EP3137662A1 - Procede et dispositif permettant de modifier une caracteristique d'un element filaire, notamment la distance separant ses deux extremites - Google Patents

Procede et dispositif permettant de modifier une caracteristique d'un element filaire, notamment la distance separant ses deux extremites

Info

Publication number
EP3137662A1
EP3137662A1 EP15736532.1A EP15736532A EP3137662A1 EP 3137662 A1 EP3137662 A1 EP 3137662A1 EP 15736532 A EP15736532 A EP 15736532A EP 3137662 A1 EP3137662 A1 EP 3137662A1
Authority
EP
European Patent Office
Prior art keywords
wire element
drop
winding
wire
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP15736532.1A
Other languages
German (de)
English (en)
Inventor
Hervé ELETTRO
Arnaud ANTKOWIAK
Sébastien NEUKIRCH
Fritz Vollrath
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Universite Pierre et Marie Curie Paris 6
Original Assignee
Centre National de la Recherche Scientifique CNRS
Universite Pierre et Marie Curie Paris 6
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Universite Pierre et Marie Curie Paris 6 filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP3137662A1 publication Critical patent/EP3137662A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/04Blended or other yarns or threads containing components made from different materials
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/14Processes for the fixation or treatment of textile materials in three-dimensional forms
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/16Processes for the non-uniform application of treating agents, e.g. one-sided treatment; Differential treatment

Definitions

  • the present invention relates to a method and a device for its implementation, for modifying at least one characteristic of a wire element, and in particular the distance separating its two ends, and provided with a winding means of said wire element.
  • Kevlar® offers a very interesting breaking strength. This thermoplastic polymer has a breaking strength of the order of 3100 MPa. However it is very little elastic or extensible and breaks quite easily in case of compression or when it is flamed.
  • a material such as rubber is more or less elastic.
  • an elastomer withstands up to 200% extensibility before breaking. By cons, this type of material is not very resistant in case of shock.
  • a biomaterial such as spider capture silk can in turn group together several particular properties such as adaptability, extensibility or resistance to breakage. However, it is very difficult to produce, which makes the use of this type of material almost non-existent.
  • the invention therefore aims to respond to the problems set out above by proposing a device and a method for producing an easily industrializable device that combines several particular properties.
  • the device comprising a wire element and a winding element thereof and associated with said wire element, is characterized in that the winding means is adapted to pass from a first stable state to a second stable state, this change of state occurring either naturally, so that the interaction energy between the wire element and the environment is higher than the interaction energy between the wire element and the winding means,
  • a steady state is defined as a state to which the system naturally returns if disturbed by an external event.
  • a stable state is one where the system has the lowest energy.
  • naturally and “chemical affinity” means that the interaction energy between the wired element and the environment is higher than the interaction energy between the wired element and the winding means. . These favorable interactions may be due to molecular resemblances (carbon / silica chains, hydrogen bonding, etc.) so that the energy of the wired element and the winding means taken separately is greater than the energy of the the wire element and the winding means in interaction.
  • the invention by the combination of a wire element and a winding means, each having their own function, creates a new function.
  • the winding means is a liquid droplet.
  • the invention makes it possible to produce a hybrid mechanical assembly between liquid and solid, and thus to obtain an adaptable material under compression, and which has a high tensile rigidity.
  • the interaction energy between the wire element and the environment is 4.4 J / m 2
  • the interaction energy between the wire element and the winding means is 4.33 J / m 2 .
  • the invention also provides a method of changing at least one mechanical property such as the curvature stiffness of a wire element, characterized in that at least one body of fluid material (liquid, gas) is associated with it. or solid, and in that one changes at least one characteristic of the material of said body.
  • at least one mechanical property such as the curvature stiffness of a wire element
  • the modification may relate to a parameter such as the ambient air pressure, the temperature, the intensity or the direction of the electric field, the intensity or the direction of the magnetic field, to buckle the wire element thanks to a mechanical stress, or any other parameter able to influence the system, so as to cause winding of the wire element in or around said body.
  • a capillary winch phenomenon By capillary winch is meant the phenomenon consisting of a winding of the wire element, in the winding means, which may be a body of fluid or solid material.
  • a mechanical stress represents the ratio between the force applied to an object and the section of the object taken perpendicular to the direction of the force.
  • the notion of mechanical stress is used to represent the influence of an external force on an object regardless of its size.
  • the wire element and the winding means may have affinities defined for example by
  • the wired element has a sufficiently fine diameter to be able to wind
  • End means a wire having a radius less than 3 times the radius given by the equation
  • Characteristics Wired element and winding means The size of the wire element with respect to the winding means is a
  • the wire element may for example have a diameter
  • winding means is a drop of liquid.
  • the aim of the invention is to obtain a fiber of radius inferior to that defined by
  • a fiber is currently considered fine if its radius is less than three times that given by said equation.
  • the material constituting the winding means may be tin, wax, silicone, water or any liquid wetting the wire element, in the case where the medium winding is a drop of liquid.
  • the wire element may consist of metals, elastomers or polymers such as polyurethane, synthetic rubber, nylon fibers, Kevlar fibers, carbon fibers, deformable steel, glass fibers, elastic plastic material (partly preserving the deformations that it has been imposed), a highly deformable material, or any material that can be obtained in fine fiber, and advantageously in fibers with a diameter of less than 10 microns.
  • the winding means is a drop of liquid.
  • the drop of liquid constituting the winding means will have to be compatible with the wire element.
  • the drop must wet the wire element and must extend as far as possible over the wire element.
  • the effective contact angle between the wire element and the droplet is then less than 90 ° .
  • the drop may already be in the liquid state or may be obtained from a solid material, converted into a liquid state, and especially by heating.
  • the environment parameter is the temperature.
  • the temperature corresponding to the first stable state of the winding means may be the ambient temperature, for example 20 ° C.
  • the temperature in the second stable state, allowing the winding of the wire element may be between the melting temperature and the boiling temperature of the liquid used.
  • several liquid drops or several wire elements may be associated to multiply the effects of the invention.
  • the so-called environment parameter is the electric field.
  • at least one characteristic of the winding means contact angle, capillary compression force
  • of the wire element thickness in the case of electroactive polymers for example
  • Said parameter is in one example, the temperature (according to a particular form, the temperature in the second modified state, causing winding of the wire element, being between 30 and 80 ° C, and preferably between 50 and 70 ° VS ) ;
  • Said body is a drop of wetting liquid or a partial wetting liquid whose contact angle is less than 90 °.
  • the material constituting the winding means has one and / or the other of the following characteristics: a glass transition temperature of between 30 ° C. and 80 ° C., and preferably between 45 ° and 65 ° C .;
  • the wire element has a diameter less than or equal to one centimeter, preferably between 0.5 micron and 1 cm, preferably between 1 micron and 100 microns, even more preferably between 1 micron and 10 microns; and or
  • E Young's modulus
  • r radius
  • - is made of polyurethane, synthetic rubber, nylon fiber, kevlar fiber (R), carbon fiber, high elasticity steel, elastic plastic material, super elastic material.
  • the dimension ratio between the diameter of the wire element and the diameter of the block or drop is between 0.0125 and 0.05.
  • the so-called “high elasticity” or “super-elastic” materials are materials that can deform strongly before reaching their point. a break. For example, the glass is deformed by 0.5% before breaking. Super-elastic materials are much more deformable, at least 5% (before rupture).
  • the diameter of the drop is between 1 micron and 1 cm.
  • the diameter of the winding means is less than 3 mm.
  • the diameter of the winding means is between 20 and 80 times the radius of the wire element, and preferably between 45 and 55 times the radius.
  • the invention also relates to the application of the above device to constitute a motor, an activator, an actuator, an artificial muscle, a means for moving an object relative to another object (the objects being connected to the two respective ends of said object). wired element), a set of electrical or electronic junctions of variable length, explained later in the description.
  • the invention relates to a method for providing the liquid drop protection means against external aggression, mechanical or otherwise.
  • the drop is encapsulated in an envelope formed of a multitude of solid grains, and less than 50 times in size, preferably 100 times smaller than the latter, the grains covering the outer surface of the drop. , at least most, and preferably all, of the surface thereof.
  • the grains are formed of colloids, of micrometric size, and are for example glass, polystyrene or any other material comprising the required properties of wetting, that is to say that the interaction energy between the grains and the drop must be of the same order of magnitude as the interaction energy between the grains and the external medium.
  • FIG. 1 shows a top view of a drop of liquid and a thread of polyurethane, wound inside it.
  • Figure 2 shows the variation curve of the elongation of a spider capture wire as a function of the pulling force
  • Figure 3 shows the tensile curve of a polyurethane yarn with drop (dotted line curve) and without (solid line curve) drop.
  • Figs. 4A and 4B are photos showing a drop and the associated wire, respectively at room temperature and at 75 ° C.
  • FIGS. 5A and 5B are perspective diagrams of another example of implementation of the method of the invention.
  • Figure 6 shows the particular application of the device to create a spring.
  • Figure 7 shows a schematic front view of a drop provided on its surface with encapsulation grains, and placed in a liquid
  • Figure 8 shows a photograph of a drop of a drop covered with encapsulation grains.
  • the fiber used in the invention can to be super elastic.
  • Superelasticity is a term used in the field of shape memory alloys (AMF, or shape memory alloy, SMA, in English). If such an alloy is subjected to tension, it stretches strongly, then when the tension is released, it retracts to its original length (no residual deformation). The particular mechanical behavior of AMFs is due to a phase change in the microstructure of the material.
  • Figure 1 is a representation of a particular embodiment of the invention wherein the drops are able to fold and wind the wire within themselves.
  • the drops arranged on the wire locally compress the latter by capillary contraction.
  • This capillary compression comes from the fact that the drop tends to adopt a spherical shape, which minimizes its surface with its environment. If this compression is strong enough, the fiber present in the drop can bend, or even curl in the drop, thus achieving a "capillary winch".
  • the tensile curve of a spider silk thread considered the most interesting biological material to reproduce is given in Figure 2. This curve shows that the wire can be strongly stretched. This great extensibility comes from the reserve of thread present in the drops, thanks to the capillary winding.
  • the rigidity extension is adaptable: small deformations, the rigidity is almost zero, the wire is just unfolding. At large deformations, the yarn begins to be really stretched, and has a stiffness comparable to a material such as Nylon®. This tensile curve resembles that of a material like collagen. This is particularly interesting in the case of biological applications, where one seeks an adaptable material with a mechanical response evolving with the deformation.
  • the present invention implements this phenomenon with, for example, synthetic fibers, provided that the fiber is sufficiently small to be pliable, and that the liquid constituting the drop is sufficiently wetting. This phenomenon is thus reproducible with a wide range of materials and liquids.
  • the wire element is composed of soft polyurethane yarns, a common commercial polymer and inexpensive.
  • the polyurethane is melted, extruded at high speed to form a micron sized fiber.
  • a drop of silicone oil On this fiber is deposited a drop of silicone oil and the phenomenon of capillary winch is automatically manifested, see Figure 1.
  • a yarn, associated with drops of silicone oil, is then obtained which can be stretched to more than twenty times its initial length with a constant force.
  • this thread is automatically stretched regardless of the extension; there is no gravity deflection.
  • the retention under compression means that it remains tense when approaching its ends.
  • the drops give it a great damping power (shock absorption, vibration damping, etc.).
  • Figure 3 shows that the polyurethane yarn associated with drops reproduces qualitatively the mechanical properties of the capture silk (compression retension, adaptable rigidity and excellent damping).
  • the wire / drop assembly has a typical mechanical response of a biological material, although being completely artificial.
  • Figure 3 shows the tensile curve of a polyurethane yarn with (dotted line curve) and without (solid line curve) drop.
  • the solid line curve shows the intrinsic mechanical properties of the polyurethane yarn, similar to that of a conventional rubber band elastomer.
  • the dotted line curve shows the high extensibility (multiplied by a factor of 4) of the wire when decorated with drops, as well as the adaptable rigidity.
  • PLA polyacid lactic acid
  • Young's modulus The stiffness of a wire's curvature depends on its thickness and its natural elastic stiffness in extension (Young's modulus). The Young's modulus is modified to be able to trigger the winch mechanism at will.
  • a PLA wire is used whose Young's modulus is of the order of Giga Pascal (GPa), and 1 to 3 microns in diameter. Such a wire, once associated with drops of silicone oil, does not undergo a winch mechanism because it is too rigid.
  • critical glass transition temperature of this polymer - glass transition means the transition between a glassy state such as glass (rigid and brittle) and a rubbery state (soft and extensible))
  • the thread sees its stiffness divided by a factor of 1000 and the phenomenon of winch is then manifested directly.
  • Returning to the critical temperature will "freeze” the winding (see “Applications Considered” section below). It is therefore possible to use the temperature as a control or switch so as to control the winch phenomenon.
  • the use of molten tin drops (whose melting temperature is around 200 ° C.) could make it possible to thermally activate the phenomenon or to freeze the winding.
  • the device of the invention is simple to implement to provide classic materials of extreme mechanical properties such as super extensibility, adaptability of length (smart meta-materials), excellent damping, and perfect perfect reversibility (no plasticity or fatigue). Another embodiment of the device is described with reference to FIGS. 5A and 5B.
  • drops of tin are used to move (by translation) microsystems.
  • Two blocks or objects belonging to a microsystem must be brought together ( Figure 5A). They are connected by metal son, these son being associated according to the invention to small pieces of solid tin. Tin is liquefied (by laser, or by Joule effect - heating of the wire when traversed by an electric current). The winch mechanism described above is activated and the blocks are brought closer to each other. Once the translation has been carried out, the tin may be re-solidified and the system thus locked in the "close" position.
  • the coupling between the fiber and the drop it carries can have an avalanche effect and completely change the overall mechanical properties. It is therefore possible to switch from a conventional material to a material having exceptional properties, adaptable under the effect of external stimuli, even low: the temperature affects the rigidity of the fiber, an electric field influences the effect of capillary winch of the drop, as well as surfactants that can respond to many external stimuli such as light activation, thermal or electrical.
  • the mechanical properties durable such as in the non-limiting example of the solidified tin drop.
  • the great freedom of the parameters involved sizes of the drop and the fiber, rigidity of the fiber and the liquid constituting the drop
  • the materials thus created can find application in the following areas:
  • the wire / winding means assembly can be used as a motor. Indeed, by winding the wire through the winch effect, the drop applies a driving force on the wire, which can then be applied to an external system.
  • This could also be used as an actuator or motor that can be turned on or off at will (reversible phenomenon).
  • a very interesting aspect of this motor / actuator is that no material is physically stretched during the low strain elongation, which makes it possible to have a perfect reversibility of the engine, and therefore a much longer lifetime than with classical materials that include plasticity.
  • This invention also makes it possible to limit fatigue, phenomena limiting performance and ultimately causing rupture
  • the actuator system can be used to create a local winding of permanent wire, when the drop is removed: if one place a drop on a rigid fiber, then increase its temperature, then the wire wraps in the drop, and when the temperature decreases, the winding is "frozen".
  • a 3D object with a complex geometry is thus created in a simple way (see Figure 6).
  • changing an environment parameter is not a necessity.
  • the winding can be done naturally by the affinity of the wire element and the winding means, however, the performance will be reduced.
  • wire elements can be associated to include artificial muscle. Indeed, it is sufficient to attach a large number of wired elements / activatable winding means between two surfaces to multiply the effects of the invention and obtain an artificial muscle fiber.
  • the invention can be used to create springs or complex three-dimensional objects, such as a micro-coil.
  • a winding for example with a drop of liquid (non-limiting case).
  • This drop of liquid having an affinity with a wire element will allow the wire element to wind in this drop.
  • the user can decide to come and suck the drop, for example using a pipette, or to remove the drop without contact, by blowing or intense electric field pulsed.
  • the wire element is therefore found in the "wound” state, and a spring for example can be created.
  • the wire element has undergone permanent deformations, either by the procedure described above, in the "microfabrication” paragraph, or by plasticization. ( Figure 6)
  • the winding means is a droplet
  • This encapsulation can be as physical, by the construction of a non-wetting cage for the drop (non-limiting example), as chemical, by the use of viscoelastic fluids, which have the property of behaving like a solid in case of fast contact, and therefore do not spread.
  • the wired element may have the following characteristics:
  • Young's modulus of the fiber used 12 +/- 1 MPa.
  • the wired element is an Elastollan fiber.
  • the known Elastollan sample (without drop) has a stretch extensibility of +530%, whereas the same sample associated with a drop of silicone oil (according to the invention) has an extensibility to break more than 3000%.
  • This thread was produced as follows:
  • TPU Elastollan 1185A Some granules of TPU Elastollan 1185A are placed on a hot plate covered with aluminum foil, set at 230 ° C. When the TPU melts, a part is pinched and stretched as quickly as possible by the operator, creating several meters of micron fibers. A seemingly homogenous part is selected, and the fiber is wound at one end around the FemtoTools FT-S1000 sensor mounted on a SmarAct SLC-1730 linear positioner and glued with Loctite® or SuperGlue® type glue onto a glass slide. other end.
  • Rhodorsil 47V1000 silicone oil hangs from the tip of a 0.4mm diameter syringe, and the fiber is brushed along its length to deposit a large amount of liquid.
  • the typical dynamic reaction time of the system is of the order of 100 ms.
  • Figure 3 shows the variations of the voltage force as a function of the extension (Strain) of the system.
  • the extension is defined as (LL 0 ) / L 0 .
  • the mechanical response of the system of the invention the Tension force depending on the extension (Strain) of the system.
  • the extension is defined as (LL 0 ) / L 0 where L 0 is the length of the system initially when a lot of fiber is wrapped in the drop (s).
  • strain or "strain" 2.5
  • the fiber of the invention (associated with a drop) has a large reserve of extensibility.
  • the inset shows for comparison the mechanical response of a spider fiber.
  • the wire / drop assembly of the invention typically having the same mechanical properties as spider wire, while avoiding the difficulties of spider silk synthesis and the characterization of natural liquid drops, present on the spider's thread.
  • Figs. 4A and 4B are photos showing a drop associated with a PLA wire, respectively at room temperature and at 75 ° C.
  • the PLA used for these figures has the following characteristics:
  • Young's modulus of PLA 5 GPa at room temperature, 70 MPa at 75 ° C.
  • Wire radius used 1.7 microns (same technique as for TPU, except that a metal nozzle is used for extrusion instead of a single hot plate).
  • Number of turns made 2.5 turns (8 times the size of the drop).
  • the invention relates to a method for providing the taste of liquid means of protection against external aggression, mechanical or otherwise.
  • Said method encapsulates the drop in an envelope formed of a multitude of grains, each formed of a liquid different from that of the drop, and of size less than 50 times, preferably 100 times smaller than the drop.
  • the multitude of grains covers the outer surface of the drop, preferably entirely.
  • the grains are formed of colloids, of micrometric size, and are for example glass, polystyrene or any other material comprising the required properties of wetting, that is to say that the interaction energy between the grains and the drop must be of the same order of magnitude as the interaction energy between the grains and the external medium.
  • the grains 1 are mixed with a first liquid, for example oil, then a drop 2 formed of the mixture is placed in a second liquid 3, for example water.
  • a first liquid for example oil
  • Figure 8 is a photograph of a grain-coated drop, according to Figure 7.
  • the method of encapsulation by grains is used because it has the advantage of constituting a protection without compromising the liquid nature of the drop. Indeed, unlike a solid shell, grains can move and reorganize on the surface of the drop. Those skilled in the art can refer to the publication: Aussillous, Pascale, and David Quowski. "Liquid marbles.” Nature 41, 6840 (2001): 924-927.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials For Medical Uses (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

Dispositif comprenant un élément filaire et un moyen d'enroulement de ce dernier et associé audit élément filaire, caractérisé en ce que le moyen d'enroulement est apte à passer d'un premier état stable à un second état stable, ce changement d'état se faisant: • soit naturellement, de façon que l'énergie d'interaction entre l'élément filaire et l'environnement soit plus élevée que l'énergie d'interaction entre l'élément filaire et le moyen d'enroulement, • soit par changement d'un paramètre dit d'environnement, de manière à provoquer l'enroulement de l'élément filaire dans ledit moyen, lors du passage du premier état au second état, de manière à provoquer l'enroulement de l'élément filaire dans ledit moyen.

Description

PROCEDE ET DISPOSITIF PERMETTANT DE MODIFIER
UNE CARACTERISTIQUE D'UN ELEMENT FILAIRE, NOTAMMENT LA
DISTANCE SEPARANT SES DEUX EXTREMITES
La présente invention concerne un procédé et un dispositif pour sa mise en œuvre, permettant de modifier au moins une caractéristique d'un élément filaire, et notamment la distance séparant ses deux extrémités, et pourvu d'un moyen d'enroulement dudit élément filaire.
Certains matériaux possèdent des propriétés exceptionnelles. Par exemple, le Kevlar® offre une résistance à la rupture très intéressante. Ce polymère thermoplastique possède une résistance à la rupture de l'ordre de 3100MPa. Cependant il est très peu élastique ou extensible et casse assez facilement en cas de compression ou lorsqu'il est mis en flambage.
A l'inverse, un matériau tel que le caoutchouc est plus ou moins élastique. Par exemple un élastomère supporte jusqu'à 200% d'extensibilité avant d'être rompu. Par contre, ce type de matériau n'est pas très résistant en cas de choc.
Un biomatériau tel que la soie de capture d'araignée peut quant à lui regrouper plusieurs propriétés particulières telles qu'adaptabilité, extensibilité ou résistance à la rupture. Cependant il est très difficile d'en produire, ce qui rend l'utilisation de ce type de matériau quasiment inexistante.
L'invention vise donc à répondre aux problématiques exposées ci-dessus en proposant un dispositif et un procédé pour réaliser un dispositif facilement industrialisable et combinant plusieurs propriétés particulières.
A cette fin, selon l'invention, le dispositif comprenant un élément filaire et un moyen d'enroulement de ce dernier et associé audit élément filaire, est caractérisé en ce que le moyen d'enroulement est apte à passer d'un premier état stable à un second état stable, ce changement d'état se faisant : soit naturellement, de façon que l'énergie d'interaction entre l'élément filaire et l'environnement soit plus élevée que l'énergie d'interaction entre l'élément filaire et le moyen d'enroulement,
- soit par changement d'un paramètre dit d'environnement, de manière à provoquer l'enroulement de l'élément filaire dans ledit moyen, lors du passage du premier état au second état. On définit un état stable comme un état vers lequel le système revient naturellement s'il est perturbé par un événement extérieur. Un état stable est celui où le système présente la plus basse énergie.
On entend par « naturellement » et « affinité chimique » le fait que l'énergie d'interaction entre l'élément filaire et l'environnement est plus élevée que l'énergie d'interaction entre l'élément filaire et le moyen d'enroulement. Ces interactions favorables pourront être dues à des ressemblances moléculaires (chaînes carbonées/silicées, liaison hydrogène...) de manière à ce que l'énergie de l'élément filaire et du moyen d'enroulement pris séparément soit supérieur à l'énergie de l'élément filaire et du moyen d'enroulement en interaction.
L'invention, par l'association d'un élément filaire et d'un moyen d'enroulement, ayant chacun leur fonction propre, crée une nouvelle fonction.
Dans un mode particulier de l'invention, le moyen d'enroulement est une goutte liquide.
L'invention permet de réaliser un ensemble hybride mécanique entre liquide et solide, et ainsi d'obtenir un matériau adaptable sous compression, et qui présente une forte rigidité en traction.
C'est le cas par exemple : - d'un élément filaire constitué de polyuréthane en interaction avec un moyen d'enroulement constitué d'huile silicone dans un environnement constitué d'air. Dans ce cas, l'énergie d'interaction entre l'élément filaire et l'environnement est de 37,8 mJ/m2, alors que l'énergie d'interaction entre l'élément filaire et le moyen d'enroulement est de 20,9 mJ/m2
- ou encore d'un élément filaire constitué de verre en interaction avec un moyen d'enroulement constitué d'eau dans un environnement constitué d'air. Dans ce cas, l'énergie d'interaction entre l'élément filaire et l'environnement est de 4,4 J/m2, alors que l'énergie d'interaction entre l'élément filaire et le moyen d'enroulement est de 4,33 J/m2.
L'invention vise en outre un procédé de changement d'au moins une propriété mécanique telle que la rigidité à la courbure d'un élément filaire, caractérisé en ce qu'on lui associe au moins un corps en matériau fluide (liquide, gazeux) ou solide, et en ce que l'on change au moins une caractéristique du matériau dudit corps.
Dans le cas où l'on joue sur un paramètre dit d'environnement dans lequel est placé le moyen d'enroulement et l'élément filaire. La modification pourra porter sur un paramètre tel que la pression de l'air ambiant, la température, l'intensité ou le sens du champ électrique, l'intensité ou le sens du champ magnétique, mettre en flambage l'élément filaire grâce à une contrainte mécanique, ou tout autre paramètre apte à influencer le système, de manière à provoquer l'enroulement de l'élément filaire dans ou autour dudit corps. Ainsi, on pourra, en changeant un des paramètres intrinsèques à l'élément filaire et/ou un paramètre dit d'environnement, exercer un phénomène de treuil capillaire. Par treuil capillaire on entend le phénomène consistant en un enroulement de l'élément filaire, dans le moyen d'enroulement, pouvant être un corps en matériau fluide ou solide.
Une contrainte mécanique représente le ratio entre la force appliquée à un objet et la section de l'objet prise perpendiculairement à la direction de la force. La notion de contrainte mécanique est utilisée pour représenter l'influence d'une force extérieure sur un objet indépendamment de sa taille. Pour réaliser ce phénomène particulier, l'élément filaire et le moyen d'enroulement pourront avoir des affinités définies par exemple par
leurs tailles, leurs affinités chimiques, ou encore leur rapport de taille ou
de poids. En effet, pour ne citer qu'un exemple non limitatif, il faut que
l'élément filaire ait un diamètre suffisamment fin pour pouvoir s'enrouler à
l'aide du moyen d'enroulement, dans ou autour celui-ci. On entend par
« fin » un fil ayant un rayon inférieur à 3 fois le rayon donné par l'équation
ci-dessous.
Caractéristiques élément filaire et moyen d'enroulement : La taille de l'élément filaire par rapport au moyen d'enroulement est une
caractéristique importante pour l'activation du phénomène de treuil
capillaire. L'élément filaire pourra par exemple posséder un diamètre
inférieur ou égal au centimètre, être de préférence compris entre 0, 1
micron et 1 cm et avantageusement de diamètre inférieur à 1 0 microns.
Les dimensions du moyen d'enroulement seront alors fonction des
dimensions de l'élément filaire. Dans un mode particulier de l'invention, le
moyen d'enroulement est une goutte de liquide. Le diamètre de la section
de l'élément filaire est alors régi par la relation :
Î COS 0)5/7
Enroulement si r < rcrit ~ 1-31 x — , 0 /„ _„ ,„ ~ 5.5/im pour de l'eau sur du Nylon®
. (Ρ9Γ7Ε3'7
7 : tension de surface
Θ : angle de contact
p : densité du liquide
E : module d'Young
L'invention vise à obtenir une fibre de rayon inférieur à celui définit par
cette équation, par un procédé propre à chaque matériau. On associe
ensuite à la fibre un liquide présentant des caractéristiques de mouillabilité
en lien avec ladite équation, par exemple en retirant la fibre d'un bain de
ce liquide, ou en vaporisant ce liquide.
Une fibre est présentement considérée comme fine si son rayon est inférieur à trois fois celui donné par ladite équation.
A titre d'exemples non limitatifs, le matériau constituant le moyen d'enroulement pourra être de l'étain, de la cire, du silicone, de l'eau ou tout liquide mouillant l'élément filaire, dans le cas où le moyen d'enroulement est une goutte de liquide. L'élément filaire pourra être constitué de métaux, élastomères ou encore polymères tels que polyuréthane, caoutchouc synthétique, fibres de nylon, fibres de kevlar, fibres de carbone, acier déformable, fibres de verre, matériau plastique élastique (conservant en partie les déformations qu'on lui a imposé), matériau très déformable, ou tout matériau qui peut être obtenu en fibre fine, et avantageusement en fibres de diamètre inférieur à 10 microns.
Dans un mode particulier de l'invention, le moyen d'enroulement est une goutte de liquide. Dans ce mode particulier, la goutte de liquide constituant le moyen d'enroulement devra être compatible avec l'élément filaire. A titre d'exemple, la goutte doit mouiller l'élément filaire et doit s'étaler au maximum sur l'élément filaire. L'angle de contact effectif entre l'élément filaire et la goutte est alors inférieur à 90°.La goutte peut être déjà à l'état liquide ou peut être obtenue à partir d'un matériau solide, transformé en état liquide, et en particulier par chauffage. Dans ce mode particulier, le paramètre d'environnement est la température. La température correspondant au premier état stable du moyen d'enroulement pourra être la température ambiante, et par exemple 20 °C. La température dans le second état stable, permettant l'enroulement de l'élément filaire pourra être comprise entre la température de fusion et la température d'ébullition du liquide utilisé. Dans ce mode particulier de l'invention plusieurs gouttes liquides ou plusieurs éléments filaires pourront être associés pour décupler les effets de l'invention.
Dans un mode particulier de l'invention, le paramètre dit d'environnement est le champ électrique. Dans ce mode particulier, au moins une caractéristique du moyen d'enroulement (angle de contact, force de compression capillaire) ou de l'élément filaire (épaisseur dans le cas des polymères électro actifs par exemple) est changée. Le changement d'état est réversible.
Ledit paramètre est dans un exemple, la température (selon une forme particulière, la température dans le second état modifié, provoquant l'enroulement de l'élément filaire, étant comprise entre 30 et 80 °C, et de préférence entre 50 et 70 °C ) ;
un champ électrique ;
l'ajout audit corps d'une substance modifiant sa mouillabilité.
Ledit corps est une goutte de liquide mouillant ou un liquide à mouillage partiel dont l'angle de contact est inférieur à 90°. Le matériau constituant le moyen d'enroulement présente l'une et/ou l'autre des caractéristiques suivantes : une température de transition vitreuse comprise entre 30 °C et 80 °C, et de préférence entre 45 et 65 °C ;
un changement de viscosité au-delà de la température ambiante :- est de l'étain, de la cire, du silicone.
L'élément filaire : possède un diamètre inférieur ou égal au centimètre, de préférence est compris entre 0,5 micron et 1 cm, de préférence entre 1 micron et 100 microns, de manière encore plus préférée entre 1 micron et 10 microns ; et/ou
présente des caractéristiques, d'une part du module d'Young (E) et d'autre part de rayon (r), telles que : E r 3 < 300, « E » étant exprimé en MPa et « r » en micron ;
- est constitué de polyuréthane, caoutchouc synthétique, fibre de nylon, fibre de kevlar (R), fibre de carbone, acier à haute élasticité, matériau plastique élastique, matériau super élastique.
Le rapport de dimension entre le diamètre de l'élément filaire et le diamètre du bloc ou de la goutte est compris entre 0,0125 et 0,05. Les matériaux dits « à haute élasticité » ou « super-élastiques » sont des matériaux à même de se déformer fortement avant d'atteindre leur point de rupture. Par exemple, le verre se déforme de 0,5 % avant rupture. Les matériaux super-élastiques quant à eux sont beaucoup plus déformables, d'au moins 5 % (avant rupture). Le diamètre de la goutte est compris entre 1 micron et 1 cm.
Le diamètre du moyen d'enroulement est inférieur à 3 mm.
Le diamètre du moyen d'enroulement est compris entre 20 et 80 fois le rayon de l'élément filaire, et de préférence entre 45 et 55 fois le rayon.
L'invention concerne également l'application du dispositif ci-dessus pour constituer un moteur, un activateur, un actuateur, un muscle artificiel, un moyen pour déplacer un objet par rapport à un autre objet (les objets étant reliés aux deux extrémités respectives dudit élément filaire), un ensemble de jonctions électriques ou électroniques de longueur variable, explicités par la suite dans la description. En outre, l'invention concerne un procédé visant à munir la goutte de liquide de moyens de protection contre les agressions extérieures, mécaniques ou autres.
A cette fin, on réalise une encapsulation de la goutte dans une enveloppe formée d'une multitude de grains solides, et de taille inférieure à 50 fois, de préférence 100 fois plus petite que cette dernière, les grains recouvrant la surface extérieure de la goutte, au moins en majeure partie, et de préférence la totalité de la surface de celle-ci.
Plus précisément, les grains sont formés de colloïdes, de taille micrométrique, et sont par exemple en verre, polystyrène ou tout autre matériau comprenant les propriétés requises de mouillage, c'est-à-dire que l'énergie d'interaction entre les grains et la goutte doit être du même ordre de grandeur que l'énergie d'interaction entre les grains et le milieu extérieur.
L'invention sera mieux comprise à la lumière de la description qui suit, se rapportant aux dessins annexés dans lesquels :
La figure 1 montre une vue de dessus d'une goutte de liquide et un fil de polyuréthane, enroulé à l'intérieur de celle-ci.
La Figure 2 montre la courbe de variation de l'élongation d'un fil de capture d'araignée en fonction de la force de traction,
La figure 3 montre la courbe de traction d'un fil de polyuréthane avec goutte (courbe en traits pointillés) et sans (courbe en trait plein) goutte.
Les figures 4A et 4B sont des photos montrant une goutte et le fil associé, respectivement à température ambiante et à 75 °C.
Les figures 5A et 5B sont des schémas en perspective d'un autre exemple de mise en œuvre du procédé de l'invention. La figure 6 montre l'application particulière du dispositif pour créer un ressort.
La figure 7 montre une vue de face schématique d'une goutte pourvue sur sa surface de grains d'encapsulation, et placée dans un liquide ;
La figure 8 montre une photographie d'une goutte d'une goutte recouverte de grains d'encapsulation.
Le procédé et le dispositif de l'invention font appel aux notions suivantes :
Quand on tire sur un ressort de longueur à vide L0, le ressort s'allonge, sa longueur grandit est vaut L. L'allongement L- L0 est proportionnel à la force de tension F. La fibre utilisée dans l'invention pourra être super élastique. « Superélasticité » est un terme utilisé dans le domaine des alliages à mémoire de forme (AMF, ou shape memory alloy, SMA, en anglais). Si un tel alliage est soumis à une tension, il s'étire fortement, puis lorsque l'on relâche la tension, il se rétracte jusqu'à retrouver sa longueur initiale (pas de déformation résiduelle). Le comportement mécanique particulier des AMF est dû à un changement de phase dans la microstructure du matériau.
La figure 1 est une représentation d'un mode particulier de l'invention où les gouttes sont à même de plier et d'enrouler le fil au sein d'elles-mêmes. Les gouttes disposées sur le fil compressent localement ce dernier par contraction capillaire. Cette compression capillaire vient du fait que la goutte tend à adopter une forme sphérique, qui minimise sa surface avec son environnement. Si cette compression est suffisamment forte, la fibre présente dans la goutte peut se plier, voire s'enrouler dans la goutte, réalisant ainsi un «treuil capillaire». A titre d'exemple, la courbe de traction d'un fil de soie d'araignée, considéré comme le matériau biologique le plus intéressant à reproduire est donnée en Figure 2. Cette courbe montre que le fil peut être fortement étiré. Cette grande extensibilité vient de la réserve de fil présente dans les gouttes, grâce à l'enroulement capillaire. La rigidité à l'extension est adaptable : à petites déformations, la rigidité est quasi-nulle, le fil ne fait que se dérouler. A grandes déformations, le fil commence à être réellement étiré, et présente une rigidité comparable à un matériau tel que le Nylon®. Cette courbe de traction ressemble à celle d'un matériau comme le collagène. Ceci est particulièrement intéressant dans le cas d'applications biologiques, où l'on cherche un matériau adaptable avec une réponse mécanique évoluant avec la déformation.
La présente invention met en œuvre ce phénomène avec, à titre d'exemple, des fibres synthétiques, à condition que la fibre soit suffisamment petite pour être pliable, et que le liquide constituant la goutte soit assez mouillant. Ce phénomène est ainsi reproductible avec une large gamme de matériaux et de liquides.
Dans un mode particulier de l'invention, l'élément filaire est composé de fils de polyuréthane mou, un polymère commercial commun et peu onéreux. Le polyuréthane est fondu, extrudé à haute vitesse pour former une fibre de taille micronique. Sur cette fibre est déposée une goutte d'huile silicone et le phénomène de treuil capillaire se manifeste automatiquement, voir Figure 1 . On obtient alors un fil, associé à des gouttes d'huile silicone, et qui peut être étiré à plus de vingt fois sa longueur initiale avec une force constante. De plus, ce fil est automatiquement tendu quelle que soit l'extension ; il n'y a pas de fléchissement gravitaire. La rétention sous compression signifie qu'il reste donc tendu lorsqu'on rapproche ses extrémités. Enfin, les gouttes lui confèrent un grand pouvoir d'amortissement (absorption de chocs, amortissement de vibrations, etc.). La figure 3 montre que le fil de polyuréthane associé aux gouttes reproduit qualitativement les propriétés mécaniques de la soie de capture (retension sous compression, rigidité adaptable et excellent amortissement). L'ensemble fil / goutte présente une réponse mécanique typique d'un matériau biologique, bien qu'étant complètement artificiel. La figure 3 montre la courbe de traction d'un fil de polyuréthane avec (courbe traits pointillés) et sans (courbe trait plein) goutte. La courbe en trait plein montre les propriétés mécaniques intrinsèques du fil de polyuréthane, semblables à celle d'un élastomère classique type bande de caoutchouc. La courbe en traits pointillés montre la forte extensibilité (multipliée par un facteur 4) du fil lorsqu'il est décoré de gouttes, ainsi que la rigidité adaptable.
Cas particulier : activation thermique du phénomène : polyacide lactique (PLA). La rigidité à la courbure d'un fil dépend de son épaisseur et de sa rigidité élastique naturelle en extension (module d'Young). On modifie le module d'Young pour pouvoir déclencher à volonté le mécanisme de treuil. On utilise un fil de PLA dont le module d'Young est de l'ordre du Giga Pascal (GPa), et de 1 à 3 microns de diamètre. Un tel fil, une fois associé aux gouttes d'huile silicone, ne subit pas de mécanisme de treuil car il est trop rigide. Lorsqu'il est chauffé à 75 °C (température critique de transition vitreuse de ce polymère - on entend par transition vitreuse la transition qui sépare un état vitreux tel que le verre (rigide et cassant) et un état caoutchouteux (mou et extensible)), le fil voit sa rigidité divisée par un facteur 1000 et le phénomène de treuil se manifeste alors directement. En repassant sous la température critique, on « gèle » l'enroulement (voir le paragraphe « Applications envisagées » ci-après). On peut donc utiliser la température comme commande ou interrupteur de façon à contrôler le phénomène de treuil. De la même manière, l'utilisation de gouttes d'étain fondu (dont la température de fusion est autour de 200 °C) pourrait permettre d'activer thermiquement le phénomène ou de geler l'enroulement.
Le dispositif de l'invention est simple à mettre en œuvre pour doter des matériaux classiques de propriétés mécaniques extrêmes telles que super extensibilité, adaptabilité de la longueur (méta-matériaux intelligents), excellent amortissement, et parfaite réversibilité parfaite (pas de plasticité ni de fatigue). On décrit en référence aux figures 5A et 5B un autre mode d'utilisation du dispositif.
Dans ce mode particulier, on utilise des gouttes d'étain (ou de cire ou un autre matériau facilement liquéfiable) pour déplacer (par translation) des microsystèmes. Deux blocs ou objets faisant partie d'un microsystème doivent être rapprochés (figure 5A). Ils sont reliés par des fils métalliques, ces fils étant associés selon l'invention à de petits morceaux d'étain solide. L'étain est liquéfié (par laser, ou par effet Joule - échauffement du fil lorsque traversé par un courant électrique). Le mécanisme de treuil décrit plus haut s'active et les blocs sont rapprochés l'un de l'autre. Une fois la translation effectuée, l'étain pourra être re-solidifié et le système ainsi bloqué en position « rapprochée ».
En changeant (même légèrement) les propriétés mécaniques du fil et du matériau constitutif du corps formant la goutte, le couplage entre la fibre et la goutte qu'elle porte peut avoir un effet d'avalanche et changer complètement les propriétés mécaniques globales. Il est donc possible de passer d'un matériau classique à un matériau possédant des propriétés exceptionnelles, adaptables sous l'effet de stimuli extérieurs, même faibles : la température influe sur la rigidité de la fibre, un champ électrique influe sur l'effet de treuil capillaire de la goutte, de même que des surfactants pouvant répondre à de nombreux stimuli extérieurs tels que l'activation lumineuse, thermique ou électrique. Cependant, il est aussi possible et simple d'utiliser des paramètres qui rendent durables les propriétés mécaniques, tels que dans l'exemple non limitatif de la goutte d'étain solidifiée. La grande liberté sur les paramètres en jeu (tailles de la goutte et de la fibre, rigidité de la fibre et liquide constituant la goutte) permettent en retour une grande liberté sur l'ajustement des nouvelles propriétés mécaniques. Les matériaux ainsi créés peuvent trouver application dans les domaines suivants :
1 / Nanoélectronique/électronique flexible 21 Nano-robotique 3/ Micro-fabrication 3D compacte, déployable et auto-organisée 4/ Muscle artificiel 5/ Micro actuateur/moteur parfait
Les applications citées ci-dessus ne sont nullement limitatives et d'autres applications facilement imaginables peuvent bien sûr être envisagées avec ce type de dispositif.
En électronique, on peut ainsi créer un fil métallique conducteur dont les propriétés mécaniques sont rendues adaptables par le procédé de l'invention. Ce fil, dont les jonctions électroniques entre composants deviennent extrêmement déformables, permet de créer des objets qui peuvent se déployer de 1 0000%, contre 1 0% dans les applications connues.
En robotique, l'ensemble fil / moyen d'enroulement (goutte) peut être utilisé comme moteur. En effet, en enroulant le fil grâce à l'effet de treuil, la goutte applique une force motrice sur le fil, qui peut ensuite être appliquée sur un système extérieur. Cela pourrait aussi servir d'actuateur ou de moteur qui peut être allumé ou éteint à volonté (phénomène réversible). Un aspect très intéressant de ce moteur/actuateur est qu'aucun matériau n'est physiquement étiré durant l'élongation à faible déformation, ce qui permet d'avoir une réversibilité parfaite du moteur, et donc une durée de vie beaucoup plus importante qu'avec des matériaux classiques qui comportent de la plasticité. Cette invention permet également de limiter la fatigue, phénomènes limitant la performance et provoquant ultimement la rupture
En micro-fabrication, le système d'actuateur peut être utilisé pour créer un enroulement local de fil permanent, lorsque la goutte est retirée : si l'on place une goutte sur une fibre rigide, puis que l'on augmente sa température, alors le fil s'enroule dans la goutte, et quand la température rediminue, l'enroulement est « gelé ». Un objet 3D avec une géométrie complexe est ainsi créé de façon simple (voir figure 6). Pour les matériaux plastiques, le changement d'un paramètre dit d'environnement n'est pas une nécessité. L'enroulement peut se faire naturellement de par l'affinité de l'élément filaire et du moyen d'enroulement, toutefois, les performances s'en trouveront réduites.
De même, plusieurs éléments filaires peuvent être associés pour notamment réaliser un muscle artificiel. En effet, il suffit d'attacher un grand nombre d'éléments filaires/moyens d'enroulement activables entre deux surfaces pour décupler les effets de l'invention et obtenir une fibre musculaire artificielle.
Enfin, l'invention pourra être utilisée pour créer des ressorts ou des objets tridimensionnels complexes, tels qu'une micro-bobine. En effet, il est facilement imaginable de créer un enroulement, par exemple avec une goutte de liquide (cas non limitatif). Cette goutte de liquide, présentant une affinité avec un élément filaire permettra donc à l'élément filaire de s'enrouler dans cette goutte. Une fois enroulé, l'utilisateur peut décider de venir aspirer la goutte, par exemple à l'aide d'une pipette, ou encore de retirer la goutte sans contact, par soufflage ou champ électrique intense puisé. L'élément filaire se retrouve donc à l'état « enroulé », et un ressort par exemple pourra être créé. Pour que cet enroulement soit stable, il faut cependant que l'élément filaire ait subi des déformations permanentes, soit par la procédure décrite ci-dessus, dans le paragraphe « microfabrication », soit par la plastification. (Figure 6)
Il sera également possible de réaliser, dans le mode particulier de l'invention où le moyen d'enroulement est une goutte, d'encapsuler cette goutte. Cette encapsulation pourra être aussi bien physique, par la construction d'une cage non mouillante pour la goutte (exemple non limitatif), que chimique, par l'utilisation de fluides viscoélastiques, qui possèdent la propriété de se comporter comme un solide en cas de contact rapide, et donc ne pas s'étaler. A titre d'exemple non limitatif, l'élément filaire pourra avoir les caractéristiques suivantes :
- Réduction maximale de la longueur initiale d'un fil obtenue avec un échantillon de 8,4 mm de longueur, devenu 1 ,7 mm après enroulement, soit une réduction de longueur d'un facteur 80 %. Ceci a été fait grâce à une seule goutte d'huile silicone Rhodorsil 47V1000 de 167 microns de diamètre, enroulant 6,7mm en son sein, soit 40 fois sa taille (12,5 tours).
- Module d'Young de la fibre utilisée : 12 +/- 1 MPa.
- Rayon de la fibre : 2,3 +/- 0,2 microns. - L'élément filaire est une fibre d'Elastollan.
L'échantillon d'Elastollan connu (sans goutte) a une extensibilité à la rupture de +530 %, alors que le même échantillon associé à une goutte d'huile silicone (selon l'invention) a une extensibilité à la rupture de plus de 3000 %. Ce fil a été produit de la façon suivante :
Quelques granules de TPU Elastollan 1185A sont posées sur une plaque chauffante recouverte de papier aluminium, réglée sur 230 °C. Quand le TPU fond, une partie est pincée et étirée aussi rapidement que possible par l'opérateur, créant ainsi plusieurs mètres de fibres microniques. Une partie semblant homogène est sélectionnée, et la fibre est enroulée à un bout autour du capteur FemtoTools FT-S1000 monté sur un positionneur linéaire SmarAct SLC-1730 et collé avec de la colle type Loctite® ou SuperGlue® sur une lamelle de verre à l'autre bout.
Une goutte d'huile silicone Rhodorsil 47V1000 pend de l'embout d'une seringue de 0.4mm de diamètre, et la fibre est brossée dans le sens de sa longueur afin de déposer une grande quantité de liquide.
Le temps typique de réaction dynamique du système est de l'ordre de 100 ms.
La figure 3 montre les variations de la force de tension en fonction de l'extension (Strain) du système. L'extension est définie comme (L-L0)/L0. On voit en Figure 3 la réponse mécanique du système de l'invention : la force de tension en fonction de l'extension (Strain) du système. L'extension est définie comme (L-L0)/L0 où L0 est la longueur du système au départ lorsque beaucoup de fibre est enroulée dans la/les gouttes. En traits pointillés, la réponse du système montrant une super élasticité : la longueur est multipliée par 3,5 (déformation ou « strain » = 2,5) avant d'atteindre la zone où une raideur type ressort se fait ressentir. En traits pleins, on trace pour comparaison la réponse d'une fibre en l'absence de goutte liquide. Il n'y a alors aucune réserve de longueur et le système répond tout de suite comme un ressort. On voit ainsi que la fibre de l'invention (associée à une goutte) a une grande réserve d'extensibilité. L'encart montre pour comparaison la réponse mécanique d'une fibre d'araignée. L'ensemble fil / goutte de l'invention présentant typiquement les mêmes propriétés mécaniques que le fil d'araignée, tout en permettant d'éviter les difficultés de la synthèse de la soie d'araignée et de la caractérisation des gouttes liquides naturelles, présentes sur le fil d'araignée.
Les figures 4A et 4B sont des photos montrant une goutte associée à un fil en PLA, respectivement à température ambiante et à 75 °C.
Afin d'illustrer au mieux les résultats issus des figures 4A et 4B, le PLA utilisé pour ces figures possède les caractéristiques suivantes :
Module d'Young du PLA : 5 GPa à température ambiante, 70 MPa à 75°C.
Température de transition vitreuse : 60 °C.
Rayon du fil utilisé : 1 ,7 microns (même technique que pour le TPU, excepté que l'on utilise une buse métallique pour l'extrusion à la place de la simple plaque chauffante).
Taille de la goutte d'huile silicone 47V1000 : 217 microns de diamètre.
Nombre de tours réalisés : 2,5 tours (soit 8 fois la taille de la goutte).
Selon un autre aspect de l'invention, en référence aux figures 7 et 8, l'invention concerne un procédé permettant de munir la goûte de liquide de moyens de protection contre les agressions extérieures, mécaniques ou autres. Ledit procédé réalise une encapsulation de la goutte dans une enveloppe formée d'une multitude de grains, formé chacun d'un liquide différent de celui de la goutte, et de taille inférieure à 50 fois, de préférence 100 fois plus petite que la goutte. La multitude de grains recouvre la surface extérieure de la goutte, de préférence en totalité.
Plus précisément, les grains sont formés de colloïdes, de taille micrométrique, et sont par exemple en verre, polystyrène ou tout autre matériau comprenant les propriétés requises de mouillage, c'est-à-dire que l'énergie d'interaction entre les grains et la goutte doit être du même ordre de grandeur que l'énergie d'interaction entre les grains et le milieu extérieur.
On procède de la manière suivante (figure 7) :
Les grains 1 sont mélangés à un premier liquide, par exemple de l'huile, puis une goutte 2 formée du mélange est placée dans un second liquide 3, par exemple de l'eau.
Sur la figure 7, seuls quelques grains sont montrés pour des raisons de clarté, étant entendu que la totalité de la surface de la goutte est recouverte de grains.
La figure 8 est une photographie d'une goutte recouverte de grains, selon la figure 7.
La méthode d'encapsulation par grains est utilisée car elle a l'avantage de constituer une protection sans pour autant compromettre la nature liquide de la goutte. En effet, contrairement à une coque solide, les grains peuvent se déplacer et se réorganiser à la surface de la goutte. L'homme de l'art pourra se référer à la publication : Aussillous, Pascale, and David Quéré. "Liquid marbles." Nature 41 1 .6840 (2001 ) : 924-927.
Ainsi, des objets de taille semblable aux grains pourrait pénétrer à l'intérieur de la goutte comme si celle-ci n'avait pas d'armure. Au contraire, les objets gros par rapport aux grains seront maintenus à une distance de sécurité.. Ceci permet de faire passer un fil à l'intérieur de la goutte et de conserver le système de treuil capillaire, tout en ayant une résistance aux chocs contre des surfaces.

Claims

REVENDICATIONS
1 . Dispositif comprenant un élément filaire et un moyen d'enroulement de ce dernier et associé audit élément filaire, caractérisé en ce que le moyen d'enroulement est apte à passer d'un premier état stable à un second état stable, ce changement d'état se faisant :
- soit naturellement, de façon que l'énergie d'interaction entre l'élément filaire et l'environnement soit plus élevée que l'énergie d'interaction entre l'élément filaire et le moyen d'enroulement, - soit par changement d'un paramètre dit d'environnement, de manière à provoquer l'enroulement de l'élément filaire dans ledit moyen, lors du passage du premier état au second état, de manière à provoquer l'enroulement de l'élément filaire dans ledit moyen.
2. Dispositif selon la revendication 1 , caractérisé en ce que l'élément filaire possède un diamètre compris entre 0,1 micron et 1 cm et avantageusement possède un diamètre inférieur à 10 microns.
3. Dispositif selon l'une des revendications 1 ou 2, caractérisé en ce que le matériau constituant le moyen d'enroulement est de l'étain, de la cire, du silicone, de l'eau, ou tout liquide mouillant l'élément filaire.
4. Dispositif selon l'une des revendications 1 à 3, caractérisé en ce que l'élément filaire est constitué de métaux, élastomères ou polymères tels que polyuréthane, caoutchouc synthétique, fibres de nylon, fibres de kevlar, fibres de carbone, acier à haute élasticité, fibres de verre, matériau plastique élastique, matériau super-élastique, ou tout matériau qui peut être obtenu en fibre fine.
5. Procédé de changement d'au moins une propriété mécanique d'un élément filaire, caractérisé en ce qu'on lui associe au moins un corps en matériau fluide, tel que liquide ou gaz, ou solide, et en ce que l'on change au moins une caractéristique du matériau dudit corps, et/ou un paramètre de l'environnement dans lequel est placé le moyen d'enroulement et l'élément filaire, de manière à provoquer l'enroulement de l'élément filaire dans ou autour dudit corps.
6. Procédé selon la revendication 5, caractérisé en ce que ledit paramètre d'environnement est la température, l'intensité ou le sens du champ électrique, l'intensité ou le sens du champ magnétique, ou une contrainte mécanique.
7. Procédé selon l'une des revendication 5 ou 6, caractérisé en ce que ledit corps est une goutte de liquide.
8. Procédé selon l'une des revendications 5 ou 6, caractérisé en ce que ledit corps est une bulle de gaz.
9. Procédé selon l'une des revendications 5 à 8, caractérisé en ce que l'on munit la goutte de liquide de moyens de protection contre les agressions extérieures, mécaniques ou autres, en encapsulant la goutte dans une enveloppe formée d'une multitude de grains solides, et de taille inférieure à 50 fois, de préférence 100 fois plus petite que cette dernière, les grains recouvrant la surface extérieure de la goutte, de préférence en totalité.
10. Application du dispositif selon l'une des revendications 1 à 4, pour constituer un moteur, un activateur, un actuateur, un muscle artificiel, un dispositif destiné à déplacer deux objets ou ensemble reliés aux deux extrémités respectives dudit élément filaire, un ensemble de jonctions électriques ou électroniques de longueur variable, un ressort.
EP15736532.1A 2014-04-30 2015-04-30 Procede et dispositif permettant de modifier une caracteristique d'un element filaire, notamment la distance separant ses deux extremites Withdrawn EP3137662A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1453960A FR3020630B1 (fr) 2014-04-30 2014-04-30 Procede et dispositif permettant de modifier une caracteristique d'un element filaire, notamment la distance separant ses deux extremites
PCT/FR2015/051163 WO2015166190A1 (fr) 2014-04-30 2015-04-30 Procede et dispositif permettant de modifier une caracteristique d'un element filaire, notamment la distance separant ses deux extremites

Publications (1)

Publication Number Publication Date
EP3137662A1 true EP3137662A1 (fr) 2017-03-08

Family

ID=51417397

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15736532.1A Withdrawn EP3137662A1 (fr) 2014-04-30 2015-04-30 Procede et dispositif permettant de modifier une caracteristique d'un element filaire, notamment la distance separant ses deux extremites

Country Status (6)

Country Link
US (1) US20170067453A1 (fr)
EP (1) EP3137662A1 (fr)
JP (1) JP2017515005A (fr)
CA (1) CA2947497A1 (fr)
FR (1) FR3020630B1 (fr)
WO (1) WO2015166190A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3639283B1 (fr) * 2017-05-19 2023-08-09 Centre National de la Recherche Scientifique (CNRS) Procédé et système de fabrication de micro-bobines
JP6634430B2 (ja) * 2017-11-27 2020-01-22 スキューズ株式会社 ロボットハンド及びロボットハンドの制御方法
KR20230069280A (ko) 2021-11-11 2023-05-19 인하대학교 산학협력단 고신축 전도성 와이어 어레이 및 그 제조 방법
KR102612862B1 (ko) * 2021-12-17 2023-12-15 인하대학교 산학협력단 고신축 전도성 마이크로 와이어 어레이 제조 장치 및 이를 이용한 고신축 전도성 마이크로 와이어 어레이 제조 방법
KR20240128763A (ko) 2023-02-17 2024-08-27 인하대학교 산학협력단 탄성 모세관 기반 질량 측정방법, 이를 이용한 질량 측정센서 및 질량 측정장치

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004339490A (ja) * 2003-04-24 2004-12-02 Mitsubishi Chemicals Corp 吸水性樹脂複合体およびその堆積物の製造方法
US20090264845A1 (en) * 2004-07-30 2009-10-22 Mitsubishi Chemical Absorbent composite and method for producing same, asorbent article and nozzle

Also Published As

Publication number Publication date
FR3020630A1 (fr) 2015-11-06
CA2947497A1 (fr) 2015-11-05
FR3020630B1 (fr) 2016-09-30
US20170067453A1 (en) 2017-03-09
JP2017515005A (ja) 2017-06-08
WO2015166190A1 (fr) 2015-11-05

Similar Documents

Publication Publication Date Title
EP3137662A1 (fr) Procede et dispositif permettant de modifier une caracteristique d&#39;un element filaire, notamment la distance separant ses deux extremites
EP1548342B1 (fr) Vanne pour des applications spatiales à actionneur réalisé en alliage à mémoire de forme
FR2942551A1 (fr) Cable comportant des elements a extraire, procede d&#39;extraction desdits elements et procede de fabrication associe
EP2255414A1 (fr) Dispositif de protection, notamment pour un élément de connexion
WO2011064507A1 (fr) Amortisseur avec composant en alliage a memoire de forme et limiteur de temperature; dispositif de maintien comprenant cet amortisseur
EP2585877A1 (fr) Procede de fabrication d&#39;un composant horloger comprenant au moins deux pieces
EP2461065A1 (fr) Dispositif d&#39;articulation à faisceau de brins en matériau à mémoire de forme
EP2886906B1 (fr) Absorbeur d&#39;énergie pour siège anticrash et siège anticrash comportant un tel absorbeur d&#39;énergie
EP3255014A1 (fr) Dispositif à piste électriquement conductrice et procédé de fabrication du dispositif
FR3063281A1 (fr) Procede et dispositif de liaison et de separation lineaire de deux elements colles
EP2861412B1 (fr) Procede pour obtenir un corps d&#39;une forme donnee a partir d&#39;un fil ou analogue
EP2859234B1 (fr) Actionneur à enroulement en matériau à mémoire de forme
FR3010474B1 (fr) Element de deformation, dispositif de deformation, ainsi que programme d&#39;ordinateur
FR3037941A1 (fr) Revetement chauffant semi-transparent
EP1285747B1 (fr) Structure laminée multicouche, en particulier pour le guipage de câbles électriques
EP1697594A2 (fr) Barriere levante de securite
EP3349548A1 (fr) Dispositif comprenant un substrat apte à être thermoformé sur lequel est agencé un organe électriquement conducteur
EP2049931B1 (fr) Élément de cable optique auto renforcé et son procédé de fabrication
EP4136381B1 (fr) Procede de realisation d&#39;un reservoir de stockage composite
EP2728682B1 (fr) Procédé de fabrication d&#39;un laser à fibre optique
FR2915622A1 (fr) Procde d&#39;assemblage d&#39;un organe sur un support par frittage d&#39;une masse de poudre conductrice
WO2018055289A1 (fr) Elément de carrosserie mobile avec alliage à mémoire de forme
EP0077733B1 (fr) Procédé de préparation de matériaux composés de fibres de carbone et d&#39;une matière thermoplastique, lesdits matériaux et leurs applications
WO2014056943A1 (fr) Procédé de filage d&#39;une fibre composite à base de polymère
FR2682532A1 (fr) Procede de fabrication d&#39;un declencheur electromagnetique a percuteur surmoule et declencheur ainsi obtenu.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20161021

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20201103