EP3138368B1 - Schaltungsanordnung und verfahren zum betreiben von leds - Google Patents

Schaltungsanordnung und verfahren zum betreiben von leds Download PDF

Info

Publication number
EP3138368B1
EP3138368B1 EP15721618.5A EP15721618A EP3138368B1 EP 3138368 B1 EP3138368 B1 EP 3138368B1 EP 15721618 A EP15721618 A EP 15721618A EP 3138368 B1 EP3138368 B1 EP 3138368B1
Authority
EP
European Patent Office
Prior art keywords
current
led
led assembly
leds
operating device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15721618.5A
Other languages
English (en)
French (fr)
Other versions
EP3138368A1 (de
Inventor
Cristian OLARIU
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zumtobel Lighting GmbH Austria
Original Assignee
Zumtobel Lighting GmbH Austria
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zumtobel Lighting GmbH Austria filed Critical Zumtobel Lighting GmbH Austria
Publication of EP3138368A1 publication Critical patent/EP3138368A1/de
Application granted granted Critical
Publication of EP3138368B1 publication Critical patent/EP3138368B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • H05B45/56Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits involving measures to prevent abnormal temperature of the LEDs

Definitions

  • the present invention relates to an arrangement for operating a plurality of LEDs, which are arranged in LED circuits to be operated with constant current, preferably connected in the context of a number of so-called serial-parallel arrays.
  • the invention further relates to a method for operating LEDs.
  • LEDs are displacing more and more classic light sources in modern lighting technology.
  • a wide variety of LED types are available, which differ in terms of their output and in terms of the color or color temperature of the light emitted.
  • suitable LEDs are used depending on the area of application of a luminaire in which the LEDs are used.
  • Figure 1 thus shows a circuit variant known from the prior art, in which all LEDs are supplied by a common operating device 200.
  • a single LED array 210 in each case consists of a plurality of LED strands 220 connected in parallel, in each of which a plurality of LEDs 225 are in turn connected to one another in series.
  • several such LED arrays 210 can also be connected in series to one another and then again in parallel, the operating device 200 then supplying the overall arrangement with a correspondingly suitable constant current I BALLAST .
  • the in Figure 1 Circuit arrangement shown known from the prior art can be modified in various ways.
  • the number of LEDs used within a single array and the type of LEDs can be changed.
  • the number of LED arrays can be changed and it can be varied how many of these arrays are connected in series and how many LED array strings resulting therefrom are in turn arranged in parallel to one another.
  • the operating device 200 must then provide a suitable current. The same also applies in the event that only a single LED array is supplied with power by the operating device.
  • the required supply current results.
  • the circuit arrangement must therefore be designed in such a way that it is ensured that the operating device actually provides a suitable current for the LEDs.
  • the following procedures for solving this problem are already known from the prior art.
  • the operating device can be parameterized accordingly during manufacture or during commissioning, so that it permanently outputs the suitable current specified at the beginning.
  • this then means that it is not possible to adapt the current to changing conditions during later operation.
  • an adjustment could be necessary, for example, if some of the LED arrays fail and / or defective LED arrays are replaced by new arrays equipped with other LEDs.
  • the resistance can only be assessed with a relatively low accuracy. Further In this case, only a single LED array can then be identified by the operating device, and this must assume that the circuit arrangement has all identical arrays. In particular, however, the operating device does not show how many LED arrays are present in total and how they are interconnected.
  • the WO 2013/186655 A2 shows an LED-based lighting unit in which an LED module is electrically connected to an operating device via connections.
  • the operating device is used to provide a supply current for the LEDs of the LED module, which furthermore has an identification element in the form of a current source in order to provide a suitable supply current for the LEDs.
  • each LED module with a memory element in which information relating to the required supply current is stored digitally.
  • the operating device must then read this memory and adapt the output current based on it.
  • the present invention is therefore based on the object of enabling an operating device which supplies LED circuit arrangements to adapt the output current supplied to the actual requirements of the circuit arrangement in a simple manner.
  • the solution according to the invention is based on the idea of assigning an arrangement of LEDs to an identification element in the form of a so-called current sink. This is connected to the operating device separately from the actual power supply circuit via a parallel so-called feedback circuit, so that the operating device can determine the current flow in the feedback circuit resulting from the current sink. This current flow in turn characterizes the LED arrangement such that the operating device is able to provide a suitable supply current.
  • a circuit arrangement for operating LEDs with at least one - preferably serial-parallel - LED arrangement and an operating device for providing a supply current for the LEDs is proposed, the LED arrangement being assigned an identification element in the form of a current sink, which is connected via a Feedback circuit is connected to the operating device, and wherein the operating device is designed to provide a suitable supply current for the LEDs on the basis of a current flow resulting from the feedback circuit.
  • a protective mechanism is assigned to the LED arrangement, which, in the event of a detected fault condition, bridges the LED arrangement or interrupts a current flow through the LED arrangement, the protective mechanism influencing the associated current sink in the same way.
  • a method for operating at least one - preferably serial-parallel - LED arrangement in which an identification element in the form of a current sink is assigned to the LED arrangement and is connected to an operating device via a feedback circuit, based on a a suitable supply current for the LEDs is made available to the current flow resulting from the feedback circuit.
  • a protective mechanism is assigned to the LED arrangement, which, in the event of a detected fault condition, bridges the LED arrangement or interrupts a current flow through the LED arrangement, the protective mechanism influencing the associated current sink in the same way.
  • each LED arrangement is assigned a corresponding identification element in the form of a current sink, these current sinks then being connected to one another in the context of the feedback circuit.
  • this is separate from the supply circuit, its structure is exactly the same.
  • the current sinks are connected to one another in the same way, depending on the number of LED arrangements connected in series or in parallel.
  • This has the advantage that the overall current flow in the feedback circuit in turn allows a simple conclusion to be drawn about the total supply current required by all LEDs. It is preferably provided that the current sinks result in only a very small current flow in the feedback circuit, which is, however, connected to the actually required current via a known proportionality factor.
  • the solution according to the invention thus allows the total current required to be determined in a simple manner, independently of the interconnection of the LED arrangements, and accordingly to operate the LED arrangement in a suitable manner.
  • the current sinks that is to say the identification elements, not only allow conclusions to be drawn about the required current but also about the required voltage for operating the LEDs.
  • each current sink also causes a fixed voltage drop in the feedback circuit. If this voltage drop caused by the current sink is known to the operating device, it can be determined from the total voltage drop resulting across the entire feedback circuit how many LED arrangements are connected in series with one another.
  • the voltage drop caused by the current sink corresponds to a predetermined integer fraction of the required forward voltage of the LED arrangement. In the event that this gain factor is known to the operating device, it can then in turn provide a suitable supply voltage. However, the number of LED arrangements connected in series cannot be deduced directly here.
  • the protection mechanism makes it possible to take defects of individual LEDs into account in the circuit arrangement. Different variants are known from the prior art for reacting to corresponding LED defects. This is necessary because defective LEDs can lead to a strong imbalance in the distribution of the current within the circuit arrangement, the imbalance then propagating in such a way that further LEDs are damaged. Various protection mechanisms are therefore known which either detect the current flow through the associated LED arrangement or bridge it when appropriate defects are detected.
  • Protection mechanisms of this type then also affect the associated identification current sinks in the same way. This means that if a protective mechanism bridges the associated array or the associated arrangement due to a detected LED defect, this also occurs in the same way for the current sink within the feedback circuit. If, on the other hand, the current flow is interrupted, the associated branch in the feedback circuit is also interrupted. These measures have to As a result, the current in the feedback circuit automatically adjusts to the changed supply current required if protective measures so require. This further optimizes the operation of the LEDs as a whole.
  • FIG. 2 shows a first embodiment of an LED module, generally provided with the reference numeral 10, which is designed in the manner according to the invention.
  • the LED module 10 initially contains a serial-parallel LED array 15, which is formed from a plurality of LED strands 16 connected in parallel with one another. Within each LED strand 16, a plurality of LEDs 17 are connected in series with one another, ideally the number of LEDs 17 in the strands 16 is identical.
  • the LED module 10 has 15 connections LED + and LED at the input and at the output of the LED array, which are used to connect one
  • Enable supply circuit that leads to an operating device for the power supply of the LEDs.
  • the invention is described on the basis of serial-parallel LED arrays which, as mentioned, represent a particularly advantageous circuit variant for operating LEDs.
  • the concept according to the invention can be used in a much more general manner and can also be used in LED arrangements in which the LEDs are connected in a different way.
  • the module 10 requires a certain constant supply current I MODULE and a suitable supply voltage.
  • I MODULE constant supply current
  • the LED module 10 itself enables the operating device to determine the amount of current required.
  • the LED module 10 has an identification element in the form of a so-called current sink 20, which is connected to the operating device via a so-called feedback circuit.
  • the LED module 10 has two further connections FB + and FB-, which are formed separately from the connections for the power supply circuit LED + and LED-. This means that the feedback circuit is fundamentally separate but - as described in more detail below - is implemented in parallel with the power supply circuit.
  • I MODULE denotes the current required by the LED array 15, while I SET denotes the current flow caused by the current sink 20.
  • the proportionality factor F C must therefore be known to the operating device in this case, so that after evaluating the current flow resulting from the feedback circuit it knows what level the current output via the supply circuit must have.
  • the amplification factor F C could be 100, so that at a current level of 3 mA caused by the current sink, the operating device provides a supply current for the LEDs of 300 mA.
  • the concept according to the invention has advantages in particular if the overall arrangement is not just an LED array as in FIG Figure 2 has shown, but consists of several LED arrays, as exemplified in Figure 3 is shown.
  • n ⁇ m LED modules 10, each containing an LED array 15, are connected to one another, this being done in n parallel strands, each of which has m LED modules 10 connected in series.
  • each LED module 10 has the identifying current sink 20, which are now connected to one another in a feedback circuit 25, which likewise leads to the operating device 50 and is here connected to an internal control unit 51.
  • the feedback circuit 25 is designed separately from the power supply circuit 5, but is designed in parallel or in an identical manner with regard to its structure. This means that the individual current sinks 20 of the LED modules 10 are connected to one another in the same way as is the case for the LED arrays 15. This automatically results in a corresponding total current I FEEDBACK in the feedback circuit 25, which in turn corresponds to the total current required by the LED arrangement via the known proportionality factor F C and is then output in a corresponding manner by the operating device 50.
  • the LED arrays 15 of the individual LED modules 10 could even be designed differently. This means that the modules themselves could even require different supply currents, since this effect automatically - if the above relationship applies, according to which the current flow caused by the current sink represents a predetermined fraction of the required current - affects that in the feedback circuit resulting current flow affects. Ideally, however, the modules are designed to be as similar as possible or even identical, since this generally results in advantages with regard to uniform light emission.
  • the previous considerations relate to the amount of current that is provided by the operating device 50 for the LED modules 10.
  • the concept can also be used to adapt the voltage output by the operating device in a corresponding manner or to identify the number of LED modules 10 connected in series.
  • the current sink 20 has a specific voltage drop V SINK (see Fig. 2 ) causes that is fixed and known to the operating device 50. From the resulting voltage drop V FEEDBACK via the feedback circuit, the information can then be derived as to how much - in the exemplary embodiment shown by Figure 3 So m - LED modules 10 are connected in series.
  • V SINK f V ⁇ V LED
  • the operating device 50 can automatically determine the total voltage required for the LED arrangement, but can no longer determine how many modules are connected in series. In this case, the proportionality factor f V must of course be known to the operating device 50.
  • the minimum required voltage V SINK of the current sink can be kept very low, in particular less than 1 volt. Combined with a high amplification factor F C and thus a low current flow, which is caused by the current sink, the result is that the power loss, which is caused by the measures according to the invention, is extremely small. At the same time, however, as described above, significant advantages are achieved with regard to the automatic adjustment with regard to the supply current.
  • FIG. 4 shows a first protective mechanism 30 which has a switching element 31 which interrupts the current flow through the entire array 15 in certain situations. This can be the case, for example, if an excessively high current flow results due to individual defective LEDs, which possibly leads to a further one Damage to all LEDs can result.
  • protective mechanisms are already known from the prior art.
  • the interruption of the current flow through the array 15 naturally also affects the amount of current required by the LED arrangement.
  • the current sink 20 of the LED module 10 is treated in the same way by the protective mechanism 30.
  • a switch 32 is also assigned to the current sink 20 in the feedback circuit, which switch is controlled in an identical manner by the protective mechanism 30. If the current flow through the LED array 15 is interrupted, this also applies in the same way to the branch with the current sink 20.
  • FIG. 5 shows an alternative protection mechanism 40 which, in the event of the detection of a problem with the aid of a switch 41, short-circuits or bridges the LED array 15.
  • the current sink 20 is treated identically.
  • the feedback circuit now has a switch 42 parallel to the current sink 20, which is controlled by the protective mechanism 40 in the same way as the switch 41.
  • the interruption or bridging of an LED module is also automatically taken into account in the feedback circuit and the output of the supply current can be adapted accordingly by the operating device. This results in an even better adaptation of the power supply for the LEDs.
  • FIG. 7 An alternative possibility for designing a current sink is in Figure 7 shown. Again, this is based on the implementation or connection of two transistors Q 1 and Q 2 and two resistors R 1 and R 2 , but now using additional components, in particular the further transistors Q 3 and Q 4 and the resistor R 3, the current sink in you are able to independently create a corresponding preload. In this case, the current sink must actually only be connected to the connections of the feedback circuit FB + and FB, and a coupling to the power supply circuit for the LEDs is not necessary. In this case, however, a higher voltage V SINK is required, which can optionally be obtained again using the Zener diode D Z.
  • a temperature-dependent resistor R TH which is part of a corresponding resistor network with the resistors R BASE , R P and R S, is used here to compensate for thermal fluctuations in the base-emitter voltage. This ensures that the supply current remains constant even at higher temperatures.
  • the present invention has the advantage that, for the power supply of more complex LED circuits, the corresponding operating device is able to automatically adapt the supply current to the corresponding needs of the circuit. Not only are failures or bridging of individual LED arrangements due to defects automatically taken into account, but also the replacement or replacement of an LED module with a new one that places different demands on the supply current is automatically taken into account.

Landscapes

  • Led Devices (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Description

  • Die vorliegende Erfindung betrifft eine Anordnung zum Betreiben einer Vielzahl von LEDs, welche in mit Konstantstrom zu betreibenden LED-Schaltungen angeordnet, vorzugsweise im Rahmen mehrerer so genannter seriell-paralleler Arrays verschaltet sind. Ferner betrifft die Erfindung ein Verfahren zum Betreiben von LEDs.
  • LEDs verdrängen in der modernen Beleuchtungstechnologie mehr und mehr klassische Lichtquellen. Es sind unterschiedlichste LED-Typen verfügbar, welche sich hinsichtlich ihrer Leistung sowie hinsichtlich der Farbe oder Farbtemperatur des abgegebenen Lichts unterscheiden. Abhängig von dem Anwendungsgebiet einer Leuchte, bei der die LEDs zum Einsatz kommen, werden dabei entsprechend geeignete LEDs verwendet.
  • Aus verschiedenen Gründen werden dabei bevorzugt nicht einige wenige Hochleistungs-LEDs verwendet, sondern es kommen stattdessen LEDs mittlerer oder niedriger Leistung zum Einsatz, welche in größeren Schaltungsanordnungen miteinander verbunden sind. Beispiele sind in WO 2013/186655 A2 und WO 2010/091619 A1 offenbart. Zum einen sind derartige LEDs geringerer Leistung deutlich kostengünstiger herzustellen, zum anderen kann mit Hilfe derartiger Anordnungen besser eine großflächige Lichtabgabe erzielt werden, was im Hinblick auf die Tatsache, dass LEDs im Wesentlichen punktförmige Lichtquellen darstellen, einen nicht unbeträchtlicher Vorteil darstellt. In der Praxis hat sich dabei durchgesetzt, LEDs in den oben erwähnten seriell-parallelen Arrays anzuordnen, wie dies schematisch in Figur 1 dargestellt ist.
  • Figur 1 zeigt also eine aus dem Stand der Technik bekannte Schaltungsvariante, bei der alle LEDs von einem gemeinsamen Betriebsgerät 200 versorgt werden. Ein einzelnes LED-Array 210 besteht dabei jeweils aus mehreren parallel geschalteten LED-Strängen 220, in denen wiederum jeweils mehrere LEDs 225 in Serie miteinander verschaltet sind. Entsprechend der Darstellung von Figur 1 können dabei mehrere derartige LED-Arrays 210 auch in Serie zueinander und dann wiederum parallel verschaltet werden, wobei das Betriebsgerät 200 die sich insgesamt ergebende Anordnung dann mit einem entsprechend geeigneten Konstantstrom IBALLAST versorgt.
  • Wie bereits erwähnt zeichnet sich ein entsprechender Einsatz von LEDs in den dargestellten seriell-parallelen Arrays durch den verhältnismäßig einfachen Aufbau, die damit verbundenen geringen Kosten und der trotz allem damit erzielbaren hohen Effizienz aus.
  • Offensichtlich kann die in Figur 1 dargestellte, aus dem Stand der Technik bekannte Schaltungsanordnung in verschiedenster Weise abgewandelt werden. Insbesondere kann die Anzahl der innerhalb eines einzelnen Arrays zum Einsatz kommenden LEDs sowie der Typ der LEDs verändert werden. Ferner kann die Anzahl der LED-Arrays verändert werden und es kann variiert werden, wie viele dieser Arrays in Serie geschaltet sind und wie viele sich hieraus ergebende LED-Array-Stränge wiederum parallel zueinander angeordnet werden. Abhängig von der Ausgestaltung der Schaltungsanordnung muss dann das Betriebsgerät 200 einen geeigneten Strom zur Verfügung stellen. Gleiches gilt auch für den Fall, dass lediglich ein einziges LED-Array von dem Betriebsgerät mit Strom versorgt wird. Auch hier ergibt sich abhängig von der Anzahl und Verschaltung der zum Einsatz kommenden LEDs ein benötigter Versorgungsstrom.
  • Die Schaltungsanordnung muss also derart ausgestaltet sein, dass sichergestellt ist, dass durch das Betriebsgerät tatsächlich ein geeigneter Strom für die LEDs zur Verfügung gestellt wird. Aus dem Stand der Technik sind bereits die nachfolgenden Vorgehensweisen zur Lösungen dieses Problems bekannt.
  • Zum einen kann das Betriebsgerät bereits bei Herstellung bzw. bei Inbetriebnahme entsprechend parametrisiert werden, so dass es dauerhaft den zu Beginn vorgegebenen, geeigneten Strom ausgibt. Dies bedeutet dann allerdings, dass eine Anpassung des Stroms an sich ändernde Verhältnisse während des späteren Betriebs nicht möglich ist. Eine Anpassung könnte allerdings beispielsweise erforderlich sein, wenn einzelne der LED-Arrays ausfallen und/oder defekte LED-Arrays durch neue, mit anderen LEDs bestückte Arrays ersetzt werden. Diese Situationen können sich auf den insgesamt von der LED-Anordnung benötigten Strom auswirken und sollten idealerweise von dem Betriebsgerät berücksichtigt bzw. erkannt werden, da andernfalls ein zuverlässiger Betrieb nicht gewährleistet ist.
  • Alternativ zu der oben beschriebenen Vorprogrammierung der Betriebsgeräte ist aus dem Stand der Technik auch bekannt, LED-Module, welche die LEDs beinhalten, durch einen Widerstand zu charakterisieren, der von dem Betriebsgerät ausgewertet wird. Der Widerstand charakterisiert beispielsweise die Höhe des von dem LED-Modul benötigten Stroms und erlaubt es dem Betriebsgerät, nach Auswertung des Widerstands die Höhe des ausgegebenen Versorgungsstroms entsprechend anzupassen.
  • Problematisch ist in diesem Zusammenhang allerdings, dass das Bewerten des Widerstands nur mit einer verhältnismäßig geringen Genauigkeit erfolgen kann. Ferner kann in diesem Fall dann lediglich ein einziges LED-Array durch das Betriebsgerät identifiziert werden und dieses muss davon ausgehen, dass die Schaltungsanordnung insgesamt lauter identische Arrays aufweist. Insbesondere jedoch ist durch das Betriebsgerät nicht erkennbar, wie viele LED-Arrays insgesamt vorhanden sind und in welcher Weise diese miteinander verschaltet sind.
  • Die WO 2013/186655 A2 zeigt eine LED-basierte Beleuchtungseinheit, bei der ein LED-Modul mit einem Betriebsgerät über Anschlüsse elektrisch verbunden ist. Das Betriebsgerät dient dem Bereitstellen eines Versorgungsstroms für die LEDs des LED-Moduls, welches ferner ein Identifizierungselement in Form einer Stromquelle aufweist, um einen geeigneten Versorgungsstrom für die LEDs zur Verfügung zu stellen.
  • Schließlich ist aus dem Stand der Technik auch noch bekannt, jedes LED-Modul mit einem Speicherelement zu versehen, in dem eine Information bezüglich des benötigten Versorgungsstroms digital hinterlegt ist. Das Betriebsgerät muss dann diesen Speicher auslesen und darauf basierend den ausgegebenen Strom anpassen.
  • Bei diesem digitalen Auslesen der Informationen wird zwar im Vergleich zum Bewerten eines Identifizierungswiderstands eine höhere Genauigkeit erzielt, allerdings sind die entsprechenden Mittel hierfür deutlich komplexer und kostenintensiver. Ferner ergibt sich wiederum das bereits oben geschilderte Problem, dass nämlich das Betriebsgerät in der Regel nur ein einziges LED-Modul identifiziert und wiederum keine Kenntnis darüber vorliegt, in welcher Weise wie viele LED-Arrays miteinander verschaltet sind.
  • Die oben geschilderten Probleme ergeben sich im Übrigen auch denn, wenn die LEDs in anderer Weise als in den dargestellten parallel-seriellen Arrays verschaltet sind. Auch in diesem Fall muss sichergestellt sein, dass die LEDs mit einem geeigneten Strom versorgt werden.
  • Der vorliegenden Erfindung liegt deshalb die Aufgabenstellung zugrunde, ein Betriebsgerät, welches LED-Schaltungsanordnungen versorgt, in die Lage zu versetzen, in einfacher Weise den ausgegebenen Versorgungsstrom an die tatsächlichen Bedürfnisse der Schaltungsanordnung anzupassen.
  • Die Aufgabe wird durch eine Schaltungsanordnung mit den Merkmalen des Anspruchs 1 sowie durch ein Verfahren gemäß Anspruch 10 gelöst. Vorteilhafte Weiterbildungen der Erfindung sind Gegenstand der abhängigen Ansprüche.
  • Die erfindungsgemäße Lösung beruht auf dem Gedanken, einer Anordnung von LEDs ein Identifizierungselement in Form einer sog. Stromsenke zuzuordnen. Diese ist getrennt von dem eigentlichen Stromversorgungskreis über einen parallelen so genannten Feedback-Kreis mit dem Betriebsgerät verbunden, so dass das Betriebsgerät den sich aufgrund der Stromsenke ergebenden Stromfluss in dem Feedback-Kreis ermitteln kann. Dieser Stromfluss wiederum charakterisiert die LED-Anordnung derart, dass das Betriebsgerät in die Lage versetzt wird, einen geeigneten Versorgungsstrom zur Verfügung zu stellen.
  • Erfindungsgemäß wird deshalb eine Schaltungsanordnung zum Betreiben von LEDs mit mindestens einer - vorzugsweise seriell-parallelen - LED-Anordnung sowie einem Betriebsgerät zum Bereitstellen eines Versorgungsstroms für die LEDs vorgeschlagen, wobei der LED-Anordnung ein Identifizierungselement in Form einer Stromsenke zugeordnet ist, welche über einen Feedback-Kreis mit dem Betriebsgerät verbunden ist, und wobei das Betriebsgerät dazu ausgebildet ist, auf Basis eines sich durch den Feedback-Kreis ergebenden Stromflusses einen geeigneten Versorgungsstrom für die LEDs zur Verfügung zu stellen. Des Weiteren ist der LED-Anordnung ein Schutzmechanismus zugeordnet ist, der im Falle eines erkannten Fehlerzustands die LED-Anordnung überbrückt oder einen Stromfluss durch die LED-Anordnung unterbricht, wobei der Schutzmechanismus in gleicher Weise Einfluss auf die zugehörige Stromsenke nimmt.
  • Ferner wird ein Verfahren zum Betreiben mindestens einer - vorzugsweise seriell-parallelen - LED-Anordnung vorgeschlagen, bei der der LED-Anordnung ein Identifizierungselement in Form einer Stromsenke zugeordnet und über einen Feedback-Kreis mit einem Betriebsgerät verbunden ist, wobei auf Basis eines sich durch den Feedback-Kreis ergebenden Stromflusses ein geeigneter Versorgungsstrom für die LEDs zur Verfügung gestellt wird. Auch hier ist der LED-Anordnung ein Schutzmechanismus zugeordnet ist, der im Falle eines erkannten Fehlerzustands die LED-Anordnung überbrückt oder einen Stromfluss durch die LED-Anordnung unterbricht, wobei der Schutzmechanismus in gleicher Weise Einfluss auf die zugehörige Stromsenke nimmt.
  • Das erfindungsgemäße Konzept kann bereits bei Verwendung eines einzelnen seriell-parallelen LED-Arrays bzw. einer einzelnen LED-Anordnung zum Einsatz kommen, vorzugsweise weist die LED-Anordnung allerdings mehrere LED-Anordnungen auf. In diesem Fall ist dann gemäß einer bevorzugten Ausführungsform der Erfindung jeder LED-Anordnung ein entsprechendes Identifizierungselement in Form einer Stromsenke zugeordnet, wobei diese Stromsenken dann im Rahmen des Feedback-Kreises miteinander verbunden sind. Dieser ist zwar getrennt von dem Versorgungsstromkreis aber hinsichtlich seiner Struktur exakt in gleicher Weise ausgeführt. Das heißt, die Stromsenken sind je nach Anzahl der seriell oder parallel miteinander verschalteten LED-Anordnungen in gleicher Weise miteinander verbunden. Dies bringt den Vorteil mit sich, dass der sich insgesamt ergebende Stromfluss in dem Feedback-Kreis wiederum in einfacher Weise Rückschluss auf den von allen LEDs insgesamt benötigten Versorgungsstrom erlaubt. Dabei ist vorzugsweise vorgesehen, dass sich durch die Stromsenken insgesamt nur ein sehr geringer Stromfluss in dem Feedback-Kreis ergibt, der allerdings über einen bekannten Proportionalitätsfaktor mit dem tatsächlich benötigten Strom verbunden ist.
  • Letztendlich erlaubt also die erfindungsgemäße Lösung, unabhängig von der Verschaltung der LED-Anordnungen untereinander in einfacher Weise den insgesamt benötigten Strom zu ermitteln und dementsprechend die LED-Anordnung in geeigneter Weise zu betreiben.
  • Darüber hinaus kann gemäß einer bevorzugten Ausführungsform auch vorgesehen sein, dass die Stromsenken, also die Identifizierungselemente nicht nur Rückschluss auf den benötigten Strom sondern auch auf die benötigte Spannung zum Betreiben der LEDs ermöglichen.
  • Dabei kann gemäß einer ersten Variante vorgesehen sein, dass jede Stromsenke zusätzlich auch einen fest vorgegebenen Spannungsabfall in dem Feedback-Kreis bewirkt. Ist dieser von der Stromsenke hervorgerufene Spannungsabfall dem Betriebsgerät bekannt, so kann aus dem sich insgesamt über den gesamten Feedback-Kreis ergebenden Spannungsabfall ermittelt werden, wie viele LED-Anordnungen in Serie zueinander geschaltet sind.
  • Alternativ zu der oben beschriebenen Vorgehensweise könnte auch vorgesehen sein, dass der durch die Stromsenke bewirkte Spannungsabfall einem vorgegebenen ganzzahligen Bruchteil der benötigten Vorwärtsspannung der LED-Anordnung entspricht. Für den Fall, dass dieser Verstärkungsfaktor dem Betriebsgerät bekannt ist, kann dieses dann wiederum eine geeignete Versorgungsspannung zur Verfügung stellen. Allerdings kann hier dann nicht unmittelbar auf die Anzahl der in Serie verschalteten LED-Anordnungen rückgeschlossen werden.
  • Durch den Schutzmechanismus ist es möglich Defekte einzelner LEDs in der Schaltungsanordnung zu berücksichtigen. Aus dem Stand der Technik sind unterschiedliche Varianten bekannt, auf entsprechende LED-Defekte zu reagieren. Dies ist deshalb erforderlich, da defekte LEDs zu einem starken Ungleichgewicht in der Verteilung des Stroms innerhalb der Schaltungsanordnung führen können, wobei sich dann das Ungleichgewicht derart fortpflanzen kann, dass weitere LEDs beschädigt werden. Es sind deshalb verschiedene Schutzmechanismen bekannt, die bei Erkennen entsprechender Defekte entweder den Stromfluss durch die zugehörige LED-Anordnung unterbrechen oder dieses überbrücken.
  • Derartige Schutzmechanismen betreffen dann in gleicher Weise auch die zugehörigen Identifizierungs-Stromsenken. Das heißt, sollte ein Schutzmechanismus aufgrund eines erkannten LED-Defekts das zugehörige Array bzw. die zugehörige Anordnung überbrücken, erfolgt dies in gleicher Weise auch für die Stromsenke innerhalb des Feedback-Kreises. Wird hingegen der Stromfluss unterbrochen, so wird auch der zugehörige Zweig in dem Feedback-Kreis unterbrochen. Diese Maßnahmen haben zur Folge, dass sich der Strom in dem Feedback-Kreis automatisch an den geänderten benötigten Versorgungsstrom anpasst, falls Schutzmaßnahmen dies erfordern. Der Betrieb der LEDs insgesamt wird hierdurch nochmals zusätzlich optimiert.
  • Nachfolgend soll die Erfindung anhand der beiliegenden Zeichnung näher erläutert werden. Es zeigen:
  • Figur 1
    eine aus dem Stand der Technik bekannte Schaltungsanordnung von mehreren miteinander verschalteten parallel-seriellen LED-Arrays;
    Figur 2
    die erfindungsgemäße Ausgestaltung eines einzelnen LED-Arrays;
    Figur 3
    eine sich aus der Erfindung insgesamt ergebende Schaltungsanordnung zum Betreiben einer Vielzahl von LEDs;
    Figur 4
    eine erste vorteilhafte Weiterbildung des erfindungsgemäßen Konzepts;
    Figur 5
    eine zweite vorteilhafte Weiterbildung des erfindungsgemäßen Konzepts;
    Figur 6
    eine erste Möglichkeit zur Ausgestaltung einer erfindungsgemäß zum Einsatz kommenden Stromsenke;
    Figur 7
    eine zweite Möglichkeit zur Ausgestaltung der erfindungsgemäßen Stromsenke und
    Figur 8
    eine Möglichkeit zur weiteren Verbesserung der Stromsenke, bei der Temperatureffekte berücksichtigt werden.
  • Figur 2 zeigt ein erstes Ausführungsbeispiel eines allgemein mit dem Bezugszeichen 10 versehenen LED-Moduls, welches in erfindungsgemäßer Weise ausgestaltet ist. Das LED-Modul 10 beinhaltet dabei zunächst ein seriell-paralleles LED-Array 15, welches aus mehreren parallel zueinander verschalteten LED-Strängen 16 gebildet ist. Innerhalb eines jeden LED-Strangs 16 sind mehrere LEDs 17 in Serie zueinander geschaltet, wobei idealerweise die Anzahl von LEDs 17 in den Strängen 16 identisch ist. Das LED-Modul 10 weist dabei am Eingang und am Ausgang des LED-Arrays 15 Anschlüsse LED+ und LEDauf, welche das Verbinden mit einem
  • Versorgungsstromkreis, der zu einem Betriebsgerät zur Stromversorgung der LEDs führt, ermöglichen.
  • Anzumerken ist, dass im dargestellten Fall die Erfindung anhand von seriell-parallelen LED-Arrays beschrieben wird, welche - wie erwähnt - eine besonders vorteilhafte Schaltungsvariante zum Betreiben von LEDs darstellen. Das erfindungsgemäße Konzept kann allerdings deutlich allgemeiner eingesetzt werden und auch bei LED-Anordnungen zum Einsatz kommen, bei denen die LEDs anderweitig verschaltet sind.
  • Abhängig von dem Typ der verwendeten LEDs 17, der Anzahl von LEDs sowie der Anzahl der parallel miteinander verschalteten LED-Stränge 16 benötigt das Modul 10 einen bestimmten konstanten Versorgungsstrom IMODULE sowie eine geeignete Versorgungsspannung. In einem ersten Schritt ist dabei gemäß der vorliegenden Erfindung vorgesehen, dass das LED-Modul 10 selbst es dem Betriebsgerät ermöglicht, die Höhe des erforderlichen Stroms festzustellen.
  • Hierzu weist erfindungsgemäß das LED-Modul 10 ein Identifizierungselement in Form einer sog. Stromsenke 20 auf, die über einen so genannten Feedback-Kreis mit dem Betriebsgerät verbunden wird. Hierzu weist das LED-Modul 10 zwei weitere Anschlüsse FB+ und FB-, die getrennt von den Anschlüssen für den Stromversorgungskreis LED+ und LED- ausgebildet sind, auf. Das heißt, der Feedback-Kreis ist grundsätzlich getrennt aber - wie nachfolgend näher beschrieben - parallel zu dem Stromversorgungskreis ausgeführt.
  • Die Stromsenke 20 ist nunmehr derart ausgeführt, dass sie gezielt einen definierten Stromfluss ISET in dem Feedback-Kreis hervorruft, wobei idealerweise der folgende Zusammenhang besteht: I MODULE = F C I SET
    Figure imgb0001
  • IMODULE bezeichnet hierbei den von dem LED-Array 15 benötigten Strom während ISET den durch die Stromsenke 20 hervorgerufenen Stromfluss bezeichnet. Der Proportionalitätsfaktor FC muss in diesem Fall also dem Betriebsgerät bekannt sein, so dass dieses nach Bewerten des sich durch den Feedback-Kreis ergebenden Stromflusses weiß, welche Höhe der über den Versorgungskreis ausgegebene Strom aufweisen muss. Beispielsweise könnte der Verstärkungsfaktor FC 100 betragen, so dass dann bei einer durch die Stromsenke hervorgerufenen Stromhöhe von 3mA das Betriebsgerät einen Versorgungsstrom für die LEDs in Höhe von 300mA zur Verfügung stellt.
  • Das erfindungsgemäße Konzept bringt insbesondere dann Vorteile mit sich, wenn die Gesamtanordnung nicht nur ein LED-Array wie in Figur 2 dargestellt aufweist, sondern aus mehreren LED-Arrays besteht, wie dies beispielhaft in Figur 3 gezeigt ist.
  • In diesem Fall sind also insgesamt nm LED-Module 10, die jeweils ein LED-Array 15 beinhalten, miteinander verschaltet, wobei dies in n parallelen Strängen erfolgt, die jeweils m in Serie verschaltete LED-Module 10 aufweisen.
  • Wie Figur 3 zeigt, weist dabei jedes LED-Modul 10 erfindungsgemäß die identifizierende Stromsenke 20 auf, welche nunmehr in einem Feedback-Kreis 25 miteinander verbunden sind, der ebenfalls zu dem Betriebsgerät 50 führt und hier mit einer internen Steuereinheit 51 verbunden ist. Wie hierbei erkennbar ist, ist der Feedback-Kreis 25 zwar getrennt von dem Stromversorgungskreis 5 ausgebildet, allerdings im Hinblick auf seine Struktur parallel bzw. in identischer Weise hierzu ausgeführt. Das heißt, die einzelnen Stromsenken 20 der LED-Module 10 sind in gleicher Weise miteinander verbunden, wie dies auch für die LED-Arrays 15 der Fall ist. Hierdurch ergibt sich automatisch ein entsprechender Gesamtstrom IFEEDBACK in dem Feedback-Kreis 25, der wiederum über den bekannten Proportionalitätsfaktor FC dem insgesamt von der LED-Anordnung benötigten Strom entspricht und dann in entsprechender Weise von dem Betriebsgerät 50 ausgegeben wird.
  • Dies stellt einen besonders vorteilhaften Effekt der erfindungsgemäßen Lösung dar, da sich das Betriebsgerät 50 unmittelbar an die entsprechende Schaltungsanordnung anpassen kann und keine weiteren Informationen benötigt. Insbesondere muß die Topologie der Anordnung der LED-Module, also die Art und Weise, wie die Module miteinander verbunden sind, dem Betriebsgerät nicht bekannt sein.
  • Dabei könnten die LED-Arrays 15 der einzelnen LED-Module 10 sogar unterschiedlich gestaltet sein. Das heißt, die Module selbst könnten sogar jeweils verschiedene Versorgungsströme benötigen, da dieser Effekt automatisch dann auch - sofern der obige Zusammenhang gilt, gemäß dem der durch die Stromsenke hervorgerufene Stromfluss einen vorgegebenen Bruchteil des benötigten Stroms darstellt - sich auf den in dem Feedback-Kreis resultierenden Stromfluß auswirkt. Idealerweise sind jedoch die Module möglichst gleichartig bzw. sogar identisch ausgeführt, da sich hierdurch in der Regel Vorteile hinsichtlich einer gleichmäßigen Lichtabgabe ergeben.
  • Die bisherigen Betrachtungen bezogen sich auf die Höhe des Stroms, der von dem Betriebsgerät 50 für die LED-Module 10 zur Verfügung gestellt wird. Ergänzend kann allerdings das Konzept auch dazu genutzt werden, die von dem Betriebsgerät ausgegebene Spannung in entsprechender Weise anzupassen bzw. die Anzahl der in Serie verschalteten LED-Module 10 zu identifizieren.
  • Gemäß einer ersten Option kann hierbei vorgesehen sein, dass die Stromsenke 20 einen bestimmten Spannungsabfall VSINK (siehe Fig. 2) bewirkt, der fest vorgegeben und dem Betriebsgerät 50 bekannt ist. Aus dem sich insgesamt ergebenden Spannungsabfall VFEEDBACK über den Feedback-Kreis kann dann die Information abgeleitet werden, wie viele - im dargestellten Ausführungsbeispiel von Figur 3 also m - LED-Module 10 in Serie verschaltet sind.
  • Gemäß einer zweiten Option könnte allerdings der Spannungsabfall VSINK auch einen Bruchteil der über das LED-Array abfallenden Spannung VLED (siehe Figur 2) darstellen. Das heißt, es gilt V SINK = f V V LED
    Figure imgb0002
  • In diesem Fall kann das Betriebsgerät 50 automatisch die insgesamt benötigte Spannung für die LED-Anordnung feststellen, allerdings nun nicht mehr ermitteln, wie viele Module in Serie verschaltet sind. Der Proportionalitätsfaktor fV muss in diesem Fall selbstverständlich dem Betriebsgerät 50 bekannt sein.
  • Die minimale benötigte Spannung VSINK der Stromsenke kann sehr gering, insbesondere kleiner als 1 Volt gehalten werden. Kombiniert mit einem hohen Verstärkungsfaktor FC und damit einem geringen Stromfluss, der durch die Stromsenke hervorgerufen wird, ergibt sich, dass der Leistungsverlust, der durch die erfindungsgemäßen Maßnahmen hervorgerufen wird, äußerst gering ist. Gleichzeitig werden allerdings wie oben beschrieben deutliche Vorteile hinsichtlich der automatischen Anpassung bezüglich des Versorgungsstroms erzielt.
  • Wie bereits erwähnt sind aus dem Stand der Technik Schutzmechanismen bekannt, die im Falle eines LED-Defekts das zugehörige Array unterbrechen oder überbrücken. Figur 4 zeigt hierbei einen ersten Schutzmechanismus 30 der ein Schaltelement 31 aufweist, das in gewissen Situationen den Stromfluss durch das gesamte Array 15 unterbricht. Dies kann beispielsweise der Fall sein, wenn sich aufgrund einzelner defekter LEDs ein zu hoher Stromfluss ergibt, der gegebenenfalls zu einer weiteren Beschädigung aller LEDs führen kann. Wie bereits erwähnt sind derartige Schutzmechanismen aus dem Stand der Technik bereits bekannt.
  • Die Unterbrechung des Stromflusses durch das Array 15 wirkt sich selbstverständlich dann auch auf die Höhe des insgesamt von der LED-Anordnung benötigten Stroms aus. Um dies bei der erfindungsgemäßen Vorgehensweise berücksichtigen zu können, ist vorgesehen, dass in gleicher Weise auch die Stromsenke 20 des LED-Moduls 10 durch den Schutzmechanismus 30 behandelt wird. Das heißt, auch in dem Feedback-Kreis wird der Stromsenke 20 ein Schalter 32 zugeordnet, der von dem Schutzmechanismus 30 in identischer Weise angesteuert wird. Wird also der Stromfluss durch das LED-Array 15 unterbrochen, so gilt dies in gleicher Weise auch für den Zweig mit der Stromsenke 20.
  • Figur 5 zeigt einen alternativen Schutzmechanismus 40, der im Falle des Feststellens eines Problems mit Hilfe eines Schalters 41 das LED-Array 15 kurzschließt bzw. überbrückt. Auch in diesem Fall ist eine identische Behandlung der Stromsenke 20 vorgesehen. Das heißt, der Feedback-Kreis weist nunmehr parallel zur Stromsenke 20 einen Schalter 42 auf, der identisch wie der Schalter 41 von dem Schutzmechanismus 40 angesteuert wird.
  • Bei beiden Varianten, die im Übrigen auch miteinander kombiniert werden könnten, wird also das Unterbrechen bzw. Überbrücken eines LED-Moduls automatisch auch in dem Feedback-Kreis berücksichtigt und die Ausgabe des Versorgungsstroms kann durch das Betriebsgerät in entsprechender Weise angepasst werden. Hierdurch wird eine nochmals bessere Anpassung der Stromversorgung für die LEDs erzielt.
  • Die Figuren 6 bis 8 zeigen schließlich drei Möglichkeiten, die Stromsenke, die erfindungsgemäß zum Identifizieren des LED-Arrays zum Einsatz kommt, auszugestalten. In diesem Zusammenhang ist allerdings zu bemerken, dass Stromsenken aus dem Stand der Technik bereits bekannt sind und in vielfacher Weise realisiert werden könnten. Die nachfolgenden Varianten stellen lediglich einige denkbare Beispiele dar.
  • So ist bei der Variante gemäß Figur 6 eine sehr einfache Ausführungsform gebildet durch zwei Transistoren Q1 und Q2 und zwei Widerstände R1 und R2 vorgesehen, bei der aufgrund der dargestellten Verschaltung der Transistor Q1 einen vorgegebenen Stromfluss hervorruft. Zum Betreiben dieser Stromsenke wird eine geeignete Vorspannung VBIAS benötigt, die beispielsweise dadurch erhalten werden kann, dass der entsprechende Anschluss mit dem positiven Eingang des Versorgungsstromkreises für das LED-Modul verbunden wird. In diesem Fall funktioniert die Stromsenke also nur dann, wenn die LEDs des zugehörigen LED-Arrays auch tatsächlich mit Strom versorgt werden. Mit Hilfe einer optionalen Zener-Diode DZ kann der sich insgesamt ergebende Spannungsabfall VSINK angehoben werden, um beispielsweise die Genauigkeit bei der Detektierung der Anzahl der in Serie verschalteten LED-Module zu verbessern oder die Genauigkeit der insgesamt erforderlichen Vorwärtsspannung für die LEDs zu optimieren. Dies bringt Vorteile mit sich, da aufgrund einer verhältnismäßig starken Temperaturabhängig der Basis-Emitter-Spannung VBE des zweiten Transistors Q2 die Gefahr besteht, dass die Vorwärtsspannung über die Stromsenke zu stark variiert und dementsprechend keine genaue Erkennung mehr ermöglicht wird.
  • Eine alternative Möglichkeit zur Ausgestaltung einer Stromsenke ist in Figur 7 dargestellt. Wiederum basiert diese auf der Realisierung bzw. Verschaltung zweier Transistoren Q1 und Q2 und zweier Widerstände R1 und R2, wobei nunmehr allerdings mit Hilfe ergänzender Komponenten, insbesondere der weiteren Transistoren Q3 und Q4 sowie des Widerstands R3 die Stromsenke in die Lage versetzt wird, selbstständig eine entsprechende Vorspannung zu kreieren. In diesem Fall muss also die Stromsenke tatsächlich ausschließlich mit den Anschlüssen des Feedback-Kreises FB+ und FBverbunden werden und eine Kopplung mit dem Stromversorgungskreis für die LEDs ist nicht erforderlich. In diesem Fall ist allerdings eine höhere Spannung VSINK erforderlich, die gegebenenfalls wieder mit Hilfe der Zener-Diode DZ erhalten werden kann.
  • Wie bereits erwähnt besteht das Problem, dass Temperaturschwankungen zu einer starken Abhängigkeit der Basis-Emitter-Spannung VBE des Transistors Q2 führen können. Dies könnte möglicherweise dazu führen, dass der über die Stromsenke hervorgerufene Stromfluss mit steigender Temperatur abfällt, was letztendlich bedeutet, dass die den LEDs zugeführte Leistung reduziert wird, wenn die Module wärmer werden. Ein derartiger Effekt könnte sogar einen entsprechenden Schutzmechanismus darstellen, durch den die LED-Leistung bei zu hohen Temperaturen automatisch reduziert wird.
  • Ist dies jedoch nicht gewünscht, so kann die Temperaturabhängigkeit durch die in Figur 8 dargestellte Ergänzung kompensiert werden. Ein temperaturabhängiger Widerstand RTH, der Bestandteil eines entsprechenden Widerstandnetzwerks mit den Widerständen RBASE, RP und RS ist, dient hierbei dazu, thermische Schwankungen der Basis-Emitter-Spannung zu kompensieren. Hierdurch wird sichergestellt, dass auch bei höheren Temperaturen der Versorgungsstrom konstant bleibt.
  • Wie bereits erwähnt stellen die Figuren 6 bis 8 lediglich denkbare Varianten zur Realisierung einer Stromsenke dar. Selbstverständlich könnte diese auch anderweitig gebildet werden.
  • Insgesamt gesehen ergibt sich also mit Hilfe der vorliegenden Erfindung der Vorteil, dass für die Stromversorgung komplexerer LED-Schaltungen das entsprechende Betriebsgerät in die Lage versetzt wird, automatisch den Versorgungsstrom an die entsprechenden Bedürfnisse der Schaltung anzupassen. Hierbei werden nicht nur automatisch Ausfälle oder Überbrückungen einzelner LED-Anordnungen aufgrund von Defekten berücksichtigt, sondern auch der Wechsel bzw. Ersatz eines LED-Moduls durch ein neues, welches andere Anforderungen an den Versorgungsstrom stellt, wird automatisch berücksichtigt.

Claims (13)

  1. Schaltungsanordnung mit mindestens einer LED-Anordnung (15) sowie einem Betriebsgerät (50) zum Bereitstellen eines Versorgungsstroms (IBALLAST) für die LEDs (17) der LED-Anordnung (15), wobei der LED-Anordnung (15) ein Identifizierungselement in Form einer Stromsenke (20) zugeordnet ist, welche über einen parallelen Feedback-Kreis (25) mit dem Betriebsgerät (50) verbunden ist,
    wobei das Betriebsgerät (50) dazu ausgebildet ist, auf Basis eines sich durch den Feedback-Kreis (25) ergebenden Stromflusses (IFEEDBACK) einen geeigneten Versorgungsstrom für die LEDs (17) zur Verfügung zu stellen,
    und dadurch gekennzeichnet, dass der LED-Anordnung (15) ein Schutzmechanismus (30, 40) zugeordnet ist, der im Falle eines erkannten Fehlerzustands die LED-Anordnung (15) überbrückt oder einen Stromfluss durch die LED-Anordnung (15) unterbricht, wobei der Schutzmechanismus in gleicher Weise Einfluss auf die zugehörige Stromsenke (20) nimmt.
  2. Schaltungsanordnung nach Anspruch 1,
    dadurch gekennzeichnet,
    dass diese mehrere LED-Anordnungen (15) aufweist, welche über einen Versorgungsstromkreis (5) mit dem Betriebsgerät (50) verbunden sind,
    wobei jeder LED-Anordnung (15) jeweils eine Stromsenke (20) zugeordnet ist und die Struktur des Feedback-Kreis (5) identisch zu der des Versorgungsstromkreises (25) ist.
  3. Schaltungsanordnung nach Anspruch 1 oder 2,
    dadurch gekennzeichnet,
    dass ein durch die Stromsenke (20) hervorgerufener Stromfluss proportional zu dem von der zugehörigen LED-Anordnung (15) benötigten Strom ist.
  4. Schaltungsanordnung nach einem der vorherigen Ansprüche,
    dadurch gekennzeichnet,
    dass das Betriebsgerät (50) ferner dazu ausgebildet ist, abhängig von einem Spannungsabfall in dem Feedback-Kreis (5) eine Versorgungsspannung für die LEDs auszugeben.
  5. Schaltungsanordnung nach Anspruch 4,
    dadurch gekennzeichnet,
    dass die Stromsenke (20) einen fest vorgegebenen Spannungsabfall (VSINK) bewirkt oder
    dass ein durch die Stromsenke (20) hervorgerufener Spannungsabfall (VSINK) proportional zur benötigten Vorwärtsspannung der zugehörigen LED-Anordnung (15) ist.
  6. Schaltungsanordnung nach einem der vorherigen Ansprüche,
    dadurch gekennzeichnet,
    dass die LEDs der LED-Anordnung (15) bzw. LED-Anordnungen (15) jeweils in Form eines seriell-parallelen Arrays angeordnet sind.
  7. LED-Modul (10) mit einer LED-Anordnung (15) sowie Anschlüssen (LED+, LED-) zum Verbinden des Moduls mit einem Betriebsgerät (50) zum Bereitstellen eines Versorgungsstroms (IBALLAST) für die LEDs (17) der LED-Anordnung (15), wobei das LED-Modul ferner ein Identifizierungselement in Form einer Stromsenke (20) aufweist, welches über zusätzliche Anschlüsse mit dem Betriebsgerät (50) verbindbar ist, um diesen zu ermöglichen, einen geeigneten Versorgungsstrom für die LEDs (17) zur Verfügung zu stellen,
    und dadurch gekennzeichnet, dass der LED-Anordnung (15) ein Schutzmechanismus (30, 40) zugeordnet ist, der im Falle eines erkannten Fehlerzustands die LED-Anordnung (15) überbrückt oder einen Stromfluss durch die LED-Anordnung (15) unterbricht, wobei der Schutzmechanismus in gleicher Weise Einfluss auf die zugehörige Stromsenke (20) nimmt.
  8. Verfahren zum Betreiben mindestens einer LED-Anordnung (15) sowie einem Betriebsgerät (50) zum Bereitstellen eines Versorgungsstroms (IBALLAST) für die LEDs (17) der LED-Anordnung (15), wobei der LED-Anordnung (15) ein Identifizierungselement in Form einer Stromsenke (20) zugeordnet ist, welche über einen parallelen Feedback-Kreis (25) mit dem Betriebsgerät (50) verbunden ist, und auf Basis eines sich durch den Feedback-Kreis (25) ergebenden Stromflusses (IFEEDBACK) einen geeigneter Versorgungsstrom für die LEDs (17) zur Verfügung gestellt wird,
    und dadurch gekennzeichnet, dass der LED-Anordnung (15) ein Schutzmechanismus (30, 40) zugeordnet ist, der im Falle eines erkannten Fehlerzustands die LED-Anordnung (15) überbrückt oder einen Stromfluss durch die LED-Anordnung (15) unterbricht, wobei der Schutzmechanismus in gleicher Weise Einfluss auf die zugehörige Stromsenke (20) nimmt.
  9. Verfahren nach Anspruch 8,
    dadurch gekennzeichnet,
    dass die Anordnung mehrere einzelne LED-Anordnungen (15) aufweist, welche über einen Versorgungsstromkreis (5) mit dem Betriebsgerät (50) verbunden sind,
    wobei jeder LED-Anordnung (15) jeweils eine Stromsenke (20) zugeordnet ist und die Struktur des Feedback-Kreis (5) identisch zu der des Versorgungsstromkreises (25) ist.
  10. Verfahren nach Anspruch 8 oder 9,
    dadurch gekennzeichnet,
    dass ein durch die Stromsenke (20) hervorgerufener Stromfluss proportional zu dem von der zugehörigen LED-Anordnung (15) benötigten Strom ist.
  11. Verfahren nach einem der Ansprüche 8 bis 10,
    dadurch gekennzeichnet,
    dass abhängig von einem Spannungsabfall in dem Feedback-Kreis (5) eine Versorgungsspannung für die LEDs ausgegeben wird.
  12. Verfahren nach Anspruch 11,
    dadurch gekennzeichnet,
    dass die Stromsenke (20) einen fest vorgegebenen Spannungsabfall (VSINK) bewirkt oder
    dass ein durch die Stromsenke (20) hervorgerufener Spannungsabfall (VSINK) proportional zur benötigten Vorwärtsspannung der zugehörigen LED-Anordnung (15) ist.
  13. Verfahren nach einem der Ansprüche 8 bis 12,
    dadurch gekennzeichnet,
    dass die LEDs der LED-Anordnung (15) bzw. LED-Anordnungen (15) jeweils in Form eines seriell-parallelen Arrays angeordnet sind.
EP15721618.5A 2014-04-30 2015-04-28 Schaltungsanordnung und verfahren zum betreiben von leds Active EP3138368B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014208190.4A DE102014208190A1 (de) 2014-04-30 2014-04-30 Schaltungsanordnung und Verfahren zum Betreiben von LEDs
PCT/EP2015/059197 WO2015165898A1 (de) 2014-04-30 2015-04-28 Schaltungsanordnung und verfahren zum betreiben von leds

Publications (2)

Publication Number Publication Date
EP3138368A1 EP3138368A1 (de) 2017-03-08
EP3138368B1 true EP3138368B1 (de) 2020-06-10

Family

ID=53174995

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15721618.5A Active EP3138368B1 (de) 2014-04-30 2015-04-28 Schaltungsanordnung und verfahren zum betreiben von leds

Country Status (4)

Country Link
EP (1) EP3138368B1 (de)
AT (1) AT15510U1 (de)
DE (1) DE102014208190A1 (de)
WO (1) WO2015165898A1 (de)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010091619A1 (zh) * 2009-02-10 2010-08-19 Wong Wah Nam 照明用发光二极管电流自动辨识方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7301447B2 (en) * 2005-04-13 2007-11-27 Gm Global Technology Operations, Inc. LED turn signal and error detecting method
ATE530383T1 (de) * 2008-07-22 2011-11-15 Iveco Magirus Schaltung zur prüfung des vorhandenseins eines an eine zugmaschine angekoppelten anhängers mittels prüfung des elektrischen stromflusses in den rückwärtigen led-leuchten des anhängers
KR20100002533U (ko) * 2008-08-29 2010-03-10 박영범 자동차 엘이디 램프 전원 제어 장치
DE202010003913U1 (de) * 2010-03-20 2010-07-15 Schott Ag LED-Lichtquellenanordnung
US9041294B2 (en) * 2010-09-27 2015-05-26 Semiconductor Components Industries, Llc Semiconductor component and method
DE102011087658A1 (de) * 2011-12-02 2013-06-06 Osram Gmbh Parallel geschaltete Leuchtketten
US9480108B2 (en) * 2012-04-18 2016-10-25 Axlen, Inc. Solid-state light source
WO2013186655A2 (en) * 2012-06-14 2013-12-19 Koninklijke Philips N.V. Self-adjusting lighting driver for driving lighting sources and lighting unit including self-adjusting lighting driver
DE102012224349A1 (de) * 2012-06-25 2014-01-02 Osram Gmbh Beleuchtungsanlage mit einer Schnittstelle aufweisend ein Netzgerät und mindestens ein Lichtquellenmodul

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010091619A1 (zh) * 2009-02-10 2010-08-19 Wong Wah Nam 照明用发光二极管电流自动辨识方法

Also Published As

Publication number Publication date
AT15510U1 (de) 2017-11-15
EP3138368A1 (de) 2017-03-08
DE102014208190A1 (de) 2015-11-05
WO2015165898A1 (de) 2015-11-05

Similar Documents

Publication Publication Date Title
EP1449408B2 (de) Schaltungsanordnung für ein led-array
DE102006037342B4 (de) Schaltung für ein Kraftfahrzeug, insbesondere zur Ansteuerung einer Beleuchtungseinrichtung
EP3199876B1 (de) Verfahren und vorrichtung zur beeinflussung einer heizungsregelung
DE102007029123A1 (de) System und Verfahren zur Erfassung der Kennlinien für eine Leuchtdioden-Anordnung
DE102012218772B3 (de) Verfahren und Einrichtung zur Diagnose eines fehlerhaften Leuchtmittels
EP3039945B1 (de) Vorrichtung zur versorgung mindestens eines verbrauchers mit elektrischer energie bzw. zur bereitstellung elektrischer leistung für mindestens einen verbraucher
DE102016109293A1 (de) Ansteuern mehrerer lichtquellen
EP2989857B1 (de) Verfahren und schaltungsanordnung zum betreiben einer led-lichtquelle
DE102008037551B4 (de) Vorrichtung zum Betreiben von Leuchtdiodenketten
DE102006056148B4 (de) Verfahren zur Funktionsüberwachung einer Lichtsignalanlage und Verkehrssteuerungs-Lichtsignalanlage
EP3138368B1 (de) Schaltungsanordnung und verfahren zum betreiben von leds
EP2770637B1 (de) Optokoppleranordnung und Ein- und/oder Ausgabebaugruppe
EP2866526A1 (de) LED-Schaltungsanordnung und Verfahren zum Betreiben einer LED-Schaltungsanordnung
DE10329367A1 (de) LED-Kette, LED-Array und LED-Modul
DE102007044339B4 (de) Leuchtdioden-Modul und Verfahren zur Steuerung eines Leuchtdioden-Moduls
DE10324609B4 (de) Ansteuerschaltung und LED-Array sowie Verfahren zum Betreiben eines LED-Arrays
EP2842388B1 (de) Led-anordnung
EP3295772B1 (de) Verfahren zum symmetrieren von zweig-strömen in parallelgeschalteten zweigen einer beleuchtungsvorrichtung für fahrzeuge
DE102013203731A1 (de) Fahrzeug-Steuergerät zur Steuerung und Versorgung eines oder mehrerer Verbraucher
EP3217766A1 (de) Verfahren zum betrieb eines leuchtmittels
EP3038433B1 (de) Led-lichtmodul, signalleuchte mit einem solchen lichtmodul sowie verfahren zum betreiben eines solchen lichtmoduls
EP3777482B1 (de) Mehrkanal-led-treibervorrichtung für mehrere led-module sowie verfahren zum betreiben einer mehrkanal-led-treibervorrichtung
DE102008019650B4 (de) Steuerungssystem für eine Elektronikfertigung und Verfahren zum Betrieb dieses Steuerungssystems
EP2989858B1 (de) Led-schaltungsanordnung
AT525308A2 (de) Stromversorgungsanordnung und leuchtensystem

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20161026

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180904

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502015012763

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H05B0033080000

Ipc: H05B0045140000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H05B 45/14 20200101AFI20200130BHEP

Ipc: H05B 45/40 20200101ALI20200130BHEP

Ipc: H05B 45/50 20200101ALI20200130BHEP

INTG Intention to grant announced

Effective date: 20200218

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1280218

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015012763

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200910

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200911

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201012

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502015012763

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201010

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015012763

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

26N No opposition filed

Effective date: 20210311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210428

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201010

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1280218

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220427

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230427

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230418

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610