alloy
EP2748347B1 (en) Method for producing an engine component and engine component
DE602004004028T2 (en) Aluminum casting alloy, aluminum casting alloys and their manufacturing processes
WO2009010264A2 (en) Cast aluminum alloy, and use thereof
DE102020205193A1 (en) Process for producing an engine component, engine component and the use of an aluminum alloy
EP3024958A1 (en) High-temperature-resistant aluminium casting alloy and cast part for internal combustion engines cast from such an alloy
WO2017174185A1 (en) Aluminum alloy, in particular for a casting method, and method for producing a component from such an aluminum alloy
DE102004007704A1 (en) Production of a material based on an aluminum alloy used for producing motor vehicle engine components comprises forming an aluminum base alloy containing silicon and magnesium, hot deforming and heat treating
DE102006032699A1 (en) Aluminum alloy and its use for a cast component, in particular a motor vehicle
EP3810818B1 (en) Aluminum alloy, method for producing an engine component, engine component, and use of an aluminum alloy to produce an engine component
EP2742164B1 (en) Method for producing an engine component and engine component
WO2013050357A1 (en) Method for producing an engine component and engine component
EP2748346B1 (en) Method for producing an engine component, and engine component
DE102014224229A1 (en) Method for producing an engine component, engine component and use of an aluminum alloy
EP1646732A1 (en) Cast iron material
EP2742163B1 (en) Method for producing an engine component and engine component
EP3763845B1 (en) Magnesium alloy and its process of manufacture
DE102011083971A1 (en) Method for producing an engine component and engine component
EP3277854B1 (en) Aluminium casting alloy, a process for the manufacture of an engine component, engine component and the use of an aluminium casting alloy for the manufacture of an engine component

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20161209

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180307

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190801

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1212247

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015011199

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191211

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200312

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200411

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502015011199

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: MAHLE INTERNATIONAL GMBH

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200531

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200511

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200511

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1212247

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20220810

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502015011199

Country of ref document: DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230419

Year of fee payment: 9