EP3121516A1 - Verfahren zum steuern eines kondensationsheizkessels und heizkessel für die ausführung des verfahrens - Google Patents

Verfahren zum steuern eines kondensationsheizkessels und heizkessel für die ausführung des verfahrens Download PDF

Info

Publication number
EP3121516A1
EP3121516A1 EP16178039.0A EP16178039A EP3121516A1 EP 3121516 A1 EP3121516 A1 EP 3121516A1 EP 16178039 A EP16178039 A EP 16178039A EP 3121516 A1 EP3121516 A1 EP 3121516A1
Authority
EP
European Patent Office
Prior art keywords
boiler
flow rate
fuel mixture
blower
radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP16178039.0A
Other languages
English (en)
French (fr)
Other versions
EP3121516B1 (de
Inventor
Marc Trela
Francois Vuillaume
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3121516A1 publication Critical patent/EP3121516A1/de
Application granted granted Critical
Publication of EP3121516B1 publication Critical patent/EP3121516B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/02Premix gas burners, i.e. in which gaseous fuel is mixed with combustion air upstream of the combustion zone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/18Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel
    • F23N5/184Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/04Measuring pressure
    • F23N2225/06Measuring pressure for determining flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2241/00Applications
    • F23N2241/02Space-heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2241/00Applications
    • F23N2241/04Heating water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2241/00Applications
    • F23N2241/06Space-heating and heating water

Definitions

  • the present invention relates to a method of controlling a condensing boiler whose radiator is fed with a fuel mixture (air / gas) by a fan which is controlled in dependence on the power demand by the load circuit, according to the method after establishing the relationship for the boiler was linked to the flow rate of the fuel mixture to be supplied in dependence on the power that must supply the radiator, this relationship is recorded in the control circuit of the boiler.
  • the invention also relates to a boiler for carrying out this method.
  • the power delivered by the condensing boilers is controlled by the blower, depending on the power requirement, which feeds the burner with the air / gas fuel mixture.
  • the gas is automatically added to the air depending on the air flow rate.
  • the relationship linking the flow rate Q of the fan to its speed VR is a linear relationship ( Fig. 2A ), which is set up for the single blower and recorded in the control circuit of the boiler.
  • the present invention aims to develop a method of controlling a condensation boiler in order to optimize its operation, that is to say the power it delivers, in order to respond as quickly as possible to the demand, whether this boiler individually on an exhaust pipe is installed or is part of a shared system that is connected to one and the same line.
  • the invention has the aim of solving the problem of more or less accidental operation of Kondensations2020kessel, which are connected to one and the same exhaust pipe in a common system, and in particular a renewal boiler.
  • the invention relates to a method of the type defined above, characterized in that the blower is controlled by regulating its measured real flow rate to the target flow rate given by the defined relationship which determines the flow rate requested by the radiator with the power it has deliver, linked.
  • This method makes it possible to take into account variable pressure losses and the backpressure (this is conventionally included in the variable pressure losses) at the outlet of the boiler in order to precisely match the instantaneous actual flow rate of the fuel mixture to be supplied to the burner and to obtain the requested heating power. and whichever the Variations of the pressure loss imposed on the flow of the fuel mixture in and out of the radiator, including in the exhaust duct, without having to know the pressure losses.
  • This precise regulation of the power to be supplied allows even more economical operation of the condensation boiler.
  • the flow rate of the fuel mixture is measured by the pressure difference provided by two pressure sensors installed in the mixture flow on both sides of an obstacle.
  • This measurement of the flow rate of the fuel mixture by the pressure sensors forms a particularly economical solution, since these pressure sensors, at least one of them, can already equip the boiler or are necessary for other functions, such as safety functions imposed on the boiler.
  • the sensor installed downstream of the check valve may also provide the back pressure prevailing in the boiler when stopped in the portion upstream of the valve.
  • the back pressure applied to the boiler is measured and the fan is given a speed that provides the requested flow rate and takes into account the back pressure that is applied to the boiler Current of the fuel mixture is applied and measured before starting the boiler.
  • the method according to the invention is recorded in the form of a program in the memory of the control circuit, which manages the operation of the boiler.
  • the invention also has as subject matter a condensation boiler for the implementation of this method.
  • the invention relates to a condensation boiler which consists of a radiator which supplies the heat to a consumer circuit by the combustion of a stream of fuel mixture supplied by a controlled blower which receives the fuel mixture from a metering device containing the metered mixture of the fuel gas and the combustion air,
  • this boiler being characterized in that it comprises a control circuit which manages the operation of the boiler and that it is brought to safety, and is connected to a device for measuring the flow rate of the stream of the fuel mixture; supplied by the blower to the radiator to regulate the motor of the blower, so that the blower supplies the necessary for the radiator flow rate of the fuel mixture.
  • This boiler distinguishes itself by the effectiveness of its operation and its efficiency and by the possibility of installing such renewal boilers, whatever the characteristics of the variable pressure loss of the exhaust pipes downstream of the boiler, and without having to make special arrangements that would depend on the installation site ,
  • the boiler comprises a device for measuring the flow rate of the stream of the fuel mixture, which is formed from two pressure sensors, which are installed in a mixing chamber which receives the metered mixture of gas and combustion air and comprises a check valve, located in the Opens passage direction of the flow of the combustion mixture in the direction of the blower and closes for the reverse direction, the two pressure sensors are installed on both sides of the valve to measure a pressure difference, which makes it possible to calculate the flow rate of the stream of fuel mixture.
  • This version of the boiler is very simple, since it uses only two pressure sensors, at least one of which is also required for the safety control of the boiler.
  • the heating boiler comprises a device for measuring the flow rate of the stream of the fuel mixture, which is formed from a hot-film flow meter, which is installed in the passage of the fuel flow, in particular upstream of the blower.
  • This embodiment also has the advantage of simplicity since the hot-film mass flowmeters are widely available on the market and have been developed especially in automotive engineering.
  • the boiler comprises a pressure sensor which measures the back pressure imposed on the boiler when stopped by the flow of the fuel mixture and the exhaust gases.
  • the pressure sensor that measures the back pressure is advantageously one of the two pressure sensors that provide the pressure difference that is used to calculate the flow rate of the fuel mixture stream.
  • Fig. 1 the invention applies to a Kondensations2020kessel 100, which is shown schematically for its main sections.
  • This boiler is connected to a gas supply AG and to an air inlet AA for forming the fuel mixture.
  • the exhaust gases F arrive in an exhaust pipe CF.
  • This exhaust pipe CF may be reserved for the single boiler 100 or several boilers 100A in common.
  • the boiler 100 feeds a load circuit 200, which is a heating circuit, which is optionally combined with a circuit for the treatment of hot sanitary water or only one of the two functions (heating / hot sanitary water) ensures.
  • the boiler 100 consists at the entrance of a metering device 110, which feeds a mixing chamber 120, which receives the gas and the air, which are dosed in a suitable manner by the metering device, which is regulated in a fixed manner under conditions of use of the boiler.
  • the mixing chamber 120 is provided with a check valve 121 which opens only in the passage direction of the flow forming the mixture (arrow VM).
  • the mixing chamber 120 feeds a fan 130 which is driven by a motor 131 which supplies the flow rate of the fuel mixture to the heater 140 formed by a burner 141 which heats a heat exchanger 142 connected to the load circuit 200.
  • the output 143 of the radiator is connected through an output line 144 to the exhaust pipe CF.
  • the mixing chamber 120 is divided by the valve 121 into an entrance or front section 120A and an exit or rear section 120B.
  • the front portion 120A is equipped with a pressure sensor 122 and the rear portion with another pressure sensor 123.
  • the pressure sensors 122, 123 measure the pressure difference and thus the flow rate Q R (t) of the fuel mixture.
  • the flow rate Q k (t) can be obtained by measuring either air or air / gas mixture since the flow rate of the gas is pneumatically or electrically linked to that of the air.
  • the boiler 100 is managed by a control circuit 150 which is connected to a start / stop button 151 and also controls ordinary functions such as gas supply stop safety functions or the like, the rotational speed of the motor 131 of the blower 130 depending on the requested power taking into account the (variable) pressure loss imposed on the fuel mixture stream.
  • the control circuit 150 receives at the input various safety information, which is not shown in detail, and the target temperature T C and the temperature T of the load circuit 200, which make it possible to calculate the heating power P, which must provide the radiator 140.
  • This temperature T can actually represent different temperatures, such as the temperature of the heating fluid circulating in the consumer circuit, or the temperature of the heating fluid used for the treatment of hot sanitary water.
  • the control circuit 150 also receives information of the pressure and the difference of pressures supplied from the two sensors 122, 123 installed, for example, in the mixing chamber 120 on both sides of a pneumatic obstacle formed here by the check valve 121.
  • the valve which is open for the passage of the fuel flow, forms a pneumatic obstruction, which is arranged in the stream and which, by measuring the pressure difference between the two sensors, makes it possible to determine the real flow rate of the fuel mixture Q k (t) Valve flows, that is, the flow rate of the fuel mixture, which is sucked by the blower 130 and is supplied at the output of the burner 141 to calculate.
  • a pressure downstream of the valve can thus also be measured; the other pressure can be measured either in the air or at the air / gas mixture.
  • the power requested by the boiler depends on the set temperature T c , to which the load circuit 200 is regulated, and thus on the difference between the measured temperature T and the target temperature T c .
  • the power P (t) supplied by the boiler is directly proportional to the flow rate of the fuel mixture Q R (t) supplying the burner 141.
  • the constant pressure loss flow rate from the blower 130 downstream of the blower is quite proportional to the speed of the blower.
  • the pressure drop PCH downstream of the blower 130, in particular in the exit duct 144 of the radiator 140 and in the exhaust duct CF is a variable pressure loss PCH (t), since the geometry of the Exhaust pipe is fixed, but the flow rates of exhaust gases in the line CF in the time (t) are variable and they depend on the start-up and the operating conditions of other consumers 100A the exhaust pipe CF.
  • the curve of the conversion between the power delivered by the radiator and the required flow rate of the fuel mixture P (t) requested by it at the moment (t) is subsequently regulated to the real quantity Q k (t). which supplies the boiler blower 100 when the boiler is installed in place, in response to the target flow rate Q c (t).
  • the normal flow rate Q N of a blower 100 is the one with a free output and is in total proportional to the speed VR, which is represented by the straight line C N in Fig. 2A is shown.
  • the flow rate is subject to pressure losses, including counteracting pressure or back pressure in the conduit downstream of the fan; the real flow rate Q R (t) always depends on the speed of the fan, but often on a curve C (PCH) different from the normal curve C N.
  • PCH curve C
  • the curves C1 ... C2 are theoretical curves for a pressure loss that remains constant while the requested power varies.
  • the relationship is used which links the pneumatic properties of the various components of the circuit used by the flow of the fuel mixture VM and the variable pressure losses PCH (t) imposed on the exhaust gases F at the outlet 144 of the radiator 140 , And also the back pressure, which is found by the exhaust gases in the exhaust pipe CF.
  • the horizontal axis represents equally the requested power P or the target flow rate Qc, since these two quantities are linked since they are directly connected to the operation of the boiler.
  • the speed of the fan VR is controlled by regulating its real flow rate Q k (t) to the target flow rate Q C (t), which is that for which the boiler supplies the requested power called power P (t) .
  • the known control method orders by application of the operating curve C N ( Fig. 2A ) To a target speed V RC a requested flow rate. But the fan works in reality according to the curves C1 ... C4, which link its flow rate Qx with its speed V RX , taking into account the pressure losses encountered.
  • the speed remains constant, but the flow rate varies between the flow rate Q11 ... Q14, so that each time the boiler delivers a power equal to its real flow rates Q11 ... Q14. But these real flow rates and the services provided are not the requested ones.
  • the fan is regulated to a speed, while according to the invention ( Fig. 2B ) the fan is regulated to a desired flow rate.
  • the target speed VRC may vary depending on the requested power; the same applies to the target power Q c according to the invention, but this only emphasizes the fundamental difference between the two methods, since in the case of the prior art method pressure losses and back pressures are not taken into account and false real flow rates are brought about, while according to the invention, pressure losses and counter pressures are taken into account without having to calculate them, but it is always obtained the desired flow rate, since the flow rate of the blower is regulated to this desired flow rate (target flow rate Qc (t) ).
  • the method of the invention carried out by the boiler 100 functions under the following conditions:
  • the pressure difference measured by the sensors 122, 123 makes it possible to calculate the instantaneous real flow rate Q R (t).
  • the control circuit 150 calculates the flow rate Q C (t) required for the radiator 140. which is the target flow rate to which the motor 131 of the blower 130 is regulated in order for the heater to receive, under these conditions, the real flow rate Q (t) corresponding to the target flow rate Q c (t), that is, the power requested for the boiler.
  • the method according to the invention can be executed in the form of a program which is recorded in the memory 152 of the control circuit 150.
  • the flow rate of the fuel flow is measured by means of a flow meter, in particular a hot-film flow meter, which is preferably installed upstream of the blower 130.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

Ein Verfahren zum Steuern eines Kondensationsheizkessels, dessen Heizkörper mit einem Brennstoffgemisch (Luft/Gas) durch ein Gebläse gespeist wird, dessen Drehung in Abhängigkeit von der Anforderung durch den Verbraucherkreis gesteuert wird.
Für den Heizkessel (100) wird die Beziehung f(Q, P) aufgestellt, die die Durchflussmenge des zum Heizkörper (140) zu liefernden Brennstoffgemischs (Qc(t)) mit der Leistung verknüpft, die er liefern muss, und diese Beziehung wird in der Steuerschaltung (150) des Heizkessels aufgezeichnet. Das Gebläse (130) wird durch Regulieren seiner gemessenen realen Durchflussmenge (QR(t)) auf die Solldurchflussmenge (Qc(t)) gesteuert, die durch die Beziehung gegeben ist, die die Leistung, die der Heizkessel liefert, mit der Durchflussmenge des Brennstoffgemischs, das ihn speisen muss, verknüpft.

Description

    Gebiet der Erfindung
  • Die vorliegende Erfindung betrifft ein Verfahren zum Steuern eines Kondensationsheizkessels, dessen Heizkörper mit einem Brennstoffgemisch (Luft/Gas) durch ein Gebläse gespeist wird, das in Abhängigkeit vom Leistungsbedarf durch den Verbraucherkreis gesteuert wird, wobei gemäß dem Verfahren, nachdem für den Heizkessel die Beziehung aufgestellt wurde, die die Durchflussmenge des zu liefernden Brennstoffgemischs in Abhängigkeit von der Leistung, die der Heizkörper liefern muss, verknüpft, diese Beziehung in der Steuerschaltung des Heizkessels aufgezeichnet wird.
  • Die Erfindung betrifft auch einen Heizkessel für die Ausführung dieses Verfahrens.
  • Stand der Technik
  • Gegenwärtig wird die durch die Kondensationsheizkessel gelieferte Leistung in Abhängigkeit vom Leistungsbedarf durch das Gebläse gesteuert, das den Brenner mit dem Luft/Gas-Brennstoffgemisch speist. Das Gas wird automatisch zur Luft in Abhängigkeit von der Luftdurchflussmenge hinzugefügt. Die Beziehung, die die Durchflussmenge Q des Gebläses mit seiner Drehzahl VR verknüpft, ist eine lineare Beziehung (Fig. 2A), die für das einzige Gebläse aufgestellt wird und in der Steuerschaltung des Heizkessels aufgezeichnet wird.
  • Diese Regulierung der Drehzahl berücksichtigt nicht Druckverluste, auf die die Abgase treffen, die durch das Gebläse in die Abführungsleitung gedrängt werden. Diese Druckverluste sind nun selten fest. Sie variieren in Abhängigkeit von der Nutzung oder der Überlastung der Abgasleitung, vor allem, wenn die Abgasleitung mehreren Verbrauchern gemeinsam ist.
  • Ziel der Erfindung
  • Die vorliegende Erfindung hat das Ziel, ein Verfahren zum Steuern eines Kondensationsheizkessels zu entwickeln, um seinen Betrieb, das heißt die Leistung, die er liefert, zu optimieren, um so schnell wie möglich auf den Bedarf zu reagieren, ob dieser Heizkessel individuell an einer Abgasleitung installiert ist oder ein Teil einer gemeinsamen Anlage ist, die an ein und derselben Leitung angeschlossen ist.
  • Insbesondere hat die Erfindung das Ziel, das Problem des mehr oder weniger zufälligen Betriebs der Kondensationsheizkessel, die an ein und derselben Abgasleitung in einer gemeinsamen Anlage angeschlossen sind, und insbesondere eines Erneuerungsheizkessels zu lösen.
  • Darlegung und Vorteile der Erfindung
  • Dazu betrifft die Erfindung ein Verfahren des vorstehend definierten Typs, dadurch gekennzeichnet, dass das Gebläse durch Regulieren seiner gemessenen realen Durchflussmenge auf die Solldurchflussmenge gesteuert wird, die durch die definierte Beziehung gegeben ist, die die durch den Heizkörper angeforderte Durchflussmenge mit der Leistung, die er liefern muss, verknüpft.
  • Dieses Verfahren ermöglicht es, variable Druckverluste und den Gegendruck (dieser ist per Konvention hier in den variablen Druckverlusten enthalten) am Ausgang des Heizkessels wirksam zu berücksichtigen, um die momentane reale Durchflussmenge des zum Brenner zu liefernden Brennstoffgemischs genau anzupassen und die angeforderte Heizleistung zu erhalten, und zwar welches auch immer die Variationen des Druckverlusts sind, der dem Strom des Brennstoffgemischs im Heizkörper und abwärts von diesem auferlegt wird, einschließlich in der Abgasleitung, und zwar ohne die Druckverluste kennen zu müssen. Diese genaue Regulierung der zu liefernden Leistung ermöglicht einen noch wirtschaftlicheren Betrieb des Kondensationsheizkessels.
  • Gemäß einem vorteilhaften Merkmal wird die Durchflussmenge des Brennstoffgemischs durch die Druckdifferenz gemessen, die durch zwei Drucksensoren geliefert wird, die im Gemischstrom auf beiden Seiten eines Hindernisses installiert sind. Diese Messung der Durchflussmenge des Brennstoffgemischs durch die Drucksensoren bildet eine besonders wirtschaftliche Lösung, da diese Drucksensoren, zumindest einer von ihnen, bereits den Heizkessel ausstatten können oder für andere Funktionen notwendig sind, wie Sicherheitsfunktionen, die dem Heizkessel auferlegt werden. Außerdem kann der stromabwärts des Rückschlagventils installierte Sensor auch den Gegendruck, der im Heizkessel beim Anhalten in dem Abschnitt stromaufwärts des Ventils herrscht, liefern.
  • Unter diesen Bedingungen und gemäß einem vorteilhaften Merkmal des Verfahrens wird beim Start (Neustart) des Heizkessels der Gegendruck gemessen, der auf den Heizkessel aufgebracht wird, und dem Gebläse wird eine Drehzahl auferlegt, die die angeforderte Durchflussmenge liefert und den Gegendruck berücksichtigt, der auf den Strom des Brennstoffgemischs aufgebracht wird und vor dem Anfahren des Heizkessels gemessen wird.
  • Der Start des Heizkessels mit einer Leistung, die praktisch unverzüglich der zu liefernden Leistung entspricht, ermöglicht es, eine wirksamere Betriebszeit des Heizkessels zu haben, um fast sofort auf den Leistungsbedarf zu regieren, insbesondere wenn heißes Sanitärwasser durch den Heizkreis des Heizkessels erhitzt wird. Diese sehr schnelle Reaktion des Heizkessels im Moment des Starts verringert auch den Verbrauch oder steigert umgekehrt den Wirkungsgrad des Heizkessels.
  • Gemäß einem vorteilhaften Merkmal wird das Verfahren gemäß der Erfindung in Form eines Programms im Speicher der Steuerschaltung aufgezeichnet, die den Betrieb des Heizkessels managt.
  • Die Erfindung hat auch als Gegenstand einen Kondensationsheizkessel für die Ausführung dieses Verfahrens.
  • Somit bezieht sich die Erfindung auf einen Kondensationsheizkessel, der aus einem Heizkörper besteht, der die Wärme zu einem Verbraucherkreis durch die Verbrennung eines Stroms eines Brennstoffgemischs liefert, das durch ein gesteuertes Gebläse geliefert wird, das das Brennstoffgemisch von einer Dosiereinrichtung empfängt, die die dosierte Mischung des Brennstoffgases und der Verbrennungsluft sicherstellt, wobei dieser Heizkessel dadurch gekennzeichnet ist, dass er eine Steuerschaltung umfasst, die den Betrieb des Heizkessels und, dass er auf Sicherheit gebracht wird, managt und mit einer Vorrichtung zur Messung der Durchflussmenge des Stroms des Brennstoffgemisches verbunden ist, das durch das Gebläse zum Heizkörper geliefert wird, um den Motor des Gebläses zu regulieren, damit das Gebläse die für den Heizkörper erforderliche Durchflussmenge des Brennstoffgemischs liefert.
  • Dieser Heizkessel unterscheidet sich durch die Wirksamkeit seines Betriebs und seines Wirkungsgrades und durch die Möglichkeit der Installation von solchen Erneuerungsheizkesseln, welche auch immer die Eigenschaften des variablen Druckverlusts der Abgasleitungen stromabwärts vom Heizkessel sind, und ohne spezielle Regelungen durchführen zu müssen, die vom Installationsort abhängen würden.
  • Gemäß einem vorteilhaften Merkmal umfasst der Heizkessel eine Vorrichtung zur Messung der Durchflussmenge des Stroms des Brennstoffgemischs, die aus zwei Drucksensoren gebildet ist, die in einer Mischkammer installiert sind, die das dosierte Gemisch aus Gas und Verbrennungsluft empfängt und ein Rückschlagventil umfasst, das sich in der Durchgangsrichtung des Stroms des Verbrennungsgemischs in der Richtung des Gebläses öffnet und sich für die umgekehrte Richtung schließt, wobei die zwei Drucksensoren auf beiden Seiten des Ventils installiert sind, um eine Druckdifferenz zu messen, die es ermöglicht, die Durchflussmenge des Stroms des Brennstoffgemischs zu berechnen.
  • Diese Ausführung des Heizkessels ist sehr einfach, da sie nur zwei Drucksensoren verwendet, von denen mindestens einer außerdem für die Sicherheitskontrolle des Heizkessels erforderlich ist.
  • Gemäß einem anderen vorteilhaften Merkmal umfasst der Heizkessel eine Vorrichtung zur Messung der Durchflussmenge des Stroms des Brennstoffgemischs, die aus einem Heißfilm-Durchflussmesser gebildet ist, der in dem Durchgang des Brennstoffstroms, insbesondere stromaufwärts des Gebläses, installiert ist.
  • Diese Ausführung hat auch den Vorteil der Einfachheit, da die Heißfilm-Massendurchflussmesser weitgehend auf dem Markt verfügbar sind und insbesondere in der Kraftfahrzeugtechnik entwickelt wurden.
  • Gemäß einem anderen vorteilhaften Merkmal umfasst der Heizkessel einen Drucksensor, der den Gegendruck misst, der dem Heizkessel beim Anhalten durch den Kreis des Stroms des Brennstoffgemischs und der Abgase auferlegt wird.
  • Der Drucksensor, der den Gegendruck misst, ist vorteilhafterweise einer der zwei Drucksensoren, die die Druckdifferenz liefern, die zum Berechnen der Durchflussmenge des Stroms des Brennstoffgemischs dient.
  • Zeichnungen
  • Die vorliegende Erfindung wird nachstehend mit Hilfe eines Ausführungsbeispiels des Verfahrens und des Heizkessels, der das Verfahren ausführt, genauer beschrieben, das in den beigefügten Zeichnungen dargestellt ist, in denen:
    • Fig. 1 ein Diagramm einer Heizanlage mit einem Kondensationsheizkessel gemäß der Erfindung ist,
    • Fig. 2A die Beziehung zwischen der Durchflussmenge eines Gebläses und seiner Drehzahl zeigt,
    • Fig. 2B ein Diagramm zeigt, das die Drehzahl des Gebläses in Abhängigkeit von der angeforderten Leistung für verschiedene variable Druckverluste angibt, die dem Strom des Brennstoffgemischs im Heizkessel auferlegt werden,
    • Fig. 2C ein Diagramm analog zu jenem von Fig. 2B, aber auf den Betrieb eines Heizkessels gemäß dem Stand der Technik angewendet, ist.
    Beschreibung von Ausführungsformen der Erfindung
  • Gemäß Fig. 1 gilt die Erfindung für einen Kondensationsheizkessel 100, der schematisch für seine Hauptabschnitte dargestellt ist. Dieser Heizkessel ist mit einer Gasversorgung AG und mit einem Lufteingang AA zum Bilden des Brennstoffgemischs verbunden. Am Ausgang kommen die Abgase F in einer Abgasleitung CF an. Diese Abgasleitung CF kann für den einzigen Heizkessel 100 reserviert sein oder mehreren Heizkesseln 100A gemeinsam sein. Der Heizkessel 100 speist einen Verbraucherkreis 200, der ein Heizkreis ist, der gegebenenfalls mit einem Kreis zur Aufbereitung von heißem Sanitärwasser kombiniert ist oder nur eine der zwei Funktionen (Heizen/heißes Sanitärwasser) sicherstellt.
  • Der Heizkessel 100 besteht am Eingang aus einer Dosiereinrichtung 110, die eine Mischkammer 120 speist, die das Gas und die Luft, die in geeigneter Weise durch die Dosiereinrichtung dosiert werden, empfängt, die in fester Weise unter Verwendungsbedingungen des Heizkessels reguliert wird. Die Mischkammer 120 ist mit einem Rückschlagventil 121 ausgestattet, das sich nur in der Durchgangsrichtung des Stroms öffnet, der das Gemisch bildet (Pfeil VM). Die Mischkammer 120 speist ein Gebläse 130, das durch einen Motor 131 angetrieben wird, der die Durchflussmenge des Brennstoffgemischs zum Heizkörper 140 liefert, der durch einen Brenner 141 gebildet ist, der einen Wärmetauscher 142 erhitzt, der mit dem Verbraucherkreis 200 verbunden ist. Der Ausgang 143 des Heizkörpers ist durch eine Ausgangsleitung 144 mit der Abgasleitung CF verbunden.
  • Die Mischkammer 120 ist durch das Ventil 121 in einen Eingang oder vorderen Abschnitt 120A und einen Ausgang oder hinteren Abschnitt 120B unterteilt. Der vordere Abschnitt 120A ist mit einem Drucksensor 122 ausgestattet und der hintere Abschnitt mit einem anderen Drucksensor 123.
  • Die Drucksensoren 122, 123 messen die Druckdifferenz und somit die Durchflussmenge QR(t) des Brennstoffgemischs. Im Allgemeinen kann jedoch die Durchflussmenge Qk(t) durch eine Messung entweder an der Luft oder am Luft/GasGemisch erhalten werden, da die Durchflussmenge des Gases pneumatisch oder elektrisch mit jener der Luft verknüpft ist.
  • Der Heizkessel 100 wird durch eine Steuerschaltung 150 gemanagt, die mit einer Start/Stopp-Taste 151 verbunden ist und außerdem gewöhnliche Funktionen steuert, wie die Funktionen der Sicherheit für das Anhalten der Speisung mit Gas oder dergleichen, der Drehzahl des Motors 131 des Gebläses 130 in Abhängigkeit von der angeforderten Leistung unter Berücksichtigung des (variablen) Druckverlusts, der dem Strom des Brennstoffgemischs auferlegt wird. Die Steuerschaltung 150 empfängt am Eingang verschiedene Sicherheitsinformationen, die nicht detailliert dargestellt sind, sowie die Solltemperatur TC und die Temperatur T des Verbraucherkreises 200, die es ermöglichen, die Heizleistung P zu berechnen, die der Heizkörper 140 liefern muss. Diese Temperatur T kann tatsächlich verschiedene Temperaturen wie die Temperatur des Heizfluids, das im Verbraucherkreis zirkuliert, oder auch die Temperatur der Heizflüssigkeit, die zur Aufbereitung von heißem Sanitärwasser dient, darstellen. Die Steuerschaltung 150 empfängt auch eine Information des Drucks und der Differenz von Drücken, die von den zwei Sensoren 122, 123 geliefert wird, die beispielsweise in der Mischkammer 120 auf beiden Seiten eines pneumatischen Hindernisses installiert sind, das hier durch das Rückschlagventil 121 gebildet ist. Das Ventil, das für den Durchgang des Brennstoffstroms offen ist, bildet ein pneumatisches Hindernis, das im Strom angeordnet ist und das durch die Messung der Druckdifferenz zwischen den zwei Sensoren es ermöglicht, die reale Durchflussmenge des Brennstoffgemischs Qk(t), das durch das Ventil strömt, das heißt die Durchflussmenge des Brennstoffgemischs, das vom Gebläse 130 angesaugt wird, und am Ausgang des Brenners 141 geliefert wird, zu berechnen. Ein Druck stromabwärts des Ventils kann somit auch gemessen werden, der andere Druck kann entweder an der Luft oder am Luft/GasGemisch gemessen werden.
  • Die vom Heizkessel angeforderte Leistung hängt von der Solltemperatur Tc ab, auf die der Verbraucherkreis 200 reguliert wird, und somit von der Differenz zwischen der gemessenen Temperatur T und der Solltemperatur Tc. Die Leistung P(t), die der Heizkessel liefert, ist direkt proportional zur Durchflussmenge des Brennstoffgemischs QR(t), das den Brenner 141 versorgt. Die vom Gebläse 130 gelieferte Durchflussmenge mit konstantem Druckverlust stromabwärts des Gebläses ist durchaus proportional zur Drehzahl des Gebläses. In der Realität ist jedoch der Druckverlust PCH stromabwärts des Gebläses 130, insbesondere in der Ausgangsleitung 144 des Heizkörpers 140 und in der Abgasleitung CF (die per Konvention den entgegenwirkenden Druck oder Gegendruck umfasst), ein variabler Druckverlust PCH(t), da die Geometrie der Abgasleitung fest ist, aber die Durchflussmengen von Abgasen in der Leitung CF in der Zeit (t) variabel sind und sie vom Anfahren und von den Betriebsbedingungen der anderen Verbraucher 100A der Abgasleitung CF abhängen.
  • Gemäß der Erfindung wird die Kurve der Umsetzung zwischen der durch den Heizkörper gelieferten Leistung und der erforderlichen Durchflussmenge des Brennstoffgemischs P(t), die von ihm im Moment (t) angefordert wird, um anschließend die reelle Menge Qk(t) zu regulieren, die das Gebläse 100 des Heizkessels liefert, wenn der Heizkessel an seinem Ort installiert ist, in Abhängigkeit von der Solldurchflussmenge Qc(t) aufgestellt.
  • Diese Regulierung basiert auf der Differenz δQ = Qc t Q R t .
    Figure imgb0001
  • Die reale Durchflussmenge QR(t) hängt von der Drehzahl VR des Gebläses 130 ab, das beschleunigt oder verlangsamt wird, um die Differenz zwischen der realen Durchflussmenge und der Solldurchflussmenge aufzuheben, das heißt δQ = 0 zu erhalten.
  • Diese Regulierung kann durch das Diagramm von Fig. 2A veranschaulicht werden, um es zu ermöglichen, das Verfahren der Erfindung mit dem bekannten Betrieb zu vergleichen, der durch die Kurve von Fig. 2C dargestellt ist.
  • Wie in Fig. 2A dargestellt, ist die normale Durchflussmenge QN eines Gebläses 100 jene mit einem freien Ausgang und sie ist insgesamt zur Drehzahl VR proportional, was durch die Gerade CN in Fig. 2A dargestellt ist. Wenn jedoch das Gebläse eine stromabseitige Anlage speist, das heißt wenn sein Ausgang nicht frei ist, wird die Durchflussmenge Druckverlusten unterzogen, einschließlich eines entgegenwirkenden Drucks oder Gegendrucks in der Leitung stromabwärts des Gebläses; die reale Durchflussmenge QR(t) hängt immer von der Drehzahl des Gebläses ab, aber häufig von einer Kurve C(PCH), die von der normalen Kurve CN verschieden ist. Tatsächlich gibt es eine Schar von verschiedenen Kurven Ci(PCH) gemäß den Druckverlusten PCH, denen das Gebläse unter den realen Betriebsbedingungen ausgesetzt ist. Die Kurven C1...C2 sind theoretische Kurven für einen Druckverlust, der konstant bleibt, während die angeforderte Leistung variiert.
  • Gemäß der Erfindung wird für den Heizkessel 100 die Beziehung verwendet, die die pneumatischen Eigenschaften der verschiedenen Komponenten des durch den Strom des Brennstoffgemischs VM benutzten Kreises und die variablen Druckverluste PCH(t) verknüpft, die den Abgasen F am Ausgang 144 des Heizkörpers 140 auferlegt werden, und auch den Gegendruck, der von den Abgasen in der Abgasleitung CF angetroffen wird. Diese Beziehung gibt die Durchflussmenge des Brennstoffgemischs Q in Abhängigkeit von der Drehzahl VR des Gebläses 130 für verschiedene Druckverluste PCH, die dem Strom des Brennstoffgemischs VM auferlegt werden, das durch das Gebläse 130 geliefert wird. Es handelt sich im Prinzip um eine Funktion mit drei Variablen f(Q, VR, PCH) = 0, die durch eine Oberfläche in einem Bezugssystem mit drei Achsen dargestellt wird. In der Praxis kann jedoch diese Funktion in einer Ebene mit als Variablen der Durchflussmenge Q und der Drehzahl VR und als Parameter einem Druckverlust PCH dargestellt werden, was die Schar von Kurven in dem Koordinatensystem mit Achsen gibt, die Q und VR darstellen, wie das Diagramm von Fig. 2B zeigt, in Abhängigkeit von Beispielen von verschiedenen Druckverlusten PCHi (i = 1, 2, 3, ...) stromabwärts des Gebläses 130.
  • In diesem Diagramm stellt die horizontale Achse gleichermaßen die angeforderte Leistung P oder die Solldurchflussmenge Qc dar, da diese zwei Größen verknüpft sind, da sie direkt mit dem Betrieb des Heizkessels verbunden sind.
  • Für eine angeforderte Leistung (Durchflussmenge) P(Q1) in Abhängigkeit von dem Druckverlust PCH1, PCH2, ... gibt es einen unterschiedlichen Betriebspunkt PF1 ... PF4, das heißt eine unterschiedliche Drehzahl VR11 ... VR14 des Gebläses 130, da gemäß der Erfindung die Drehzahl des Gebläses VR durch Regulierung seiner realen Durchflussmenge Qk(t) auf die Solldurchflussmenge QC(t) gesteuert wird, die jene ist, für die der Heizkessel die angeforderte Leistung liefert, die Leistung P(t) genannt wird.
  • Als Beispiel und unter Annahme, dass die Kurven des Diagramms von Fig. 2B bekannt sind, wenn in einer Betriebsperiode die angeforderte Leistung (in beliebiger Weise) zwischen den Leistungen P1(Qc1) und P2(Qc2) variiert und wenn in derselben Periode der Druckverlust PCH zwischen den Werten PCH1 und PCH2 variiert, dann verlagert sich der Betriebspunkt PF des Gebläses (und seine Drehzahl) in dem Viereck PF11, PF21, PF22, PF12, das durch die Kurven der Durchflussmenge C1, C2 und die Abszissengeraden P1/Q1 und P1/Q2 begrenzt ist, die zur Achse Oy parallel sind. Diese Darstellung muss es ermöglichen, den Unterschied zwischen diesem Verfahren der Steuerung des Heizkessels gemäß der Erfindung und dem bekannten Verfahren gemäß dem Diagramm von Fig. 2C zu machen. Das bekannte Steuerverfahren ordnet durch Anwendung der Betriebskurve CN (Fig. 2A) eine Solldrehzahl VRC einer angeforderten Durchflussmenge zu. Aber das Gebläse funktioniert in der Realität gemäß den Kurven C1 ... C4, die seine Durchflussmenge Qx mit seiner Drehzahl VRX unter Berücksichtigung der angetroffenen Druckverluste verknüpfen.
  • In der Praxis bedeutet dies gemäß dem Stand der Technik, dass, um eine Durchflussmenge zu haben, für das Gebläse eine Drehzahl VRC festgelegt wird und gemäß dem angetroffenen Druckverlust (Fig. 2C) diese Drehzahl eine Durchflussmenge Q11 ... Q14 erzeugt.
  • Gemäß dem dargestellten Beispiel bleibt folglich die Drehzahl konstant, aber die Durchflussmenge variiert zwischen der Durchflussmenge Q11 ... Q14, so dass der Heizkessel jedes Mal eine Leistung liefert, die seinen realen Durchflussmengen Q11 ... Q14 entspricht. Aber diese realen Durchflussmengen und die so gelieferten Leistungen sind nicht die angeforderten.
  • Mit anderen Worten, gemäß dem Stand der Technik wird das Gebläse auf eine Drehzahl reguliert, während gemäß der Erfindung (Fig. 2B) das Gebläse auf eine Solldurchflussmenge reguliert wird.
  • Wie vorstehend erläutert wurde, kann die Solldrehzahl VRC gemäß dem Stand der Technik in Abhängigkeit von der angeforderten Leistung variieren; dasselbe gilt für die Sollleistung Qc gemäß der Erfindung, aber dies unterstreicht nur die grundlegende Differenz zwischen den zwei Verfahren, da im Fall des Verfahrens des Standes der Technik Druckverluste und Gegendrücke nicht berücksichtigt werden und falsche reale Durchflussmengen herbeigeführt werden, während gemäß der Erfindung Druckverluste und Gegendrücke berücksichtigt werden, ohne sie berechnen zu müssen, sondern es wird immer die gewollte Durchflussmenge erhalten, da die Durchflussmenge des Gebläses auf diese gewollte Durchflussmenge reguliert wird (Solldurchflussmenge Qc(t)).
  • Das erfindungsgemäße Verfahren, das vom Heizkessel 100 ausgeführt wird, funktioniert unter den folgenden Bedingungen:
  • Die durch die Sensoren 122, 123 gemessene Druckdifferenz ermöglicht es, die momentane reale Durchflussmenge QR(t) zu berechnen. Gemäß der vom Verbraucherkreis 200 angeforderten Leistung P(t), die beispielsweise mit der Solltemperatur Tc und der durch den Temperatursensor 201 des Verbraucherkreises gemessenen Temperatur T verknüpft ist, berechnet die Steuerschaltung 150 die für den Heizkörper 140 erforderliche Durchflussmenge QC(t), die die Solldurchflussmenge ist, auf die der Motor 131 des Gebläses 130 reguliert wird, damit der Heizkörper unter diesen Bedingungen die reale Durchflussmenge Q(t) empfängt, die der Solldurchflussmenge Qc(t) entspricht, das heißt der für den Heizkessel angeforderten Leistung.
  • Um die Reaktionszeit des Heizkessels beim Start zu verringern und so weit wie möglich die Leistungssteigerung zu beschleunigen, wird der Gegendruck berücksichtigt, der durch die Abgasleitung CF auferlegt wird und der in der Mischkammer 120 stromabwärts des Ventils 121 (Abschnitt 120B) herrscht, das Gebläse 130 wird unmittelbar auf die Sollgeschwindigkeit gestartet, die diesem Gegendruck entspricht, damit die Durchflussmenge Q praktisch ab diesem Moment die für den Heizkörper 140 erforderliche Durchflussmenge ist, unter Berücksichtigung des Gegendrucks der Abgase F ab diesem Moment, die in der Abgasleitung CF ankommen.
  • Das erfindungsgemäße Verfahren kann in Form eines Programms ausgeführt werden, das im Speicher 152 der Steuerschaltung 150 aufgezeichnet ist.
  • Gemäß einer nicht dargestellten Variante wird die Durchflussmenge des Brennstoffstroms mit Hilfe eines Durchflussmessers, insbesondere eines Heißfilm-Durchflussmessers, der vorzugsweise stromaufwärts des Gebläses 130 installiert ist, gemessen.

Claims (10)

  1. Verfahren zum Steuern eines Kondensationsheizkessels, dessen Heizkörper mit einem Brennstoffgemisch (Luft/Gas) durch ein Gebläse gespeist wird, das in Abhängigkeit von der Leistungsanforderung durch den Verbraucherkreis gesteuert wird, gemäß dem, nachdem für den Heizkessel (100) die Beziehung f(Q, P) aufgestellt wurde, die die Durchflussmenge des zum Heizkörper (140) zu liefernden Brennstoffgemischs (Q) mit der Leistung verknüpft, die der Heizkörper liefern muss, diese Beziehung f(Q, P) in der Steuerschaltung (150) des Heizkessels aufgezeichnet wird,
    wobei das Verfahren dadurch gekennzeichnet ist, dass
    das Gebläse (100) durch Regulieren seiner gemessenen realen Durchflussmenge (QR(t)) auf die Solldurchflussmenge (QC(t)) gesteuert wird, die durch die definierte Beziehung gegeben ist, die die für den Heizkörper (140) erforderliche Durchflussmenge in Abhängigkeit von der Leistung (P(t)), die er liefern muss, verknüpft.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass
    die reale Durchflussmenge des Brennstoffgemischs (QR(t)) durch die Druckdifferenz (ΔP) gemessen wird, die durch zwei Drucksensoren (122, 123) geliefert wird, die im Strom des Gemischs (VM) auf beiden Seiten eines Hindernisses (121) installiert sind.
  3. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass
    die reale Durchflussmenge des Brennstoffgemischs (QR(t)) mit Hilfe eines Heißfilm-Massendurchflussmessers gemessen wird.
  4. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass
    beim Start (Neustart) des Heizkessels der Gegendruck gemessen wird, der auf den Heizkessel (100) aufgebracht wird, und dem Gebläse (130) eine Drehzahl (VR) auferlegt wird, die die angeforderte Durchflussmenge (QR(t)) unter Berücksichtigung des Gegendrucks liefert, der auf den Strom des Brennstoffgemischs (VM) aufgebracht wird und vor dem Anfahren des Heizkessels (100) gemessen wird.
  5. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass
    es in Form eines Programms ausgeführt wird, das im Speicher (152) der Steuerschaltung (150) aufgezeichnet ist, die den Betrieb des Heizkessels (100) steuert.
  6. Kondensationsheizkessel, der aus einem Heizkörper (140) besteht, der die Wärme zu einem Verbraucherkreis (200) durch Verbrennung eines Stroms eines Brennstoffgemischs liefert, das durch ein gesteuertes Gebläse (130) geliefert wird, der das Brennstoffgemisch von einer Dosiereinrichtung (110) empfängt, die das dosierte Mischen des Brennstoffgases und der Verbrennungsluft sicherstellt,
    wobei der Heizkessel dadurch gekennzeichnet ist, dass
    er eine Steuerschaltung (150) umfasst, die den Betrieb des Heizkessels (100) und, dass er auf Sicherheit gebracht wird, managt und mit einer Vorrichtung zur Messung der Durchflussmenge (122, 123) des Stroms des Brennstoffgemischs (VM) verbunden ist, das vom Gebläse (130) zum Heizkörper (140) geliefert wird, um den Motor (131) des Gebläses (130) zu regulieren, um die Durchflussmenge (QR(t)) des Brennstoffgemischs gleich der Solldurchflussmenge (Qc(t)) zu liefern, die für den Heizkörper (140) erforderlich ist, welche auch immer die Variationen des Druckverlusts sind, die dem Strom des Brennstoffgemischs (VM) auferlegt werden.
  7. Heizkessel nach Anspruch 6,
    dadurch gekennzeichnet, dass
    er eine Vorrichtung zur Messung der momentanen Durchflussmenge des Stroms des Brennstoffgemischs (VM) umfasst, die durch zwei Drucksensoren (122, 123) gebildet ist, die in einer Mischkammer (120) installiert sind, die das dosierte Gemisch von Gas und Verbrennungsluft empfängt, und ein Rückschlagventil (121) umfasst, das sich in der Richtung des Durchgangs des Stroms des Brennstoffgemischs in der Richtung des Gebläses (130) öffnet und sich für die umgekehrte Richtung schließt, wobei die zwei Drucksensoren (122, 123) auf beiden Seiten des Ventils (121) installiert sind, um eine Druckdifferenz zu messen, die es ermöglicht, die Durchflussmenge (QR (H)) des Stroms des Brennstoffgemischs zu berechnen.
  8. Heizkessel nach Anspruch 6,
    dadurch gekennzeichnet, dass
    er eine Vorrichtung zur Messung der momentanen Durchflussmenge (QR(t)) des Stroms des Brennstoffgemischs umfasst, die durch einen Heißfilm-Durchflussmesser gebildet ist, der im Durchgang des Brennstoffstroms installiert ist, insbesondere stromaufwärts des Gebläses (130).
  9. Heizkessel nach Anspruch 6,
    dadurch gekennzeichnet, dass
    er einen Drucksensor (123) umfasst, der den Gegendruck misst, der dem Heizkessel beim Anhalten durch den Kreis des Stroms des Brennstoffgemischs und der Abgase auferlegt wird.
  10. Heizkessel nach den Ansprüchen 6 und 9,
    dadurch gekennzeichnet, dass
    der Drucksensor (123), der in der Mischkammer (120) stromabwärts (120B) des Rückschlagventils (121) installiert ist, den Drucksensor bildet, der die Messung des Gegendrucks liefert.
EP16178039.0A 2015-07-23 2016-07-05 Verfahren zum steuern eines kondensationsheizkessels und heizkessel für die ausführung des verfahrens Active EP3121516B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1557001A FR3039260B1 (fr) 2015-07-23 2015-07-23 Procede de gestion d'une chaudiere a condensation et chadiere pour la mise en oeuvre du procede

Publications (2)

Publication Number Publication Date
EP3121516A1 true EP3121516A1 (de) 2017-01-25
EP3121516B1 EP3121516B1 (de) 2018-05-09

Family

ID=55236450

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16178039.0A Active EP3121516B1 (de) 2015-07-23 2016-07-05 Verfahren zum steuern eines kondensationsheizkessels und heizkessel für die ausführung des verfahrens

Country Status (2)

Country Link
EP (1) EP3121516B1 (de)
FR (1) FR3039260B1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114777325A (zh) * 2022-04-11 2022-07-22 富联智能工坊(郑州)有限公司 锅炉系统调控方法、模型建立方法、相关设备及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010026389A1 (de) * 2010-07-07 2012-01-12 Robert Bosch Gmbh Verfahren zur Regelung einer Verbrennung bei einem Gas- oder Ölbrenner
EP2604918A1 (de) * 2011-11-02 2013-06-19 Robert Bosch Gmbh Verfahren zur Regelung der Zusammensetzung eines Luft-Brenngas-Gemisches, das dem Brenner eines Gasheizkessels zugeführt wird, sowie Vorrichtung, welche die Durchführung dieses Verfahrens ermöglicht
EP2685168A1 (de) * 2012-07-13 2014-01-15 Honeywell Technologies Sarl Verfahren und Steuergerät zum Betrieb eines Gasbrenners
WO2014029721A1 (de) * 2012-08-23 2014-02-27 Robert Bosch Gmbh Verfahren zur regelung einer heizeinrichtung und heizeinrichtung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010026389A1 (de) * 2010-07-07 2012-01-12 Robert Bosch Gmbh Verfahren zur Regelung einer Verbrennung bei einem Gas- oder Ölbrenner
EP2604918A1 (de) * 2011-11-02 2013-06-19 Robert Bosch Gmbh Verfahren zur Regelung der Zusammensetzung eines Luft-Brenngas-Gemisches, das dem Brenner eines Gasheizkessels zugeführt wird, sowie Vorrichtung, welche die Durchführung dieses Verfahrens ermöglicht
EP2685168A1 (de) * 2012-07-13 2014-01-15 Honeywell Technologies Sarl Verfahren und Steuergerät zum Betrieb eines Gasbrenners
WO2014029721A1 (de) * 2012-08-23 2014-02-27 Robert Bosch Gmbh Verfahren zur regelung einer heizeinrichtung und heizeinrichtung

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114777325A (zh) * 2022-04-11 2022-07-22 富联智能工坊(郑州)有限公司 锅炉系统调控方法、模型建立方法、相关设备及介质
CN114777325B (zh) * 2022-04-11 2024-04-05 富联智能工坊(郑州)有限公司 锅炉系统调控方法、模型建立方法、相关设备及介质

Also Published As

Publication number Publication date
FR3039260B1 (fr) 2017-08-25
FR3039260A1 (fr) 2017-01-27
EP3121516B1 (de) 2018-05-09

Similar Documents

Publication Publication Date Title
EP2870414B1 (de) Verfahren zum betrieb eines wärmetauschers sowie hvac-anlage zur durchführung des verfahrens
EP0035085B1 (de) Anlage zum Transport von Wärme mittels eines Fluides
WO2013034358A1 (de) Verfahren zum betreiben und/oder überwachen einer hvac-anlage
AT513733A1 (de) Verfahren zum hydraulischen Abgleich eines Heizungssystems
EP3121516B1 (de) Verfahren zum steuern eines kondensationsheizkessels und heizkessel für die ausführung des verfahrens
AT398643B (de) Vorrichtung zum steuern der auslauftemperatur
EP1191287B1 (de) Leitungssystem zur thermischen Energieübertragung
DE3202168A1 (de) Regeleinrichtung fuer eine warmwasser-zentralheizung
DE2023748C3 (de) Speisewasse rvorwärm-Einrichtung in einer kombinierten Gas-Dampfkraftanlage mit nachgeschaltetem Dampferzeuger
AT406081B (de) Heizanlage
EP3896339B1 (de) Verfahren zur anpassung einer steuerung eines heizgeräts
DE4334625A1 (de) Verfahren zum Konstanthalten der Leistung eines Wassererwärmers
EP0694742B1 (de) Warmwasserheizungssystem
DE102012208994A1 (de) Vorrichtung zum Regeln der Raumtemperatur
AT524206B1 (de) Messvorrichtung zur Dosierung von Fluiden sowie Verfahren zur Dosierung mit einer derartigen Messvorrichtung
DE102007007975B4 (de) Verfahren und Vorrichtung zur direkten Aufheizung eines Sekundär-Flüssigmediums durch einen Luft-Flüssigmedium-Wärmetauscher mit Warmluft als Primärmedium
DE2611292A1 (de) Einrichtung zur steuerung des motors des absauggeblaeses von gasheizgeraeten mit zwangszug
DE10002860C2 (de) Wärmezähler für Wärmeträgermedien
DE2524760A1 (de) Verfahren zur regelung einer heizungsanlage und heizungsanlage zur durchfuehrung des verfahrens
DE2548494B2 (de) Anlage zur Regelung der Temperatur und des Strömungsgleichgewichtes in einem Raum
DE704134C (de) Regelverfahren fuer Anlagen zur Erzeugung von heissen Gasen unter Druck, vornehmlich von heisser Druckluft
DE102022100488A1 (de) Verfahren zum Betreiben eines flammenbildenden Heizgerätes einer Heizungsanlage, Computerprogramm, Speichermedium, Regel- und Steuergerät, Heizgerät und Verwendung einer Durchflussrate einer Heizungsanlage und eines Ionisationssignals eines Heizgerätes
DE2822558B1 (de) Verfahren zum Regeln eines abgasbeheizten Waermetauschers
EP4067770A1 (de) Verfahren zur regelung des wärmeträger-volumenstroms eines kreislaufverbundsystems und vorrichtung dafür
EP1450111B1 (de) Verfahren zur Bestimmung eines Wärmebedarfs und Heizeinrichtung zur Durchführung des Verfahrens

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20170725

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F23N 5/18 20060101AFI20170927BHEP

Ipc: F23D 14/02 20060101ALI20170927BHEP

INTG Intention to grant announced

Effective date: 20171016

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 997928

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180515

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016001029

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 3

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180809

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180809

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180810

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016001029

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180705

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180731

26N No opposition filed

Effective date: 20190212

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160705

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180509

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180909

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 997928

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210705

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230720

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230731

Year of fee payment: 8

Ref country code: GB

Payment date: 20230724

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230720

Year of fee payment: 8

Ref country code: DE

Payment date: 20230922

Year of fee payment: 8