EP3122913A1 - Procédé de fabrication d'une pièce mécanique décolletée et anodisée en alliage 6xxx présentant une faible rugosité après anodisation - Google Patents

Procédé de fabrication d'une pièce mécanique décolletée et anodisée en alliage 6xxx présentant une faible rugosité après anodisation

Info

Publication number
EP3122913A1
EP3122913A1 EP15712057.7A EP15712057A EP3122913A1 EP 3122913 A1 EP3122913 A1 EP 3122913A1 EP 15712057 A EP15712057 A EP 15712057A EP 3122913 A1 EP3122913 A1 EP 3122913A1
Authority
EP
European Patent Office
Prior art keywords
mechanical part
roughness
anodizing
composition
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP15712057.7A
Other languages
German (de)
English (en)
Inventor
Lukasz Dolega
Jean-Sylvestre Safrany
Ivo Kolarik
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Constellium Extrusions Decin sro
Original Assignee
Constellium Extrusions Decin sro
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Constellium Extrusions Decin sro filed Critical Constellium Extrusions Decin sro
Priority to DE15712057.7T priority Critical patent/DE15712057T1/de
Publication of EP3122913A1 publication Critical patent/EP3122913A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/007Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D7/00Casting ingots, e.g. from ferrous metals
    • B22D7/005Casting ingots, e.g. from ferrous metals from non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • C25D11/08Anodisation of aluminium or alloys based thereon characterised by the electrolytes used containing inorganic acids
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • C25D11/10Anodisation of aluminium or alloys based thereon characterised by the electrolytes used containing organic acids
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/16Pretreatment, e.g. desmutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • B21C1/003Drawing materials of special alloys so far as the composition of the alloy requires or permits special drawing methods or sequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/002Extruding materials of special alloys so far as the composition of the alloy requires or permits special extruding methods of sequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B1/00Methods for turning or working essentially requiring the use of turning-machines; Use of auxiliary equipment in connection with such methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2222/00Materials of tools or workpieces composed of metals, alloys or metal matrices
    • B23B2222/04Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/10Coatings

Definitions

  • the invention relates to turned parts obtained from spun rod or bar products, aluminum alloy series AA6xxx, and in particular their manufacturing process comprising machining and anodizing treatment.
  • Bar turning refers to a field of manufacture by machining, in large series, mechanical parts typically of revolution (screw, bolt, shaft, piston, etc.) by removal of material from bars or rods of metal.
  • the parts are produced at high speeds on manual or digital cutting machines.
  • the productivity and the surface condition as well as the dimensional accuracy of the final part are the main objectives attached to this type of manufacturing.
  • the parts may undergo a protective surface treatment, typically by anodizing.
  • the so-called hard anodization typically carried out at low temperature (0-5 ° C), high current density in the presence of sulfuric acid makes it possible to obtain coatings that are particularly resistant to abrasion.
  • Clogging consists of closing the pores of the oxide layer. It can be done hot or cold. When hot, this operation is a partial thermo hydration of the alumina which crystallizes in alumina monohydrate (Boehmite) and, by swelling of the oxide, proceeds to the closing of the pores. It is usually carried out by immersion in the deionized water at 96 ° C minimum. In cold, typically at a temperature of 25-30 ° C, this operation is similar to an impregnation which allows the sealing of the pores by precipitation of salts. It is done by immersion in a solution containing, for example, nickel fluorides.
  • the international application WO2005 / 100623 discloses alloys, preferably in spun form, suitable for free cutting and composition in weight% Si 0.6 - 2.0; Fe 0.2 - 1.0; Mg 0.5 - 2.0, Cu max 1.0, Mn max 1.5, Zn max 1.0, Cr max 0.35, Ti max 0.35 and Zr 0.04 - 0.3.
  • the problem that the present invention seeks to solve is to obtain by machining mechanical parts which after machining and anodizing have a low roughness.
  • a first object of the invention is a method of manufacturing a mechanical part in which successively
  • the mechanical part thus obtained is shaped j.
  • the mechanical part thus obtained is anodized, said anodization being carried out at a temperature of between 15 and 40 ° C. with a solution comprising 100 to 250 g / l of sulfuric acid and 10 to 30 g / l of oxalic acid and 5 to 30 g / l of at least one polyol.
  • a second object of the invention is a mechanized and anodized mechanical part obtained by the method according to the invention.
  • the static mechanical characteristics in other words the ultimate tensile strength Rm, the conventional yield stress at 0.2% elongation Rp0.2 and the elongation at break A%, are determined by a tensile test according to ISO 6892-1, the sampling and the direction of the test being defined by EN 485-1.
  • the bar turning ability is evaluated by a machining test as described in international application WO2013 / 170953 in paragraph [0039].
  • the test consists in determining the fragmentation ability of the chips by measuring the number of chips in a determined mass of chips collected, here 100g.
  • the machining is carried out using a SP 12 CNC lathe and a rhombic insert with a basic shape of 80 ° sold under the registered trademark SANDVIK Coromant Coroturn® 107 with the reference CCGX 09 T3 04-AL, designed for aluminum alloys .
  • the machining parameters used are a rotation speed of 3150 rpm, a feed of 0.3 mm / revolution and a cutting depth of 3.5 mm.
  • the spun products according to the invention are suitable for bar turning, that is to say that they present to the test described in the international application WO2013 / 170953 in paragraph [0039] a number of chips per 100g of chips of at least 3000 and preferably at least 4000.
  • Three roughness parameters measured according to ISO 4287 are used:
  • Rmax maximum height of the roughness profile, which is the largest of the R Z i values over the evaluation length
  • R z Average profile height R z , the arithmetic mean of the individual values R z i over the evaluation length
  • Ra Average roughness difference is the arithmetic mean of all the ordinates of the profile over the evaluation length.
  • a substantially recrystallized granular structure is called a granular structure such that the degree of recrystallization at a thickness is greater than 70% and preferably greater than 90%.
  • the recrystallization rate is defined as the surface fraction on a metallographic section occupied by recrystallized grains.
  • the present inventors have found that for known free-cutting alloys, such as the alloys AA6262, AA6064A or AA6042 or the alloy described in the international application WO2013 / 170953, the roughness after anodization to obtain a layer of oxide of thickness of at least 20 ⁇ and much greater than the roughness before anodization. Typically even if after machining a roughness such as R z is obtained
  • the roughness after anodization is at least 1.80 ⁇ or more.
  • the present inventors have found that this problem is solved by using a specific anodizing method. Moreover, by combining this specific anodizing process with certain compositions of the alloy and / or the granular structure of the spun products, it is possible to obtain a very low roughness in certain cases.
  • a billet made of aluminum alloy of composition in% by weight, Si 0.4 - 3.0; Mg 0.6 - 2.0; Cu 0.20 - 1.0; Fe 0.15 - 1.8; Mn ⁇ 0.5; Ni ⁇ 1; Ti ⁇ 0.15; Cr ⁇ 0.15; Bi ⁇ 0.8; Pb ⁇ 0.4; Zr ⁇ 0.04 other elements
  • the simultaneous minimum values of silicon, magnesium, copper and iron make it possible in particular to obtain spun products particularly suitable for bar turning.
  • the iron content is at least 0.20% by weight and / or the copper content is at least 0.23% by weight. Alloys not having these minimum contents such as for example alloys 6063 or 6463 are not suitable for bar turning.
  • the billet is homogenized.
  • homogenization is carried out at a temperature of at least 480 ° C.
  • the billet is then spun to obtain a product spun and quenched on spinning heat.
  • colder and / or cold deformation is typically carried out by pulling and / or drawing, and / or ripening said spun product.
  • the eventual maturation is typically from a few hours to a few days.
  • the spun product then returned.
  • the product is produced at a temperature of between 150 and 200 ° C. and preferably between 170 and 190 ° C. for a period of between 5 and 25 hours and preferably between 8 and 15 hours. It is possible after income to carry out a cold deformation typically by stretching, so as to obtain a T9 state.
  • the spun product thus obtained is then machined to obtain a mechanical part Vietnameselletée.
  • said machining is performed by turning to obtain a mechanical part Vietnameselletée revolution.
  • the mechanical part thus obtained is shaped.
  • the mechanical part thus obtained is then anodized at a temperature of between 15 and 40 ° C. with a solution comprising 100 to 250 g / l of sulfuric acid and 10 to 30 g / l of oxalic acid and 5 to 30 g / l of at least one polyol.
  • at least one polyol is chosen from ethylene glycol, propylene glycol or glycerol.
  • the anodization is carried out with a current density of between 1 and 5 A / dm 2 , preferably between 1 and 3 A / dm 2 .
  • the thickness of the anodic oxide layer obtained is between 20 and 40 ⁇ .
  • the anodizing temperature is between 25 and 35 ° C.
  • an anodizing temperature of about 30 ° C can further reduce the roughness of the parts after anodization.
  • no clogging is performed after the anodizing step. Indeed, it is possible to obtain with the method according to the invention a sufficient corrosion resistance for anodized products and not clogged.
  • the spun products have a substantially recrystallized structure and are obtained with a composition alloy, in% by weight, that Si 0.4 - 0.8; Mg 0.8 - 1.2; Cu 0.23 - 0.4; Fe 0.2 - 0.4; Mn ⁇ 0.10; Ni ⁇ 0.05; Ti ⁇ 0.15; Cr ⁇ 0.10; Bi ⁇ 0.8; Pb ⁇ 0.4; other elements ⁇ 0.05 each and ⁇ 0.15 remains aluminum.
  • the copper content in this first embodiment is at least 0.24% by weight.
  • the composition is such that, in% by weight, Bi: 0.4 - 0.8 and Pb 0.2 - 0.4 and preferably Pb 0.2 - 0.34.
  • the present inventors have found that, surprisingly, a substantially recrystallized spun product made of an alloy according to the first embodiment, after mirror polishing and anodization to obtain an oxide layer with a thickness of at least 20 ⁇ m, a roughness Rz on a generator parallel to the spinning axis less than or equal to 1.7 ⁇ and preferably less than 1.2 ⁇ .
  • the essentially recrystallized structure is obtained in particular by controlling the manganese content and the chromium content.
  • the manganese content is at most 0.05% by weight.
  • the chromium content is at most 0.08% by weight.
  • the sum of the chromium and manganese content is such that, in% by weight, Cr + Mn ⁇ 0.15 and preferably Cr + Mn ⁇ 0.10.
  • Control of the zirconium content may also be important for obtaining the substantially recrystallized structure.
  • the zirconium content is less than 0.04% by weight and preferably less than 0.03% by weight.
  • the spun products are of non-recrystallized structure and are of alloy composition, in% by weight, Si: 1, 3 - 3.0; Fe 1.35 - 1.8; Cu 0.25 - 1.0; Mg 0.6 - 2; Mn ⁇ 0.5; Cr ⁇ 0.15; Neither 0.6 - 1.0 - Ti ⁇ 0.10 - Bi ⁇ 0.7 other elements ⁇ 0.05 each and ⁇ 0.15 remains aluminum.
  • Fe + Si is greater than 3.2% by weight.
  • the content of Bi and / or the Ti content are less than 0.05% by weight.
  • the use of an anodizing temperature of between 25 and 35 ° C is particularly advantageous in the second embodiment.
  • the mechanical parts cut and anodized obtained by the process according to the invention are advantageous, in particular because they have a lower roughness than the mechanical parts obtained by the method according to the prior art.
  • they Preferably they have a roughness Rz on a generatrix parallel to the spinning axis lower by at least 10% lower and preferably at least 15% lower than the roughness Rz obtained on an anodized mechanical part of the same composition, likewise metallurgical structure of the same shape and having a anodic oxide layer of the same thickness but obtained at a temperature of 5 ° C. with a solution containing 200 g / l of sulfuric acid with a current density of 3 A / dm 2.
  • the mechanical parts according to the invention advantageously have a roughness Rz on a generatrix parallel to the spinning axis of less than 1.7 ⁇ and preferably less than 1, 2 ⁇ .
  • the mechanical parts according to the invention advantageously have a roughness Rz on a generatrix parallel to the spinning axis less than 1.7 ⁇ .
  • the mechanical parts cut and anodized according to the invention are brake pistons or gearbox elements.
  • the mechanical parts obtained according to the invention and which do not undergo clogging have excellent corrosion resistance. After exposure to neutral salt spray performed according to the EN ISO 9227 standard for a duration of 16 hours, advantageously 48 hours, or more preferably 96 hours, these parts do not exhibit corrosion, that is to say within the meaning of the standard NF EN ISO 10289 the protection class of the part is quoted 10.
  • alloy B 0.7 0.41 0.31 0.11 1.1 0.12 0.02 0.03 0.38 0.7
  • the alloys were cast in the form of billets, which were homogenized and then spun into cylindrical bars of diameter 30 mm (alloy A) or 18 mm (alloy B) and then quenched at the outlet of the press.
  • the bars thus obtained were fractionated by 1% and then underwent an income to obtain a T6 state.
  • the bars obtained had a non-recrystallized granular structure.
  • a milling of about 10 mm of the bars was carried out to obtain a flat surface which then underwent the following preparation treatments: mirror polishing then anodizing according to the process (1) or the process (2) described in Table 2.
  • the alloy was cast as a 254 mm diameter billet, homogenized at 585 ° C and then spun as a 15 x 100 mm cross-section bar, the initial spinning temperature being 530 ° C and the spinning speed being about 10 m / min, then quenched at the outlet of the press.
  • the bar thus obtained was trimmed by 1% and then suffered an income to obtain a T6 state.
  • the alloy bar C thus obtained had a recrystallized 1 ⁇ 4 thick structure.
  • the bar was then subjected to the following preparation treatments: 2 mm machining, mirror polishing then anodizing according to the process (1) or the process (3) described in Table 5.
  • the alloy was cast as a 296 mm diameter billet, homogenized and then spun as a bar, and then quenched at the outlet of the press.
  • the bar thus obtained was stretched to obtain a rod of diameter 27.8 mm and then underwent a 1% income at 160 ° C.
  • the alloy bar D thus obtained had a non-recrystallized structure at 1 ⁇ 4 thickness.
  • the alloys were cast in the form of billets, homogenized at 585 ° C. and then spun in the form of a 15 ⁇ 100 mm cross-section bar. Both products were dipped at the press exit. The bars thus obtained were fractionated by 1% and then underwent an income to obtain a T6 state.
  • the alloy bar C thus obtained had a recrystallized 1 ⁇ 4 thick structure.
  • the alloy bar I had a non-recrystallized 1 ⁇ 4 thick structure.
  • the bars then underwent the following preparatory treatments: machining of 2 mm, mirror polishing then anodizing according to the method (1) or according to the method (3) whose conditions are described in Table 11 below.
  • the samples After anodization, the samples have or have not been subjected to a clogging process. The clogging is carried out at 30 ° C. in a 5 g / l aqueous solution of Anodal CS 3 A for 20 minutes.
  • Anodal CS 3 A is a commercial product for cold sealing, supplied by OMYA, containing mainly nickel fluoride and some additives.
  • process (1) or process (3) anodizing processes without clogging and process (1 clogged) or process (3 clogged) anodizing processes with clogging. See Table 1 which describes the conditions used.
  • Table 11 Description of the processes of anodizing 1, 1 clogged, 3 and 3 clogged.
  • the samples were subjected to a corrosion test to evaluate the corrosion resistance provided by the anodization.
  • the test consisted in exposing the samples to a neutral salt spray according to the EN ISO 9227 standard and to follow the evolution of the corrosion as a function of the exposure time (between 0 and 96h exposure to neutral salt spray).
  • the corrosion resistance was evaluated according to the percentage of the surface affected by corrosion according to NF EN
  • R p 3 (2 - logioA)
  • A is the percentage of the total area with corrosion of the base metal
  • R p is the number of protection class, rounded to the nearest whole number, which leads to the values given in Table 12 below.
  • Table 13 Corrosion resistance of anodized materials (clogged or not): class of protection defined by standard NF EN ISO 10289 after different exposure times to neutral salt spray performed according to EN ISO 9227.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Extrusion Of Metal (AREA)
  • Forging (AREA)
  • Conductive Materials (AREA)
  • Metal Extraction Processes (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

L'invention concerne un procédé de fabrication d'une pièce mécanique dans lequel successivement on coule une billette en alliage d'aluminium de composition, en % en poids, Si 0,4 - 3,0; Mg 0,6 - 2,0; Cu 0,20 - 1,0; Fe 0,15 - 1,8; Mn < 0,5; Ni < 1; Ti < 0,15; Cr < 0,35; Bi < 0,8; Pb < 0,4; Zr < 0,04 autres éléments < 0,05 chacun et < 0, 15 au total, reste aluminium, on homogénéise ladite billette, on file ladite billette pour obtenir un produit filé, on trempe sur chaleur de filage, optionnellement on redresse et/ou on déforme à froid typiquement par traction et/ou étirage, et/ou on fait mûrir ledit produit filé, on réalise un revenu, optionnellement on déforme à froid typiquement par étirage ledit produit filé on usine le produit filé ainsi obtenu pour obtenir ne pièce mécanique décolletée, optionnellement on met en forme la pièce mécanique ainsi obtenue on réalise une anodisation de la pièce mécanique ainsi obtenue, ladite anodisation étant réalisée à une température comprise entre 15 et 40 °C avec une solution comprenant 100 à 250 g/1 d'acide sulfurique et 10 à 30 g/1 d'acide oxalique et 5 à 30 g/1 d'au moins un polyol. Les pièces mécaniques décolletées et anodisées obtenues par le procédé selon l'invention présentent notamment une rugosité avantageuse et une excellente tenue en corrosion et sont utiles notamment comme piston de frein ou élément de boite de vitesse.

Description

Procédé de fabrication d'une pièce mécanique décolletée et anodisée en alliage 6xxx présentant une faible rugosité après anodisation
Domaine de l'invention
L'invention concerne les pièces décolletées obtenues à partir de produits filés de type barre ou tige, en alliage d'aluminium de la série AA6xxx, et en particulier leur procédé de fabrication comprenant un usinage et un traitement d'anodisation.
Etat de la technique
Le décolletage désigne un domaine de fabrication par usinage, en grandes séries, de pièces mécaniques typiquement de révolution (vis, boulon, axe, piston, etc.) par enlèvement de matière à partir de barres ou tiges de métal.
Celles-ci, notamment dans le cas des alliages d'aluminium, sont généralement obtenues par filage à partir de billettes.
Les pièces sont ainsi produites à des cadences élevées sur des machines de coupe à commande manuelle ou numérique.
La productivité et l'état de surface ainsi que la précision dimensionnelle de la pièce finale sont les objectifs principaux attachés à ce type de fabrication. Après usinage, les pièces peuvent subir un traitement de surface de protection, typiquement par anodisation. L'anodisation dite dure, typiquement réalisée à basse température (0— 5°C), forte densité de courant en présence d'acide sulfurique permet d'obtenir des revêtements particulièrement résistants à l'abrasion.
Les pièces ainsi produites trouvent leur application dans des domaines variés, de l'horlogerie au matériel médical, en passant par les domaines du transport (aéronautique, ferroviaire, automobile) et industriel (électrique, électronique, hydraulique...). Ce genre d'applications recherche aussi une bonne résistance à la corrosion. La réalisation d'un colmatage est une solution connue pour améliorer la tenue en corrosion des éléments anodisés. Le colmatage consiste à refermer les pores de la couche d'oxyde. Il peut se faire à chaud ou à froid. A chaud, cette opération est une thermo hydratation partielle de l'alumine qui cristallise en alumine monohydratée (Boehmite) et, par gonflement de l'oxyde, procède à la fermeture des pores.. Elle s'effectue habituellement par immersion dans de l'eau désionisée à 96°C minimum. A froid, typiquement à une température de 25-30°C, cette opération s'apparente à une imprégnation qui permet l'obturation des pores par précipitation de sels. Elle se fait par immersion dans une solution contenant par exemple des fluorures de nickel.
L'inconvénient du colmatage (à froid ou à chaud), quoique simple de réalisation est qu'il constitue une étape supplémentaire dans le procédé et qu'il n'est pas généralement compatible avec des revêtements organiques.
Il existe une demande croissante pour des pièces mécaniques obtenues par décolletage présentant simultanément une faible rugosité après anodisation et un revêtement résistant à l'abrasion et à la corrosion. En particulier pour certaines applications telles que les pistons de freins ou les éléments de boite de vitesse, diminuer la rugosité tout en réalisant un revêtement résistant permettrait d'améliorer le contact entre la pièce mécanique et son joint et ainsi diminuer l'usure et la corrosion et prolonger la durée de vie des pièces. Cependant les alliages ayant une bonne aptitude au décolletage présentent généralement de nombreuses phases intermétalliques qui lors de l'anodisation dure génèrent une importante rugosité. Ainsi il est très difficile d'obtenir un produit filé présentant simultanément une bonne aptitude au décolletage et une rugosité de surface faible après anodisation.
La demande internationale WO2005/100623 décrit des alliages, préférentiellement sous forme filée, aptes au décolletage et de composition en % en poids Si 0,6— 2,0 ; Fe 0,2 - 1,0 ; Mg 0,5 - 2,0, Cu max 1,0, Mn max 1,5, Zn max 1,0, Cr max 0,35, Ti max 0,35 et Zr 0,04 - 0,3.
La demande internationale WO 2007/027629 décrit un procédé de tempe sur presse de l'alliage 6020. Le produit obtenu ayant une bonne aptitude au décolletage.
La demande internationale WO 2008/112698 décrit un produit filé ayant une excellente aptitude au décolletage de composition en % en poids Si 0,8— 1,5 ; Fe 1,0 - 1,8 ; Cu < 0,1 - Mn < 1 ; Mg 0,6 - 1,2 ; Ni < 3,0 ; Cr < 0,25 - Ti < 0,1. La demande internationale WO 2013/170953 décrit un produit de composition, en % en poids, Si : 1,3 - 12 ; Fe 1,35 - 1,8, dans lequel Fe + Si est supérieur à 3,4 ; Cu 0,15
- 6 ; Mg 0,6 - 3 ; Mn < 1 ; Cr < 0,25 ; Ni < 3 - Zn < 1 - Ti < 0,1 - Bi < 0,7 - In < 0,7
- Sn < 0,7. Après usinage et anodisation pour obtenir une couche d'oxyde d'épaisseur 30 μηι, la valeur la plus basse de rugosité atteinte est 1,80 μηι.
Des procédés d'anodisation permettant de réaliser des couches d'oxydes notamment sur des alliages 6xxx sont connus, par exemple du brevet US 3,524,799 ou de la demande EP 1 980 651. Les alliages testés dans ces documents, tels que l'alliage 6063 ou 6463 ne sont pas connus pour être aptes au décolletage.
Le problème que la présente invention cherche à résoudre est d'obtenir par décolletage des pièces mécaniques qui présentent après usinage et anodisation une faible rugosité.
Objet de l'invention
Un premier objet de l'invention est un procédé de fabrication d'une pièce mécanique dans lequel successivement
a. on coule une billette en alliage d'aluminium de composition, en % en poids, Si 0,4 - 3,0 ; Mg 0,6 - 2,0 ; Cu 0,20 - 1,0 ; Fe 0,15 - 1,8 ; Mn < 0,5 ; Ni < 1 ; Ti < 0,15 ; Cr < 0,35 ; Bi < 0,8; Pb < 0,4 ; Zr < 0,04 autres éléments < 0,05 chacun et < 0,15 au total, reste aluminium,
b. on homogénéise ladite billette,
c. on file ladite billette pour obtenir un produit filé,
d. on trempe sur chaleur de filage,
e. optionnellement on redresse et/ou on déforme à froid typiquement par traction et/ou étirage, et/ou on fait mûrir ledit produit filé, f. on réalise un revenu,
g. optionnellement on déforme à froid typiquement par étirage ledit produit filé
h. on usine le produit filé ainsi obtenu pour obtenir ne pièce mécanique décolletée,
i. optionnellement on met en forme la pièce mécanique ainsi obtenue j. on réalise une anodisation de la pièce mécanique ainsi obtenue, ladite anodisation étant réalisée à une température comprise entre 15 et 40 °C avec une solution comprenant 100 à 250 g/1 d'acide sulfurique et 10 à 30 g/1 d'acide oxalique et 5 à 30 g/1 d'au moins un polyol.
Un deuxième objet de l'invention est une pièce mécanique décolletée et anodisée obtenue par le procédé selon l'invention.
Description de l'invention
Sauf mention contraire, toutes les indications concernant la composition chimique des alliages sont exprimées comme un pourcentage en poids basé sur le poids total de l'alliage. L'expression 1,4 Cu signifie que la teneur en cuivre exprimée en % en poids est multipliée par 1,4. La désignation des alliages se fait en conformité avec les règlements de The Aluminium Association, connus de l'homme du métier. Sauf mention contraire, les définitions de la norme EN12258-1 s'appliquent. Sauf mention contraire, les définitions des états métallurgiques de la norme EN 515 s'appliquent. Sauf mention contraire, les caractéristiques mécaniques statiques, en d'autres termes la résistance à la rupture Rm, la limite d'élasticité conventionnelle à 0,2% d'allongement Rp0,2 et l'allongement à la rupture A%, sont déterminées par un essai de traction selon la norme ISO 6892-1 , le prélèvement et le sens de l'essai étant définis par la norme EN 485-1.
L'aptitude au décolletage est évaluée par un test d'usinage tel que décrit dans la demande internationale WO2013/170953 au paragraphe [0039]. Le test consiste à déterminer l'aptitude à la fragmentation des copeaux en mesurant le nombre de copeaux dans une masse déterminée de copeaux collectés, ici 100g. L'usinage est effectué en utilisant un tour SP 12 CNC et un insert rhombique avec une forme basique de 80° vendu sous la marque enregistrée SANDVIK Coromant Coroturn® 107 avec la référence CCGX 09 T3 04- AL, conçu pour les alliages d'aluminium. Les paramètres d'usinage utilisés sont une vitesse de rotation de 3150 tour/min, une alimentation de 0,3 mm/tour and une profondeur de découpe de 3,5 mm. Les produits filés selon l'invention sont aptes au décolletage c'est-à-dire qu'ils présentent au test décrit dans la demande internationale WO2013/170953 au paragraphe [0039] un nombre de copeaux pour 100g de copeaux d'au moins 3000 et de préférence d'au moins 4000. Trois paramètres de rugosité mesurés selon la norme ISO 4287 sont utilisés :
• Rmax : hauteur maximale du profil de rugosité, soit la plus grande des valeurs RZi sur la longueur d'évaluation
• Rz : Hauteur moyenne du profil Rz, soit la moyenne arithmétique des valeurs individuelles Rzi sur la longueur d'évaluation
• Ra : Ecart moyen de rugosité soit la moyenne arithmétique de toutes les ordonnées du profil sur la longueur d'évaluation.
Dans le cadre de la présente invention, on appelle structure granulaire essentiellement recristallisée une structure granulaire telle que le taux de recristallisation à ¼ épaisseur est supérieur à 70% et de préférence supérieur à 90%. Le taux de recristallisation est défini comme la fraction de surface sur une coupe métallographique occupée par des grains recristallisés.
Les présents inventeurs ont constaté que pour des alliages de décolletage connus, tels que les alliages AA6262, AA6064A ou AA6042 ou l'alliage décrit dans la demande internationale WO2013/170953, la rugosité après une anodisation permettant d'obtenir une couche d'oxyde d'épaisseur d'au moins 20 μιη et très supérieure à la rugosité avant anodisation. Typiquement même si après usinage on obtient une rugosité telle que Rz
< 0,01 μπι la rugosité après anodisation est au moins 1,80 μιη ou plus. Ainsi lors de l'anodisation la présence de nombreux composés intermétalliques dans ce type d'alliage génère une rugosité importante.
Les présents inventeurs ont constaté que ce problème est résolu en utilisant un procédé d'anodisation spécifique. De plus en combinant ce procédé d'anodisation spécifique avec certaines compositions de l'alliage et/ou la structure granulaire des produits filés on peut obtenir une rugosité très faible dans certains cas.
Dans le procédé selon l'invention on coule une billette en alliage d'aluminium de composition, en % en poids, Si 0,4 - 3,0 ; Mg 0,6 - 2,0 ; Cu 0,20 - 1,0 ; Fe 0,15 - 1,8 ; Mn < 0,5 ; Ni < 1 ; Ti < 0,15 ; Cr < 0,15 ; Bi < 0,8; Pb < 0,4 ; Zr < 0,04 autres éléments
< 0,05 chacun et < 0,15 au total, reste aluminium.
Les valeurs minimales simultanées de silicium, magnésium, cuivre et fer, permettent notamment d'obtenir des produits filés particulièrement aptes au décolletage. De préférence la teneur en fer est au moins 0,20 % en poids et/ou la teneur en cuivre est au moins 0,23 % en poids. Des alliages ne présentant pas ces teneurs minimales tels que par exemple les alliages 6063 ou 6463 ne sont pas aptes au décolletage. La billette est homogénéisée. Avantageusement on réalise une homogénéisation à une température d'au moins 480 °C. La billette est ensuite filée pour obtenir un produit filé et trempée sur chaleur de filage. Optionnellement on redresse et/ou on déforme à froid typiquement par traction et/ou étirage, et/ou on fait mûrir ledit produit filé. La maturation éventuelle est typiquement de quelques heures à quelques jours. Le produit filé est ensuite revenu. Avantageusement le revenu est réalisé à une température comprise entre 150 et 200 °C et de préférence entre 170 et 190 °C pendant une durée comprise entre 5 et 25 heures et de préférence entre 8 et 15 heures. Il est possible après revenu d'effectuer une déformation à froid typiquement par étirage, de manière à obtenir un état T9.
Le produit filé ainsi obtenu est ensuite usiné pour obtenir une pièce mécanique décolletée. Avantageusement ledit usinage est réalisé par tournage pour obtenir une pièce mécanique décolletée de révolution.
Optionnellement on met en forme la pièce mécanique ainsi obtenue.
On réalise ensuite une anodisation de la pièce mécanique ainsi obtenue, à une température comprise entre 15 et 40 °C avec une solution comprenant 100 à 250 g/1 d'acide sulfurique et 10 à 30 g/1 d'acide oxalique et 5 à 30 g/1 d'au moins un polyol. Avantageusement au moins un polyol est choisi parmi l'éthylene glycol, le propylène glycol ou le glycérol. De préférence, l'anodisation est réalisée avec une densité de courant comprise entre 1 et 5 A/dm2, préférentiellement entre 1 et 3 A/dm2. Avantageusement l'épaisseur de couche d'oxyde anodique obtenue est comprise entre 20 et 40 μιη. Préférentiellement la température d'anodisation est comprise entre 25 et 35 °C. Les présents inventeurs ont en effet constaté que de manière surprenante, une température d'anodisation d'environ 30 °C permet de réduire encore la rugosité des pièces après anodisation.
Dans un mode de réalisation avantageux, on n'effectue pas de colmatage après l'étape d'anodisation. En effet, il est possible d'obtenir avec le procédé selon l'invention une résistance à la corrosion suffisante pour des produits anodisés et non colmatés.
Dans un premier mode de réalisation avantageux de l'invention, les produits filés ont une structure essentiellement recristallisée et sont obtenus avec un alliage de composition, en % en poids, que Si 0,4 - 0,8 ; Mg 0,8 - 1,2 ; Cu 0,23 - 0,4 ; Fe 0,2 - 0,4 ; Mn < 0,10 ; Ni < 0,05 ; Ti < 0,15 ; Cr < 0,10 ; Bi < 0,8; Pb < 0,4 ; autres éléments < 0,05 chacun et < 0,15 reste aluminium. De préférence la teneur en cuivre dans ce premier mode de réalisation est au moins 0,24 % en poids. Avantageusement dans ce premier mode de réalisation, la composition est telle que, en % en poids, Bi : 0,4 - 0,8 et Pb 0,2 - 0,4 et de préférence Pb 0,2 - 0,34. Les présents inventeurs ont constaté que de manière surprenante un produit filé essentiellement recristallisé en alliage selon le premier mode de réalisation présente après polissage miroir et anodisation pour obtenir une couche d'oxyde d'épaisseur au moins 20 μηι une rugosité Rz sur une génératrice parallèle à l'axe de filage inférieure ou égale à 1,7 μηι et de préférence inférieure à 1,2 μιη. La structure essentiellement recristallisée est obtenue notamment grâce au contrôle de la teneur en manganèse et de la teneur en chrome. Préférentiellement la teneur en manganèse est au plus de 0,05 % en poids. Préférentiellement la teneur en chrome est au plus de 0,08 % en poids. Avantageusement la somme de la teneur en chrome et de manganèse est telle que, en % en poids, Cr + Mn < 0,15 et de préférence Cr + Mn < 0,10. Le contrôle de la teneur en zirconium peut également être important pour l'obtention de la structure essentiellement recristallisée. Avantageusement la teneur en zirconium est inférieure à 0.04 % en poids et de préférence inférieure à 0,03 % en poids.
Dans un second mode de réalisation avantageux de l'invention, les produits filés sont de structure non recristallisée et sont en alliage de composition, en % en poids, Si : 1 ,3 - 3,0 ; Fe 1,35 - 1,8 ; Cu 0,25 - 1,0 ; Mg 0,6 - 2 ; Mn < 0,5 ; Cr < 0,15 ; Ni 0,6 - 1,0 - Ti < 0,10 - Bi < 0,7 autres éléments < 0,05 chacun et < 0,15 reste aluminium. Avantageusement Fe + Si est supérieur à 3,2 % en poids. De préférence la teneur en Bi et/ou la teneur en Ti sont inférieures à 0,05 % en poids. L'utilisation d'une température d' anodisation comprise entre 25 et 35 °C est particulièrement avantageuse dans le second mode de réalisation.
Les pièces mécaniques décolletées et anodisées obtenues par le procédé selon l'invention sont avantageuses, en particulier car elles présentent une plus faible rugosité que les pièces mécaniques obtenues par le procédé selon l'art antérieur. Préférentiellement elles présentent une rugosité Rz sur une génératrice parallèle à l' axe de filage inférieure d'au moins 10 % inférieure et de préférence d'au moins 15 % inférieure à la rugosité Rz obtenue sur une pièce mécanique anodisée de même composition, de même structure métallurgique de même forme et présentant une couche d'oxyde anodique de même épaisseur mais obtenue à une température de 5 °C avec une solution contenant 200 g/1 d'acide sulfurique avec une densité de courant de 3 A/dm2.
Pour les pièces mécaniques obtenues selon le procédé du premier mode de réalisation préféré, les pièces mécaniques selon l'invention présentent avantageusement une rugosité Rz sur une génératrice parallèle à l'axe de filage inférieure à 1,7 μπι et de préférence inférieure à 1 ,2 μηι.
Pour les pièces mécaniques obtenues selon le procédé du second mode de réalisation préféré, les pièces mécaniques selon l'invention présentent avantageusement une rugosité Rz sur une génératrice parallèle à l'axe de filage inférieure à 1,7 μιη.
Avantageusement, les pièces mécaniques décolletées et anodisées selon l'invention sont des pistons de frein ou des éléments de boite de vitesse.
Les pièces mécaniques obtenues selon l'invention et qui ne subissent pas de colmatage présentent une excellente tenue en corrosion. Après exposition au brouillard salin neutre réalisé selon la norme EN ISO 9227 d'une durée de 16h, avantageusement de 48h, ou plus préférablement de 96h, ces pièces ne présentent pas de corrosion, c'est- à-dire qu'au sens de la norme NF EN ISO 10289 la classe de protection de la pièce est cotée 10.
Exemples
Exemple 1
Dans cet exemple, on a préparé deux alliages dont la composition est donnée dans le Tableau 1.
Tableau 1: Composition des alliages (% en poids)
Si Fe Cu Mn Mg Cr Ti Ni Pb Bi
A 0,7 0,35 0,36 0,12 1,0 0,21 0,04 0,01 <0,01 <0,01
B 0,7 0,41 0,31 0,11 1,1 0,12 0,02 0,03 0,38 0,7 Les alliages ont été coulés sous forme de billettes, qui ont été homogénéisées puis filées sous forme de barres cylindriques de diamètre 30 mm (alliage A) ou 18 mm (alliage B) puis trempées en sortie de presse. Les barres ainsi obtenues ont été tractionnées de 1% puis ont subi un revenu pour obtenir un état T6. Les barres obtenus présentaient une structure granulaire non-recristallisée.
Un fraisage d'environ 10 mm des barres a été réalisé pour obtenir une surface plane qui a ensuite subi les traitements de préparation suivants : polissage miroir puis anodisation selon le procédé (1) ou le procédé (2) décrit dans le Tableau 2.
Tableau 2- Description des procédés d 'anodisation 1 et 2
Les résultats obtenus pour la rugosité sont donnés dans le Tableau 3.
Tableau 3 . Résultats des mesures de rugosité après traitement d 'anodisation.
Exemple 2
Dans cet exemple, on a préparé un alliage dont la composition est donnée dans le Tableau 4.
Tableau 4 - Composition de l 'alliage (% en poids)
L'alliage a été coulé sous forme de billette de diamètre 254 mm, homogénéisée à 585 °C puis filée sous forme de barre de section transversale 15 x 100 mm, la température initiale de filage étant 530 °C et la vitesse de filage étant environ 10 m/min, puis trempée en sortie de presse. La barre ainsi obtenue a été tractionnée de 1% puis a subi un revenu pour obtenir un état T6.
La barre en alliage C ainsi obtenue présentait une structure recristallisée à ¼ épaisseur. La barre a ensuite subi les traitements de préparation suivants : usinage de 2 mm, polissage miroir puis anodisation selon le procédé (1) ou le procédé (3) décrit dans le Tableau 5.
Tableau 5 - Description des procédés d 'anodisation 1 et 3
Prétraitement Electrolyte Densité de Epaisseur
Température
Procédé avant pour courant d'oxyde
(°C)
anodisation anodisation (A/dm2) (μιη)
Dégraissage
1 Novaclean 200g/l H2S04 3 5 30
D708
180g/l H2SO4 +
Dégraissage
14g/l acide
3 Novaclean 2 30 30
oxalique +
D708
15g/l glycerol Les résultats obtenus pour la rugosité sont donnés dans le Tableau 6.
Tableau 6. Résultats des mesures de rugosité après traitement d'anodisation.
Exemple 3
Dans cet exemple, on a préparé un alliage dont la composition est donnée dans le Tableau 7. Tableau 7 : Composition de l 'alliage (% en poids)
L'alliage a été coulé sous forme de billette de diamètre 296 mm, homogénéisée puis filée sous forme de barre, puis trempée en sortie de presse. La barre ainsi obtenue a été étirée pour obtenir une barre de diamètre 27,8 mm puis a subi un revenu de 1 Oh à 160 °C.
La barre en alliage D ainsi obtenue présentait une structure non recristallisée à ¼ épaisseur.
Un fraisage d'environ 10 mm de la barre a été réalisé pour obtenir une surface plane qui a ensuite subi les traitements de préparation suivants : polissage miroir puis anodisation selon le procédé (4) ou le procédé (5) décrit dans le Tableau 8. Tableau 8 - Description des procédés d'anodisation 4 et 5
Les résultats de rugosité obtenus sont présentés dans le Tableau 9
Tableau 9 : Résultats des mesures de rugosité après traitement d'anodisation.
Exemple 5
Dans cet exemple, on a préparé deux alliages dont la composition est donnée dans le Tableau 10. Tableau 10: composition des alliages (% en poids)
Les alliages ont été coulés sous forme de billettes, homogénéisées à 585 °C puis filées sous forme de barre de section transversale 15 x 100 mm. Les deux produits ont été trempés en sortie de presse. Les barres ainsi obtenues ont été tractionnées de 1% puis ont subi un revenu pour obtenir un état T6.
La barre en alliage C ainsi obtenue présentait une structure recristallisée à ¼ épaisseur.
La barre en alliage I présentait une structure non recristallisée à ¼ épaisseur.
Les barres ont ensuite subi les traitements de préparation suivants : usinage de 2 mm, polissage miroir puis anodisation selon le procédé (1) ou selon le procédé (3) dont les conditions sont décrites dans le Tableau 11 ci-dessous. Après anodisation, les échantillons ont subi ou non un procédé de colmatage. Le colmatage est réalisé à 30°C dans une solution aqueuse à 5 g/1 d'Anodal CS 3 A pendant 20 minutes. Anodal CS 3 A est un produit commercial pour colmatage à froid, fourni par la société OMYA, contenant essentiellement du fluorure de nickel et quelques additifs.
Pour distinguer les cas de l'exemple, nous noterons procédé (1) ou procédé (3) les procédés d'anodisation sans colmatage et procédé (1 colmaté) ou procédé (3 colmaté) les procédés d'anodisation avec colmatage. Voir le Tableau 1 1 qui décrit les conditions utilisées.
Tableau 11 : Description des procédés d'anodisation 1, 1 colmaté, 3 et 3 colmaté.
Après ces traitements de surface, les échantillons ont subi un test de corrosion pour 5 évaluer la résistance à la corrosion apportés par l'anodisation. Le test a consisté à exposer les échantillons à un brouillard salin neutre selon la norme EN ISO 9227 et à suivre l'évolution de la corrosion en fonction du temps d'exposition (entre 0 et 96h d'exposition au brouillard salin neutre). La résistance à la corrosion a été évaluée en fonction du pourcentage de la surface affectée par la corrosion selon la norme NF EN
10 ISO 10289 (voir Tableau 13 ).
Pour chaque cas testé, on fait correspondre une classe de protection (Rp) définie par Rp=3(2 - logioA) où A est le pourcentage de l'aire totale présentant une corrosion du métal de base et Rp le numéro de classe de protection, arrondi au nombre entier le plus proche, ce qui conduit aux valeurs indiquées dans le Tableau 12 ci-dessous. Une cotation
15 à 10 correspond à un produit non corrodé. Tableau 12 : Classe de protection Rp selon la norme NF EN ISO 10289
Tableau 13 : Tenue à la corrosion des matériaux anodisés (colmatés ou non) : classe de protection définie par la norme NF EN ISO 10289 après différentes durées d'exposition au brouillard salin neutre effectué selon la norme EN ISO 9227.
Si on compare les cas n°l et 2 correspondant au même alliage C recristallisé anodisé selon les procédés 1 ou 3, on constate que le procédé d'anodisation 3 permet d'obtenir une meilleure tenue en corrosion comparé au procédé 1. Le cas 2 ne présente pas de corrosion après 96h de brouillard salin.
Si on compare les cas n°l, 2, 4 et 5, on constate qu'on obtient une tenue en corrosion similaire au procédé 3 avec le procédé 1 colmaté.

Claims

Revendications
1. Procédé de fabrication d'une pièce mécanique dans lequel successivement a. on coule une billette en alliage d'aluminium de composition, en % en poids, Si 0,4 - 3,0 ; Mg 0,6 - 2,0 ; Cu 0,20 - 1,0 ; Fe 0,15 - 1,8 ; Mn < 0,5 ; Ni < 1 ; Ti < 0,15 ; Cr < 0,35 ; Bi < 0,8; Pb < 0,4 ; Zr < 0,04 autres éléments < 0,05 chacun et < 0, 15 au total, reste aluminium,
b. on homogénéise ladite billette,
c. on file ladite billette pour obtenir un produit filé,
d. on trempe sur chaleur de filage,
e. optionnellement on redresse et/ou on déforme à froid typiquement par traction et/ou étirage, et/ou on fait mûrir ledit produit filé,
f. on réalise un revenu,
g. optionnellement on déforme à froid typiquement par étirage ledit produit filé
h. on usine le produit filé ainsi obtenu pour obtenir ne pièce mécanique décolletée,
i. optionnellement on met en forme la pièce mécanique ainsi obtenue j. on réalise une anodisation de la pièce mécanique ainsi obtenue, ladite anodisation étant réalisée à une température comprise entre 15 et 40 °C avec une solution comprenant 100 à 250 g/1 d'acide sulfurique et 10 à 30 g/1 d'acide oxalique et 5 à 30 g/1 d'au moins un polyol.
2. Procédé selon la revendication 1 dans lequel au moins un polyol est choisi parmi l'éthylene glycol, le propylène glycol ou le glycérol.
3. Procédé selon la revendication 1 ou la revendication 2 dans lequel P anodisation est réalisée avec une densité de courant comprise entre 1 et 5 A/dm2et de préférence entre 1 et 3 A/dm2.
4. Procédé selon une quelconque des revendications 1 à 3 dans lequel l'épaisseur de couche d'oxyde anodique obtenue est comprise entre 20 et 40 μηι.
5. Procédé selon une quelconque des revendications 1 à 4 dans lequel ladite température d'anodisation est comprise entre 25 et 35 °C.
6. Procédé selon une quelconque des revendications 1 à 5 dans lequel ledit usinage est réalisé par tournage pour obtenir une pièce mécanique décolletée de révolution.
7. Procédé selon une quelconque des revendications 1 à 6 dans lequel ledit produit filé a une structure recristallisée dans lequel la composition est en % en poids telle que Si 0,4 - 0,8 ; Mg 0,8 - 1,2 ; Cu 0,23 - 0,4 ; Fe 0,2 - 0,4 ; Mn < 0,10 ; Ni≤ 0,05 ; Ti < 0,15 ; Cr < 0,10 ; Bi < 0,8; Pb < 0,4 ; autres éléments < 0,05 chacun et < 0,15 reste aluminium.
8. Procédé selon une quelconque des revendications 1 à 6 dans lequel ledit produit filé a une structure non recristallisée et est en alliage de composition, en % en poids, Si : 1,3 - 3,0 ; Fe 1,35 - 1,8 ; Cu 0,25 - 1,0 ; Mg 0,6 - 2 ; Mn < 0,5 ; Cr < 0,15 ; Ni 0,6 - 1,0 - Ti < 0,10 - Bi < 0,7.
9. Procédé selon une quelconque des revendications 1 à 8 caractérisé en ce qu'aucun colmatage n'est effectué à l'issue de l'étape d'anodisation.
10. Pièce mécanique décolletée et anodisée obtenue par le procédé selon une quelconque des revendications 1 à 9 caractérisée en ce qu'elle présente une rugosité Rz sur une génératrice parallèle à l'axe de filage inférieure d'au moins 10 % inférieure et de préférence d'au moins 15 % inférieure à la rugosité Rz obtenue sur une pièce mécanique anodisée de même composition, de même structure métallurgique de même forme et présentant une couche d'oxyde anodique de même épaisseur obtenue à une température de 5 °C avec une solution contenant 200 g/1 d'acide sulfurique avec une densité de courant de 3 A/dm2.
11. Pièce mécanique selon la revendication 10 caractérisée en ce que sa structure est essentiellement recristallisée et en ce que sa composition est en % en poids est telle que Si 0,4 - 0,8 ; Mg 0,8 - 1,2 ; Cu 0,25 - 0,4 ; Fe 0,05 - 0,4 ; Mn < 0,10 ; Ni < 0,05 ; Ti < 0,15 ; Cr < 0,10 ; Bi < 0,8; Pb < 0,4 ; autres éléments < 0,05 chacun et < 0,15 reste aluminium et en ce que elle présente une rugosité Rz sur une génératrice parallèle à l'axe de filage inférieure à 1,7 μπι et de préférence inférieure à 1,2 μιη .
12. Pièce mécanique selon la revendication 10 caractérisée en ce que sa composition est en % en poids est telle que Si : 1,3 - 3,0 ; Fe 1,35 - 1,8 ; Cu 0,25— 1,0 ; Mg 0,6 - 2 ; Mn < 0,5 ; Cr < 0,15 ; Ni 0,6 - 1,0 - Ti < 0,10 - Bi < 0,7 autres éléments < 0,05 chacun et < 0,15 reste aluminium et en ce que elle présente une rugosité Rz sur une génératrice parallèle à l'axe de filage inférieure à 1,7 μηι.
13. Pièce mécanique selon une quelconque des revendications 10 à 12 caractérisée en ce qu'elle est obtenue par le procédé selon la revendication 9 et en ce que après exposition au brouillard salin neutre réalisé selon la norme EN ISO 9227 d'une durée de 16h, avantageusement de 48h, ou plus préférablement de 96h, elle ne présente pas de corrosion, c'est-à-dire qu'au sens de la norme NF EN ISO 10289 la classe de protection de la pièce est cotée 10.
14. Pièce mécanique décolletée selon une quelconque des revendications 10 à 13 caractérisée en ce qu'il s'agit d'un piston de frein ou d'un élément de boite de vitesse.
EP15712057.7A 2014-03-24 2015-03-20 Procédé de fabrication d'une pièce mécanique décolletée et anodisée en alliage 6xxx présentant une faible rugosité après anodisation Withdrawn EP3122913A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE15712057.7T DE15712057T1 (de) 2014-03-24 2015-03-20 Verfahren zur herstellung eines anodisierten; gedrehten mechanischen teils aus 6xxx-legierung mit niedriger rauhigkeit nach der anodisierung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1400704A FR3018824B1 (fr) 2014-03-24 2014-03-24 Procede de fabrication d'une piece mecanique decolletee et anodisee en alliage 6xxx presentant une faible rugosite apres anodisation
PCT/EP2015/000613 WO2015144302A1 (fr) 2014-03-24 2015-03-20 Procédé de fabrication d'une pièce mécanique décolletée et anodisée en alliage 6xxx présentant une faible rugosité après anodisation

Publications (1)

Publication Number Publication Date
EP3122913A1 true EP3122913A1 (fr) 2017-02-01

Family

ID=51483457

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15712057.7A Withdrawn EP3122913A1 (fr) 2014-03-24 2015-03-20 Procédé de fabrication d'une pièce mécanique décolletée et anodisée en alliage 6xxx présentant une faible rugosité après anodisation

Country Status (7)

Country Link
US (1) US10392684B2 (fr)
EP (1) EP3122913A1 (fr)
CN (1) CN106133204B (fr)
CA (1) CA2942425A1 (fr)
DE (1) DE15712057T1 (fr)
FR (1) FR3018824B1 (fr)
WO (1) WO2015144302A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2720277C2 (ru) 2015-12-18 2020-04-28 Новелис Инк. Высокопрочные алюминиевые сплавы 6xxx и способы их получения
EP3390678B1 (fr) 2015-12-18 2020-11-25 Novelis, Inc. Alliages d'aluminium 6xxx haute résistance et leurs procédés d'élaboration
CN110249078A (zh) * 2017-02-20 2019-09-17 江门市蓬江区善长五金制品有限公司 一种铝制品表面处理方法
CN106939386B (zh) * 2017-05-19 2019-03-19 重庆大学 一种高强度快速硬化的汽车车身用Al-Mg-Si-Cu合金及其制备方法
CN107739908B (zh) * 2017-09-07 2019-01-29 马鞍山市新马精密铝业股份有限公司 汽车气弹簧用铝合金圆管的制造方法
KR102517599B1 (ko) 2018-05-15 2023-04-05 노벨리스 인크. 고강도 6xxx 및 7xxx 알루미늄 합금 및 이의 제조 방법
CN110373699B (zh) * 2019-08-22 2021-04-02 南昌航空大学 一种zl105铝合金砂铸件硬质阳极氧化电解液及氧化方法
CN112676550B (zh) * 2019-10-17 2022-09-27 北京小米移动软件有限公司 铝合金构件加工方法
CN111809088B (zh) * 2020-07-22 2021-11-19 广东澳美铝业有限公司 一种中等强度高导热铝合金及其快速时效工艺

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013170953A1 (fr) * 2012-05-15 2013-11-21 Constellium Extrusions Decin S.R.O. Produit d'alliage d'aluminium corroyé facilement usinable amélioré et procédé de fabrication associé

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3112250A (en) * 1961-04-26 1963-11-26 Walker Henry Anodizing method and solutions
US3524799A (en) * 1969-06-13 1970-08-18 Reynolds Metals Co Anodizing aluminum
US4526660A (en) * 1984-02-06 1985-07-02 Garriga Eliseo B Anodizing method
US5728503A (en) * 1995-12-04 1998-03-17 Bayer Corporation Lithographic printing plates having specific grained and anodized aluminum substrate
DE19643555A1 (de) * 1996-10-24 1998-04-30 Univ Dresden Tech Metallischer Gegenstand mit einer dünnen mehrphasigen Oxidschicht sowie Verfahren zu dessen Herstellung
JP2003342790A (ja) * 2002-05-27 2003-12-03 Mitsubishi Alum Co Ltd 表面処理アルミニウム材及び熱可塑性樹脂被覆アルミニウム材
JP2004124219A (ja) * 2002-10-07 2004-04-22 Aru Techno:Kk アルミニウム外装品及びその製造方法
US20100219079A1 (en) * 2006-05-07 2010-09-02 Synkera Technologies, Inc. Methods for making membranes based on anodic aluminum oxide structures
US8105046B2 (en) * 2006-08-25 2012-01-31 Yamaha Hatsudoki Kabushiki Kaisha Propeller for watercraft and outboard motor
US8484656B2 (en) * 2007-03-12 2013-07-09 Citrix Systems, Inc. Systems and methods for providing global server load balancing of heterogeneous devices
US20080274375A1 (en) * 2007-05-04 2008-11-06 Duracouche International Limited Anodizing Aluminum and Alloys Thereof
FR3018823B1 (fr) * 2014-03-24 2018-01-05 Constellium Extrusion Decin S.R.O Produit file en alliage 6xxx apte au decolletage et presentant une faible rugosite apres anodisation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013170953A1 (fr) * 2012-05-15 2013-11-21 Constellium Extrusions Decin S.R.O. Produit d'alliage d'aluminium corroyé facilement usinable amélioré et procédé de fabrication associé

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2015144302A1 *

Also Published As

Publication number Publication date
US10392684B2 (en) 2019-08-27
US20170137922A1 (en) 2017-05-18
CN106133204A (zh) 2016-11-16
CN106133204B (zh) 2019-05-03
WO2015144302A1 (fr) 2015-10-01
DE15712057T1 (de) 2017-05-24
FR3018824A1 (fr) 2015-09-25
WO2015144302A8 (fr) 2016-11-03
FR3018824B1 (fr) 2017-07-28
CA2942425A1 (fr) 2015-10-01

Similar Documents

Publication Publication Date Title
WO2015144302A1 (fr) Procédé de fabrication d&#39;une pièce mécanique décolletée et anodisée en alliage 6xxx présentant une faible rugosité après anodisation
EP3122912B1 (fr) Produit filé en alliage 6xxx apte au décolletage et présentant une faible rugosité après anodisation
JP5705744B2 (ja) アルミニウム合金製部品
EP2655680B1 (fr) Alliage aluminium cuivre lithium à résistance en compression et ténacité améliorées
JP6085365B2 (ja) 改良された快削性展伸アルミニウム合金製品およびその製造方法
EP1766102B1 (fr) Procede de fabrication de produits en alliage d&#39;aluminium a haute tenacite et haute resistance a la fatigue
EP2984195B1 (fr) Procédé de transformation de tôles en alliage al-cu-li améliorant la formabilité et la résistance à la corrosion
FR2907466A1 (fr) Produits en alliage d&#39;aluminium de la serie aa7000 et leur procede de fabrication
EP3384061B1 (fr) Alliage aluminium cuivre lithium à resistance mécanique et tenacité ameliorées
CN105492640A (zh) 高强度铝合金及其制造方法
JP6119937B1 (ja) 陽極酸化皮膜を有する外観品質に優れたアルミニウム合金押出材及びその製造方法
JP2008121057A (ja) 加工性に優れた耐摩耗性アルミニウム合金材およびその製造方法
EP3011068A1 (fr) Elément de structure extrados en alliage aluminium cuivre lithium
FR2883785A1 (fr) Procede de production d&#39;un metal d&#39;apport consommable servant a une operation de soudage
EP1382698A1 (fr) Produit corroyé en alliage Al-Cu-Mg pour élément de structure d&#39;avion
JP4511156B2 (ja) アルミニウム合金の製造方法と、これにより製造されるアルミニウム合金、棒状材、摺動部品、鍛造成形品および機械加工成形品
WO2017006816A1 (fr) Matériau extrudé en alliage d&#39;aluminium pourvu d&#39;un film d&#39;oxyde d&#39;électrode positive, ayant un très bon aspect extérieur, et son procédé de production
FR3080860A1 (fr) Alliage aluminium cuivre lithium a resistance en compression et tenacite ameliorees
JP4412594B2 (ja) アルミニウム合金、棒状材、鍛造成形品、機械加工成形品、それを用いた陽極酸化皮膜硬さに優れた耐摩耗性アルミニウム合金、摺動部品、及びそれらの製造方法
FR3080861A1 (fr) Procede de fabrication d&#39;un alliage aluminium cuivre lithium a resistance en compression et tenacite ameliorees

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20161014

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

REG Reference to a national code

Ref country code: DE

Ref legal event code: R210

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180129

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210128

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20210608