EP3127199B1 - Überspannungsableiter - Google Patents

Überspannungsableiter Download PDF

Info

Publication number
EP3127199B1
EP3127199B1 EP15713185.5A EP15713185A EP3127199B1 EP 3127199 B1 EP3127199 B1 EP 3127199B1 EP 15713185 A EP15713185 A EP 15713185A EP 3127199 B1 EP3127199 B1 EP 3127199B1
Authority
EP
European Patent Office
Prior art keywords
housing
combustion chamber
insulating body
surge arrester
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15713185.5A
Other languages
English (en)
French (fr)
Other versions
EP3127199A1 (de
Inventor
Maik Dittert
Thomas Meyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Phoenix Contact GmbH and Co KG
Original Assignee
Phoenix Contact GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Phoenix Contact GmbH and Co KG filed Critical Phoenix Contact GmbH and Co KG
Publication of EP3127199A1 publication Critical patent/EP3127199A1/de
Application granted granted Critical
Publication of EP3127199B1 publication Critical patent/EP3127199B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T1/00Details of spark gaps
    • H01T1/02Means for extinguishing arc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T1/00Details of spark gaps
    • H01T1/20Means for starting arc or facilitating ignition of spark gap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T2/00Spark gaps comprising auxiliary triggering means
    • H01T2/02Spark gaps comprising auxiliary triggering means comprising a trigger electrode or an auxiliary spark gap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T4/00Overvoltage arresters using spark gaps
    • H01T4/10Overvoltage arresters using spark gaps having a single gap or a plurality of gaps in parallel
    • H01T4/12Overvoltage arresters using spark gaps having a single gap or a plurality of gaps in parallel hermetically sealed

Definitions

  • the invention relates to a surge arrester for use in the power supply of low-voltage networks, in particular for use between a neutral conductor N and a potential equalization PE, with a cylindrical housing, with two axially opposite electrodes and with an arc combustion chamber formed in the interior of the housing, the arc combustion chamber is axially delimited by the two electrodes and a spark gap is formed between the two electrodes, so that an arc arises between the two electrodes when the spark gap is ignited.
  • the affected devices, systems and lines must be short-circuited with the potential equalization in the shortest possible time.
  • Different components are used depending on the location (protection zone) and the type of equipment and systems to be protected. The individual components differ essentially in their response behavior and their dissipation capacity.
  • surge arresters An essential component of surge arresters of the type in question here is a spark gap which responds to a certain overvoltage, an arc being formed between the two electrodes when the spark gap is ignited. Very high and steeply rising currents with values up to the three-digit kA range can flow over the spark gap.
  • surge arresters which are intended as lightning current arresters for use between a neutral conductor N and the equipotential bonding PE or a PE conductor, must have a very high surge current discharge capacity of up to 100 kA 10/350 ⁇ s. Due to the pressures and forces occurring in the interior of the surge arrester, such surge arresters are generally arranged in pressure-resistant housings.
  • Surge arresters with a spark gap have the advantage of a high surge current carrying capacity, but also the disadvantage of a relatively high one and also not particularly constant response voltage. For this reason, different types of ignition aids have long been used to ignite spark gaps, with the aid of which the response voltage of the spark gap or the surge arrester is reduced.
  • cooling channels are provided in the housing in the known surge arrester, through which the hot, ionized gases produced in the arc combustion chamber during the discharge process are discharged from the housing. So that the gases flowing out of the housing do not have too high a temperature, the cooling channels must be designed in such a way that they provide a sufficiently long distance that flows along the plasma in the housing.
  • the one from the DE 103 38 835 A1 known surge arrester This is achieved in that the housing is formed in two parts and the two housing halves are arranged coaxially to one another, with helical cooling channels being arranged between the two housing parts, through which the plasma can flow on the one hand and which simultaneously serve to screw the two housing parts together ,
  • the present invention is therefore based on the object of further developing the surge arrester described at the outset in such a way that the aforementioned disadvantages are avoided as far as possible.
  • the blowing out of ionized gases should be avoided, but the surge arrester should be as small as possible.
  • the surge arrester according to the invention is therefore an encapsulated surge arrester which has no outflow or blow-out openings through which ionized gas is deliberately released into the environment.
  • the two chambers are arranged in the longitudinal direction of the housing on opposite sides of the arc combustion chamber, the two chambers each having an axial and a radial distance from the arc combustion chamber. From the point of view of the arc combustion chamber, the two chambers, which serve to receive the hot, ionized gases generated during the discharge process, are thus arranged radially outwardly behind the electrodes or their end faces delimiting the arc combustion chamber.
  • the design and arrangement of the two chambers within the housing according to the invention initially enable hot, conductive gases produced by the burning arc to flow out of the arc combustion chamber during the discharge process, so that a line follow current is extinguished and the spark gap below the response voltage of the surge arrester is prevented from being re-ignited ,
  • the arrangement of the two chambers on opposite sides of the arc combustion chamber and behind the electrodes generates a force or pressure in the direction of the electrodes by the gas flowing into the chambers, which counteracts the pressure which occurs when the spark gap is ignited in the Arc combustion chamber is created. This reduces the load on the two electrodes of the spark gap.
  • the desired large volume of the two chambers in comparison to the volume of the arc combustion chamber can preferably be achieved in a relatively simple manner in that the two chambers are annular.
  • the fact that the volume required for the chambers in the housing behind an overvoltage arrester in the area behind the electrodes can be made available in the simplest manner is advantageously used without the external dimensions of the overvoltage arrester having to be enlarged.
  • the ring-shaped training leads of the two chambers also to a lower mechanical load on the housing, since the pressures and forces act on the housing in an essentially evenly distributed manner.
  • a cylindrical insulating body is arranged in the housing of the surge arrester, which has a bore extending in the longitudinal direction of the housing, into which the two electrodes protrude with their front side facing the arc combustion chamber, so that the insulating body radially surrounds the arc combustion chamber.
  • the at least one channel is at least partially formed by the insulating body.
  • the arc combustion chamber is thus delimited in the axial direction by the two electrodes lying opposite one another or their end faces and in the radial direction by the cylindrical insulating body.
  • the delimitation of the arc combustion chamber in the radial direction is interrupted by the at least one channel via which the arc combustion chamber is connected to the two chambers.
  • the at least one channel between the arc combustion chamber and the two chambers can be realized simply by forming corresponding recesses, openings or free spaces in the insulating body which allow the gas to flow from the arc combustion chamber into the two chambers.
  • the actual channel does not have to be completely surrounded by the insulating body, but can also be formed - in whole or in sections - by a section of the insulating body and a section of another component opposite the section of the insulating body.
  • the insulating body also serves to ensure permanent insulation between the two electrodes and for the mechanical stability of the spark gap, in that the insulating body ensures that the distance between the two electrodes remains unchanged even after a discharge process.
  • the insulating body is preferably designed such that it has an inner section surrounding the bore and a sleeve-shaped outer section which has a greater extent in the longitudinal direction of the housing than the inner section.
  • the sleeve-shaped outer section also serves to isolate the electrodes from the housing, in particular if the housing is preferably made of metal, while the inner section serves to ensure permanent insulation between the two electrodes and for the mechanical stability of the spark gap.
  • at least a part of the channel is formed between the inner section and the outer section of the insulating body.
  • the inner section of the insulating body preferably has two circular-shaped webs which only overlap in the circumferential direction of the inner section in a small area and are arranged one behind the other in the longitudinal direction of the housing.
  • the two circular webs thus together form at least a part of the radial delimitation of the bore of the insulating body, the two webs, however, being arranged axially offset from one another.
  • the two webs in the form of a circular arc thus have a thickness which extends in the longitudinal direction of the housing and which is less than the corresponding total thickness of the inner section of the insulating body, so that in each case there is a free space through which the ionized gas can flow.
  • the two circular-arc-shaped webs are at a radial distance from the outer section of the insulating body, so that the gas can flow between the webs and the outer section.
  • Two channels are formed by the two arcuate webs, which connect the arc combustion chamber to both chambers.
  • the two channels each have a first radially extending channel section and a second axially running channel section, the first channel sections being connected to the arc combustion chamber and the second channel sections each being connected to both chambers.
  • Hot ionized gas which arises after the spark gap has been ignited by the arc in the arc combustion chamber, can thus flow radially past or along the two arc-shaped webs and then axially between and along the outer edge of the arc-shaped webs and the outer section of the insulating body the inner surface of the sleeve-shaped outer portion flow into the two chambers.
  • the surge arrester according to the invention preferably has a starting aid arranged inside the housing and comprising at least one starting element and one starting electrode.
  • the ignition element and the ignition electrode are in contact with the arc combustion chamber, the ignition element being electrically conductively connected on one side to one electrode and on the other side to the ignition electrode.
  • the basic structure of the ignition aid used in the surge arrester according to the invention can be constructed in the same way as that in FIG DE 103 38 835 A1 described ignition aid is constructed.
  • the inner section of the insulating body preferably has a receiving area for the ignition element and the ignition electrode, which has an opening to the arc combustion chamber through which the ignition electrode and the ignition element be in contact with the arc combustion chamber.
  • the receiving area formed on the inner section of the insulating body is preferably arranged in the circumferential direction of the inner section between the two circular-arch-shaped webs, so that the inner section of the insulating body is divided into three regions in the circumferential direction, namely the two circular-arch-shaped webs which overlap in a small area , and the receiving area for the ignition element and the ignition electrode, which is preferably arranged opposite the overlap area.
  • the housing is preferably made of metal, in particular steel.
  • the housing is formed in two parts, wherein it consists of a cup-shaped first housing part and a corresponding housing cover.
  • the housing cover preferably has an external thread, so that this can be screwed into the first housing part, which has a corresponding internal thread for this purpose.
  • the two electrodes are also each arranged in the end face of an electrode holder in the surge arrester according to the invention.
  • This has the advantage that different materials can be used for the electrodes on the one hand and for the electrode holders on the other hand, the electrodes themselves generally being made of tungsten or a composite material, for example a tungsten-copper alloy, and the electrode holders made of brass. While the ends of the electrode holders facing away from the electrodes for electrical connection of the electrodes each protrude from one end of the housing, the end of the electrode holder receiving the electrodes rests on one side against the inner section of the insulating body, so that the end side surrounding the electrodes Electrode holder are covered by the inner portion of the insulating body.
  • the two electrode holders cannot be electrically connected via the metallic housing, the electrode holders are each surrounded by an insulating sleeve which is open on both sides.
  • this ensures reliable and permanent insulation between the two electrode holders and thus also between the conductors connected to the electrode holders, in particular a neutral conductor and the equipotential bonding or a PE conductor.
  • FIGS. 1 to 4 show a surge arrester 1 according to the invention, wherein in the Fig. 4 an exploded view of the surge arrester 1 is shown, so that the individual components of the surge arrester 1 can be seen.
  • the surge arrester 1 according to the invention is intended in particular for use between a neutral conductor N and the equipotential bonding PE, so that the surge arrester 1 must have a surge current discharge capacity of up to 100 kA 10/350 ⁇ s. In addition, it must be possible to safely delete line follow currents up to 100 A.
  • the surge arrester 1 has a cylindrical housing 2, in the interior of which two electrodes 3, 4 lying axially opposite one another are arranged.
  • the housing 2 is made of steel and has a cup-shaped first housing part 2a and a housing cover 2b which is screwed into the first housing part 2a. This provides a pressure-resistant and at the same time very compact housing.
  • the distance between the two electrodes and thus the extent of the arc combustion chamber 5 in the longitudinal direction of the housing 2 is less than 1 mm, preferably only about 0.8 mm, in the illustrated surge arrester 1.
  • two chambers 6, 7 are formed within the housing 2, both of which are connected to the arc combustion chamber 5 via two channels 8, 9.
  • the two chambers 6, 7 are arranged in the longitudinal direction of the housing 2 on opposite sides of the arc combustion chamber 5.
  • the two chambers 6, 7 each have an axial and radial distance from the arc combustion chamber 5, so that the two chambers 6, 7 are arranged behind the electrodes 3, 4, offset radially outwards from the perspective of the arc combustion chamber 5.
  • the volume of the two annular chambers 6, 7 together is considerably larger than the volume of the arc combustion chamber 5.
  • the ratio of the volume of the two chambers 6, 7 to the volume of the arc combustion chamber 5 is preferably approximately 20: 1.
  • An essential component of the surge arrester 1 according to the invention is the cylindrical insulating body 10 which is arranged in the interior of the housing 2 and which in the Fig. 5 and 6 is shown enlarged.
  • the insulating body 10 has a bore 11 which extends in the longitudinal direction of the housing 2 and into which the two electrodes 3, 4 each project with their end face facing the arc combustion chamber 5.
  • the insulating body 10 has an inner section 12 surrounding the bore 11 and a sleeve-shaped outer section 13 which has a significantly greater extension in the longitudinal direction of the housing 2 than the inner section 12, as shown in the two sectional representations according to FIGS Fig. 3 and 4 can be seen.
  • the inner section 12 of the insulating body 10 has two circular webs 14, 15 which overlap in the circumferential direction of the inner section 12 only in a small, web-like area 16 and are arranged one behind the other in the longitudinal direction of the housing 2.
  • the two arcuate webs 14, 15 also have a radial distance from the outer section 13 of the insulating body 10, so that between the outer edge of the arcuate webs 14, 15 and the sleeve-shaped outer section 13, two passages 17 are formed for the gas, one Form part of the two channels 8, 9.
  • the two channels 8, 9 each have a first radially extending channel section 8a, 9a and a second axially extending channel section 8b, 9b.
  • the first channel sections 8a, 9a which are delimited on each side by a web 14, 15, are connected to the arc combustion chamber 5, while the second channel sections 8b, 9b are each connected to both chambers 6, 7.
  • the passages 17 provided between the circular webs 14, 15 and the sleeve-shaped outer section 13 make it possible for hot ionized gas to flow from the arc combustion chamber 5 into both chambers 6, 7 via both channels 8, 9. The gas can thus flow from the arc combustion chamber 5 radially past or along the two circular webs 14, 15 and then flow axially along the inner surface of the sleeve-shaped outer section 13 into both chambers 6, 7.
  • the insulating body 10 also serves to receive an ignition element 18 and an ignition electrode 19, which together form an ignition aid for the spark gap of the surge arrester 1.
  • a receiving area 20 is provided in the inner section 12 of the insulating body 10, which has an opening 21 to the arc combustion chamber 5, so that the ignition element 18 and the ignition electrode 19 are in contact with the arc combustion chamber 5 through the opening 21, as is the case here Fig. 3 can be seen. From the top view of the insulating body 10 according to Fig.
  • the receiving area 20 is arranged in the circumferential direction of the inner section 12 between the two circular-arch-shaped webs 14, 15, the two circular-arc-shaped webs 14, 15 and the receiving area 20 each covering approximately a third of the circumference of the inner section 12 of the insulating body 10 extend.
  • the inner section 12 of the insulating body 10 is thus functionally divided into three areas, the spark gap being ignited in the receiving area 20 for the ignition element 18 and the ignition electrode 19, while the circular webs 14, 15 each form part of the two channels 8, 9 form for the flow of the ionized gas from the arc combustion chamber 5 into the two cylindrical chambers 6, 7.
  • the web-like region 16, in which the circular-arch-shaped webs 14, 15 overlap is connected to the outer section 13 of the insulating body 10.
  • the web-like region 16 is also made very stable, so that it is ensured that the distance between the two electrodes 3, 4 from one another remains permanently unchanged.
  • the edge of the receiving area 20 also serves this purpose, which is also connected to the outer section 13 of the insulating body 10 and has the same thickness as the web-like area 16.
  • the outer section 13 of the insulating body 10 has a cutout 22 which, viewed in the circumferential direction of the insulating body 10, is arranged in the inner section 12 corresponding to the receiving area 20 for the ignition element 18 and the ignition electrode 19.
  • the cutout 22 ensures that the ignition electrode 19 is in contact with the housing 2 with its outer edge facing away from the arc combustion chamber 5. It also makes training easier the recess 22 in the outer section 13 of the insulating body 10, the installation of the surge arrester 1, since the ignition electrode 19 and the ignition element 18 can thus be inserted more easily into the receiving area 20 on the inner section 12 of the insulating body 10.
  • the two electrodes 3, 4, which are preferably made of tungsten, are each arranged in the end face of an electrode holder 23, 24.
  • the end face of the electrode holders 23, 24 receiving the electrodes 3, 4 each abut on one side against the inner section 12 of the insulating body 10, namely in each case against an arcuate web 14 or 15.
  • the ends of the electrode holders 23, 24 facing away from the electrodes 3, 4, on the other hand, protrude from the housing 2, for which purpose a bore 25, 26 is arranged in the bottom of the cup-shaped first housing part 2a and in the housing cover 2b.
  • the radially extending channel sections 8a, 9a formed in the interior of the insulating body 10 are thus delimited on one side in each case by an arcuate web 14, 15 and on the other side by the opposite region of the end face of an electrode holder 23, 24.
  • the hot ionized gases generated during the discharge process can flow unhindered through the channel sections 8a, 9a, so that there is no deposition of conductive particles on the end faces of the electrode holders 23, 24.
  • the end faces of the electrode holders 23, 24 are also not exposed to high temperatures for an extended period of time. This prevents damage to the electrode holders 23, 24 or leakage currents or short circuits due to conductive deposits in the case of electrode holders 23, 24 made of brass.
  • the two electrode holders 23, 24 are each surrounded by an insulating sleeve 27, 28 which is open on both sides. So that the insulation between the electrode holder 24 on the right in the figures and the cup-shaped first housing part 2a is also ensured in the area of the recess 22 in the outer section 13 of the insulating body 10, the insulating sleeve 28 assigned to the electrode holder 24 has an axially and radially projecting one Collar 29, which engages in the recess 22, so that the insulation to the first housing part 2a is interrupted only in the area of the ignition element 18 and the ignition electrode 19.

Description

  • Die Erfindung betrifft einen Überspannungsableiter zum Einsatz in der Stromversorgung von Niederspannungsnetzen, insbesondere für den Einsatz zwischen einem Neutralleiter N und einem Potentialausgleich PE, mit einem zylinderischen Gehäuse, mit zwei einander axial gegenüberliegenden Elektroden und mit einer im Inneren des Gehäuses ausgebildeten Lichtbogenbrennkammer, wobei die Lichtbogenbrennkammer axial von den beiden Elektroden begrenzt ist und zwischen den beiden Elektroden eine Funkenstrecke ausgebildet ist, so dass beim Zünden der Funkenstrecke zwischen den beiden Elektroden ein Lichtbogen entsteht.
  • Wenn Überspannungen auftreten, die oberhalb der oberen Toleranzgrenze der jeweiligen Nennspannung liegen, müssen die betroffenen Geräte, Anlagen und Leitungen in möglichst kurzer Zeit mit dem Potentialausgleich kurzgeschlossen werden. Dafür werden je nach Einsatzort (Schutzzone) und Art der zu schützenden Geräte und Anlagen unterschiedliche Bauelemente verwendet. Die einzelnen Bauelemente unterscheiden sich dabei im Wesentlichen durch ihr Ansprechverhalten und ihr Ableitvermögen.
  • Wesentlicher Bestandteil von Überspannungsableitern der hier in Rede stehenden Art ist eine Funkenstrecke, die bei einer bestimmten Überspannung anspricht, wobei beim Zünden der Funkenstrecke zwischen den beiden Elektroden ein Lichtbogen entsteht. Dabei können sehr hohe und steil ansteigende Ströme mit Werten bis in den dreistelligen kA-Bereich über die Funkenstrecke fließen. Insbesondere Überspannungsableiter, die als Blitzstromableiter für den Einsatz zwischen einem Neutralleiter N und dem Potentialausgleich PE bzw. eimem PE-Leiter vorgesehen sind, müssen dabei über ein sehr hohes Stoßstromableitvermögen von bis zu 100 kA 10/350 µs verfügen. Aufgrund der dabei im Inneren des Überspannungsableiters auftretenden Drücke und Kräfte sind derartige Überspannungsableiter in der Regel in druckfesten Gehäusen angeordnet.
  • Überspannungsableiter mit einer Funkenstrecke haben zwar den Vorteil einer hohen Stoßstromtragfähigkeit, jedoch auch den Nachteil einer relativ hohen und auch nicht sonderlich konstanten Ansprechspannung. Daher werden zur Zündung von Funkenstrecken bereits seit langem unterschiedliche Arten von Zündhilfen verwendet, mit deren Hilfe die Ansprechspannung der Funkenstrecke bzw. des Überspannungsableiters verringert wird.
  • Bei Überspannungsableitern der in Rede stehenden Art - mit oder ohne Verwendung einer Zündhilfe - entsteht beim Zünden der Funkenstrecke über den Lichtbogen eine niederimpedante Verbindung zwischen den beiden Elektroden, über die - gewollt - der abzuleitende transiente Stoßstrom fließt. Bei anliegender Netzspannung kann über diese niederimpedante Verbindung jedoch auch ein unerwünschter Netzfolgestrom fließen, so dass man bestrebt ist, den Lichtbogen nach abgeschlossenem Ableitvorgang möglichst schnell zu löschen. Eine Möglichkeit zur Erreichung dieses Zieles besteht darin, die Lichtbogenlänge und damit die Lichtbogenspannung nach dem Ansprechen der Funkenstrecke zu vergrößern. Eine andere Möglichkeit, den Lichtbogen nach dem Ableitvorgang zu löschen, besteht in der Kühlung des Lichtbogens durch die Kühlwirkung von Isolierstoffwänden sowie die Verwendung von Gas abgebenden Isolierstoffen.
  • Aus der DE 103 38 835 A1 ist ein eingangs beschriebener Überspannungsableiter bekannt, bei dem das Auftreten eines Netzfolgestromes dadurch verhindert wird, dass der Abstand zwischen den beiden Elektroden so groß gewählt ist, dass die Lichtbogenspannung größer als die erwartete Netzspannung ist. Damit die Ansprechspannung dieses Überspannungsableiters durch den relativ großen Abstand der beiden Elektroden der Funkenstrecke nicht zu groß ist, ist eine Zündhilfe vorgesehen, durch die die gewünschte Ansprechspannung des Überspannungsableiters eingestellt werden kann.
  • Um ein erneutes Zünden der Funkenstrecke zu verhindern, sind bei dem bekannten Überspannungsableiter Kühlkanäle im Gehäuse vorgesehen, durch die die in der Lichtbogenbrennkammer beim Ableitvorgang durch den Lichtbogen produzierten heißen, ionisierten Gase aus dem Gehäuse abgeführt werden. Damit die aus dem Gehäuse ausströmenden Gase keine zu hohe Temperatur aufweisen, müssen die Kühlkanäle so ausgebildet sein, dass sie eine ausreichend lange Wegstrecke zur Verfügung stellen, die das Plasma im Gehäuse entlangströmt. Bei dem aus der DE 103 38 835 A1 bekannten Überspannungsableiter wird dies dadurch erreicht, dass das Gehäuse zweiteilig ausgebildet ist und die beiden Gehäusehälften koaxial zueinander angeordnet sind, wobei zwischen den beiden Gehäuseteilen schraubenförmige Kühlkanäle angeordnet sind, durch die zum Einen das Plasma strömen kann, die zum Anderen gleichzeitig zur Verschraubung der beiden Gehäuseteile miteinander dienen.
  • Da das Gehäuse aus zwei koaxial zueinander angeordneten Gehäuseteilen besteht, die miteinander verschraubt werden, muss zur Gewährleistung einer ausreichenden mechanischen Stabilität die Wandstärke der beiden Gehäuseteile relativ groß sein, was zu einem entsprechend vergrößerten Außendurchmesser des Gehäuses insgesamt führt. Darüber hinaus besteht bei dem bekannten Überspannungsableiter - wie bei allen ausblasenden Funkenstrecken - das grundsätzliche Problem, dass durch das aus den Kanälen austretende ionisierte Gas elektrische Bauteile und Geräte, die sich im unmittelbaren Umfeld des Überspannungsableiters befinden, beeinträchtigt oder geschädigt werden können. US2431226A1 offenbart einen Überspannungsableiter gemäß dem Oberbegriff des Anspruchs 1.
  • Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, den eingangs beschriebenen Überspannungsableiter derart weiterzuentwickeln, dass die zuvor genannten Nachteile nach Möglichkeit vermieden werden. Insbesondere soll dabei auf das Ausblasen von ionisierten Gasen verzichtet werden, wobei jedoch der Überspannungsableiter eine möglichst geringe Baugröße aufweisen soll.
  • Diese Aufgabe ist bei dem eingangs beschriebenen Überspannungsableiter mit den Merkmalen des Patentanspruchs 1 dadurch gelöst, dass innerhalb des Gehäuses zwei Kammern ausgebildet sind, die jeweils über mindestens einen Kanal mit der Lichtbogenbrennkammer verbunden sind, wobei das Volumen der beiden Kammern zusammen größer als das Volumen der Lichtbogenbrennkammer ist, so dass nach dem Zünden der Funkenstrecke heißes ionisiertes Gas aus der Lichtbogenbrennkammer in die Kammern strömen kann. Vorzugsweise ist das Volumen der beiden der Entionisierung der Lichtbogenbrennkammer dienenden Kammern zusammen wesentlich größer als das Volumen der Lichtbogenbrennkammer, wobei das Verhältnis des Volumens der beiden Kammern zum Volumen der Lichtbogenbrennkammer mindestens 10 : 1, insbesondere etwa 20 : 1 beträgt.
  • Bei dem erfindungsgemäßen Überspannungsableiter handelt es sich somit um einen gekapselten Überspannungsableiter der keine Ausström- oder Ausblasöffnungen aufweist, durch die ionisiertes Gas gewollt in die Umgebung abgegeben wird. Die beiden Kammern sind in Längsrichtung des Gehäuses auf einander gegenüberliegenden Seiten der Lichtbogenbrennkammer angeordnet, wobei die beiden Kammern jeweils einen axialen und einen radialen Abstand zur Lichtbogenbrennkammer aufweisen. Aus Sicht der Lichtbogenbrennkammer sind die beiden Kammern, die zur Aufnahme der beim Ableitvorgang entstehenden heißen, ionisierten Gase dienen, somit radial nach außen versetzt hinter den Elektroden bzw. deren die Lichtbogenbrennkammer begrenzenden Stirnseite angeordnet.
  • Die erfindungsgemäße Ausgestaltung und Anordnung der beiden Kammern innerhalb des Gehäuses ermöglichen zunächst, dass beim Ableitvorgang durch den brennenden Lichtbogen entstehende heiße, leitfähige Gase aus der Lichtbogenbrennkammer abströmen können, so dass ein Netzfolgestrom gelöscht und ein erneutes Zünden der Funkenstrecke unterhalb der Ansprechspannung des Überspannungsableiters verhindert wird. Darüber hinaus wird durch die Anordnung der beiden Kammern auf einander gegenüberliegenden Seiten der Lichtbogenbrennkammer und hinter den Elektroden durch das in die Kammern strömende Gas eine Kraft bzw. ein Druck in Richtung der Elektroden generiert, der dem Druck entgegenwirkt, der beim Zünden der Funkenstrecke in der Lichtbogenbrennkammer entsteht. Die Belastung der beiden Elektroden der Funkenstrecke wird dadurch verringert.
  • Das gewünschte große Volumen der beiden Kammern im Vergleich zum Volumen der Lichtbogenbrennkammer kann vorzugsweise dadurch relativ einfach realisiert werden, dass die beiden Kammern ringförmig ausgebildet sind. Dabei wird in vorteilhafter Weise der Umstand ausgenutzt, dass in der Regel im Gehäuse eines Überspannungsableiters im Bereich hinter den Elektroden am einfachsten der benötigte Volumen für die Kammern zur Verfügung gestellt werden kann, ohne dass die Außenabmessungen des Überspannungsableiters vergrößert werden müssen. Darüber hinaus führt die ringförmige Ausbildung der beiden Kammern auch zu einer geringeren mechanischen Belastung des Gehäuses, da die Drücke und Kräfte im Wesentlichen gleichmäßig verteilt auf das Gehäuse wirken.
  • Gemäß einer vorteilhaften Ausgestaltung der Erfindung ist im Gehäuse des Überspannungsableiters ein zylinderförmiger Isolierkörper angeordnet, der eine sich in Längsrichtung des Gehäuses erstreckende Bohrung aufweist, in die die beiden Elektroden mit ihren der Lichtbogenbrennkammer zugewandten Stirnseite jeweils hineinragen, so dass der Isolierkörper die Lichtbogenbrennkammer radial umgibt. Außerdem ist der zumindest eine Kanal zumindest teilweise von dem Isolierkörper gebildet. Bei dem erfindungsgemäßen Überspannungsableiter wird die Lichtbogenbrennkammer somit in axialer Richtung von den beiden einander gegenüberliegenden Elektroden bzw. deren Stirnseiten und in radialer Richtung von dem zylinderförmigen Isolierkörper begrenzt. Hierbei ist die Begrenzung der Lichtbogenbrennkammer in radialer Richtung jedoch durch den mindestens einen Kanal unterbrochen, über den die Lichtbogenbrennkammer mit den beiden Kammern verbunden ist.
  • Mit Hilfe des zylinderförmigen Isolierkörpers kann der mindestens eine Kanal zwischen der Lichtbogenbrennkammer und den beiden Kammern einfach dadurch realisiert werden, dass im Isolierkörper entsprechende Ausnehmungen, Öffnungen oder Freiräume ausgebildet sind, die eine Strömung des Gases von der Lichtbogenbrennkammer in die beiden Kammern ermöglichen. Der eigentliche Kanal muss dabei nicht vollständig von dem Isolierkörper umgeben sein, sondern kann auch - ganz oder Abschnittsweise - von einem Abschnitt des Isolierkörpers und einem Abschnitt eines anderen, dem Abschnitt des Isolierkörpers gegenüberliegenden Bauteil gebildet sein. Darüber hinaus dient der Isolierkörper auch zur Gewährleistung der dauerhaften Isolation zwischen den beiden Elektroden und zur mechanischen Stabilität der Funkenstrecke, indem der Isolierkörper sicherstellt, dass der Abstand der beiden Elektroden zueinander auch nach einem Ableitvorgang unverändert bleibt.
  • Konstruktiv ist der Isolierkörper dabei vorzugsweise so ausgebildet, dass er einen die Bohrung umgebenden inneren Abschnitt und einen hülsenförmigen äußeren Abschnitt aufweist, der in Längsrichtung des Gehäuses eine größere Erstreckung als der innere Abschnitt hat. Der hülsenförmige äußere Abschnitt dient dabei auch zur Isolierung der Elektroden gegenüber dem Gehäuse, insbesondere wenn dieses vorzugsweise aus Metall besteht, während der inneren Abschnitt zur Gewährleistung der dauerhaften Isolation zwischen den beiden Elektroden und zur mechanischen Stabilität der Funkenstrecke dient. Darüber hinaus ist zumindest ein Teil des Kanals zwischen dem inneren Abschnitt und dem äußeren Abschnitt des Isolierkörpers ausgebildet.
  • Vorzugsweise weist dabei der innere Abschnitt des Isolierkörpers zwei kreisbogenförmige Stege auf, die sich in Umfangsrichtung des inneren Abschnitts nur in einem kleinen Bereich überlappen und in Längsrichtung des Gehäuses hintereinander angeordnet sind. Die beiden kreisförmigen Stege bilden somit zusammen zumindest einen Teil der radialen Begrenzung der Bohrung des Isolierkörpers, wobei die beiden Stege jedoch axial versetzt zueinander angeordnet sind. Die beiden kreisbogenförmigen Stege weisen somit eine in Längsrichtung des Gehäuses sich erstreckende Dicke auf, die geringer als die entsprechende Gesamtdicke des inneren Abschnitts des Isolierkörpers ist, so dass jeweils ein Freiraum verbleibt, durch den das ionisierte Gas strömen kann. Darüber hinaus weisen die beiden kreisbogenförmigen Stege zumindest in den Bereichen, in denen sie sich nicht überlappen, einen radialen Abstand zum äußeren Abschnitt des Isolierkörpers auf, so dass das Gas zwischen den Stegen und dem äußeren Abschnitt hindurchströmen kann.
  • Durch die beiden kreisbogenförmigen Stege sind zwei Kanäle ausgebildet, die die Lichtbogenbrennkammer jeweils mit beiden Kammern verbinden. Die beiden Kanäle weisen dabei jeweils einen ersten radial verlaufenden Kanalabschnitt und einen zweiten axial verlaufenden Kanalabschnitt auf, wobei die ersten Kanalabschnitte mit der Lichtbogenbrennkammer und die zweiten Kanalabschnitte jeweils mit beiden Kammern verbunden sind. Heißes ionisiertes Gas, das nach dem Zünden der Funkenstrecke durch den Lichtbogen in der Lichtbogenbrennkammer entsteht, kann somit radial an den beiden kreisbogenförmigen Stegen vorbei bzw. entlang strömen und dann axial zwischen dem äußeren Rand der kreisbogenförmigen Stege und dem äußeren Abschnitt des Isolierkörpers hindurch und entlang der Innenfläche des hülsenförmigen äußeren Abschnitts in die beiden Kammern strömen.
  • Der erfindungsgemäße Überspannungsableiter weist vorzugsweise eine innerhalb des Gehäuses angeordnete Zündhilfe auf, die zumindest ein Zündelement und eine Zündelektrode umfasst. Das Zündelement und die Zündelektrode stehen dabei mit der Lichtbogenbrennkammer in Berührung, wobei das Zündelement auf der einen Seite mit der einen Elektrode und auf der anderen Seite mit der Zündelektrode elektrisch leitend verbunden ist. Von ihrem grundsätzlichen Aufbau kann die bei dem erfindungsgemäßen Überspannungsableiter verwendete Zündhilfe so aufgebaut sein, wie auch die in der DE 103 38 835 A1 beschriebene Zündhilfe aufgebaut ist. Beim Zünden der Zündhilfe fließt zunächst ein Strom vom ersten Anschluss über das Gehäuse, die Zündelektrode und das Zündelement zur weiten Elektrode bzw. zum zweiten Anschluss. Dabei führt der Stromfluss über das Zündelement zu einer Entladung bzw. einem Initiallichtbogen zwischen der Zündelektrode und der dem Zündelement zugeordneten Elektrode, was dann zu einem Zünden der Funkenstrecke zwischen den beiden Elektroden führt.
  • Damit das Zündelement und die Zündelektrode - wie zuvor beschrieben - mit der Lichtbogenbrennkammer in Berührung stehen können, weist der innere Abschnitt des Isolierkörpers vorzugsweise einen Aufnahmebereich für das Zündelement und die Zündelektrode auf, der eine Öffnung zur Lichtbogenbrennkammer hat, über die die Zündelektrode und das Zündelement mit dem Lichtbogenbrennkammer in Berührung stehen. Der am inneren Abschnitt des Isolierkörpers ausgebildete Aufnahmebereich ist vorzugsweise in Umfangsrichtung des inneren Abschnitts zwischen den beiden kreisbogenförmigen Stegen angeordnet, so dass der innere Abschnitt des Isolierkörpers in Umfangsrichtung in drei Bereiche unterteilt ist, nämlich die beiden kreisbogenförmigen Stege, die sich in einem kleinen Bereich überlappen, und den Aufnahmebereich für das Zündelement und die Zündelektrode, wobei dieser vorzugsweise gegenüberliegend von dem Überlappungsbereich angeordnet ist.
  • Um eine hohe mechanische Stabilität zu gewährleisten und die beim Ableitvorgang auftretenden Kräfte sicher beherrschen zu können, besteht das Gehäuse vorzugsweise aus Metall, insbesondere aus Stahl. Außerdem ist das Gehäuse zweiteilig ausgebildet, wobei es aus einem topfförmigen ersten Gehäuseteil und einem dazu korrespondierenden Gehäusedeckel besteht. Der Gehäusedeckel weist dabei vorzugsweise ein Außengewinde auf, so dass dieser in das erste Gehäuseteil eingeschraubt werden kann, welches dazu ein entsprechendes Innengewinde aufweist. Durch die Ausbildung des Gehäuses mit einem topfförmigen ersten Gehäuseteil und einem Gehäusedeckel kann der Außendurchmesser des Gehäuses im Vergleich zu dem aus der DE 103 38 835 A1 bekannten Gehäuse mit zwei im wesentlichen gleich lang ausgebildeten koaxialen Gehäusehälften verringert werden, ohne dass die Wandstärke des ersten Gehäuseteils verringert oder der im Inneren des Gehäuses zur Verfügung stehende Platz reduziert wird.
  • Wie für sich aus dem Stand der Technik bekannt ist, sind auch bei dem erfindungsgemäßen Überspannungsableiter die beiden Elektroden jeweils in der Stirnseite eines Elektrodenhalters angeordnet. Dies hat den Vorteil, dass für die Elektroden einerseits und für die Elektrodenhalter andererseits unterschiedliche Materialien verwendet werden können, wobei die Elektroden selber in der Regel aus Wolfram oder einem Verbundwerkstoff, beispielsweise einer Wolfram-Kupferlegierungen und die Elektrodenhalter aus Messing bestehen. Während die den Elektroden abgewandten Enden der Elektrodenhalter zum elektrischen Anschluss der Elektroden jeweils an einer Stirnseite des Gehäuses aus diesem herausragen, liegt die die Elektroden aufnehmende Stirnseite der Elektrodenhalter jeweils auf einer Seite am inneren Abschnitt des Isolierkörpers an, so dass die die Elektroden umgebende Stirnseite der Elektrodenhalter durch den inneren Abschnitt des Isolierkörpers abgedeckt sind.
  • Damit bei der bevorzugten Ausgestaltung des erfindungsgemäßen Überspannungsableiters, bei dem das Gehäuse aus Metall besteht, keine elektrisch leitende Verbindung der beiden Elektrodenhalter über das metallische Gehäuse erfolgen kann, sind die Elektrodenhalter jeweils von einer beidseitig offenen Isolierhülle umgeben. Insbesondere in Verbindung mit dem hülsenförmigen äußeren Abschnitt des Isolierkörpers ist dadurch eine sichere und dauerhafte Isolierung zwischen den beiden Elektrodenhaltern und damit auch zwischen den an den Elektrodenhaltern angeschlossenen Leitern, insbesondere einem Neutralleiter und dem Potentialausgleich bzw. einem PE-Leiter gewährleistet.
  • Im Einzelnen gibt es nun eine Vielzahl von Möglichkeiten, den erfindungsgemäßen Überspannungsableiter auszugestalten und weiterzubilden. Dazu wird verwiesen sowohl auf die dem Patentanspruch 1 nachgeordneten Patentansprüche, als auch auf die nachfolgende Beschreibung eines bevorzugten Ausführungsbeispiels in Verbindung mit der Zeichnung. In der Zeichnung zeigen
  • Fig. 1
    eine Seitenansicht eines erfindungsgemäßen Überspannungsableiters,
    Fig. 2
    einen ersten Längsschnitt durch den Überspannungsableiter gemäß Fig. 1,
    Fig. 3
    einen um 90° gedrehten zweiten Längsschnitt durch den Überspannungsableiter gemäß Fig. 1,
    Fig. 4
    eine Explosionsdarstellung des Überspannungsableiters,
    Fig. 5
    eine perspektivische Darstellung eines Isolierkörpers des Überspannungsableiters, und
    Fig. 6
    eine Draufsicht auf den Isolierkörper gemäß Fig. 5.
  • Die Figuren 1 bis 4 zeigen einen erfindungsgemäßen Überspannungsableiter 1, wobei in der Fig. 4 eine Explosionsdarstellung des Überspannungsableiters 1 dargestellt ist, so dass die einzelnen Bauteile des Überspannungsableiters 1 erkennbar sind. Der erfindungsgemäße Überspannungsableiter 1 ist insbesondere für den Einsatz zwischen einem Neutralleiter N und dem Potentialausgleich PE vorgesehen, so dass der Überspannungsableiter 1 eine Stoßstromableitvermögen von bis zu 100 kA 10/350 µs aufweisen muss. Darüber hinaus müssem Netzfolgeströme bis 100 A sicher gelöscht werden können.
  • Der Überspannungsableiter 1 weist ein zylindrisches Gehäuse 2 auf, in dessen Innerem zwei einander axial gegenüberliegende Elektroden 3, 4 angeordnet sind. Das Gehäuse 2 ist dabei aus Stahl und weist ein topfförmiges erstes Gehäuseteil 2a und einen Gehäusedeckel 2b auf, der in das erste Gehäuseteil 2a eingeschraubt ist. Hierdurch wird ein druckfestes und gleichzeitig sehr kompaktes Gehäuse zur Verfügung gestellt. Die beiden Elektroden 3, 4 begrenzen mit ihren einander gegenüberliegenden Stirnseiten die in dem Gehäuse 2 ausgebildete Lichtbogenbrennkammer 5, so dass zwischen den beiden Elektroden 3, 4 eine Funkenstrecke ausgebildet ist. Der Abstand der beiden Elektroden voneinander und damit die Erstreckung der Lichtbogenbrennkammer 5 in Längsrichtung des Gehäuses 2 beträgt bei dem dargestellten Überspannungsableiter 1 weniger als 1 mm, vorzugsweise nur etwa 0,8 mm.
  • Wie aus den Fig. 2 und 3 ersichtlich ist, sind innerhalb des Gehäuses 2 zwei Kammern 6, 7 ausgebildet, die beide über zwei Kanäle 8, 9 mit der Lichtbogenbrennkammer 5 verbunden sind. Die beiden Kammern 6, 7 sind dabei in Längsrichtung des Gehäuses 2 auf einander gegenüberliegenden Seiten der Lichtbogenbrennkammer 5 angeordnet. Darüber hinaus weisen die beiden Kammern 6, 7 jeweils einen axialen und radialen Abstand zur Lichtbogenbrennkammer 5 auf, so dass die beiden Kammern 6, 7 aus Sicht der Lichtbogenbrennkammer 5 radial nach außen versetzt hinter den Elektroden 3, 4 angeordnet sind. Das Volumen der beiden ringförmigen Kammern 6, 7 zusammen ist dabei wesentlich größer als das Volumen der Lichtbogenbrennkammer 5. Vorzugsweise beträgt das Verhältnis des Volumens der beiden Kammern 6, 7 zum Volumen der Lichtbogenbrennkammer 5 etwa 20 : 1.
  • Beim Ableitvorgang durch den brennenden Lichtbogen entstehende heiße, leitfähige Gase können somit durch die Kanäle 8, 9 in die der Entionisierung und Kühlung dienenden ringförmigen Kammern 6, 7 strömen, so dass ein innerhalb der Lichtbogenbrennkammer 5 anstehender Lichtbogen schnell gelöscht und ein erneutes Zünden sicher verhindert wird. Durch die Anordnung der Kammern 6, 7 hinter den Elektroden 3, 4 werden die heißen, ionisierten Gase in Bereiche geführt, die sowohl hinsichtlich der Gefahr einer erneuten Zündung als auch hinsichtlich der Isolation zwischen den beiden Elektroden 3, 4 unkritisch sind. Da die ringförmigen Kammern 6, 7 von dem aus Metall bestehenden Gehäuse 2 umgeben sind, wird auch eine gute und schnelle Wärmeabgabe an das Gehäuse 2 und damit eine rasche Abkühlung der Gase ermöglicht. Da die Kammern 6, 7 keine Öffnungen bzw. Austrittskanäle aufweisen, so dass heißes ionisierte Gas nicht aus dem Gehäuse 2 ausgeblasen wird, besteht auch nicht die Gefahr, dass in der Nähe des Überspannungsableiters 1 angeordnete elektrische Bauteile und Geräte beeinträchtigt werden.
  • Ein wesentliches Bauteil des erfindungsgemäßen Überspannungsableiters 1 ist der im Inneren des Gehäuses 2 angeordnete zylinderförmige Isolierkörper 10, der in den Fig. 5 und 6 vergrößert dargestellt ist. Der Isolierkörper 10 weist eine sich in Längsrichtung des Gehäuses 2 erstreckende Bohrung 11 auf, in die die beiden Elektroden 3, 4 jeweils mit ihrer der Lichtbogenbrennkammer 5 zugewandten Stirnseite hineinragen. Der Isolierkörper 10 weist einen die Bohrung 11 umgebenden inneren Abschnitt 12 und einen hülsenförmigen äußeren Abschnitt 13 auf, der in Längsrichtung des Gehäuses 2 eine deutlich größere Erstreckung als der innere Abschnitt 12 hat, wie aus den beiden Schnittdarstellungen gemäß den Fig. 3 und 4 ersichtlich ist.
  • Aus den Fig. 5 und 6 ist erkennbar, dass der innere Abschnitt 12 des Isolierkörpers 10 zwei kreisbogenförmige Stege 14, 15 aufweist, die sich in Umfangsrichtung des inneren Abschnitts 12 nur in einem kleinen, stegartigen Bereich 16 überlappen und in Längsrichtung des Gehäuses 2 hintereinander angeordnet sind. Die beiden kreisbogenförmigen Stege 14, 15 weisen außerdem einen radialen Abstand zum äußeren Abschnitt 13 des Isolierkörpers 10 auf, so dass zwischen dem äußeren Rand der kreisbogenförmigen Stege 14, 15 und dem hülsenförmigen äußeren Abschnitt 13 zwei Durchgänge 17 für das Gas gebildet sind, die einen Teil der beiden Kanäle 8, 9 bilden.
  • Wie aus Fig. 2 ersichtlich ist, weisen die beiden Kanäle 8, 9 jeweils einen ersten radial verlaufenden Kanalabschnitt 8a, 9a und einen zweiten axial verlaufenden Kanalabschnitt 8b, 9b auf. Die ersten Kanalabschnitte 8a, 9a, die auf einer Seite jeweils von einem Steg 14, 15 begrenzt sind, sind mit der Lichtbogenbrennkammer 5 verbunden, während die zweiten Kanalabschnitte 8b, 9b jeweils mit beiden Kammern 6, 7 verbunden sind. Die zwischen den kreisbogenförmigen Stegen 14, 15 und dem hülsenförmigen äußeren Abschnitt 13 vorgesehenen Durchgänge 17 ermöglichen es dabei, dass heißes ionisiertes Gas, über beide Kanäle 8, 9 aus der Lichtbogenbrennkammer 5 in beide Kammern 6, 7 strömen kann. Das Gas kann somit aus der Lichtbogenbrennkammer 5 radial an den beiden kreisbogenförmigen Stegen 14, 15 vorbei bzw. entlang strömen und dann axial entlang der Innenfläche des hülsenförmigen äußeren Abschnitts 13 in beide Kammern 6, 7 strömen.
  • Der Isolierkörper 10 dient außerdem noch zur Aufnahme eines Zündelements 18 und einer Zündelektrode 19, die zusammen eine Zündhilfe für die Funkenstrecke des Überspannungsableiters 1 bilden. Hierzu ist in dem inneren Abschnitt 12 des Isolierkörpers 10 ein Aufnahmebereich 20 vorgesehen, der eine Öffnung 21 zur Lichtbogenbrennkammer 5 hat, so dass das Zündelement 18 und die Zündelektrode 19 durch die Öffnung 21 mit der Lichtbogenbrennkammer 5 in Berührung stehen, wie dies aus Fig. 3 ersichtlich ist. Aus der Draufsicht auf den Isolierkörper 10 gemäß Fig. 6 ist erkennbar, dass der Aufnahmebereich 20 in Umfangsrichtung des inneren Abschnitts 12 zwischen den beiden kreisbogenförmigen Stegen 14, 15 angeordnet ist, wobei sich die beiden kreisbogenförmigen Stege 14, 15 und der Aufnahmebereich 20 jeweils über etwa ein Drittel des Umfangs des inneren Abschnitts 12 des Isolierkörpers 10 erstrecken.
  • Der innere Abschnitt 12 des Isolierkörpers 10 ist somit funktional in drei Bereiche aufgeteilt, wobei in dem Aufnahmebereich 20 für das Zündelement 18 und die Zündelektrode 19 die Zündung der Funkenstrecke erfolgt, während die kreisbogenförmigen Stege 14, 15 jeweils einen Teil der beiden Kanäle 8, 9 für die Strömung des ionisierten Gases aus der Lichtbogenbrennkammer 5 in die beiden zylindrischen Kammern 6, 7 bilden. Um eine ausreichende Stabilität des Isolierkörpers 10 zu gewährleisten, ist der stegartige Bereich 16, in dem sich die kreisbogenförmigen Stege 14, 15 überlappen, mit dem äußeren Abschnitt 13 des Isolierkörpers 10 verbunden. Dadurch ist auch der stegartige Bereich 16 sehr stabil ausgebildet, so dass sichergestellt ist, dass der Abstand der beiden Elektroden 3, 4 zueinander dauerhaft unverändert bleibt. Hierzu dient neben dem stegartigen Bereich 16 auch der Rand des Aufnahmebereichs 20, der ebenfalls mit dem äußeren Abschnitt 13 des Isolierkörpers 10 verbunden und die gleiche Dicke wie der stegartige Bereich 16 aufweist.
  • Aus den Fig. 5 und 6 ist darüber hinaus erkennbar, dass der äußere Abschnitt 13 des Isolierkörpers 10 eine Aussparung 22 aufweist, die in Umfangsrichtung des Isolierkörpers 10 betrachtet, korrespondierend zum Aufnahmebereich 20 für das Zündelement 18 und die Zündelektrode 19 im inneren Abschnitt 12 angeordnet ist. Die Aussparung 22 gewährleistet es, dass die Zündelektrode 19 mit ihrem äußeren, der Lichtbogenbrennkammer 5 abgewandten Rand mit dem Gehäuse 2 in Berührung steht. Darüber hinaus erleichtert die Ausbildung der Aussparung 22 im äußeren Abschnitt 13 des Isolierkörpers 10 die Montage des Überspannungsableiters 1, da so die Zündelektrode 19 und das Zündelement 18 einfacher in den Aufnahmebereich 20 am inneren Abschnitt 12 des Isolierkörpers 10 eingelegt werden können.
  • Insbesondere aus den Schnittdarstellungen gemäß den Fig. 2 und 3 ist ersichtlich, dass die beiden vorzugsweise aus Wolfram bestehenden Elektroden 3, 4 jeweils in der Stirnseite eines Elektrodenhalters 23, 24 angeordnet sind. Aus der Schnittdarstellung gemäß Fig. 2 ist dabei erkennbar, dass die die Elektroden 3, 4 aufnehmende Stirnseite der Elektrodenhalter 23, 24 jeweils auf einer Seite am inneren Abschnitt 12 des Isolierkörpers 10, nämlich jeweils an einem kreisbogenförmigen Steg 14. bzw. 15 anliegen. Die den Elektroden 3, 4 abgewandten Enden der Elektrodenhalter 23, 24 ragen dagegen aus dem Gehäuse 2 heraus, wozu in dem Boden des topfförmigen ersten Gehäuseteils 2a und in dem Gehäusedeckel 2b jeweils eine Bohrung 25, 26 abgeordnet ist.
  • Die im Inneren des Isolierkörpers 10 ausgebildeten radial verlaufenden Kanalabschnitte 8a, 9a werden somit jeweils auf einer Seite von einem kreisbogenförmigen Steg 14, 15 und auf der anderen Seite von dem gegenüberliegenden Bereich der Stirnseite eines Elektrodenhalters 23, 24 begrenzt. Die beim Ableitvorgang entstehenden heißen ionisierten Gase können dabei ungehindert durch die Kanalabschnitte 8a, 9a strömen, so dass es nicht zu Ablagerungen von leitfähigen Partikeln an den Stirnseiten der Elektrodenhalter 23, 24 kommt. Außerdem werden die Stirnseiten der Elektrodenhalter 23, 24 auch nicht über einen längeren Zeitraum hohen Temperaturen ausgesetzt. Dadurch wird verhindert, dass es bei aus Messing bestehenden Elektrodenhaltern 23, 24 zu einer Beschädigung der Elektrodenhalter 23, 24 oder zu Leckströmen oder Kurzschlüssen aufgrund von leitfähigen Ablagerungen kommt.
  • Um eine elektrische Verbindung zwischen dem metallischen Gehäuse 2 und den Elektrodenhaltern 23, 24 zu verhindern, sind die beiden Elektrodenhalter 23, 24 jeweils von einer beidseitig offenen Isolierhülle 27, 28 umgeben. Damit die Isolierung zwischen dem - in den Figuren rechten Elektrodenhalter 24 und dem topfförmigen ersten Gehäuseteil 2a auch im Bereich der Aussparung 22 im äußeren Abschnitt 13 des Isolierkörpers 10 sichergestellt ist, weist die dem Elektrodenhalter 24 zugeordnete Isolierhülle 28 einen axial und radial überstehenden Kragen 29 auf, der in die Aussparung 22 eingreift, so dass die Isolierung zum ersten Gehäuseteil 2a nur im Bereich des Zündelements 18 und der Zündelektrode 19 unterbrochen ist.

Claims (12)

  1. Überspannungsableiter zum Einsatz in der Stromversorgung von Niederspannungsnetzen, insbesondere für den Einsatz zwischen einem Neutralleiter N und einem Potentialausgleich PE, mit einem zylinderischen Gehäuse (2), mit zwei einander axial gegenüberliegenden Elektroden (3, 4) und mit einer im Inneren des Gehäuses (2) ausgebildeten Lichtbogenbrennkammer (5),
    wobei im Gehäuse (2) ein zylinderförmiger Isolierkörper (10) angeordnet ist, der eine sich in Längsrichtung des Gehäuses (2) erstreckende Bohrung (11) aufweist, in die die beiden Elektroden (3, 4) mit ihren der Lichtbogenbrennkammer (5) zugewandten Stirnseite jeweils hineinragen, so dass der Isolierkörper (10) die Lichtbogenbrennkammer (5) radial umgibt,
    wobei die Lichtbogenbrennkammer (5) in axialer Richtung von den beiden Elektroden (3, 4) und in radialer Richtung von dem zylindrischen Isolierkörper (10) begrenzt ist, und
    wobei zwischen den beiden Elektroden (3, 4) eine Funkenstrecke ausgebildet ist, so dass beim Zünden der Funkenstrecke zwischen den beiden Elektroden (3, 4) ein Lichtbogen entsteht,
    wobei innerhalb des Gehäuses (2) zwei Kammern (6, 7) ausgebildet sind, die jeweils über mindestens einen Kanal (8, 9) mit der Lichtbogenbrennkammer (5) verbunden sind, so dass nach dem Zünden der Funkenstrecke heißes ionisiertes Gas aus der Lichtbogenbrennkammer (5) in die Kammern (6, 7) strömen kann,
    wobei das Volumen der beiden Kammern (6, 7) zusammen größer als das Volumen der Lichtbogenbrennkammer (5) ist,
    wobei die beiden Kammern (6, 7) in Längsrichtung des Gehäuses (2) auf einander gegenüberliegenden Seiten der Lichtbogenbrennkammer (5) angeordnet sind und vom Gehäuse (2) umgeben sind, und
    wobei die Kanäle (8, 9) zumindest teilweise vom Isolierkörper (10) gebildet sind, dadurch gekennzeichnet, dass die beiden Kammern (6,7) jeweils einen axialen und radialen Abstand zur Lichtbogenbrennkammer (5) aufweisen.
  2. Überspannungsableiter nach Anspruch 1, dadurch gekennzeichnet, dass der Isolierkörper (10) einen die Bohrung (11) umgebenden inneren Abschnitt (12) und einen hülsenförmigen äußeren Abschnitt (13) aufweist, der in Längsrichtung des Gehäuses (2) eine größere Erstreckung als der innere Abschnitt (12) aufweist.
  3. Überspannungsableiter nach Anspruch 2, dadurch gekennzeichnet, dass der innere Abschnitt (12) des Isolierkörpers (10) zwei kreisbogenförmige Stege (14, 15) aufweist, die sich in Umfangsrichtung des inneren Abschnitt (12) nur in einem kleinen Bereich (16) überlappen und in Längsrichtung des Gehäuses (2) hintereinander angeordnet sind, wobei die beiden kreisbogenförmigen Stege (14, 15) einen radialen Abstand zum äußeren Abschnitt (13) des Isolierkörpers (10) aufweisen, so dass zwei Kanäle (8, 9) ausgebildet sind, die die Lichtbogenbrennkammer (5) jeweils mit beiden Kammern (6, 7) verbinden, wobei die beiden Kanäle (8, 9) jeweils einen ersten radial verlaufenden Kanalabschnitt (8a, 9a) und einen zweiten axial verlaufenden Kanalabschnitt (8b, 9b) aufweisen, wobei die ersten Kanalabschnitte (8a, 9a) mit der Lichtbogenbrennkammer (5) und die zweiten Kanalabschnitte (8b, 9b) jeweils mit beiden Kammer (6, 7) verbunden sind.
  4. Überspannungsableiter nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass innerhalb des Gehäuses (2) eine Zündhilfe angeordnet ist, die ein Zündelement (18) und eine Zündelektrode (19) aufweist, wobei das Zündelement (18) und die Zündelektrode (19) mit der Lichtbogenbrennkammer (5) in Berührung stehen und das Zündelement (18) auf der einen Seite mit der einen Elektrode (4) und auf der anderen Seite mit der Zündelektrode (19) elektrisch leitend verbunden ist.
  5. Überspannungsableiter nach Anspruch 4, dadurch gekennzeichnet, dass der innere Abschnitt (12) des Isolierkörpers (10) einen Aufnahmebereich (20) für das Zündelement (18) und die Zündelektrode (19) aufweist, wobei der Aufnahmebereich (20) eine Öffnung (21) zur Lichtbogenbrennkammer (5) hat.
  6. Überspannungsableiter nach Anspruch 5, dadurch gekennzeichnet, dass der Aufnahmebereich (20) des inneren Abschnitts (12) des Isolierkörpers (10) in Umfangsrichtung des inneren Abschnitt (12) zwischen den beiden kreisbogenförmigen Stegen (14, 15) angeordnet ist.
  7. Überspannungsableiter nach Anspruch 6, dadurch gekennzeichnet, dass der äußere Abschnitt (13) des Isolierkörpers (10) eine Aussparung (22) aufweist, die korrespondierend zu Aufnahmebereich (20) für das Zündelement (18) und die Zündelektrode (19) am inneren Abschnitt (12) angeordnet ist.
  8. Überspannungsableiter nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Gehäuse (2) aus Metall, insbesondere aus Stahl besteht und zweiteilig ausgebildet ist, nämlich ein topfförmiges erstes Gehäuseteil (2a) und einen Gehäusedeckel (2b) aufweist.
  9. Überspannungsableiter nach einem der Ansprüche 2 bis 8, dadurch gekennzeichnet, dass die beiden Elektroden (3, 4) jeweils in der Stirnseite eines Elektrodenhalters (23, 24) angeordnet sind, wobei die die Elektroden (3, 4) aufnehmende Stirnseite der Elektrodenhalter (23, 24) jeweils auf einer Seite am inneren Abschnitt (12) des Isolierkörpers (10) anliegen und die den Elektroden (3, 4) abgewandten Enden der Elektrodenhalter (23, 24) jeweils an einer Stirnseite des Gehäuses (2) aus dem Gehäuse (2) herausragen.
  10. Überspannungsableiter nach Anspruch 8 und 9, dadurch gekennzeichnet, dass die Elektrodenhalter (23, 24) jeweils von einer beidseitig offenen Isolierhülle (27, 28) umgeben sind, durch die die Elektrodenhalter (23, 24) gegenüber dem Gehäuse (2) isoliert sind.
  11. Überspannungsableiter nach Anspruch 7 und 10, dadurch gekennzeichnet, dass eine Isolierhülle (28) an ihrer der Lichtbogenbrennkammer (5) zugewandten Seite einen axial und radial überstehenden Kragen (29) aufweist, der in die Aussparung (22) des äußeren Abschnitts (13) des Isolierkörpers (10) hineinragt.
  12. Überspannungsableiter nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die beiden Kammern (6, 7) ringförmig ausgebildet sind.
EP15713185.5A 2014-04-01 2015-03-27 Überspannungsableiter Active EP3127199B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014104576.9A DE102014104576B4 (de) 2014-04-01 2014-04-01 Überspannungsableiter
PCT/EP2015/056709 WO2015150253A1 (de) 2014-04-01 2015-03-27 Überspannungsableiter

Publications (2)

Publication Number Publication Date
EP3127199A1 EP3127199A1 (de) 2017-02-08
EP3127199B1 true EP3127199B1 (de) 2019-12-25

Family

ID=52779654

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15713185.5A Active EP3127199B1 (de) 2014-04-01 2015-03-27 Überspannungsableiter

Country Status (4)

Country Link
EP (1) EP3127199B1 (de)
CN (1) CN106463911B (de)
DE (1) DE102014104576B4 (de)
WO (1) WO2015150253A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107578864B (zh) * 2017-08-24 2024-01-30 王巨丰 一种具有四侧喷射通道的曲折同步压缩灭弧防雷装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2431226A (en) * 1943-02-11 1947-11-18 Westinghouse Electric Corp Low-pressure gap device
DE3833167A1 (de) * 1988-09-27 1990-03-29 Siemens Ag Gasentladungs-ueberspannungsableiter
DE19604947C1 (de) * 1996-02-10 1997-07-10 Dehn & Soehne Verfahren zur Beeinflussung des Folgestromlöschvermögens von Funkenstreckenanordnungen und Funkenstreckenanordnungen hierfür
DE19717802B4 (de) * 1997-04-26 2009-09-17 Dehn + Söhne GmbH + Co KG Funkenstrecke
DE19845889B4 (de) * 1998-10-06 2007-03-01 Dehn + Söhne GmbH + Co KG Funkenstreckenanordnung
DE10338835B4 (de) 2003-08-21 2016-06-02 Phoenix Contact Gmbh & Co. Kg Überspannungsschutzeinrichtung
SE532114C2 (sv) * 2007-05-22 2009-10-27 Jensen Devices Ab Gasurladdningsrör

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3127199A1 (de) 2017-02-08
DE102014104576A1 (de) 2015-10-01
DE102014104576B4 (de) 2016-02-11
CN106463911A (zh) 2017-02-22
CN106463911B (zh) 2018-10-12
WO2015150253A1 (de) 2015-10-08

Similar Documents

Publication Publication Date Title
EP1747608B1 (de) Gekapselte, druckfest ausgeführte, nicht hermetisch dichte, rotationssymmetrische hochleistungsfunkenstrecke
DE10338835B4 (de) Überspannungsschutzeinrichtung
EP1677398B1 (de) Überspannungsschutzeinrichtung
EP1258066B1 (de) Druckfest gekapselte funkenstreckenanordnung zum ableiten von schädlichen störgrössen durch überspannungen
DE10018012A1 (de) Druckfest gekapselte Funkenstreckenanordnung zum Ableiten von schädlichen Störgrößen durch Überspannungen
EP1692751B1 (de) Überspannungsschutzeinrichtung
DE102014015611B4 (de) Überspannungsableiter
DE102017114383B4 (de) Überspannungsableiter
DE102008038486A1 (de) Überspannungsschutzeinrichtung
WO2019007566A1 (de) Ableiter zum schutz vor überspannungen
EP3127199B1 (de) Überspannungsableiter
DE19506057B4 (de) Löschfunkenstreckenanordnung
DE102007015364B4 (de) Überspannungsschutzeinrichtung
EP3149814B1 (de) Überspannungsableiter
DE102014015609B3 (de) Überspannungsableiter
DE102014015612B4 (de) Überspannungsableiter
DE10118210B4 (de) Gekapselter Überspannungsableiter mit einer Funkenstreckenanordnung
EP2080253B1 (de) Gekapselte, druckfest ausgeführte, nicht hermetisch dichte, rotationssymmetrische hochleistungsfunkenstrecke
DE102014015610B4 (de) Überspannungsableiter
DE102006048977B4 (de) Gekapselte, druckfest ausgeführte, nicht hermetisch dichte, rotationssymmetrische Hochleistungsfunkenstrecke
DE102018133389A1 (de) Überspannungsableiter
DE102006020129A1 (de) Gakapselte, druckfest ausgeführte, nicht hermetisch dichte, grundkonstruktiv rotationssymmetrische Hochleistungsfunkenstrecke
DE4203041C2 (de)

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20160930

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190709

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015011320

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1218170

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200326

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200425

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015011320

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

26N No opposition filed

Effective date: 20200928

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200327

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200327

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1218170

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230424

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230530

Year of fee payment: 9