EP3136822A1 - Verfahren zur temperaturbestimmung - Google Patents

Verfahren zur temperaturbestimmung Download PDF

Info

Publication number
EP3136822A1
EP3136822A1 EP16184674.6A EP16184674A EP3136822A1 EP 3136822 A1 EP3136822 A1 EP 3136822A1 EP 16184674 A EP16184674 A EP 16184674A EP 3136822 A1 EP3136822 A1 EP 3136822A1
Authority
EP
European Patent Office
Prior art keywords
induction heating
cooking vessel
coil
water
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP16184674.6A
Other languages
English (en)
French (fr)
Other versions
EP3136822B1 (de
Inventor
Marcus Frank
Elmar Herweg
Marius Lehner
Michael Stober
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EGO Elektro Geratebau GmbH
Original Assignee
EGO Elektro Geratebau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EGO Elektro Geratebau GmbH filed Critical EGO Elektro Geratebau GmbH
Priority to PL16184674T priority Critical patent/PL3136822T3/pl
Publication of EP3136822A1 publication Critical patent/EP3136822A1/de
Application granted granted Critical
Publication of EP3136822B1 publication Critical patent/EP3136822B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • H05B6/062Control, e.g. of temperature, of power for cooking plates or the like
    • H05B6/065Control, e.g. of temperature, of power for cooking plates or the like using coordinated control of multiple induction coils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/12Cooking devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2213/00Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
    • H05B2213/03Heating plates made out of a matrix of heating elements that can define heating areas adapted to cookware randomly placed on the heating plate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2213/00Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
    • H05B2213/07Heating plates with temperature control means

Definitions

  • the invention relates to a method for determining temperature in an induction hob with a plurality of induction heating coils.
  • the invention has for its object to provide an aforementioned method, can be solved with the problems of the prior art and in particular it is possible to carry out the temperature determination in the cooking vessel advantageous and accurate, in particular to determine when boiling water in the cooking vessel.
  • each induction heating coil heats the region of the cooking vessel bottom arranged above it in a known manner.
  • the energy input takes place in the lowest area of the cooking vessel bottom, usually the bottom 1 mm to 2mm. From there, the heat spreads to the top of the bottom of the saucepan and from there it is transferred to the water.
  • the induction heating coils of a cooking station work advantageously with the same power level or resulting area power density of the power transferred into the vessel.
  • the heating operation is detected on the basis of the vibration response to at least one induction heating coil, whether the temperature of the cooking vessel bottom changes over this induction heating coil or whether this temperature increases.
  • a temperature gradient of the cooking vessel bottom can be detected by the induction heating coil, which is preferably done according to a method as described in the introduction EP 2330866 A2 is described. Its content is hereby incorporated in this regard by express reference to the content of the present application. If this determination of the oscillation response takes place only periodically, it should be about once per second, advantageously every 0.1 second to 2 seconds.
  • the vibration response of an induction heating coil can be understood to mean the evaluation of the change in the resonant circuit parameters due to temperature changes of the cooking vessel bottom, in particular the changing inductance.
  • the vibration response of each induction heating coil can be detected.
  • the induction heating coils are operated in heating mode at least until an induction heating coil senses that the temperature gradient of the cooking vessel bottom is near zero or above zero.
  • a temperature of a cooking vessel bottom heated by means of an induction heating coil is advantageously determined.
  • the method comprises the steps of: generating a DC link voltage at least temporarily as a function of a single-phase or polyphase, in particular three-phase, AC line voltage, generating a high-frequency drive voltage or a drive current from the DC link voltage, for example, with a frequency in a range of 20kHz to 70kHz, and applying a resonant circuit comprising the induction heating with the drive voltage or the drive current.
  • a resonant circuit comprising the induction heating with the drive voltage or the drive current.
  • the following steps are carried out: Generating the intermediate circuit voltage during predetermined periods of time, in particular periodically, with a constant voltage level, wherein during the periods preferably the intermediate circuit voltage is generated independently of the AC line voltage, generating the drive voltage during the predetermined time periods such that the resonant circuit substantially damped oscillates at its natural resonant frequency, measuring at least one vibration parameter of the vibration during the predetermined time intervals and evaluating the at least one measured vibration parameter to determine the temperature. Since the DC link voltage is kept constant during the temperature measurement, signal interference due to a variable DC link voltage can be eliminated, thereby enabling a reliable and interference-free temperature determination.
  • the method comprises the steps of: determining zero crossings of the mains alternating voltage and selecting the time segments in the region of the zero crossings.
  • the DC link voltage usually decreases sharply.
  • the constant voltage level is preferably selected such that it is greater than the voltage level which usually sets in the region of the zero crossings, so that the intermediate circuit voltage is clamped to the constant voltage level in the region of the zero crossings. Then prevail in the zero crossings constant voltage conditions that allow reliable temperature measurement.
  • the induction heating coils are all operated in heating mode at least until a first induction heating coil senses that the temperature gradient of the portion of the cooking vessel bottom above that induction heating coil becomes zero. It is also possible to operate all induction heating coils in the heating mode until the temperature gradient of the cooking vessel base above is zero over each of the induction heating coils. When the temperature gradient becomes zero, it means that the temperature of the cooking vessel bottom does not increase any further, which in turn means that the water in the cooking vessel is directly above this cooking vessel bottom area or at the interface between Water and cooking vessel bottom boils, so the temperature does not increase further.
  • the invention determines at least one of the induction heating coils as a measuring coil. For this purpose, several methods can be taken, which will be explained in more detail later.
  • This measuring coil is then operated in measuring mode and no longer in heating mode, whereby the change or the stopping of the heating operation does not necessarily have to take place immediately after determination as a measuring coil.
  • the measuring coil with a so-called measuring power up to 10% or 20%, advantageously a maximum of 50%, the maximum power for a short time, in particular only for a half-wave, operated or transfers accordingly little or less energy in the over the measuring coil lying area of the cooking vessel bottom. Up to 20% of the maximum power, the measuring power can be considered as a small power. Then, the measuring coil detects the feedback vibration response in the aforementioned manner.
  • the time course of this vibration response is evaluated after several times coupling the low energy, so essentially applied a similar method as before in the detection of the vibration response to each induction heating coil. Then, in the case where the gradient of this time course becomes zero, the water in the cooking vessel is determined to be boiling, namely all the water. It is not absolutely necessary that the vibration response is really detected on each induction heating coil. In certain circumstances, the measuring coil can in fact already be determined beforehand, for example as the induction heating coil with the lowest degree of coverage or the worst power input into the cooking vessel bottom. Then only their vibration response needs to be evaluated.
  • the invention essentially has the effect that the measuring coil no longer heats the bottom of the cooking vessel and, as it were, detects the true temperature of the water in the cooking vessel in the region of the cooking vessel bottom above the measuring coil or the heat flow through the bottom of the pot and the heat flow in the transition Pot bottom to water become vanishingly small and thereby the true temperature of the water and the temperature of the cooking vessel inside as well as the bottom become the same.
  • the previously described, in series, temperature differences of about 10 ° C to 40 ° C from the cooking vessel inside to water and about 10 ° C between Kochgefäßinnen- and outside are close to zero. Due to the already started bubbling in the water on the cooking vessel bottom, the water in the cooking vessel is mixed to some extent, in particular by the rising water.
  • the measuring coil works at least a certain time after the determination as a measuring coil only as a kind of sensor.
  • the coupling of a signal or a power for generating the vibration response for their evaluation can be regarded as negligible with respect to a heating of the region of the cooking vessel bottom directly above the measuring coil.
  • an essential core of the invention is to make a temperature determination in a method for boiling water in a cooking vessel, using multiple induction heating coils, more accurately by using one of the induction heating coils as a measuring coil and then no longer operating in heating mode, but only in measuring mode.
  • distortions of the measurement result are avoided or at least greatly reduced.
  • the measuring coil quickly from the heating operation switch to the measuring mode, for example, after she or possibly another induction heating coil for the first time by the fact that the temperature gradient of the vibration response has become zero, has detected a temperature of 100 ° C on the cooking vessel bottom.
  • induction heating coil it is possible to determine that induction heating coil as a measuring coil, the temperature gradient of the vibration response during the general heating operation and especially during their own heating operation first to zero. This is then, so to speak, the induction heating coil with the hottest area of the cooking vessel bottom at this time.
  • that induction heating coil can also be determined and used as the measuring coil in which this temperature gradient finally becomes zero. This is then corresponding to that induction heating coil, which has the coolest portion of the cooking vessel bottom over itself. Then it can be assumed that the water in the cooking vessel as a whole is already significantly closer to the state that it boils altogether or has completely about 100 ° C.
  • induction heating coil as a measuring coil, which has the lowest power input into the cooking vessel and / or the lowest degree of coverage by the cooking vessel.
  • the first criterion can be determined during the heating operation and, for example, also checked repeatedly or permanently.
  • the second criterion can already be determined at the beginning of the cooking process, that is, if it is determined at all, which induction heating coils are covered by the cooking vessel and which consequently start as a common hotplate with the heating mode. But this criterion should also be checked during heating, as it may well happen that the cooking vessel on the Indutechnischswespulen or is moved on the cooking surface and then changes the degree of coverage of individual or all induction heating coils.
  • all Indudictionswespulen are identical, so above all the same size. This simplifies the production of an induction hob. Furthermore, it is advantageously also possible to operate all Indudictionssammlungspulen that together form a cooking point for a single cooking vessel, identical. This is especially true for the power level. Thus, induction heating coils with a detected lower degree of coverage can be operated in the same way as induction heating coils with a high or complete coverage.
  • the heating of all induction heating coils, which work for this cooking vessel or cooking, with a constant Performance is continued.
  • This time should be less than 1 minute and may for example be at least 10 seconds, advantageously at least 20 seconds.
  • the previously determined measuring coil is then operated in measuring mode, advantageously with the aforementioned measuring power.
  • the measuring coil which has either already been determined or is only determined by it, does not start immediately from the heating mode is taken, because then the entire heating power would be unnecessarily reduced at the hob.
  • the measuring coil By reheating all induction heating coils, in particular also the measuring coil, since it can be assumed that the water in the cooking vessel does not yet have 100 ° C., it is still heated with maximum possible power for rapid heating. Only after a certain period of time is the measuring coil operated in the measuring mode, since only then is it to be expected that the 100 ° C in the entire water will be reached soon. This time can also be varied depending on how much water needs to be boiled or how big the cooking vessel is. For this purpose, for example, the previous duration can be used as a criterion when just the first induction heating coil detects the zero temperature gradient.
  • the measuring coil can still be operated for a certain time in the heating mode, since even in this case, that everywhere the cooking vessel bottom 100 ° C, most likely not all the water in the cooking vessel has 100 ° C.
  • This time for continued operation of the measuring coil in the heating mode should be significantly shorter than 1 minute and, in particular, may be shorter than the aforementioned time, for example 5 seconds to 20 seconds.
  • the measuring coil is operated again in the measuring mode only after this time has expired, whereby again, it may have been determined either already at the beginning of the heating operation or only later to the measuring coil.
  • This measuring coil then functions as a temperature sensor for the region of the cooking vessel bottom lying above it, which in turn determines the temperature of the water introduced into it in the cooking vessel by turbulence. This area of the cooking vessel bottom then works, so to speak, as a first part of a sensor. The second part of this sensor is the measuring coil, which, as it were, interrogates the temperature of this first part.
  • the measuring operation of the measuring coil should advantageously be such that it does not introduce any additional heating power into the region of the cooking vessel bottom above it, in order to reduce or as far as possible avoid distortions in the temperature detection or temperature determination.
  • a half-wave for the power input can already be sufficient here, which in turn is only made with an aforementioned low power or measuring power.
  • FIG. 1 schematically shows how in an induction hob 11, a plurality of individual induction heating coils 13, here with a round shape, may be present.
  • a cooking vessel 15 is installed such that it covers more than 50% of four induction heating coils 13a to 13d.
  • the induction heating coils 13b and 13d are completely covered, and the induction heating coils 13a and 13c are about 70% to 80%.
  • Induction heating coils are also covered to a low degree to the left and right of the induction heating coil 13d. However, this degree of coverage is so low that this is recognized and they are definitely not used in heating as a cooking place for the cooking vessel 15.
  • the cooking vessel 15 has a cooking vessel bottom 16, which is suitable for inductive heating and usually has a thickness of a few millimeters, for example 4mm to 10mm.
  • a cooking vessel bottom 16 is formed with a multilayer layer having an uppermost layer, which consists of the same material as the lateral wall of the cooking vessel 15 and is usually made by deep drawing, so with a one-piece material transition.
  • a heat-distributing layer of copper with a thickness of a few millimeters is often arranged.
  • a thin layer of stainless steel can be provided, which is also suitable for inductive heating. Their thickness can be a maximum of 1 mm to 2mm. At the same time this is approximately the maximum penetration depth of inductive fields, which will be explained below.
  • the induction heating coils 13a and 13b are connected to a control 19 of the induction hob 11 and are supplied with power via these, usually via a power unit (not shown here) or corresponding resonant circuit arrangements.
  • a power input 21a and 21b of each of the induction heating coils 13a and 13b is shown by thin arrows in the cooking vessel 15 or in the cooking vessel bottom 16. This is known to the person skilled in the art and need not be discussed in detail. As mentioned previously, the penetration depth of the power input 21 is less than 2 mm, advantageously less than 1 mm. From this lowermost layer of the cooking vessel bottom 16, the resulting heat is distributed upward through the further structure of the cooking vessel bottom 16, possibly with a corresponding transverse distribution. At the top of the cooking vessel bottom 16, the heat transfer takes place in over it in the cooking vessel 15 located water 17. The heat introduced increases this warmed up water, which is illustrated by the broad arrows. Of course, there is a kind of mixing of the water flows 23a and 23b, here also represented by further water flows 23rd
  • the temperature T W of the water 17 in the cooking vessel 15 is plotted as a type of average temperature, measured not only at discrete points but as an average at many points. In particular, this may also be a temperature at the water surface, where usually the temperature of the water 17 will be lowest during cooking.
  • the temperature of the water above the left induction heating coil 21a near the cooking vessel bottom 16 is shown.
  • the water 17 will probably be the hottest and cook the fastest.
  • the temperature of the water is 17 the value of 100 ° C drawn.
  • the levels are relative to each other approximately to scale.
  • the induction heating coils 13a and 13b generate a power input 21a and 21b in the cooking vessel bottom 16, in particular in its lowest layer.
  • the inductively generated heat spreads upward and enters the water 17 at the top of the cooking vessel bottom 16 or is transferred there. This results in water flows 23, in particular from the top of the cooking vessel bottom 16 ascending strong water currents 23a and 23b.
  • the induction heating coil 13b can now be determined as a measuring coil, since it has the recognizable lowest degree of coverage by the cooking vessel 15 or the cooking vessel bottom 16. This determination can be made even if the measuring coil 13b together with the others is still operated as a cooking station in heating mode.
  • the in Fig. 4 Periodic signal shown in dashed lines, which will be relatively equal at the beginning for most Indu Vietnameseswespulen be evaluated for each Indu Vietnameseswespule 13. Then that induction heating coil can be determined as a measuring coil and switch to measuring mode, in which first the slope becomes approximately zero.
  • that induction heating coil can be used as measuring coil in the measurement mode, in which this profile is the last to be constant in comparison to the other induction heating coils or has zero slope.
  • this case holds that the slope has become zero last for the induction heating coil 13b. This means that over all other induction heating coils 13 of the cooking zone, the temperature is higher or earlier was already high.
  • the induction heating coil 13b which is now operated as a measuring coil with the measuring power during measuring operation, has the solid curve with the thin line.
  • the measuring power is for example 5% of the maximum power.
  • the course of the period signal at the measuring coil 13b also shows that after the change to the measuring mode, yes, this measuring coil transmits almost no more energy into the cooking vessel bottom and thus does not attempt to heat it up any further. Since the water in the cooking vessel 15 17 has a total of no 100 ° C, so not yet boiling total, but for example, only 80 ° C to 90 ° C, this relatively cooler water falls down again on this area of the cooking vessel bottom and cools him to less than 100 ° C. It is thus cooled in comparison to the previous heating operation of the measuring coil 13b.
  • this region of the cooking vessel bottom has the temperature of the relatively cooler water flowing down, so that the period signal of the measuring coil also runs virtually the same as the water temperature. This is the sake of clarity here together or shown in coverage, but need not be so.
  • the conditions in the cooking vessel 15 in this period are in Fig. 3 to see.
  • the induction heating coil 13a in the heating operation further causes the power input 21a into the cooking vessel bottom 16 via it, which generates the strong water flow 23a.
  • This circulates, so to speak, and causes water 17 located in the upper region to appear as a water flow 23, shown with thin arrows, downwards onto the region of the cooking vessel bottom 16 which lies above the measuring coil 13b.
  • the total or average temperature of the entire water reaches about 100 ° C, especially after sufficient mixing of the cooking vessel bottom 16 on the heating coils heated water with the remaining water. If then in Fig. 4 in the right area, the thin and solid period signal of the measuring coil again has the slope zero or is constant, so all the water 17 boils in the cooking vessel 15. This also applies to the temperature T W of the water.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Cookers (AREA)
  • Induction Heating Cooking Devices (AREA)

Abstract

Zur Temperaturbestimmung von kochendem Wasser bei einem Induktionskochfeld mit mehreren einzeln ansteuerbaren Induktionsheizspulen, die in einem gemeinsamen Heizbetrieb eine Kochstelle für ein Kochgefäß mit Wasser darin bilden, wird ein Kochgefäß mit Wasser über mindestens zwei Induktionsheizspulen aufgestellt. Die Induktionsheizspulen werden im Heizbetrieb betrieben um das Wasser in dem Kochgefäß zum Kochen zu bringen und jede Induktionsheizspule beheizt den über ihr angeordneten Bereich des Kochgefäßbodens. Während des Heizbetriebs wird anhand der Schwingungsantwort an jeder Induktionsheizspule erfasst, ob die Temperatur des Bereichs des Kochgefäßbodens über dieser Induktionsheizspule ansteigt. Die Induktionsheizspulen werden mindestens so lange im Heizbetrieb betrieben, bis eine Induktionsheizspule erfasst, dass der Temperaturgradient des Kochgefäßbodens über ihr zu Null wird. Daraufhin wird sie dann als Messspule bestimmt und im Messbetrieb mit geringer Mess-Leistung und nicht mehr im Heizbetrieb betrieben. In dem Fall, dass der zeitliche Verlauf ihres Temperaturgradienten Null wird, wird das Wasser in dem Kochgefäß als kochend bestimmt.

Description

  • Die Erfindung betrifft ein Verfahren zur Temperaturbestimmung bei einem Induktionskochfeld mit mehreren Induktionsheizspulen.
  • Aus der EP 2330866 A2 ist es bekannt, bei Heizbetrieb einer Induktionsheizspule für eine Kochstelle für ein Kochgefäß mit Wasser darin, die Temperatur des Kochgefäßbodens an der Induktionsheizspule zu erfassen, vor allem um zu bestimmen, wann Wasser in dem Kochgefäß kocht. Dazu wird eine Schwingungsantwort der Induktionsheizspule erfasst und ausgewertet.
  • Aus der EP 1463383 A1 ist es bekannt, mit mehreren Induktionsheizspulen, die jeweils einzeln ansteuerbar sind, bei einem Induktionskochfeld im gemeinsamen Heizbetrieb eine Kochstelle für ein Kochgefäß zu bilden. Dabei kann durch die Induktionsheizspulen selbst oder andere Erkennungsmittel erkannt werden, dass das Kochgefäß diese Induktionsheizspulen jeweils in ausreichendem Maß überdeckt. So ist es möglich, die Größe einer Kochstelle an die Größe eines davon beheizten Kochgefäßes in gewissem Maß anzupassen.
  • Aufgabe und Lösung
  • Der Erfindung liegt die Aufgabe zugrunde, ein eingangs genanntes Verfahren zu schaffen, mit dem Probleme des Stands der Technik gelöst werden können und es insbesondere möglich ist, die Temperaturbestimmung im Kochgefäß vorteilhaft und genau durchzuführen, insbesondere zu bestimmen, wenn Wasser in dem Kochgefäß kocht.
  • Gelöst wird diese Aufgabe durch ein Verfahren mit den Merkmalen des Anspruchs 1. Vorteilhafte sowie bevorzugte Ausgestaltungen der Erfindung sind Gegenstand der weiteren Ansprüche und werden im Folgenden näher erläutert. Der Wortlaut der Ansprüche wird durch ausdrückliche Bezugnahme zum Inhalt der Beschreibung gemacht.
  • Bei dem Verfahren, das in einem Induktionskochfeld mit mehreren einzeln ansteuerbaren Induktionsheizspulen durchgeführt wird, werden folgende Schritte durchgeführt:
    • Ein Kochgefäß mit Wasser oder einer hauptsächlich Wasser enthaltenden Flüssigkeit darin wird so auf das Induktionskochfeld aufgestellt, dass es mindestens zwei Induktionsheizspulen überdeckt. Vorteilhaft überdeckt es drei bis fünf Induktionsheizspulen, die dann eben entsprechend klein ausgebildet sind, beispielsweise mit Durchmessern bzw. Breiten im Bereich zwischen 6cm und 18cm. Diese Induktionsheizspulen erkennen die Überdeckung durch das Kochgefäß, insbesondere in einem vorher definierten Ausmaß bzw. mit einem vordefinierten Überdeckungsgrad, beispielsweise mindestens 50% der Fläche der Induktionsheizspule. Diese entsprechend überdeckten Induktionsheizspulen werden dann als gemeinsame Kochstelle gemeinsam betrieben, und zwar im Heizbetrieb bzw. für den Kochvorgang, um das Wasser in dem Kochgefäß durch Heizen zum Kochen zu bringen. Dieses Kochen des Wassers soll eben erfindungsgemäß als Temperaturbestimmung erfasst werden.
  • Während des dann folgenden Heizbetriebs beheizt jede Induktionsheizspule den über ihr angeordneten Bereich des Kochgefäßbodens auf bekannte Art und Weise. Der Energieeintrag erfolgt dabei in den untersten Bereich des Kochgefäßbodens, üblicherweise die untersten 1 mm bis 2mm. Von dort aus breitet sich die Wärme nach oben an die Oberseite des Kochgefäßbodens aus und von dort wird sie ins Wasser übertragen. Die Induktionsheizspulen einer Kochstelle arbeiten dabei vorteilhaft mit gleicher Leistungsstufe bzw. resultierender Flächenleistungsdichte der ins Gefäß übertragenen Leistung.
  • Während des Heizbetriebs wird anhand der Schwingungsantwort an mindestens einer Induktionsheizspule erfasst, ob sich die Temperatur des Kochgefäßbodens über dieser Induktionsheizspule ändert bzw. ob diese Temperatur ansteigt. So kann ein Temperaturgradient des Kochgefäßbodens von der Induktionsheizspule erfasst werden, was bevorzugt gemacht wird entsprechend einem Verfahren, wie es in der eingangs genannten EP 2330866 A2 beschrieben ist. Deren Inhalt wird hiermit diesbezüglich durch ausdrückliche Bezugnahme zum Inhalt der vorliegenden Anmeldung gemacht. Findet diese Bestimmung der Schwingungsantwort nur periodisch statt sollte es etwa einmal pro Sekunde sein, vorteilhaft alle 0,1 Sekunden bis 2 Sekunden. Im Allgemeinen kann als Schwingungsantwort einer Induktionsheizspule die Auswertung der Veränderung von Schwingkreisparametern aufgrund von Temperaturänderungen des Kochgefäßbodens, im Besonderen der sich ändernden Induktivität, verstanden werden. Bevorzugt kann die Schwingungsantwort jeder Induktionsheizspule erfasst werden. Die Induktionsheizspulen werden mindestens so lange im Heizbetrieb betrieben, bis eine Induktionsheizspule erfasst, dass der Temperaturgradient des Kochgefäßbodens über ihr nahe Null liegt oder zu Null wird.
  • Vorteilhaft wird im Heizbetrieb eine Temperatur eines mittels einer Induktionsheizspule erwärmten Kochgefäßbodens ermittelt. Das Verfahren umfasst die Schritte: Erzeugen einer Zwischenkreisspannung zumindest zeitweise in Abhängigkeit von einer einphasigen oder mehrphasigen, insbesondere dreiphasigen, Netzwechselspannung, Erzeugen einer hochfrequenten Ansteuerspannung oder eines Ansteuerstroms aus der Zwischenkreisspannung, beispielsweise mit einer Frequenz in einem Bereich von 20kHz bis 70kHz, und Beaufschlagen eines Schwingkreises umfassend die Induktionsheizspule mit der Ansteuerspannung bzw. dem Ansteuerstrom. Auf diese Weise erfolgt herkömmlich eine induktive Erwärmung des Kochgefäßbodens. Zur Temperaturmessung werden folgende Schritte durchgeführt: Erzeugen der Zwischenkreisspannung während vorgegebener Zeitabschnitte, insbesondere periodisch, mit einem konstanten Spannungspegel, wobei während der Zeitabschnitte bevorzugt die Zwischenkreisspannung unabhängig von der Netzwechselspannung erzeugt wird, Erzeugen der Ansteuerspannung während der vorgegebenen Zeitabschnitte derart, dass der Schwingkreis im Wesentlichen entdämpft mit seiner Eigenresonanzfrequenz schwingt, Messen mindestens eines Schwingungsparameters der Schwingung während der vorgegebenen Zeitabschnitte und Auswerten des mindestens einen gemessenen Schwingungsparameters zum Ermitteln der Temperatur. Da die Zwischenkreisspannung während der Temperaturmessung konstant gehalten wird, können Signalbeeinflussungen aufgrund einer veränderlichen Zwischenkreisspannung eliminiert werden, wodurch eine zuverlässige und störsichere Temperaturermittlung ermöglicht wird.
  • In einer Weiterbildung umfasst das Verfahren die Schritte: Bestimmen von Nulldurchgängen der Netzwechselspannung und Wählen der Zeitabschnitte im Bereich der Nulldurchgänge. Im Bereich der Nulldurchgänge bei einphasiger Netzwechselspannung nimmt die Zwischenkreisspannung üblicherweise stark ab. Der konstante Spannungspegel wird bevorzugt derart gewählt, dass er größer als der sich üblicherweise im Bereich der Nulldurchgänge einstellende Spannungspegel ist, sodass die Zwischenkreisspannung im Bereich der Nulldurchgänge auf den konstanten Spannungspegel geklemmt wird. Es herrschen dann im Bereich der Nulldurchgänge konstante Spannungsverhältnisse, die eine zuverlässige Temperaturmessung ermöglichen.
  • Die Induktionsheizspulen werden mindestens so lange alle im Heizbetrieb betrieben, bis eine erste Induktionsheizspule erfasst, dass der Temperaturgradient des Bereichs des Kochgefäßbodens über dieser Induktionsheizspule zu Null wird. Es können auch alle Induktionsheizspulen so lange im Heizbetrieb betrieben werden, bis über jeder der Induktionsheizspulen der Temperaturgradient des darüber befindlichen Kochgefäßbodens zu Null wird. Wenn der Temperaturgradient zu Null wird bedeutet dies, dass sich die Temperatur des Kochgefäßbodens nicht weiter erhöht, was wiederum bedeutet, dass das Wasser im Kochgefäß direkt über diesem Kochgefäßbodenbereich bzw. an der Grenzschicht zwischen Wasser und Kochgefäßboden kocht, sich die Temperatur also nicht weiter erhöht. Nun hat sich aber im Rahmen der Erfindung herausgestellt, dass sich gerade beim induktiven Beheizen eines Kochgefäßes mit Wasser darin, bei dem sehr hohe Leistungen in den Kochgefäßboden eingebracht werden, was ein sehr schnelles Kochen des Wassers bewirken soll, die Temperatur des Wassers direkt am Kochgefäßboden zumindest bereichsweise sehr schnell auf 100°C erhöhen kann. Dort erfolgt dann auch schon die für das Kochen typische Ablösung von teils sehr großen Wasserdampfblasen, dort kocht das Wasser also bzw. sprudelt. Allerdings hat dann noch nicht unbedingt das gesamte Wasser im Kochgefäß die Temperatur von 100°C erreicht, was ja aber eigentlich gewünscht ist. Und weil bei Induktionskochfeldern mit der bekannten Boost-Funktion zum Ankochen eine sehr hohe Leistung eingestellt werden kann, gibt es die Bildung und Ablösung von Wasserdampfblasen bereits dann, wenn die Temperatur des Wassers im oberen Bereich entfernt von der Grenzschicht zwischen Wasser und Kochgefäßboden nur etwa 80°C bis 90°C aufweist, also noch deutlich vom Kochen bzw. den entsprechenden 100°C entfernt ist. Bei hohen Wärmeströmen, beispielsweise ca. 10W/cm2, kommen also Temperaturdifferenzen zwischen der Wassertemperatur und der Topfbodeninnenseite von ca. 10°C bis 40°C zu Stande. Zusätzlich hat der Kochgefäßboden zwischen Innenseite und Außenseite eine weitere Temperaturdifferenz von ca. 10°C.
  • Demzufolge bestimmt die Erfindung mindestens eine der Induktionsheizspulen als Messspule. Dazu können mehrere Verfahren genommen werden, die später noch genauer ausgeführt werden.
  • Diese Messspule wird dann im Messbetrieb und nicht mehr im Heizbetrieb betrieben, wobei der Wechsel bzw. das Stoppen des Heizbetriebs nicht zwingend sofort nach Bestimmung als Messspule erfolgen muss. Im Messbetrieb selbst wird die Messspule mit einer sogenannten Mess-Leistung bis 10% oder 20%, vorteilhaft maximal 50%, der maximalen Leistung für kurze Zeit, insbesondere nur für eine Halbwelle, betrieben bzw. überträgt entsprechend wenig bzw. geringere Energie in den über der Messspule liegenden Bereich des Kochgefäßbodens. Bis zu 20% der maximalen Leistung kann die Mess-Leistung als kleine Leistung angesehen werden. Dann erfasst die Messspule die zurückgekoppelte Schwingungsantwort auf zuvor genannte Art und Weise. Dann wird der zeitliche Verlauf dieser Schwingungsantwort nach mehreren Malen Einkoppeln der geringen Energie ausgewertet, also im Wesentlichen ein ähnliches Verfahren angewendet wie schon zuvor bei der Erfassung der Schwingungsantwort an jeder Induktionsheizspule. Dann wird in dem Fall, dass der Gradient dieses zeitlichen Verlaufs zu Null wird, das Wasser in dem Kochgefäß als kochend bestimmt, und zwar das gesamte Wasser. Dabei ist es nicht zwingend notwendig, dass die Schwingungsantwort wirklich an jeder Induktionsheizspule erfasst wird. Unter Umständen kann die Messspule nämlich bereits zuvor bestimmt werden, beispielsweise als diejenige Induktionsheizspule mit dem geringsten Überdeckungsgrad bzw. dem schlechtesten Leistungseintrag in den Kochgefäßboden. Dann braucht nur deren Schwingungsantwort ausgewertet zu werden.
  • Mit der Erfindung wird nämlich im Wesentlichen bewirkt, dass die Messspule nicht mehr den Kochgefäßboden heizt und dadurch im Bereich des Kochgefäßbodens über der Messspule sozusagen eher die wahre Temperatur des Wassers im Kochgefäß erfasst werden kann bzw. der Wärmestrom durch den Topfboden sowie der Wärmestrom im Übergang Topfboden zu Wasser verschwindend klein werden und dadurch die wahre Temperatur des Wassers und die Temperatur der Kochgefäßinnenseite als auch der -unterseite gleich werden. Die zuvor beschriebenen, in Reihe geschalteten, Temperaturdifferenzen von etwa 10°C bis 40°C von Kochgefäßinnenseite zu Wasser und etwa 10°C zwischen Kochgefäßinnen- und -außenseite werden annähernd zu Null. Durch die bereits begonnene Blasenbildung im Wasser am Kochgefäßboden wird das Wasser im Kochgefäß in gewissem Maß durchgemischt, insbesondere durch das aufsteigende Wasser. Dies reicht zwar nicht, um sehr schnell das gesamte Wasser im Kochgefäß zum Kochen zu bringen, indem immer wieder etwas kühleres Wasser an den Kochgefäßboden herangetragen wird zur Erwärmung aufgrund Wärmeabnahme. In dem unbeheizten Bereich des Kochgefäßbodens über der Messspule wird aber mit großer Wahrscheinlichkeit eher kühleres Wasser vorhanden sein, und zwar sowohl aufgrund der fehlenden Beheizung als auch aufgrund der Durcheinandermischung des Wassers im Kochgefäß. Durch das Stoppen des Heizbetriebs der Messspule wird also eine das Messergebnis verfälschende Wirkung ausgesetzt. Die Messspule arbeitet zumindest eine bestimmte Zeit nach der Bestimmung als Messspule nur noch als eine Art Sensor. Das Einkoppeln eines Signals bzw. einer Leistung zur Erzeugung der Schwingungsantwort für deren Auswertung kann als vernachlässigbar angesehen werden bezüglich einer Erhitzung des Bereichs des Kochgefäßbodens direkt über der Messspule.
  • Somit besteht ein wesentlicher Kern der Erfindung darin, eine Temperaturbestimmung bei einem Verfahren zum Kochen von Wasser in einem Kochgefäß, wofür mehrere Induktionsheizspulen verwendet werden, dadurch genauer zu machen, dass eine der Induktionsheizspulen als Messspule verwendet wird und dazu dann nicht mehr im Heizbetrieb arbeitet, sondern nur noch im Messbetrieb. So werden Verfälschungen des Messergebnisses vermieden oder zumindest stark reduziert. Damit wird zwar die gesamte Heizleistung für das Kochgefäß reduziert, dafür steigt aber die Genauigkeit. Einerseits ist es möglich, die Messspule schnell vom Heizbetrieb auf den Messbetrieb umzustellen, beispielsweise nachdem sie oder eventuell auch eine andere Induktionsheizspule zum ersten Mal dadurch, dass der Temperaturgradient der Schwingungsantwort zu Null geworden ist, eine Temperatur von 100°C am Kochgefäßboden erfasst hat. Da erfahrungsgemäß dann aber der Großteil des in dem Kochgefäß befindlichen Wassers noch nicht kocht bzw. noch nicht die 100°C erreicht hat, wird es andererseits als vertretbar und insgesamt vorteilhafter angesehen, auch die Messspule dann noch für eine bestimmte eher kurze Zeit im Heizbetrieb zu betreiben, beispielsweise 10 Sekunden bis 60 Sekunden oder sogar 300 Sekunden. Es ist nämlich in aller Regel erst dann damit zu rechnen, dass auf die gesamte Wassermenge bezogen bald die 100°C bzw. der kochende Zustand vorliegen. Auch hierzu sind Varianten möglich, die nachfolgend näher erläutert werden.
  • In Ausgestaltung der Erfindung ist es möglich, diejenige Induktionsheizspule als Messspule zu bestimmen, deren Temperaturgradient der Schwingungsantwort während des allgemeinen Heizbetriebs und vor allem auch während ihres eigenen Heizbetriebs zuerst zu Null wird. Dies ist dann sozusagen die Induktionsheizspule mit dem zu diesem Zeitpunkt heißesten Bereich des Kochgefäßbodens über sich. Alternativ dazu kann auch diejenige Induktionsheizspule als Messspule bestimmt und verwendet werden, bei der dieser Temperaturgradient zuletzt zu Null wird. Dies ist dann entsprechend diejenige Induktionsheizspule, die den kühlsten Bereich des Kochgefäßbodens über sich aufweist. Dann kann davon ausgegangen werden, dass das Wasser im Kochgefäß insgesamt bereits deutlich näher an dem Zustand ist, dass es insgesamt kocht bzw. vollständig etwa 100°C aufweist. Während bei der ersten Alternative noch mit einer relativ längeren Zeit des Heizbetriebs zu rechnen ist, bis das gesamte Wasser kocht, beispielsweise 20 Sekunden bis 40 Sekunden, ist bei der zweiten Alternative eher nur mit einer kürzeren Zeit zu rechnen, beispielsweise 5 Sekunden bis 20 Sekunden. Dies ist bei den weiteren Vorgehensmöglichkeiten für die Temperaturbestimmung und für den Betrieb der Induktionsheizspulen zu beachten.
  • In weiterer Ausgestaltung der Erfindung ist es möglich, diejenige Induktionsheizspule als Messspule zu bestimmen, die den geringsten Leistungseintrag in das Kochgefäß und/oder die den geringsten Überdeckungsgrad durch das Kochgefäß aufweist. Das erste Kriterium kann während des Heizbetriebs ermittelt werden und beispielsweise auch wiederholt oder permanent überprüft werden. Das zweite Kriterium kann bereits zu Beginn des Kochvorgangs bestimmt werden, also wenn überhaupt bestimmt wird, welche Induktionsheizspulen von dem Kochgefäß überdeckt sind und welche demzufolge überhaupt als gemeinsame Kochstelle mit dem Heizbetrieb starten. Dabei sollte aber auch dieses Kriterium während des Heizbetriebs überprüft werden, da es durchaus vorkommen kann, dass das Kochgefäß über den Induktionsheizspulen bzw. auf der Kochstelle bewegt wird und sich dann der Überdeckungsgrad einzelner oder aller Induktionsheizspulen ändert.
  • In vorteilhafter Ausgestaltung der Erfindung sind sämtliche Induktionsheizspulen identisch ausgebildet, also vor allem auch gleich groß. Dies vereinfacht die Herstellung eines Induktionskochfelds. Des Weiteren ist es vorteilhaft auch möglich, sämtliche Induktionsheizspulen, die gemeinsam eine Kochstelle für ein einziges Kochgefäß bilden, identisch zu betreiben. Dies gilt vor allem für die Leistungsstufe. Also können auch Induktionsheizspulen mit einem erkannten geringeren Überdeckungsgrad genauso betrieben werden wie Induktionsheizspulen mit einem hohen oder vollständigen Überdeckungsgrad.
  • In einer Ausgestaltung der Erfindung ist es möglich, dass dann, nachdem die erste Induktionsheizspule einen Temperaturgradienten aufweist bzw. erfasst, der zu Null geworden ist, für eine bestimmte Zeit der Heizbetrieb aller Induktionsheizspulen, die für dieses Kochgefäß bzw. diese Kochstelle arbeiten, mit gleichbleibender Leistung weitergeführt wird. Diese Zeit sollte weniger als 1 Minute betragen und kann beispielsweise mindestens 10 Sekunden betragen, vorteilhaft mindestens 20 Sekunden betragen. Nach Ablauf dieser Zeit wird die zuvor bestimmte Messspule dann im Messbetrieb betrieben, vorteilhaft mit der vorgenannten Mess-Leistung. Hier wird also berücksichtigt, dass in dem zuvor bereits genannten Fall, dass die erste Stelle des Kochgefäßbodens eine Temperatur von etwa 100°C aufweist, die Messspule, die entweder zuvor bereits bestimmt worden ist oder erst dadurch bestimmt wird, doch nicht sofort aus dem Heizbetrieb genommen wird, da dann die gesamte Heizleistung an der Kochstelle unnötig reduziert werden würde. Durch das Weiterheizen aller Induktionsheizspulen, insbesondere auch der Messspule, wird, da davon ausgegangen werden kann, dass das Wasser im Kochgefäß noch keine 100°C hat, noch mit maximal möglicher Leistung weitergeheizt für ein schnelles Aufheizen. Erst nach der gewissen Zeit wird dann die Messspule im Messbetrieb betrieben, da erst dann damit zu rechnen ist, dass die 100°C im gesamten Wasser bald erreicht sein werden. Diese Zeit kann auch variiert werden abhängig davon, wieviel Wasser zum Kochen gebracht werden muss bzw. wie groß das Kochgefäß ist. Dazu kann beispielsweise die bisherige Dauer als Kriterium herangezogen werden, wann eben die erste Induktionsheizspule den zu Null gewordenen Temperaturgradienten erfasst.
  • In einer anderen Ausgestaltung der Erfindung kann nicht die erste Induktionsheizspule herangezogen werden, sondern die letzte Induktionsheizspule, deren Temperaturgradient zu Null wird. Auch dann kann wiederum selbst die Messspule noch für eine bestimmte Zeit weiter im Heizbetrieb betrieben werden, da selbst in diesem Fall, dass überall der Kochgefäßboden 100°C beträgt, sehr wahrscheinlich noch nicht das gesamte Wasser im Kochgefäß 100°C aufweist. Diese Zeit für den Weiterbetrieb der Messspule im Heizbetrieb sollte deutlich kürzer als 1 Minute sein und kann insbesondere kürzer als die zuvor genannte Zeit, beispielsweise 5 Sekunden bis 20 Sekunden betragen. Auch hier wird wiederum erst nach Ablauf dieser Zeit die Messspule im Messbetrieb betrieben, wobei sie auch hier wiederum entweder bereits zu Beginn des Heizbetriebs oder erst später zur Messspule bestimmt worden sein kann.
  • Es ist vorteilhaft möglich, wenn an der Messspule deren Leistung deutlich reduziert worden ist bzw. sie nur noch als Messspule mit der Mess-Leistung betrieben wird, den zeitlichen Verlauf der Wassertemperatur des Wassers im Kochgefäß gleichzusetzen mit dem zeitlichen Verlauf der Periodendauer der Schwingungsantwort an der Messspule, zumindest was den relativen Verlauf betrifft. Diese Messspule arbeitet dann nämlich als Temperatursensor für den über ihr liegenden Bereich des Kochgefäßbodens, der wiederum die Temperatur des an ihn durch Verwirbelung herangeführten Wassers im Kochgefäß bestimmt. Dieser Bereich des Kochgefäßbodens arbeitet dann sozusagen als ein erster Teil eines Sensors. Als zweiter Teil dieses Sensors arbeitet die Messspule, die sozusagen die Temperatur dieses ersten Teils abfragt.
  • Der Messbetrieb der Messspule sollte vorteilhaft so sein, dass sie keine zusätzliche Heizleistung in den über ihr liegenden Bereich des Kochgefäßbodens einbringt, um Verfälschungen bei der Temperaturerfassung bzw. Temperaturbestimmung zu reduzieren oder möglichst ganz zu vermeiden. Wie zuvor kurz erwähnt worden ist, kann hier bereits eine Halbwelle für den Leistungseintrag ausreichen, was dann auch wiederum nur mit einer vorgenannten geringen Leistung bzw. Mess-Leistung gemacht wird.
  • Es ist möglich, nach dem Erkennen des Kochens des Wassers im Kochgefäß die Leistung der Induktionsheizspulen bzw. der Kochstelle zu reduzieren, um ein Überkochen des Wassers zu verhindern. Dies kann um mindestens 10% bis 20% erfolgen, vorteilhaft sogar um mindestens 50% bis 70%.
  • Diese und weitere Merkmale gehen außer aus den Ansprüchen auch aus der Beschreibung und den Zeichnungen hervor, wobei die einzelnen Merkmale jeweils für sich allein oder zu mehreren in Form von Unterkombination bei einer Ausführungsform der Erfindung und auf anderen Gebieten verwirklicht sein und vorteilhafte sowie für sich schutzfähige Ausführungen darstellen können, für die hier Schutz beansprucht wird. Die Unterteilung der Anmeldung in einzelne Abschnitte sowie Zwischen-Überschriften beschränken die unter diesen gemachten Aussagen nicht in ihrer Allgemeingültigkeit.
  • Kurzbeschreibung der Zeichnungen
  • Ausführungsbeispiele der Erfindung sind in den Zeichnungen schematisch dargestellt und werden im Folgenden näher erläutert. In den Zeichnungen zeigen:
  • Fig. 1
    eine schematische Ansicht einer Anordnung mehrerer Induktionsheizspulen eines Induktionskochfelds mit aufgestelltem Kochgefäß,
    Fig. 2
    eine schematische Seitenansicht einer Beheizung des Kochgefäßes aus Fig. 1 mit den darunter befindlichen Induktionsheizspulen, wobei zwei Induktionsheizspulen im Heizbetrieb arbeiten samt entstehender Wasserströmungen,
    Fig. 3
    eine Abwandlung der Darstellung aus Fig. 2, wobei eine Induktionsheizspule im Heizbetrieb und eine im Messbetrieb arbeitet samt entstehender Wasserströmungen und
    Fig. 4
    eine Darstellung von Verläufen sowohl der Wassertemperatur an zwei Stellen im Kochgefäß als auch von Signalen einer Induktionsheizspule im Heizbetrieb einerseits und einer im Messbetrieb andererseits.
    Detaillierte Beschreibung der Ausführungsbeispiele
  • In der Fig. 1 ist schematisch dargestellt, wie bei einem Induktionskochfeld 11 eine Vielzahl von einzelnen Induktionsheizspulen 13, hier mit runder Form, vorhanden sein kann. Dies ist aus der vorgenannten EP 1463383 A1 bekannt. Ein Kochgefäß 15 ist aufgestellt, und zwar derart, dass es vier Induktionsheizspulen 13a bis 13d zu mehr als 50% bedeckt. Die Induktionsheizspulen 13b und 13d sind vollständig überdeckt, und die Induktionsheizspulen 13a und 13c zu etwa 70% bis 80%. Links und rechts neben der Induktionsheizspule 13d sind auch Induktionsheizspulen zu einem geringen Grad überdeckt. Dieser Überdeckungsgrad ist allerdings so gering, dass dies erkannt wird und sie definitiv nicht im Heizbetrieb als Kochstelle für das Kochgefäß 15 verwendet werden.
  • In der Seitenansicht der Fig. 2 des erfindungsgemäßen Induktionskochfelds 11 mit einer Kochfeldplatte 12 ist zu ersehen, wie die zwei Induktionsheizspulen 13a und 13b unter dem Kochgefäß 15 liegen bzw. dieses über sie auf der Kochfeldplatte 12 aufgestellt ist. Die Induktionsheizspulen 13c und 13d sind hier nicht dargestellt, für sie gilt aber im Wesentlichen dasselbe. Das Kochgefäß 15 weist einen Kochgefäßboden 16 auf, der sich für induktive Beheizung eignet und üblicherweise eine Dicke von einigen Millimetern aufweist, beispielsweise 4mm bis 10mm. In der Regel ist ein solcher Kochgefäßboden 16 mehrschichtig ausgebildet mit einer obersten Schicht, die aus demselben Material wie die seitliche Wandung des Kochgefäßes 15 besteht und meistens durch Tiefziehen hergestellt ist, also mit einem einstückigen Materialübergang. Darunter ist häufig eine wärmeverteilende Schicht aus Kupfer mit einer Stärke von wenigen Millimetern angeordnet. Unterhalb dieser wiederum kann eine dünne Schicht aus Edelstahl vorgesehen sein, welche ebenfalls für induktive Beheizung geeignet ist. Deren Dicke kann maximal 1 mm bis 2mm betragen. Gleichzeitig ist dies in etwa die maximale Eindringtiefe von induktiven Feldern, was nachfolgend noch erläutert wird.
  • Die Induktionsheizspulen 13a und 13b sind mit einer Steuerung 19 des Induktionskochfelds 11 verbunden und werden über diese angesteuert mit Leistung versorgt, üblicherweise über ein hier nicht dargestelltes Leistungsteil bzw. entsprechende Schwingkreisanordnungen.
  • Mit dünnen Pfeilen dargestellt ist jeweils ein Leistungseintrag 21a und 21b von jeder der Induktionsheizspulen 13a und 13b in das Kochgefäß 15 bzw. in den Kochgefäßboden 16. Dies ist dem Fachmann bekannt und darauf muss nicht näher eingegangen werden. Wie zuvor erwähnt, beträgt die Eindringtiefe des Leistungseintrags 21 weniger als 2mm, vorteilhaft weniger als 1mm. Von dieser untersten Schicht des Kochgefäßbodens 16 verteilt sich die entstehende Wärme nach oben durch den weiteren Aufbau des Kochgefäßbodens 16 hindurch, unter Umständen mit einer entsprechenden Querverteilung. An der Oberseite des Kochgefäßbodens 16 erfolgt der Wärmeübergang in darüber im Kochgefäß 15 befindliches Wasser 17. Durch die eingebrachte Wärme steigt dieses aufgewärmte Wasser auf, was durch die breiten Pfeile veranschaulicht ist. Selbstverständlich erfolgt eine Art Durchmischung der Wasserströmungen 23a und 23b, hier auch noch dargestellt durch weitere Wasserströmungen 23.
  • In Fig. 4 ist in einem schematisch zu verstehenden Diagramm mit dicker durchgezogener Linie die Temperatur TW des Wassers 17 im Kochgefäß 15 aufgezeichnet als eine Art Durchschnittstemperatur, also nicht nur an einzelnen diskreten Punkten gemessen, sondern als Durchschnitt an vielen Punkten. Insbesondere kann dies auch eine Temperatur an der Wasseroberfläche sein, wo üblicherweise die Temperatur des Wassers 17 am geringsten sein wird beim Kochen.
  • Mit dicker gestrichelter Linie ist die Temperatur des Wassers über der linken Induktionsheizspule 21a nahe dem Kochgefäßboden 16 dargestellt. Hier wird das Wasser 17 wohl am heißesten sein und am schnellsten kochen. Außerdem ist für die Temperatur des Wassers 17 der Wert von 100°C eingezeichnet. Bei den Wassertemperaturen mit dicken Linien sind die Verlaufshöhen relativ zueinander in etwa maßstäblich.
  • Mit dünner durchgezogener Linie ist der eingangs genannte Messwert bzw. das Periodensignal derjenigen Induktionsheizspule 13b dargestellt, die als Messspule im Messbetrieb verwendet wird. Mit gestrichelter dünner Linie ist das Periodensignal der im Heizbetrieb betriebenen Induktionsheizspule 13a dargestellt. Diese beiden Periodensignale müssen absolut gesehen nicht unterschiedlich groß sein, dies ist hier nur der Übersichtlichkeit halber dargestellt, um ihre relativen Verläufe besser zu zeigen. Insbesondere können sie vor allem am Anfang weitgehend deckungsgleich sein.
  • Zur Durchführung des erfindungsgemäßen Verfahrens wird nach dem Aufsetzen des Kochgefäßes 15 auf das Induktionskochfeld 11 bzw. über die Induktionsheizspulen 13 von der Steuerung 19 auf bekannte Art und Weise erfasst, welche Induktionsheizspulen überhaupt überdeckt sind und in wie stark bzw. mit welchem Überdeckungsgrad. Bei den Induktionsheizspulen 13 der Konfiguration der Fig. 1 sind die vorgenannten Induktionsheizspulen 13a bis 13d ausreichend überdeckt. Hat nun eine Bedienperson eine Leistungsstufe für den Betrieb des Induktionskochfelds 11 ausgewählt, mit der das Wasser 17 im Kochgefäß 15 möglichst schnell zum Kochen gebracht werden soll, so startet der Heizbetrieb der vier Induktionsheizspulen 13a bis 13d. Diese bilden dabei eine gemeinsame Kochstelle. Sie können mit der maximalen Leistung, insbesondere einer für Induktionsheizspulen bekannten Boost-Leistung, betrieben werden. Dies ist in der Fig. 2 dargestellt, die Induktionsheizspulen 13a und 13b erzeugen einen Leistungseintrag 21a und 21b in den Kochgefäßboden 16, insbesondere in dessen unterste Schicht. Die induktiv erzeugte Wärme breitet sich nach oben aus und tritt an der Oberseite des Kochgefäßbodens 16 in das Wasser 17 ein bzw. wird dort übertragen. Dadurch entstehen Wasserströmungen 23, insbesondere von der Oberseite des Kochgefäßbodens 16 aufsteigende starke Wasserströmungen 23a und 23b.
  • Gemäß einer ersten Variante des Verfahrens kann nun die Induktionsheizspule 13b als Messspule bestimmt werden, da sie den erkennbar geringsten Überdeckungsgrad durch das Kochgefäß 15 bzw. den Kochgefäßboden 16 aufweist. Diese Bestimmung kann erfolgen, selbst wenn auch die Messspule 13b mit den anderen zusammen noch im Heizbetrieb als Kochstelle betrieben wird. Alternativ kann das in Fig. 4 gestrichelt dargestellte Periodensignal, das zu Beginn für die meisten Induktionsheizspulen relativ gleich verlaufen wird, für jede Induktionsheizspule 13 ausgewertet werden. Dann kann diejenige Induktionsheizspule als Messspule bestimmt und in den Messbetrieb wechseln, bei der zuerst die Steigung in etwa Null wird. In nochmals weiterer Ausgestaltung der Erfindung kann diejenige Induktionsheizspule als Messspule im Messbetrieb verwendet werden, bei der dieser Verlauf im Vergleich zu den anderen Induktionsheizspulen als letzter konstant wird bzw. Null Steigung aufweist.
  • Im hier beschriebenen Ausführungsbeispiel gilt dieser Fall, dass die Steigung als letzte zu Null geworden ist, für die Induktionsheizspule 13b. Das bedeutet, dass über allen anderen Induktionsheizspulen 13 der Kochstelle die Temperatur höher ist bzw. früher schon hoch war.
  • Gleichzeitig ist aus der Fig. 4 zu ersehen, wie die gestrichelt dargestellte Wassertemperatur zu dem Zeitpunkt, zu dem die Steigung des Periodensignals einer der Induktionsheizspulen zu Null wird, ebenfalls auf den dargestellten Maximalwert von 100°C als Wassertemperatur kommt. Insbesondere ist dies die Temperatur des Wassers knapp oberhalb des Kochgefäßbodens 16 über eben der Induktionsheizspule mit dem gestrichelt dargestellten Verlauf des Periodensignals. Durch die nicht mehr ansteigende Wassertemperatur bei 100°C kann sich auch der Kochgefäßboden 16 in diesem Bereich nicht mehr weiter erhitzen, so dass deswegen auch das Periodensignal an der Induktionsheizspule nicht mehr weiter ansteigt. Die dicke durchgezogene Linie als Temperatur TW des Wassers 17 im Kochgefäß 15 steigt nach kurzer Verzögerung am Anfang in etwa konstant an. Durch das Umstellen einer Induktionsheizspule als Messspule verringert sich die eingebrachte Leistung und der Anstieg wird dann flacher.
  • Die nun im Messbetrieb als Messspule mit der Mess-Leistung betriebene Induktionsheizspule 13b weist den durchgezogenen Verlauf mit der dünnen Linie auf. Die Mess-Leistung beträgt beispielsweise 5% der maximalen Leistung. Der Verlauf des Periodensignals an der Messspule 13b zeigt auch, dass nach dem Wechsel in den Messbetrieb ja diese Messspule nahezu keine Energie mehr in den Kochgefäßboden überträgt und diesen somit nicht weiter aufzuheizen versucht. Da das in dem Kochgefäß 15 befindliche Wasser 17 insgesamt noch keine 100°C hat, also noch nicht insgesamt kocht, sondern beispielsweise nur 80°C bis 90°C aufweist, fällt dieses relativ kühlere Wasser wieder auf diesen Bereich des Kochgefäßbodens herunter und kühlt ihn auf weniger als 100°C ab. Er wird also im Vergleich zu dem vorherigen Heizbetrieb der Messspule 13b gekühlt. Dies ist zu erkennen an dem dargestellten Abfall des Periodensignals der Messspule. Nach einer gewissen Zeit, beispielsweise 10 Sekunden bis 30 Sekunden, weist dieser Bereich des Kochgefäßbodens die Temperatur des relativ kühleren herabströmenden Wassers auf, so dass auch das Periodensignal der Messspule quasi gleich verläuft wie die Wassertemperatur. Dies ist der Verständlichkeit halber hier gemeinsam bzw. in Überdeckung dargestellt, muss aber nicht so sein.
  • Gleichzeitig ist zu sehen, wie die gestrichelt dargestellte Temperatur des Wassers beispielsweise über der weiterhin im Heizbetrieb betriebenen Induktionsheizspule 13a gemäß Fig. 2 und 3 bei 100°C bleibt. Höher werden kann die Temperatur nicht, und schließlich erfolgt weiterhin ein Energieeintrag durch die Heizspule. Deswegen bleibt die Temperatur sozusagen am oberen Anschlag.
  • Die Zustände im Kochgefäß 15 in diesem Zeitraum sind in Fig. 3 zu ersehen. Die Induktionsheizspule 13a im Heizbetrieb bewirkt weiterhin den Leistungseintrag 21a in den Kochgefäßboden 16 über ihr, welcher die starke Wasserströmung 23a erzeugt. Diese zirkuliert sozusagen und bewirkt, dass im oberen Bereich befindliches Wasser 17 als mit dünnen Pfeilen dargestellte Wasserströmung 23 nach unten auf den Bereich des Kochgefäßbodens 16 auftritt, der über der Messspule 13b liegt. Durch das Wechseln des Betriebs von der Induktionsheizspule 13b vom Heizbetrieb in den Messbetrieb, bei dem diese dann fast keine Leistung mehr in den Kochgefäßboden einkoppelt, fallen immerhin fast 25% der Heizleistung weg. Da mit dem erfindungsgemäßen Verfahren ja im Wesentlichen nur das Erreichen des Durchkochens des Wassers festgestellt werden soll und keine genaue Temperaturmessung bei einer beliebigen Temperatur darunter stattfinden soll, kann aus Erfahrungswerten, die wie oben erläutert in der Steuerung 19 abgespeichert sein können, noch eine gewisse Weiterlaufzeit für die Induktionsheizspule 13b im Heizbetrieb bestimmt werden, nach deren Ablauf das Wasser im Kochgefäß 15 immer noch nicht vollständig durchgekocht ist.
  • Nach einiger Zeit dann hat durch den fortwährenden Leistungseintrag der übrigen drei Induktionsheizspulen, der vorteilhaft mit gleicher bzw. maximaler Leistung erfolgt, die gesamte bzw. gemittelte Temperatur des gesamten Wassers etwa 100°C erreicht, insbesondere nach ausreichender Durchmischung des vom Kochgefäßboden 16 über den Heizspulen aufgeheizten Wassers mit dem restlichen Wasser. Wenn dann in Fig. 4 im rechten Bereich das dünn und durchgezogene Periodensignal der Messspule wieder die Steigung Null aufweist bzw. konstant wird, so kocht das gesamte Wasser 17 im Kochgefäß 15. Dies gilt auch für die Temperatur TW des Wassers.
  • Bei den mit dicken Pfeilen dargestellten Wasserströmungen 23a und 23b in der Fig. 2 ist zu beachten, dass hier auch die Bildung von teils großen oder sogar sehr großen Wasserdampfblasen erfolgt, die nach oben aufsteigen. Sie bewirken auch einen großen Teil der Selbstvermischung des Wassers 17 im Kochgefäß 15.
  • Anhand der Beschreibung zu den Fig. 1 bis 3 und anhand der Verläufe in Fig. 4 ist auch leicht vorstellbar, wie eingangs erläutert, wie nach dem Erreichen eines konstanten Periodensignals durch die Messspule der Heizbetrieb aller Induktionsheizspulen, insbesondere auch der als spätere Messspule bestimmten Induktionsheizspule, für eine gewisse Zeit weitergeführt wird. Aus dem Diagramm der Fig. 4 ist zu ersehen, dass es noch eine gewisse Zeit dauert, beispielsweise 10 Sekunden bis 40 Sekunden nach dem Kochen des Wassers kurz oberhalb des Kochgefäßbodens, bis sämtliches Wasser im Kochgefäß kocht.

Claims (10)

  1. Verfahren zur Temperaturbestimmung bei einem Induktionskochfeld mit mehreren Induktionsheizspulen, wobei die Induktionsheizspulen einzeln ansteuerbar sind und in einem gemeinsamen Heizbetrieb eine Kochstelle für ein Kochgefäß mit Wasser darin bilden, gekennzeichnet durch die Schritte:
    - ein Kochgefäß mit Wasser darin wird so aufgestellt, dass es mit einem Kochgefäßboden mindestens zwei Induktionsheizspulen überdeckt,
    - die Induktionsheizspulen werden im Heizbetrieb betrieben um das Wasser in dem Kochgefäß zum Kochen zu bringen, was als Temperaturbestimmung erfasst werden soll,
    - während des Heizbetriebs beheizt jede Induktionsheizspule den über ihr angeordneten Bereich des Kochgefäßbodens,
    - während des Heizbetriebs wird anhand der Schwingungsantwort an mindestens einer Induktionsheizspule erfasst, ob sich die Temperatur des Bereichs des Kochgefäßbodens über dieser Induktionsheizspule ändert bzw. ansteigt,
    - die Induktionsheizspulen werden mindestens so lange im Heizbetrieb betrieben, bis eine Induktionsheizspule erfasst, dass der Temperaturgradient des Kochgefäßbodens über dieser Induktionsheizspule nahe Null oder zu Null wird,
    - mindestens eine der Induktionsheizspulen wird als Messspule bestimmt,
    - die Messspule wird im Messbetrieb und nicht mehr im Heizbetrieb betrieben, wobei sie im Messbetrieb mit einer Mess-Leistung bis maximal 50% der maximalen Leistung für kurze Zeit Energie in den Kochgefäßboden überträgt und dann die zu-rückgekoppelte Schwingungsantwort erfasst, wobei der zeitliche Verlauf dieser Schwingungsantwort nach mehreren Malen Einkoppeln der Mess-Leistung ausgewertet wird, wobei dann in dem Fall, dass der Gradient dieses zeitlichen Verlaufs nahe Null oder zu Null wird, das Wasser in dem Kochgefäß als kochend bestimmt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass diejenige Induktionsheizspule als Messspule bestimmt wird, die als erste einen zu Null werdenden Temperaturgradienten während des Heizbetriebs aufweist.
  3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass diejenige Induktionsheizspule als Messspule bestimmt wird, die den geringsten Leistungseintrag in das Kochgefäß und/oder den geringsten Überdeckungsgrad durch das Kochgefäß aufweist.
  4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass alle Induktionsheizspulen mindestens so lange im Heizbetrieb betrieben werden, bis über jeder der Induktionsheizspulen der Temperaturgradient des darüber befindlichen Kochgefäßbodens zu Null wird.
  5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Messspule im Messbetrieb mit der Mess-Leistung für eine Halbwelle Energie in den Kochgefäßboden überträgt und dann die zurückgekoppelte Schwingungsantwort erfasst.
  6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass, nachdem die erste Induktionsheizspule einen zu Null gewordenen Temperaturgradienten aufweist bzw. erfasst, für mindestens 10 Sekunden, vorzugsweise für mindestens 30 Sekunden, der Heizbetrieb aller Induktionsheizspulen, die im Heizbetrieb für dieses Kochgefäß arbeiten, weitergeführt wird mit gleichbleibender Leistung, wobei nach Ablauf dieser Zeit die zuvor bestimmte Messspule im Messbetrieb betrieben wird.
  7. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass, nachdem alle Induktionsheizspulen der Kochstelle einen zu Null gewordenen Temperaturgradienten aufweisen bzw. erfasst haben, für mindestens 10 Sekunden, vorzugsweise für mindestens 30 Sekunden, der Heizbetrieb aller Induktionsheizspulen, die im Heizbetrieb für dieses Kochgefäß arbeiten, weitergeführt wird mit gleichbleibender Leistung.
  8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass anhand von in einem Speicher abgelegten Werten für die Höhe des gesamten aufaddierten Leistungseintrags aller Induktionsheizspulen, die gemeinsam als Kochstelle im Heizbetrieb für ein Kochgefäß betrieben werden, in das Kochgefäß und anhand der Zeit, bis der Temperaturgradient der ersten Induktionsheizspule oder der Temperaturgradient der letzten Induktionsheizspule zu Null geworden ist, die Zeit bestimmt wird, für die der Heizbetrieb weitergeführt wird, nachdem der Temperaturgradient der ersten Induktionsheizspule oder der letzten Induktionsheizspule zu Null geworden ist bis zu dem Zeitpunkt, an dem eine der Induktionsheizspulen als Messspule betrieben wird.
  9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass nach dem deutlichen Reduzieren der Leistung an der Messspule bei der Temperaturbestimmung mit der Messspule der Verlauf der Wassertemperatur von Wasser in dem Kochgefäß gleichgesetzt wird mit dem Verlauf der Periodendauer an der Messspule.
  10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass nach dem Erkennen des Kochens des Wassers im Kochgefäß die Leistung der Induktionsheizspulen bzw. der Kochstelle reduziert wird, insbesondere um mindestens 50%, um ein Überkochen des Wassers zu verhindern.
EP16184674.6A 2015-08-27 2016-08-18 Verfahren zur temperaturbestimmung Active EP3136822B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL16184674T PL3136822T3 (pl) 2015-08-27 2016-08-18 Sposób określania temperatury

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015216455.1A DE102015216455A1 (de) 2015-08-27 2015-08-27 Verfahren zur Temperaturbestimmung

Publications (2)

Publication Number Publication Date
EP3136822A1 true EP3136822A1 (de) 2017-03-01
EP3136822B1 EP3136822B1 (de) 2020-04-29

Family

ID=56738019

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16184674.6A Active EP3136822B1 (de) 2015-08-27 2016-08-18 Verfahren zur temperaturbestimmung

Country Status (6)

Country Link
US (1) US10219327B2 (de)
EP (1) EP3136822B1 (de)
CN (1) CN106488601B (de)
DE (1) DE102015216455A1 (de)
ES (1) ES2804108T3 (de)
PL (1) PL3136822T3 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106802584A (zh) * 2017-03-22 2017-06-06 广东美的厨房电器制造有限公司 烹饪方法、烹饪装置和烹饪器具
EP3714747B1 (de) * 2019-03-29 2024-02-21 Vorwerk & Co. Interholding GmbH Küchenmaschine mit siedepunkterkennung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1463383A1 (de) 2003-03-27 2004-09-29 E.G.O. Elektro-Gerätebau GmbH Heizungseinrichtung für eine flächige Beheizung mit Induktions-Heizelementen
JP2005310517A (ja) * 2004-04-21 2005-11-04 Matsushita Electric Ind Co Ltd 誘導加熱調理器
EP2330866A2 (de) 2009-11-26 2011-06-08 E.G.O. ELEKTRO-GERÄTEBAU GmbH Verfahren und Induktionsheizeinrichtung zum Ermitteln einer Temperatur eines mittels einer Induktionsheizspule erwärmten Kochgefäßbodens
EP2574143A2 (de) * 2011-09-26 2013-03-27 E.G.O. ELEKTRO-GERÄTEBAU GmbH Verfahren zum Beheizen einer in einem Kochgefäß enthaltenen Flüssigkeit und Induktionsheizeinrichtung
EP2911473A1 (de) * 2012-10-22 2015-08-26 Panasonic Intellectual Property Management Co., Ltd. Induktionsherd

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19540408A1 (de) 1995-10-30 1997-05-07 Herchenbach Wolfgang Kochsystem
WO2006032292A1 (de) * 2004-09-23 2006-03-30 E.G.O. Elektro-Gerätebau GmbH Heizungseinrichtung für eine flächige beheizung mit induktions-heizelementen
FR2903564B1 (fr) * 2006-07-06 2011-07-01 Seb Sa Plaque de cuisson permettant la detection de la temperature d'un article culinaire
CH704318B1 (de) 2011-01-07 2016-03-15 Inducs Ag Induktionskochgerät zum temperaturgesteuerten Kochen.
CH704364B1 (de) * 2011-01-14 2015-01-30 Inducs Ag Modulares Warmhaltesystem für Speisen.
DE102011083397A1 (de) * 2011-09-26 2013-03-28 E.G.O. Elektro-Gerätebau GmbH Verfahren zum Zubereiten von Lebensmitteln mittels einer Induktionsheizeinrichtung und Induktionsheizeinrichtung
EP2779787B1 (de) * 2013-03-11 2015-06-17 Electrolux Appliances Aktiebolag Verfahren zur Erkennung von Kochgeschirr auf einem Induktionskochfeld, Induktionskochfeld und Kochgeschirr

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1463383A1 (de) 2003-03-27 2004-09-29 E.G.O. Elektro-Gerätebau GmbH Heizungseinrichtung für eine flächige Beheizung mit Induktions-Heizelementen
JP2005310517A (ja) * 2004-04-21 2005-11-04 Matsushita Electric Ind Co Ltd 誘導加熱調理器
EP2330866A2 (de) 2009-11-26 2011-06-08 E.G.O. ELEKTRO-GERÄTEBAU GmbH Verfahren und Induktionsheizeinrichtung zum Ermitteln einer Temperatur eines mittels einer Induktionsheizspule erwärmten Kochgefäßbodens
EP2574143A2 (de) * 2011-09-26 2013-03-27 E.G.O. ELEKTRO-GERÄTEBAU GmbH Verfahren zum Beheizen einer in einem Kochgefäß enthaltenen Flüssigkeit und Induktionsheizeinrichtung
EP2911473A1 (de) * 2012-10-22 2015-08-26 Panasonic Intellectual Property Management Co., Ltd. Induktionsherd

Also Published As

Publication number Publication date
CN106488601A (zh) 2017-03-08
DE102015216455A1 (de) 2017-03-02
PL3136822T3 (pl) 2020-11-02
US20170064776A1 (en) 2017-03-02
US10219327B2 (en) 2019-02-26
CN106488601B (zh) 2020-10-27
ES2804108T3 (es) 2021-02-03
EP3136822B1 (de) 2020-04-29

Similar Documents

Publication Publication Date Title
DE4022846C2 (de) Vorrichtung zur Leistungssteuerung und -begrenzung bei einer Heizfläche aus Glaskeramik oder einem vergleichbaren Material
EP2087770B1 (de) Verfahren zur steuerung eines induktionskochgeräts und induktionskochgerät
DE602005003310T2 (de) Umrichterschaltung für Induktionsheizvorrichtung, Kochgerät mit einer solchen Schaltung und Betriebsverfahren
EP3028535B1 (de) Kochfeldvorrichtung
EP3177107B1 (de) Verfahren zum betrieb eines induktionskochfelds
EP1732357A2 (de) Heizvorrichtung für ein Induktionsgargerät
EP2833697B1 (de) Kochfeldvorrichtung
EP3267113A1 (de) Verfahren zum betrieb eines kochfelds und kochfeld
CH669297A5 (de) Verfahren zum steuern und regeln der heizleistung in der aufheizphase eines kochgefaesses.
DE19648397A1 (de) Verfahren und Vorrichtung zum Erkennen des Kochpunktes von Kochgut
DE102005003672A1 (de) Hochfrequenz-Impulsoszillator
CH675658A5 (de)
EP3136822B1 (de) Verfahren zur temperaturbestimmung
EP3307018B1 (de) Verfahren zur steuerung eines induktionskochfeldes und induktionskochfeld
EP2506673B1 (de) Induktionskochfeld
EP0806887B1 (de) Verfahren und Vorrichtung zum Erkennen des Kochpunktes von Kochgut
DE102004059822B4 (de) Verfahren zum Betrieb eines Induktionskochfelds
DE102017114951A1 (de) Verfahren zum Betrieb einer Kochstelle eines Induktionskochfelds mit einem Kochgeschirr
DE102014116787A1 (de) Verfahren zum Betreiben einer Kochfeldeinrichtung und Kochfeldeinrichtung
DE19714701B4 (de) Geregeltes induktives Erwärmungssystem
EP3606284B1 (de) Verfahren und vorrichtung zur induktiven energieübertragung
DE102016222313B4 (de) Verfahren zum Kochen von mindestens einem Ei
EP3307019B1 (de) Verfahren zum betrieb eines induktionskochfelds und induktionskochfeld
DE102004033115A1 (de) Verfahren und Vorrichtung zur thermostatischen Kochgeschirrregelung
DE102004016631A1 (de) Vorrichtung und Verfahren zur Überwachung der Temperatur eines Kochgeschirrs auf einer Abdeckung eines Kochfeldes sowie von weiteren Vorgängen auf der Abdeckung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170720

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H05B 6/06 20060101AFI20191112BHEP

INTG Intention to grant announced

Effective date: 20191203

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016009727

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1265285

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200429

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200730

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200831

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016009727

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2804108

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20210201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200818

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200818

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1265285

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210818

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230811

Year of fee payment: 8

Ref country code: IT

Payment date: 20230831

Year of fee payment: 8

Ref country code: GB

Payment date: 20230824

Year of fee payment: 8

Ref country code: ES

Payment date: 20230918

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230807

Year of fee payment: 8

Ref country code: FR

Payment date: 20230821

Year of fee payment: 8

Ref country code: DE

Payment date: 20230822

Year of fee payment: 8