EP3118693B1 - Mécanisme de réglage de marche d'un oscillateur d'horlogerie - Google Patents

Mécanisme de réglage de marche d'un oscillateur d'horlogerie Download PDF

Info

Publication number
EP3118693B1
EP3118693B1 EP15176957.7A EP15176957A EP3118693B1 EP 3118693 B1 EP3118693 B1 EP 3118693B1 EP 15176957 A EP15176957 A EP 15176957A EP 3118693 B1 EP3118693 B1 EP 3118693B1
Authority
EP
European Patent Office
Prior art keywords
microsystem
watch
base plate
oscillator
actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15176957.7A
Other languages
German (de)
English (en)
Other versions
EP3118693A1 (fr
Inventor
Lionel Paratte
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swatch Group Research and Development SA
Original Assignee
Swatch Group Research and Development SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swatch Group Research and Development SA filed Critical Swatch Group Research and Development SA
Priority to EP15176957.7A priority Critical patent/EP3118693B1/fr
Priority to CH01034/15A priority patent/CH711336A2/fr
Priority to US15/208,131 priority patent/US9804568B2/en
Priority to JP2016138278A priority patent/JP6145201B2/ja
Priority to RU2016128898A priority patent/RU2698187C1/ru
Priority to CN201610561109.1A priority patent/CN106353998B/zh
Publication of EP3118693A1 publication Critical patent/EP3118693A1/fr
Application granted granted Critical
Publication of EP3118693B1 publication Critical patent/EP3118693B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B18/00Mechanisms for setting frequency
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • G04B17/063Balance construction
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B18/00Mechanisms for setting frequency
    • G04B18/006Mechanisms for setting frequency by adjusting the devices fixed on the balance
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B18/00Mechanisms for setting frequency
    • G04B18/02Regulator or adjustment devices; Indexing devices, e.g. raquettes
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B18/00Mechanisms for setting frequency
    • G04B18/04Adjusting the beat of the pendulum, balance, or the like, e.g. putting into beat
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B27/00Mechanical devices for setting the time indicating means
    • G04B27/007Mechanical devices for setting the time indicating means otherwise than manually
    • GPHYSICS
    • G04HOROLOGY
    • G04DAPPARATUS OR TOOLS SPECIALLY DESIGNED FOR MAKING OR MAINTAINING CLOCKS OR WATCHES
    • G04D7/00Measuring, counting, calibrating, testing or regulating apparatus
    • G04D7/08Measuring, counting, calibrating, testing or regulating apparatus for balance wheels
    • G04D7/082Measuring, counting, calibrating, testing or regulating apparatus for balance wheels for balancing
    • G04D7/084Measuring, counting, calibrating, testing or regulating apparatus for balance wheels for balancing by setting adjustable elements, e.g. balance wheel screws
    • GPHYSICS
    • G04HOROLOGY
    • G04DAPPARATUS OR TOOLS SPECIALLY DESIGNED FOR MAKING OR MAINTAINING CLOCKS OR WATCHES
    • G04D7/00Measuring, counting, calibrating, testing or regulating apparatus
    • G04D7/08Measuring, counting, calibrating, testing or regulating apparatus for balance wheels
    • G04D7/082Measuring, counting, calibrating, testing or regulating apparatus for balance wheels for balancing
    • G04D7/085Measuring, counting, calibrating, testing or regulating apparatus for balance wheels for balancing by removing material from the balance wheel itself
    • G04D7/087Automatic devices therefor (balancing and loading or removing carried out automatically)
    • GPHYSICS
    • G04HOROLOGY
    • G04DAPPARATUS OR TOOLS SPECIALLY DESIGNED FOR MAKING OR MAINTAINING CLOCKS OR WATCHES
    • G04D7/00Measuring, counting, calibrating, testing or regulating apparatus
    • G04D7/12Timing devices for clocks or watches for comparing the rate of the oscillating member with a standard
    • G04D7/1257Timing devices for clocks or watches for comparing the rate of the oscillating member with a standard wherein further adjustment devices are present
    • G04D7/1264Timing devices for clocks or watches for comparing the rate of the oscillating member with a standard wherein further adjustment devices are present for complete clockworks

Definitions

  • the invention relates to a microsystem for adjusting a clock oscillator, comprising at least one flywheel arranged to pivot relative to a base plate that comprises said microsystem, said flywheel comprising an eccentric balance and comprising a toothing, said microsystem comprising at least one actuator arranged to drive a control wheel, a lever, or a ratchet wheel, said active pawl being arranged to drive said toothing, and said microsystem comprising at least one stop means in position of said toothing.
  • the invention also relates to a clock oscillator comprising at least one such microsystem.
  • the invention also relates to a watch movement, comprising at least one such oscillator.
  • the invention also relates to a watch comprising at least one such microsystem or such an oscillator.
  • the invention also relates to a device for adjusting a clock oscillator, comprising at least one such watch.
  • the invention relates to the field of adjustment of clock oscillators, more particularly for mechanical movements.
  • Adjusting the mechanical time of a watch is a specialist task, and requires meticulous, precise and attentive work.
  • the document EP2410386 A1 in the name of NIVAROX-FAR SA describes a pendulum equipped with timepiece, with inertia adjustment to adjust its inertia and / or its balance or / and its frequency of oscillation, with a balance having an inserted insert in a housing a serge connected to a hub by a junction surface.
  • This balance or this insert is equipped with elastic holding means allowing, under stress, insertion of the insert into its housing, and prohibiting, once released after complete insertion of each insert, the extraction of this insert out of its housing.
  • These elastic holding means can be made directly in the balance rod serge.
  • JPS5238254A in the name of SEIKO INSTR & ELECTRONICS describes an optical adjustment device.
  • the invention proposes to allow a fine or coarse adjustment of a function of a mechanical watch, and more particularly a fine adjustment of the running of a mechanical watch movement, without having to open the case of this watch.
  • the invention proposes to use the properties of energy transport by a light beam, or laser, or the like, towards the inside of the watch case, to reversibly deform certain zones of the oscillator.
  • the invention relates to a microsystem for adjusting a clock oscillator according to claim 1.
  • the invention also relates to a clock oscillator comprising at least one such microsystem, according to claim 20.
  • the invention also relates to a watch movement, comprising at least one such oscillator, according to claim 22.
  • the invention also relates to a watch comprising at least one such microsystem or at least one such oscillator, according to claim 23.
  • the invention also relates to a device for adjusting a clock oscillator, comprising at least one such watch, according to claim 26.
  • the invention proposes to allow an adjustment of a horological function, in particular an adjustment of the gait of a mechanical clockwork movement, without having to open the box 90 of a watch 1.
  • the invention is, in fact, more specifically designed for a micro-adjustment, so as to be able to very precisely adjust the running of a watch with its movement nested in its final configuration, and the sizing examples that will be provided later are suitable for such a fine adjustment.
  • Those skilled in the art will be able to extrapolate the architecture of the invention to make adjustments requiring a greater amplitude of adjustment.
  • the invention relates to a device 1000 for adjusting a watchmaking function, in particular for adjusting a clock oscillator 100, in particular for a mechanical movement 200.
  • the movement 200 is not illustrated in detail in the figures.
  • Oscillator 100 is not fully illustrated, it is constituted, in a particular non-limiting case, by a balance spring and spiral assembly, and only an equipped balance wheel 70 is shown in the figures, the invention illustrated in this particular application concerns changing the inertia of a clock balance, or changing the position of the center of inertia (unbalance correction).
  • the invention uses, as will be seen below, the rotation of one or more eccentric flywheel wheels, reported indirectly on this balance within microsystems 10 to control optical, each having a base plate 60 fixed on a bare beam 7, or monobloc with this bare balance 7: the invention allows to change the angular position of each flywheel, and thus to change the position of the center of inertia specific to this flywheel, with respect to the main axis of pivoting D of the balance wheel 7.
  • the overall inertia of the equipped balance wheel 70 comprising the bare balance wheel and this or these microsystems 70, can therefore, in certain cases, remain unchanged if the center of gravity of the flywheel remains on the same radius relative to the main pivot axis D of the balance, while the position of the resulting center of inertia can be changed. It is understood that, in case of implantation of several microsystems, and according to their arrangement, one can either be forced to a symmetrical maneuver does not change the position of the overall center of inertia, or drive independently of each other, and, thus, modify the position of the overall center of inertia, and thus also be able to correct an intrinsic balance of the naked beam.
  • modification of inertia is used hereinafter to designate both the change of inertia value with respect to an axis, and the modification of the position of the center of inertia resulting from a mobile with respect to this axis.
  • the invention proposes to use the energy transport properties by a light beam, or laser, or the like, towards the inside of the watch box 90, to reversibly deform certain zones of the oscillator 100.
  • the invention is illustrated with a modification of inertia on a part of the oscillator constituted by a pendulum.
  • Those skilled in the art will be able to extrapolate the use of optically controlled microsystems as described in detail below for an action on another component of an oscillator, for the adjustment of such means of fixing, of voltage, of modification the stiffness of a hairspring, adjustment of the useful length of a hairspring, or others.
  • the invention relates first of all to a microsystem 10 for adjusting a horological function, and, particularly in the application illustrated by the figures, a microsystem for adjusting a clock oscillator, in particular for mechanical movement.
  • the invention uses an optical energy transfer to trigger a movement of a mechanical adjustment component.
  • the invention preferably relates to high-end watches, having a transparent bottom 2, arranged to be transparent at certain ranges of desired wavelengths, to allow the passage of a light beam 3, or any other optical ray .
  • the light passage can also be done, in particular for a skeletonized movement, from the upper side comprising the ice and readable by the user, or by a side or peripheral edge of the box 90.
  • the light path in the watch 1 can also be performed along an optical fiber or a waveguide, which then allows a non-rectilinear light path.
  • a light beam 3 can pass through a transparent bottom window 2 at the selected wavelengths so as to illuminate an illuminated area 5, preferably on at least one sector device of a balance equipped 70.
  • This equipped balance wheel 70 comprises a bare rocker 7 connected to an elastic return means such as spiral or torsion wire, or else evolving in an environment of magnetic or electrostatic fields of attraction and / or repulsion, and this bare balance 7 carries at least one microsystem 10, which is arranged to transform a concentrated light energy flux into a variation of inertia equipped balance 70, by changing its inertia and the spatial distribution of the masses that compose it.
  • an elastic return means such as spiral or torsion wire, or else evolving in an environment of magnetic or electrostatic fields of attraction and / or repulsion
  • this bare balance 7 carries at least one microsystem 10, which is arranged to transform a concentrated light energy flux into a variation of inertia equipped balance 70, by changing its inertia and the spatial distribution of the masses that compose it.
  • the concentration of the light beam which is obtained with optical concentration means 4 is directed towards at least one heating zone 6 of a actuator that includes such a microsystem 10, after crossing the bottom glass 2.
  • this actuator is advantageously a thermomechanical actuator 30.
  • optical means of concentration 4 are not detailed, and are either intrinsic to the watch 1 such as lenses, or external to the watch 1 as on the figure 2 which shows a lens arranged to concentrate the thermal energy of a light beam 3 towards such a heating zone 6.
  • the inertia of the latter is modified by the addition of at least one microsystem 10 to change the inertia of this pendulum , and preferably by adding a plurality of such microsystems 10.
  • the invention is illustrated in the figures by an advantageous variant comprising two identical rotary microsystems, embedded diametrically and symmetrically on the serge of the bare balance 7, with respect to the main axis of pivoting D of the latter, in order to compensate the the unbalance effect of one of the rotating microsystems by the other.
  • the microsystem 10 in particular a clock oscillator, has at least one flywheel 20 arranged to pivot with respect to a base plate 60 that this device comprises. microsystem 10.
  • the flywheel 20 comprises an eccentric balancer 22 and has a ratchet toothing 21.
  • this microsystem 10 comprises at least one actuator driving at least a first said active pawl 38 arranged to rotate the gearing 21, and comprises at least one stop means in the position of the toothing 21.
  • such a microsystem 10 comprises a base plate 60, an actuator which is a thermomechanical actuator 30 provided with a first active pawl 38, and a 20 ratchet flywheel having an eccentric balancer pivoting about a secondary axis D20.
  • the invention can be realized with secondary mobiles having a shape other than the weight-bearing wheels 20 illustrated, for example in the form of moving masses in grooves, or other.
  • thermomechanical actuator 30 may, depending on the embodiment variant chosen, be fixed to the base plate 60, or be integral with it.
  • the flywheel 20 may, depending on the embodiment variant chosen, be guided in the base plate 60, or be integral with it.
  • at least one flywheel 20 is pivotally mounted about a fixed shaft 24 attached to the base plate 60 or integrated in this base plate 60, and pivoting about the secondary axis D20: the wheel -masselotte 20 shown on the figure 4 rotates about a fixed guide shaft 24, driven or glued into a bore 61 of the base plate 60.
  • at least one flywheel 20 is integrated in the base plate 60 relative to which it pivots carried by flexible guides, in particular of the type with thin elastic blades.
  • the stopping means in position of the toothing 21 is a second said passive pawl 25 positioned on the base plate 60, and which comprises an elastic return means, for its support on the toothing 21 .
  • the first active pawl 38 is a pawl mounted tangentially to the toothing 21, and comprises at least one tooth or a comb biased towards this toothing 21 by an elastic return means that it comprises.
  • the first active ratchet can be replaced by a control wheel, a lever, a ratchet wheel, or other.
  • At least one actuator of the microsystem 10 is a thermomechanical actuator 30, which is arranged to transform a light source energy flow into a displacement of a mechanical control member.
  • the thermomechanical actuator 30 is designed for the transformation of the concentrated light energy into a displacement CC, and in particular a displacement which is comparable to a linear displacement.
  • the displacement CC relates to a distal end 380 of this thermomechanical actuator 30.
  • This distal end 380 carries a first active pawl 38, or directly controls a movement of such a first active pawl 38, through a gear, a friction, a linkage or the like.
  • thermomechanical actuator 30 is also usable, as such, for other control applications of a watch adjusting device.
  • thermomechanical actuator 30 comprises a deformable mobile 300, precisely under the thermal action of the light ray, which acts more particularly at the necks or ball joints 34, 35, 36.
  • this thermomechanical actuator 30 comprises, substantially in a first longitudinal direction X, and in this order, a longitudinal line composed of an alternation of rigid masses 311, 45, 46, 312, and flexible necks 34, 35, 36, held between anchors 321, 322 on the base plate 60, the opposite outer rigid masses 311, 312, called arms bearing on these anchors 321, 322, or integral with these anchors 321 , 322.
  • the deformable mobile 300 comprises two arms 31: 311 and 312, extending substantially along the same longitudinal direction X, and anchored at their farthest opposite ends 320 to anchors 32: 321, 322, made integral with the base plate 60, for example by means of an oxide layer 50 in the advantageous case of a silicon embodiment.
  • These two arms 311 and 312 surround a central portion which comprises a first solid portion 45 and a second solid portion 46.
  • the first solid portion 45 is connected to a first arm 311 by a first neck 34, and to the second solid portion 46 by a second said central neck 35.
  • the second solid portion 46 is connected to a second arm 312 by a third neck 36 .
  • the arms 311, 312, the necks 34, 35, 36, and the first solid portion 45 and second solid portion 46, are, at rest, substantially aligned in the longitudinal direction X.
  • thermomechanical actuator 30 comprising at least the necks 34, 35, 36, is arranged to be superimposed on a heating zone 6 where this central zone can receive an energy input of light origin.
  • the momentary difference in temperature between the hot central zone and its cold support causes a dilation of the central zone, which has the effect of effect of compressing the longitudinal line between the anchors 321, 322, and to bend at least one of said necks (34, 35, 36).
  • This compression tends to subject the necks to a flexural force; so as to maintain substantially flat deformations, the total thickness of the actuator, in a direction perpendicular to the plane of the base plate 60, is important with respect to the thickness of these necks in this plane, for example thirty times more important.
  • thermomechanical actuator 30 will not move, if it is made of the same material as the base plate 60. This is therefore an undeniable advantage, compared to bimetallic systems, for example.
  • At least one of the flexible necks 34, 35, 36 is offset, in a transverse direction Y orthogonal to the longitudinal direction X, of a transverse offset dy relative to the other necks 34, 35, 36, transforming the bending movement d at least one of these necks 34, 35, 36, in a plane rotational movement, parallel to the base plate 60, at least one intermediate mass 45, 46, not directly connected to one of the anchors 321, 322.
  • an intermediate mass 45 or 46 drivable in rotation, carries a strip 37 extending substantially in the transverse direction Y and having a distal end 380 arranged to carry a mechanical control means.
  • the rotational stroke of the rod 37 is limited by rod stops 39 which surround it.
  • the device 1000 comprises synchronization means for controlling a light beam 3 to follow, on the fly, and aim at least, or each microsystem 10 it comprises, carried by a component of the oscillator 100 during oscillation, in particular on the rocker equipped 70 during oscillation.
  • such a light beam 3 is projected through the transparent bottom 2, and is concentrated, at a heating zone 6, on a particular heating part constituted by the central zone of the thermomechanical actuator. 30. It deforms, and the first active pawl 38, which is integral with a movable part of the thermomechanical actuator 30, and more particularly of the rod 37, drives the toothing 21 of the flywheel 20 on a or more teeth.
  • the displacement of the center of gravity 23 (or inertia) of the flywheel 20 thus causes a change of inertia of the equipped balance 70.
  • the drive by the first active pawl 38 is in one direction, which is clockwise in the case of the figure 2 , the second passive pawl 25 then prevents rotation in the counterclockwise direction when the first active pawl 38 returns when the central zone cools down.
  • the duration of illumination of the heating zone is as short as possible, and is limited to obtaining the desired deformation of the actuator 30, preferably corresponding to the passage of a single tooth of the If there is a need for several teeth to pass, it is possible to allow the actuator to return quickly to room temperature, in a neutral position, and to illuminate it again for the passage of a single tooth. , and to repeat this operation as many times as necessary. This does not exclude operation with maintained illumination for the simultaneous passage of several teeth, the first active ratchet 38 may comprise, instead of a single tooth as shown in the figures, a comb or the like.
  • a single tooth at the first active ratchet 38 can also act on more than one step, and has the advantage of preventing any jamming phenomenon.
  • a sustained illumination is carried out: after a significantly longer time than in the first mode, the thermal flow towards the base is stationary, and the respective temperatures of the central zone and the base plate 60 approach, causing a rewiring of the actuator
  • an indirect heat input is effected, the concentrated light beam then heating a buffer component, for example a ring, in front of which the central zone of the actuator 3 during the oscillation circulates. of the pendulum.
  • Another embodiment uses an embedded ring and securely connected to the central zone to be heated, which allows the heating spot to remain stationary.
  • the heating zone 6 is preferably arranged so as to cover at least the central part with the necks 34, 35, 36, and the first solid part 45 and the second solid part 46, and the inner ends of the arms 311, 312. As a result of the thermal action, the arms 311 and 312 become longer as the temperature increases, and are subjected to compressive stress.
  • the three necks 34, 35, 36 make the system compliant, not hyperstatic.
  • the slight transverse offset dy of at least one of the necks 34, 35, 36 relative to the others suffices to subject at least the first solid portion 45 or the second solid portion 46 to a rotational movement parallel to the plane of rotation. the base plate 60.
  • a very small difference is sufficient to initiate the rotational movement, which can then be well correlated with the heat input and the temperature in the heating zone 6, in order to regulate, in a virtually linear manner, the angle ⁇ of rotation of the rod 37, and the displacement CC of the first active pawl 38, as visible on the figure 9 .
  • the figure 10 shows that the stress S in the necks obeys an almost identical rule, with a substantially linear curve as a function of the temperature.
  • the figure 9 shows that the fact of subjecting the heating zone 6 to a temperature close to 260 ° C, in the illustrated example which corresponds to the variant of the figure 5 , makes it possible to obtain a displacement amplitude CC of 23 ⁇ m, which is sufficient to drive the toothing 21 of a flywheel 20, advantageously also made of silicon.
  • the pronounced slope of the profile in figure 9 allows to increase, if necessary, the race of the first active pawl 38, while monitoring the degree of stress in figure 10 .
  • the figures 3 and 5 illustrate a same embodiment, according to variants of execution detail. These two variants have a common feature that is to rotate almost in situ the second massive portion 46, which carries a rod 37 which extends substantially in the transverse direction Y, and carries at its distal end 380 , the first active ratchet 38.
  • the variant of the figure 3 comprises rod stops 39, arranged so as to limit the travel of the first active pawl 38 to 1.5 teeth of the toothing 21 of the flywheel 20.
  • thermomechanical actuator 30 carries, substantially in the extension of the rod 37 and the opposite side with respect to a line defined by the anchors 321, 322, at least one counterweight 40 intended to prevent the movement of the rod 37 during shocks , and prevent any alteration of the oscillation frequency and run adjustment.
  • the central zone comprises the inner ends of two arms 311, 312, directly fixed by their ends external to the anchors 321, 322, whose inner ends are separated by recesses 33 arranged to isolate from the hot zone the bases 320 of the arms and these anchors 321, 322, when the central zone is subjected to a flow of energy.
  • the central zone also includes the inner end of the rod 37 which is separated from the distal end 380 by a cavity arranged to isolate this distal end 380 from the hot zone when said central zone is subjected to a flow of energy.
  • the central zone may also include the inner end of the counterweight 40 which is separated from its distal end by a cavity arranged to isolate the distal end of the hot zone.
  • the base plate 60 advantageously comprises at least one cavity 41, delimited by a border 42, arranged to isolate the anchors 321, 322, and each flywheel 20 of the hot zone when the central zone is subjected to a flow of energy.
  • the figure 1 is an overall view with a balance equipped 70 with a diameter of about 10 mm, which carries two microsystems 10 each made on the basis of a SOI chip of about 1.6 mm side, carrying wheels weights 20 of a diameter of about 0.7 mm, a radius of action Rm of about 4 mm, each heating zone 6 being a disc of about 0.8 mm in diameter.
  • the Figures 11 to 13 are related to the microsystem 10 in the variant with "S" design, made in silicon monocrystalline MEMS technology, the figure 3 , in a non-limiting numerical example, with a length L of 1.0 mm, a rod length w, characteristic of the distance between the inflection zones of two successive necks, of 0.100 mm, a coefficient of expansion of 2.10 - 6 / ° C, and a radius R of ratchet rotation of 0.8 mm.
  • the stiffness of the necks 34, 35, 36 is very small, at least a hundred times lower than that of the base plate 60.
  • the necks 34, 35, 36 comprise a linear portion whose length Ir is about four times the thickness e of these necks, and the offset dy provided to initiate the rotation of the rod 37 is about twice that same thickness e.
  • the height h of the first solid portion 45 and the second solid portion 46 is preferably between two and three times the length of the ball Ir, and close to half of the connecting rod length w.
  • the three ends of the actuator 30 are maintained at ambient temperature of the order of 20 ° C.
  • the heating zone 6 can be brought to a temperature between 100 and 400 ° C, the upper limit being chosen according to the materials of the watch 1, in particular the box 90, to prevent damage to a component. This precaution also explains that we restrict our to a heating zone 6 with the smallest possible surface area.
  • FIG. 6 to 8 illustrate the deformation of an actuator as shown in FIG. figure 5
  • Figures 9 and 10 respectively illustrate the displacement CC of the distal end 380 of the rod 37, and the stress distribution S in the necks 34, 35, 36, as a function of the temperature in the heating zone 6.
  • the Figures 12 and 13 relate to the calculation of the running adjustment by the flywheel 20, monocrystalline silicon, which we give a non-limiting numerical example below.
  • the figure 13 illustrates the difference between the upper and lower limits of the linear range at +5.52 and -5.52 sec / day, as a function of the pivot angle ⁇ of the flywheel 20.
  • the system according to the invention is reversible, because by rotating the flywheel 20 uninterruptedly, the inertia is modified according to a sine function as visible on the figure 13 , which avoids being bidirectional.
  • the only disadvantage in this case is that, to reach a lower inertia, while one is in the rising phase of the inertia in the direction of the activation of the ratchet, one must actually make a little less 'a complete turn to reach the good value.
  • the microsystem 10 comprises a first level constituted by the base plate 60 around a thermal insulation cavity 41, and a second level comprising at least one flywheel 20, at least one actuator 30, at minus a first active pawl 38, and at least one stopping means 25 (or second passive pawl) in the position of the toothing 21.
  • the base plate 60 and the thermomechanical actuator 30 are made of the same material, so as to prevent any maladjustments when the base plate 60 and the thermomechanical actuator 30 are subjected, within a watch, at the same temperature variations due to the external environment in which the user of the watch evolves.
  • the microsystem 10 is made integrally and has cavities under the movable members that it comprises.
  • the microsystem 10 is entirely made of silicon and / or silicon oxide. It can still be made in DLC or other micromechanical materials.
  • the first level is a "handle” layer and the second level is a "device” layer.
  • microsystem 10 all silicon, including in particular cavities under the pawls 25 and 38, in order to achieve them in MEMS technology, and advantageously comprising a flywheel 20 on flexible pivots, with course a movement angular limited in the latter case.
  • actuator 30 it is also necessary to take into account the forces, forces and / or torques generated during shocks up to 500 rpm, which must not cause the system to be disturbed, which imposes a minimum force to be provided by the rider. actuator 30 to avoid any disturbance resulting from a random acceleration.
  • the invention also relates to a clock oscillator 100 comprising at least one such microsystem 10.
  • the base plate 60 of this at least one microsystem 10 is attached to a component of the oscillator for its inertia adjustment for the correction of the progress of the oscillator.
  • the oscillator 100 comprises a balanced rocker 70 constituted by a bare rocker 7 connected to an elastic return means or subjected to at least one repulsion and / or attraction field, this bare rocker 7 carrying at least one such microsystem 10 or being monoblock with at least one such microsystem 10.
  • the invention also relates to a horological movement 200, comprising at least one such oscillator 100.
  • This movement 200 comprises at least one transparent crystal 2 at predetermined wavelength ranges, and allowing the passage of a light beam 3 for adjusting at least one such microsystem 10.
  • the invention also relates to a watch 1 comprising at least one such microsystem 10, at least one such oscillator 100.
  • This watch 1 comprises at least one transparent mirror 2 at predetermined wavelength ranges, and allowing the passage of a light beam 3 for the adjustment of such a microsystem 10, which controls a mechanical component for setting a watch function of the watch, such as time setting, date setting, day, spindle, or the like.
  • the control member of at least one microsystem 10 that includes the watch 1 is arranged to control a mechanical component for adjusting a watch function of the watch 1 when this microsystem 10 is subjected to a suitable light radiation.
  • this watch 1 In a particular application, the only means of adjustment of this watch 1 are these microsystems 10, and the adjustment is carried out without contact, without subjecting the watch to a magnetic or electrostatic field, and is made only by supply of energy by at least a light ray.
  • the invention also relates to a device 1000 for setting a clock oscillator, comprising at least one such watch 1.
  • This device 1000 comprises control means 300 arranged to control the emission of a light beam 3 to an optical concentrator 4 guiding a light beam towards an illuminated area 5 of the watch 1 through the lens 2, inside which illuminated area 5 a heating zone 6 is superposable on a central zone of the thermomechanical actuator 30 for triggering a movement of at least one flywheel 20 during the supply of concentrated light energy to the heating zone 6.
  • this device 1000 comprises means for monitoring the step 400 arranged to be arranged on or in the vicinity of a box 90 that includes the watch 1, and thermal monitoring means 500 arranged to be arranged on or in the vicinity of this box 90, and these control means 300 are arranged to generate light rays 3 only when the temperature of the box 90 is less than a set value, and are arranged to generate light rays 3 when the heating zone 6 is superimposed on the central zone of the thermomechanical actuator 30, as many times as necessary as long as the deviation is different from a set value. It is understood that the system is pulse, and the generation of light beam is not continuous, to limit the temperature in the box 90.
  • the invention allows an extremely precise adjustment of the step without requiring the opening of the box.
  • this setting is discrete, and therefore reproducible.
  • the invention finds a preferred application for adjusting an oscillator, it is also applicable for other horological applications, because it makes it possible to make adjustments in a closed watch and perfectly sealed, which is particularly interesting for diving watches or the like, where Simple settings of time setting or date can now be achieved without any push or control means passing through the box.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Micromachines (AREA)

Description

    Domaine de l'invention
  • L'invention concerne un microsystème de réglage de marche d'un oscillateur d'horlogerie, comportant au moins une roue-masselotte agencée pour pivoter par rapport à une plaque de base que comporte ledit microsystème, ladite roue-masselotte comportant un balourd excentrique et comportant une denture, ledit microsystème comportant au moins un actionneur agencé pour entraîner une roue de commande, un levier, ou une roue à cliquet, ledit cliquet actif étant agencé pour entraîner ladite denture, et ledit microsystème comportant au moins un moyen d'arrêt en position de ladite denture.
  • L'invention concerne encore un oscillateur d'horlogerie comportant au moins un tel microsystème.
  • L'invention concerne encore un mouvement d'horlogerie, comportant au moins un tel oscillateur.
  • L'invention concerne encore une montre comportant au moins un tel microsystème ou un tel oscillateur.
  • L'invention concerne encore un dispositif de réglage de marche d'un oscillateur d'horlogerie, comportant au moins une telle montre.
  • L'invention concerne le domaine du réglage des oscillateurs d'horlogerie, plus particulièrement pour des mouvements mécaniques.
  • Arrière-plan de l'invention
  • L'ajustement de la marche d'une montre mécanique est une tâche de spécialiste, et requiert un travail méticuleux, précis et attentif.
  • Pour ajuster la marche d'une montre mécanique, il faut en général ouvrir la boîte et en extraire le mouvement, pour ensuite accéder à des composants permettant le réglage de la marche, et notamment, dans le cas usuel d'un oscillateur comportant un ensemble balancier-spiral, où la fréquence d'oscillation dépend de l'inertie du balancier et de la raideur du spiral, à des composants permettant d'agir indépendamment sur ces deux paramètres :- vis sur les bras ou la serge du balancier et dont le réglage en rotation permet de modifier l'inertie de ce balancier équipé,-raquette mobile en pivotement et agencée pour modifier la rigidité du spiral, - ou similaires.
  • Cette opération requiert donc des opérations supplémentaires coûteuses en temps. De plus, le contrôle d'étanchéité doit être refait. Souvent, l'opération de réemboîtage du mouvement produit encore un décalage de la marche, qui impose de refaire le réglage.
  • Le document EP2410386 A1 au nom de NIVAROX-FAR SA décrit un balancier équipé pour pièce d'horlogerie, à réglage d'inertie pour ajuster son inertie ou/et son équilibrage ou/et sa fréquence d'oscillation, avec un balancier comportant un insert rapporté dans un logement d'une serge reliée à un moyeu par une surface de jonction. Ce balancier ou cet insert est équipé de moyens de maintien élastique autorisant, sous contrainte, l'insertion de l'insert dans son logement, et interdisant, une fois libérés après insertion complète de chaque insert, l'extraction de cet insert hors de son logement. Ces moyens de maintien élastique peuvent être réalisés directement dans la serge du balancier.
  • Le document JPS5238254A au nom de SEIKO INSTR & ELECTRONICS décrit un dispositif de réglage optique.
  • Résumé de l'invention
  • L'invention se propose de permettre un réglage fin ou grossier d'une fonction d'une montre mécanique, et plus particulièrement un réglage fin de la marche d'un mouvement mécanique de montre, sans devoir ouvrir la boîte de cette montre.
  • L'invention se propose d'utiliser les propriétés de transport d'énergie par un faisceau lumineux, ou laser, ou similaire, vers l'intérieur de la boîte de montre, pour déformer de façon réversible certaines zones de l'oscillateur.
  • A cet effet, l'invention concerne un microsystème de réglage de marche d'un oscillateur d'horlogerie selon la revendication 1.
  • L'invention concerne encore un oscillateur d'horlogerie comportant au moins un tel microsystème, selon la revendication 20.
  • L'invention concerne encore un mouvement d'horlogerie, comportant au moins un tel oscillateur, selon la revendication 22.
  • L'invention concerne encore une montre comportant au moins un tel microsystème ou au moins un tel oscillateur, selon la revendication 23.
  • L'invention concerne encore un dispositif de réglage de marche d'un oscillateur d'horlogerie, comportant au moins une telle montre, selon la revendication 26.
  • Description sommaire des dessins
  • D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui va suivre, en référence aux dessins annexés, où :
    • la figure 1 représente, de façon schématisée, et en vue de face, un balancier équipé pour mécanisme oscillateur d'horlogerie, qui comporte, portés par la serge d'un balancier, deux microsystèmes selon l'invention agencés pour transformer un flux d'énergie lumineuse, concentrée au niveau d'au moins une zone de chauffage, en une variation d'inertie de ce balancier équipé, par modification de la répartition dans l'espace des masses qui le composent ;
    • la figure 2 représente, de façon schématisée, partielle, et en coupe, une montre comportant une boîte obturée par une glace de fond transparente, laquelle boîte renferme un mouvement comportant un oscillateur mécanique dont seul est représenté le balancier équipé de la figure 1, dont une partie de la surface est située dans une zone illuminée par un rayon lumineux d'origine externe, concentré par une lentille, et traversant le fond transparent de la boîte;
    • la figure 3 représente, de façon schématisée, et en vue de face, un microsystème selon l'invention, comportant un actionneur thermomécanique fixé sur une plaque de base, constitué par un mobile déformable en forme de croix dont deux bras longitudinaux, reliés entre eux par une alternance de cols et de masses, et en léger déport transversal l'un par rapport à l'autre, constituent l'appui sur la plaque de base, et dont un bras transversal appelé baguette porte un premier cliquet dit actif, lequel est agencé pour entraîner une denture d'une roue-masselotte à balourd excentrique montée pivotante par rapport à la plaque de base, et dont un autre bras transversal libre en porte-à-faux constitue un contrepoids d'équilibrage;
    • la figure 4 est une vue en coupe selon le tracé AA du microsystème de la figure 3 ;
    • la figure 5 représente une variante de l'actionneur thermomécanique de la figure 3, en forme de té, et dépourvue de contrepoids dans le prolongement de la baguette, et avec un déport transversal des bras longitudinaux dans une autre configuration que la figure 3 ;
    • la figure 6 est un schéma de répartition de température de l'actionneur de la figure 5 quand les extrémités les plus éloignées des bras longitudinaux sont maintenues à température ambiante, ainsi que l'extrémité distale de la baguette, tandis que la zone centrale comportant les cols est placée en zone de chauffage à une haute température comprise entre 150°C et 300°C ;
    • la figure 7 représente, de façon schématisée, et en vue de face, la déformée de l'actionneur thermomécanique de la figure 5 soumis à cette haute température, et la figure 8 en est un détail au niveau des cols ;
    • la figure 9 est une courbe montrant la quasi-linéarité de la course de déplacement de l'extrémité distale de la baguette, correspondant à la course du premier cliquet actif, en fonction de la différence de température entre la zone de chauffage et la plaque de base;
    • la figure 10 est une courbe similaire montrant l'évolution quasi-linéaire de la contrainte dans les cols, en fonction de la température ;
    • la figure 11 est l'équivalent de la figure 9 pour l'actionneur de la figure 3 ;
    • la figure 12 est un détail d'une roue-masselotte ;
    • la figure 13 est une courbe montrant la différence de marche qui est une fonction sinusoïdale de l'angle de rotation de la roue-masselotte ;
    • la figure 14 est un schéma-blocs représentant un dispositif de réglage de marche d'un oscillateur d'horlogerie, comportant une montre avec un mouvement comportant un oscillateur muni d'un microsystème selon l'invention, ce dispositif comportant des moyens de pilotage interfacés avec des moyens de surveillance de la marche et des moyens de surveillance de température, agencés à proximité de la boîte de la montre.
    Description détaillée des modes de réalisation préférés
  • L'invention se propose de permettre un réglage d'une fonction horlogère, en particulier un réglage de la marche d'un mouvement d'horlogerie mécanique, sans devoir ouvrir la boîte 90 d'une montre 1.
  • Selon la construction et le dimensionnement du mécanisme selon l'invention, et selon l'usage requis, il est possible d'effectuer un réglage grossier ou fin. L'invention est, en effet, plus précisément conçue pour un micro-réglage, de façon à pouvoir régler très précisément la marche d'une montre avec son mouvement emboîté dans sa configuration finale, et les exemples de dimensionnement qui seront fournis plus loin sont appropriés à un tel réglage fin. L'homme du métier saura extrapoler l'architecture de l'invention pour effectuer des réglages nécessitant une amplitude de réglage supérieure.
  • A cet effet, l'invention concerne un dispositif 1000 de réglage d'une fonction horlogère, notamment de réglage de marche d'un oscillateur 100 d'horlogerie, notamment pour un mouvement mécanique 200.
  • Le mouvement 200 n'est pas illustré de façon détaillée sur les figures.
  • L"oscillateur 100 n'est pas illustré complètement. Il est constitué, dans un cas particulier non limitatif, par un ensemble balancier-spiral, et seul un balancier équipé 70 est représenté sur les figures. L'invention illustrée dans cette application particulière concerne la modification d'inertie d'un balancier d'horlogerie, ou la modification de position du centre d'inertie (correction de balourd).
  • En effet, dans une variante préférée illustrée par les figures, l'invention utilise, comme on le verra ci-après, la rotation d'une ou plusieurs roues-masselotte à excentrique, rapportées indirectement sur ce balancier au sein de microsystèmes 10 à commande optique, possédant chacun une plaque de base 60 fixée sur un balancier nu 7, ou encore monobloc avec ce balancier nu 7: l'invention permet de modifier la position angulaire de chaque roue-masselotte, et donc de changer la position du centre d'inertie propre à cette roue-masselotte, par rapport à l'axe principal de pivotement D du balancier 7.
  • L'inertie globale du balancier équipé 70, comportant le balancier nu et ce ou ces microsystèmes 70, peut donc, dans certains cas, rester inchangée si le centre d'inertie de la roue-masselotte reste sur un même rayon par rapport à l'axe principal de pivotement D du balancier, alors que la position du centre d'inertie résultant peut être modifiée. On comprend que, en cas d'implantation de plusieurs microsystèmes, et selon leur agencement, on peut, soit s'astreindre à une manoeuvre symétrique ne changeant pas la position du centre d'inertie global, soit les piloter indépendamment les uns des autres, et, ainsi, modifier la position du centre d'inertie global, et ainsi également pouvoir corriger un balourd intrinsèque du balancier nu. On utilise ci-après l'expression « modification d'inertie » pour désigner aussi bien la modification de valeur d'inertie par rapport à un axe, que la modification de la position du centre d'inertie résultant d'un mobile par rapport à cet axe.
  • L'invention se propose d'utiliser les propriétés de transport d'énergie par un faisceau lumineux, ou laser, ou similaire, vers l'intérieur de la boîte 90 de montre, pour déformer de façon réversible certaines zones de l'oscillateur 100.
  • L'homme du métier spécialiste des oscillateurs à ensemble balancier-spiral, ou encore des oscillateurs à ensemble balancier-fil de torsion qui sont beaucoup plus rares, saura extrapoler les enseignements de l'invention pour déclencher des micromouvements contrôlés, afin de modifier la raideur d'un spiral ou la tension d'un fil de torsion, soit directement, soit par action indirecte sur des moyens de fixation ou de tension de tels moyens de rappel élastique.
  • L'invention est illustrée avec une modification d'inertie sur une partie de l'oscillateur constituée par un balancier. L'homme du métier saura extrapoler l'utilisation de microsystèmes 10 à commande optique tels que décrits en détail ci-après pour une action sur un autre composant d'un oscillateur, pour le réglage de tels moyens de fixation, de tension, de modification de la raideur d'un spiral, de réglage de la longueur utile d'un spiral, ou autres.
  • L'invention concerne tout d'abord un microsystème 10 de réglage d'une fonction horlogère, et, tout particulièrement dans l'application illustrée par les figures, un microsystème de réglage de marche d'un oscillateur horloger, notamment pour mouvement mécanique.
  • L'invention fait appel à un transfert d'énergie par voie optique, pour déclencher un mouvement d'un composant mécanique de réglage.
  • L'invention concerne de préférence les montres haut-de-gamme, ayant un fond transparent 2, agencé pour être transparent à certaines plages de longueurs d'ondes souhaitées, pour permettre le passage d'un rayon lumineux 3, ou tout autre rayon optique. Bien entendu, le passage lumineux peut aussi se faire, notamment pour un mouvement squeletté, depuis le côté supérieur comportant la glace et lisible par l'utilisateur, ou encore par un chant latéral ou périphérique de la boîte 90. Dans une variante non illustrée, le cheminement lumineux dans la montre 1 peut encore être effectué le long d'une fibre optique ou d'un guide d'onde, ce qui autorise alors un cheminement lumineux non rectiligne.
  • L'invention est ainsi illustrée dans une variante particulière, non limitative, où un faisceau lumineux 3 peut traverser une glace de fond 2 transparente aux longueurs d'onde sélectionnées, de façon à illuminer une zone illuminée 5, de préférence sur au moins un secteur périphérique d'un balancier équipé 70.
  • Ce balancier équipé 70 comporte un balancier nu 7 relié à un moyen de rappel élastique tel que spiral ou fil de torsion, ou bien encore évoluant dans un environnement de champs magnétiques ou électrostatiques d'attraction ou/et de répulsion, et ce balancier nu 7 porte au moins un microsystème 10, qui est agencé pour transformer un flux d'énergie lumineuse concentrée en une variation d'inertie du balancier équipé 70, par modification de son inertie et de la répartition dans l'espace des masses qui le composent.
  • Plus particulièrement, si la zone illuminée 5 peut couvrir la totalité de la surface de tels microsystèmes 10, la concentration du faisceau lumineux, qui est obtenue avec des moyens optiques de concentration 4, est dirigée vers au moins une zone de chauffage 6 d'un actionneur que comporte un tel microsystème 10, après la traversée de la glace de fond 2. Comme on le verra plus loin, cet actionneur est avantageusement un actionneur thermomécanique 30.
  • Ces moyens optiques de concentration 4 ne sont pas détaillés, et sont, ou bien intrinsèques à la montre 1 tels que des lentilles, ou bien externes à la montre 1 comme sur la figure 2 qui montre une lentille agencée pour concentrer l'énergie thermique d'un rayon lumineux 3 vers une telle zone de chauffage 6.
  • Dans l'application préférentielle de l'invention à un balancier équipé 70 et tel que visible sur les figures, l"inertie de ce dernier est modifiée par l'ajout d'au moins un microsystème 10 permettant de changer l'inertie de ce balancier, et de préférence par l'ajout d'une pluralité de tels microsystèmes 10.
  • L'invention est illustrée sur les figures par une variante avantageuse comportant deux microsystèmes 10 rotatifs identiques, embarqués diamétralement et symétriquement sur la serge du balancier nu 7, par rapport à l'axe principal de pivotement D de celui-ci, afin de compenser l'effet de balourd de l'un des microsystèmes 10 rotatifs par l'autre.
  • Dans un mode de réalisation avantageux illustré par les figures, le microsystème 10, notamment de réglage de marche d'un oscillateur d'horlogerie, comporte au moins une roue-masselotte 20 agencée pour pivoter par rapport à une plaque de base 60 que comporte ce microsystème 10. La roue-masselotte 20 comporte un balourd excentrique 22 et comporte une denture à cliquet 21. Selon l'invention, ce microsystème 10 comporte au moins un actionneur entraînant au moins un premier cliquet dit actif 38 agencé pour entraîner en rotation la denture 21, et comporte au moins un moyen d'arrêt en position de la denture 21.
  • Dans une réalisation particulière, non limitative, illustrée par les figures, un tel microsystème 10 comporte une plaque de base 60, un actionneur qui est un actionneur thermomécanique 30 muni d'un premier cliquet actif 38, et une roue-masselotte 20 à cliquet ayant un balourd excentrique et pivotant autour d'un axe secondaire D20.
  • Naturellement, l'invention peut être réalisée avec des mobiles secondaires possédant une autre forme que les roues-masselottes 20 illustrées, par exemple sous la forme de masses mobiles dans des rainures, ou autre.
  • L'actionneur thermomécanique 30 peut, selon la variante de réalisation choisie, être fixé sur la plaque de base 60, ou être monobloc avec elle.
  • La roue-masselotte 20 peut, selon la variante de réalisation choisie, être guidée dans la plaque de base 60, ou être monobloc avec elle. Dans une première variante, au moins une roue-masselotte 20 est montée pivotante autour d'un arbre fixe 24 rapporté sur la plaque de base 60 ou intégré dans cette plaque de base 60, et pivotant autour de l'axe secondaire D20 : la roue-masselotte 20 représentée sur la figure 4 pivote autour d'un arbre fixe 24 de guidage, chassé ou collé dans un alésage 61 de la plaque de base 60. Dans une deuxième variante non illustrée par les figures, au moins une roue-masselotte 20 est intégrée dans la plaque de base 60 par rapport à laquelle elle pivote portée par des guidages flexibles, notamment de type à lames minces élastiques.
  • Dans une variante illustrée par les figures, le moyen d'arrêt en position de la denture 21 est un deuxième cliquet dit passif 25 positionné sur la plaque de base 60, et qui comporte un moyen de rappel élastique, pour son appui sur la denture 21.
  • Dans la variante non limitative illustrée par les figures, le premier cliquet actif 38 est un cliquet monté tangentiellement à la denture 21, et comporte au moins une dent ou un peigne rappelé vers cette denture 21 par un moyen de rappel élastique qu'il comporte. D'autres réalisations sont envisageables, selon l'encombrement disponible, le premier cliquet actif peut être remplacé par une roue de commande, un levier, une roue à cliquet, ou autre.
  • Selon l'invention, de façon avantageuse, au moins un actionneur du microsystème 10 est un actionneur thermomécanique 30, qui est agencé pour transformer un flux d'énergie d'origine lumineuse en un déplacement d'un organe de commande mécanique. L'actionneur thermomécanique 30 est conçu pour la transformation de l'énergie lumineuse concentrée en un déplacement CC, et notamment en un déplacement qui est assimilable à un déplacement linéaire. Notamment, dans la réalisation illustrée par les figures, le déplacement CC concerne une extrémité distale 380 de cet actionneur thermomécanique 30. Cette extrémité distale 380 porte un premier cliquet actif 38, ou bien commande directement un mouvement d'un tel premier cliquet actif 38, par l'intermédiaire d'un rouage, d'une friction, d'un embiellage ou similaire.
  • Un tel actionneur thermomécanique 30 est aussi utilisable, en tant que tel, pour d'autres applications de commande d'un dispositif de réglage horloger.
  • Cet actionneur thermomécanique 30 comporte un mobile déformable 300, précisément sous l'action thermique du rayon lumineux, qui agit plus particulièrement au niveau de cols ou rotules 34, 35, 36.
  • De façon préférée et tel que visible sur les figures, cet actionneur thermomécanique 30 comporte, sensiblement selon une première direction longitudinale X, et dans cet ordre, une ligne longitudinale composée d'une alternance de masses rigides 311, 45, 46, 312, et de cols flexibles 34, 35, 36, maintenue entre des ancrages 321, 322 sur la plaque de base 60, les masses rigides extérieures opposées 311, 312, appelées bras étant en appui sur ces ancrages 321, 322, ou solidaires de ces ancrages 321, 322.
  • Dans la variante particulière et non limitative illustrée, le mobile déformable 300 comporte deux bras 31 : 311 et 312, s'étendant sensiblement selon cette même direction longitudinale X, et ancrés, à leurs extrémités opposées les plus éloignées 320, à des ancrages 32 : 321, 322, rendus solidaires de la plaque de base 60, par exemple par le moyen d'une couche d'oxyde 50 dans le cas avantageux d'une exécution silicium.
  • Ces deux bras 311 et 312 encadrent une partie centrale laquelle comporte une première partie massive 45 et une deuxième partie massive 46.
  • La première partie massive 45 est reliée à un premier bras 311 par un premier col 34, et à la deuxième partie massive 46 par un deuxième col dit central 35. La deuxième partie massive 46 est reliée à un deuxième bras 312 par un troisième col 36.
  • Les bras 311, 312, les cols 34, 35, 36, et les première partie massive 45 et deuxième partie massive 46, sont, au repos, sensiblement alignés selon la direction longitudinale X.
  • Et une zone centrale de cet actionneur thermomécanique 30, comportant au moins les cols 34, 35, 36, est agencée pour être superposée à une zone de chauffage 6 où cette zone centrale peut recevoir un apport d'énergie d'origine lumineuse. La différence momentanée de température entre la zone centrale chaude et son support froid provoque une dilatation de la zone centrale, qui a pour effet de mettre en compression cette ligne longitudinale entre les ancrages 321, 322, et de faire fléchir au moins un desdits cols (34, 35, 36). Cette compression tend à soumettre les cols à un effort en flexion; de façon à conserver des déformations sensiblement planes, l'épaisseur totale de l'actionneur, dans une direction perpendiculaire au plan de la plaque de base 60, est importante par rapport à l'épaisseur de ces cols dans ce plan, par exemple trente fois plus importante. Ainsi l'effet de la compression est une déformation de l'ensemble des cols 34, 35, 36. Lorsque le microsystème 10 est soumis tout entier à une variation de température, par exemple lors d'une exposition au soleil d'une montre comportant un tel microsystème 10, l'actionneur thermomécanique 30 ne bougera pas, s'il est réalisé dans le même matériau que la plaque de base 60. Ceci constitue donc un avantage indéniable, par rapport à des systèmes à bilames, par exemple.
  • Au moins un des cols flexibles 34, 35, 36, est décalé, selon une direction transversale Y orthogonale à la direction longitudinale X, d'un déport transversal dy par rapport aux autres cols 34, 35, 36, transformant le mouvement de flexion d'au moins un de ces cols 34, 35, 36, en un mouvement de rotation plane, parallèlement à la plaque de base 60, d'au moins une masse intermédiaire 45, 46, non reliée directement à un des ancrages 321, 322.
  • Dans les variantes illustrées, une masse intermédiaire 45 ou 46, entraînable en rotation, porte une baguette 37 s'étendant sensiblement selon la direction transversale Y et comportant une extrémité distale 380 agencée pour porter un moyen de commande mécanique. De préférence, la course de rotation de la baguette 37 est limitée par des butées de baguette 39 qui l'encadrent.
  • Lors de l'utilisation d'un dispositif 1000 de réglage selon l'invention, pour une montre 1 équipée tel que décrit ci-dessus, et pour l'application de réglage de marche d'un oscillateur 100 comportant un balancier équipé 70, celui-ci est d'abord immobilisé dans une position permettant d'exposer visiblement les deux microsystèmes 10, ou bien l'un après l'autre, à l'apport énergétique d'un rayon lumineux 3. Dans une variante, le dispositif 1000 comporte des moyens de synchronisation permettant de piloter un rayon lumineux 3 pour suivre, au vol, et viser au moins, ou encore chaque, microsystème 10 qu'il comporte, emporté par un composant de l'oscillateur 100 en cours d'oscillation, notamment sur le balancier équipé 70 en cours d'oscillation.
  • Pour faire fonctionner le système, un tel rayon lumineux 3 est projeté à travers le fond transparent 2, et est concentré, au niveau d'une zone de chauffage 6, sur une partie à chauffer particulière constituée par la zone centrale de l'actionneur thermomécanique 30. Celui-ci se déforme, et le premier cliquet actif 38, qui est solidaire d'une partie mobile de l'actionneur thermomécanique 30, et plus particulièrement de la baguette 37, entraîne la denture 21 de la roue-masselotte 20 sur une ou plusieurs dents. Le déplacement du centre de gravité 23 (ou d'inertie) de la roue-masselotte 20 provoque ainsi un changement d'inertie du balancier équipé 70.
  • On comprend que l'entraînement par le premier cliquet actif 38 se fait dans un seul sens, qui est le sens horaire dans le cas de la figure 2, le deuxième cliquet passif 25 empêche alors la rotation en sens anti-horaire lors du retour du premier cliquet actif 38 quand la zone centrale se refroidit.
  • Différents modes d'utilisation sont envisageables, ceux décrits ci-après à titre d'exemples n'étant pas limitatifs.
  • Dans un premier mode, la durée d'illumination de la zone de chauffage est la plus brève possible, et est limitée à l'obtention de la déformation souhaitée de l'actionneur 30, de préférence correspondant au passage d'une seule dent de la denture 21. Dans le cas de besoin de passage de plusieurs dents, il est possible de laisser l'actionneur revenir assez rapidement à la température ambiante, dans une position neutre, et de l'illuminer à nouveau pour le passage d'une dent unique, et de réitérer cette opération autant de fois que nécessaire. Ceci n'exclut pas un fonctionnement avec illumination maintenue pour le passage simultané de plusieurs dents, le premier cliquet actif 38 pouvant comporter, au lieu d'une dent unique tel que représenté sur les figures, un peigne ou similaire.
  • Bien sûr, une seul dent au niveau du premier cliquet actif 38 peut aussi agir sur plus d'un pas, et présente l'avantage de prévenir tout phénomène de coincement. Pour effectuer plusieurs clics, c'est-à-dire les sauts effectués par le cliquet passif 25, avec un seul aller-retour du premier cliquet actif 38, on peut agir sur l'entraxe des butées 39 pour obtenir, par exemple, deux ou trois clics au maximum avant butée, et un ou deux clics sans aller en butée mais en agissant sur le temps d'allumage.
  • Dans un deuxième mode, on effectue une illumination maintenue : après un temps significativement plus long que dans le premier mode, le flux thermique vers la base est stationnaire, et les températures respectives de la zone centrale et de la plaque de base 60 s'approchent, provoquant un ré-armage de l'actionneur
  • Dans une autre exécution utilisant les deux modes de chauffage précités, on effectue un apport de chaleur indirect, le rayon lumineux concentré chauffant alors un composant tampon, par exemple un anneau, devant lequel circule la zone centrale de l'actionneur 3 pendant l'oscillation du balancier.
  • Une autre exécution utilise un anneau embarqué et connecté solidement à la zone centrale à chauffer, ce qui permet au spot de chauffage de rester immobile.
  • On peut, encore, combiner le chauffage au vol avec une cible-tampon embarquée et solidaire de la zone centrale, mais ayant une plus grande surface, et permettant un couplage thermique plus efficace avec le spot lumineux.
  • On agence préférentiellement la zone de chauffage 6 de façon à couvrir au moins la partie centrale avec les cols 34, 35, 36, et les première partie massive 45 et deuxième partie massive 46, et les extrémités intérieures des bras 311, 312. Sous l'action thermique, les bras 311 et 312 s'allongent lorsque la température augmente, et sont soumis à une contrainte de compression. Les trois cols 34, 35, 36, rendent le système compliant, non hyperstatique.
  • Et le léger déport transversal dy d'au moins l'un des cols 34, 35, 36 par rapport aux autres, suffit pour soumettre au moins la première partie massive 45 ou la deuxième partie massive 46 à un mouvement de rotation parallèle au plan de la plaque de base 60. Il suffit d'un écart très faible pour initier le mouvement de rotation qui, ensuite, peut être bien corrélé avec l'apport thermique et la température en zone de chauffage 6, pour réguler de façon quasi linéaire l'angle θ de rotation de la baguette 37, et le déplacement CC du premier cliquet actif 38, tel que visible sur la figure 9. La figure 10 montre que la contrainte S dans les cols obéit à une règle presque identique, avec une courbe sensiblement linéaire en fonction de la température.
  • La figure 9 montre que le fait de soumettre la zone de chauffage 6 à une température voisine de 260°C, dans l'exemple illustré qui correspond à la variante de la figure 5, permet d'obtenir une amplitude de déplacement CC de 23 µm, qui suffit pour entraîner la denture 21 d'une roue-masselotte 20, avantageusement réalisée aussi en silicium. On comprend que la pente prononcée du profil en figure 9 permet d'augmenter, si nécessaire, la course du premier cliquet actif 38, tout en surveillant le degré de contrainte en figure 10.
  • Les figures 3 et 5 illustrent un même mode de réalisation, selon des variantes de détail d'exécution. Ces deux variantes présentent une caractéristique commune qui consiste à faire pivoter quasiment sur place la deuxième partie massive 46, qui est porteuse d'une baguette 37 laquelle s'étend sensiblement selon la direction transversale Y, et porte, au niveau de son extrémité distale 380, le premier cliquet actif 38.
  • La variante de la figure 3 comporte des butées de baguette 39, agencées de façon à limiter la course du premier cliquet actif 38 à 1,5 dent de la denture 21 de la roue-masselotte 20.
  • Dans cette variante de la figure 3, l'actionneur thermomécanique 30 porte, sensiblement dans le prolongement de la baguette 37 et du côté opposé par rapport à une ligne définie par les ancrages 321, 322, au moins un contrepoids 40 destiné à empêcher le mouvement de la baguette 37 lors de chocs, et prévenir toute altération du réglage de fréquence d'oscillation et de marche effectué.
  • Dans les deux variantes des figures 3 et 5, la zone centrale comporte les extrémités internes de deux bras 311, 312, directement fixés par leurs extrémités externes aux ancrages 321, 322, dont ces extrémités internes sont séparées par des évidements 33 agencés pour isoler de la zone chaude les bases 320 des bras et ces ancrages 321, 322, quand la zone centrale est soumise à un flux d'énergie. La zone centrale comporte aussi l'extrémité interne de la baguette 37 qui est séparée de l'extrémité distale 380 par une cavité agencée pour isoler cette extrémité distale 380 de la zone chaude quand ladite zone centrale est soumise à un flux d'énergie.
  • La zone centrale peut comporter aussi l'extrémité interne du contrepoids 40 qui est séparée de son extrémité distale par une cavité agencée pour isoler cette extrémité distale de la zone chaude.
  • Telle que visible sur la figure 3, la plaque de base 60 comporte avantageusement au moins une cavité 41, délimitée par une bordure 42, agencée pour isoler les ancrages 321, 322, et chaque roue-masselotte 20 de la zone chaude quand la zone centrale est soumise à un flux d'énergie.
  • La figure 1 est une vue d'ensemble avec un balancier équipé 70 d'un diamètre d'environ 10 mm, qui porte deux microsystèmes 10 chacun réalisé sur la base d'un chip SOI d'environ 1,6 mm de côté, portant des roues-masselottes 20 d'un diamètre d'environ 0,7 mm, soit un rayon d'action Rm de 4 mm environ, chaque zone de chauffage 6 étant un disque d'environ 0,8 mm de diamètre.
  • Les figures 11 à 13 sont relatives au microsystème 10 dans la variante avec design en « S », réalisée en technologie silicium monocristallin MEMS, de la figure 3, dans un exemple numérique non limitatif, avec une longueur L de 1,0 mm, une longueur de bielle w, caractéristique de la distance entre les zones d'inflexion de deux cols successifs, de 0,100 mm, un coefficient de dilatation de 2.10-6/°C, et un rayon R de rotation du cliquet de 0,8 mm. La figure 11 montre qu'autour du point nominal dT=250°C, la course de 57 µm correspond à un clic. Dans cet exemple numérique simplifié, la rigidité des cols 34, 35, 36, est très faible, au moins cent fois plus faible que celle de la plaque de base 60.
  • Le dimensionnement du micro-système 10 est de préférence réalisé selon les principes qui suivent :
    • le décalage dy doit être suffisamment élevé pour fournir assez de force au départ du mouvement, qui est déterminée par les frottements de la roue-masselotte 20, mais ce décalage dy doit être le plus petit possible ;
    • la hauteur h, selon la direction transversale Y, de la première partie massive 45 et de la deuxième partie massive 46 doit être suffisamment élevée par rapport à la hauteur e, selon la direction transversale Y, des éléments flexibles constitués par les cols 34, 35, 36, pour que ces derniers agissent comme des rotules ;
    • le rapport Ir / e des cols 34, 35, 36, faisant rotules doit être suffisamment élevé pour ne pas engendrer de contraintes matériau trop grandes, et suffisamment faible pour ne pas provoquer d'équilibre instable selon l'axe transversal Y, en particulier en cas de chocs ;
    • un rapport L / w élevé augmente la rotation de la baguette 37, et donc la course CC, pour une différence donnée de température ;
    • une distance R élevée augmente d'autant la course, mais diminue d'autant la force à l'extrémité distale 380, pour un angle de rotation donné ;
    • l'épaisseur t de l'actionneur doit être suffisamment grande pour empêcher un flambage vertical de toute la partie de longueur L. Le rapport t / e devrait au moins valoir trois, pour que les cols 34, 35, 36, faisant rotules aient une compliance préférentielle dans le plan parallèlement à la plaque de base 60, et rester rigides hors du plan.
  • Ainsi, dans une réalisation particulière non limitative et, telle que visible sur la figure 5, les cols 34, 35, 36 comportent une partie linéaire dont la longueur Ir est d'environ quatre fois l'épaisseur e de ces cols, et le décalage dy prévu pour initier la rotation de la baguette 37 est environ le double de cette même épaisseur e. La hauteur h de la première partie massive 45 et de la deuxième partie massive 46 est de préférence comprise entre deux et trois fois la longueur de rotule Ir, et voisine de la moitié de la longueur de bielle w.
  • Les trois extrémités de l'actionneur 30 sont maintenues à température ambiante de l'ordre de 20°C. La zone de chauffage 6 peut être portée à une température comprise entre 100 et 400°C, la limite supérieure étant choisie en fonction des matériaux de la montre 1, notamment de la boîte 90, pour prévenir tout endommagement d'un composant. Cette précaution explique aussi qu'on se restreigne à une zone de chauffage 6 de surface la plus réduite possible.
  • Les figures 6 à 8 illustrent la déformation d'un actionneur tel que représenté à la figure 5, et les figures 9 et 10 illustrent respectivement le déplacement CC de l'extrémité distale 380 de la baguette 37, et la répartition de contrainte S dans les cols 34, 35, 36, en fonction de la température en zone de chauffage 6..
  • Les figures 12 et 13 concernent le calcul du réglage de marche par la roue-masselotte 20, en silicium monocristallin, dont nous donnons un exemple numérique non-limitatif ci-après. Le diamètre extérieur est de 0,7 mm, avec une distance centre au plat du balourd excentrique x1 = 0,1 mm, épaisseur 150 µm, masse volumique (Si) 2330 kg/m3, rayon d'action des masses Rm= 4 mm, nombre de dents de la denture 21 à cliquet Z=50,
  • On obtient, dans ce cas précis, 1 pas = 44 µm, 1 tour de la roue = 13,6 sec/jour, une zone de réglage linéaire = 11 sec/jour, ce qui correspond à 15 niveaux = nombre de clics de l'actionneur, 1 clic = 0,74 sec/jour.
  • La figure 13 illustre la différence de marche en sec/jour, entre les limites supérieure et inférieure de la plage linéaire à +5,52 et -5,52 sec/jour, en fonction de l'angle de pivotement α de la roue-masselotte 20.
  • Ce microsystème se prête bien à une réalisation en technologies de type « MEMS » ou similaire, de façon nullement limitative car tous autres technologies ou/et matériaux adaptés et connus de l'homme du métier sont envisageables pour la réalisation, par exemple avec un façonnage par découpage laser, jet d'eau, électroérosion ou autre.
  • Si l'invention est décrite ici avec deux microsystèmes 10 fonctionnant dans le même sens, il est clair qu'on peut équiper le balancier équipé 70 de microsystèmes 10 effectuant des corrections d'inertie en sens inverse l'un de l'autre en cas de besoin.
  • Pour modifier l'inertie, le système selon l'invention est réversible, car en faisant tourner la roue-masselotte 20 de façon ininterrompue, on modifie l'inertie selon une fonction sinus telle que visible sur la figure 13, ce qui évite d'être bidirectionnel. Le seul désavantage dans ce cas est que, pour atteindre une inertie plus faible, alors que l'on se trouve dans la phase montante de l'inertie dans le sens de l'activation du cliquet, on doit faire en fait un peu moins d'un tour complet pour atteindre la bonne valeur.
  • Dans une réalisation particulière, le microsystème 10 comporte un premier niveau constitué par la plaque de base 60 autour d'une cavité d'isolation thermique 41, et un deuxième niveau comportant au moins une roue-masselotte 20, au moins un actionneur 30, au moins un premier cliquet actif 38, et au moins un moyen d'arrêt 25 (ou deuxième cliquet passif) en position de la denture 21.
  • Dans une variante avantageuse, la plaque de base 60 et l'actionneur thermomécanique 30 sont réalisées dans le même matériau, de façon à prévenir tout déréglage quand la plaque de base 60 et l'actionneur thermomécanique 30 sont soumis, à l'intérieur d'une montre, aux mêmes variations de température dues au milieu extérieur dans lequel évolue l'utilisateur de la montre.
  • Dans une réalisation particulière, le microsystème 10 est réalisé de façon monobloc et comporte des cavités sous les organes mobiles qu'il comporte.
  • Dans une réalisation particulière, le microsystème 10 est intégralement réalisé en silicium ou/et oxyde de silicium. Il peut encore être réalisé en DLC ou en d'autres matériaux de micromécanique.
  • Dans une réalisation particulière, le premier niveau est une couche « handle » et le deuxième niveau est une couche « device ».
  • Diverses variantes sont réalisables, et notamment un microsystème 10 tout silicium, comportant notamment des cavités sous les cliquets 25 et 38, afin de pouvoir les réaliser en technologie MEMS, et comportant avantageusement une roue-masselotte 20 sur pivots flexibles, avec bien sûr un débattement angulaire limité dans ce dernier cas.
  • Les réalisations des figures 3 et 5 utilisent des wafers SOI (Silicon on insulator) à deux niveaux silicium, par exemple d'épaisseur 500 µm pour le substrat « handle » constituant la plaque de base 60, et d'épaisseur 150 µm pour la couche « device » (actionneur 30, roue 20, cliquets 25 et 38, butées 39).
  • Dans une variante on peut réaliser un mécanisme à un seul niveau par exemple d'épaisseur 300 µm, et des pivots flexibles de l'élément d'inertie et des dégagements judicieusement placés pour l'isolation thermique. Dans cette variante il faut alors ajouter un système de retour à zéro lorsqu'on atteint la valeur maximale, puisque la course angulaire est bornée.
  • Il convient, encore, de prendre en compte les efforts, forces ou/et couples, générés lors de chocs jusqu'à 500g crête au porter, qui ne doivent pas provoquer de dérèglement du système, ce qui impose une force minimum à fournir par l'actionneur 30 pour éviter tout dérèglement issu d'une accélération aléatoire.
  • L'invention concerne encore un oscillateur 100 d'horlogerie comportant au moins un tel microsystème 10. La plaque de base 60 de ce au moins un microsystème 10 est fixée à un composant de l'oscillateur pour son réglage d'inertie pour la correction de la marche de l'oscillateur.
  • Plus particulièrement, l'oscillateur 100 comporte un balancier équipé 70 constitué par un balancier nu 7 relié à un moyen de rappel élastique ou soumis à au moins un champ de répulsion ou/et d'attraction, ce balancier nu 7 portant au moins un tel microsystème 10 ou étant monobloc avec au moins un tel microsystème 10.
  • L'invention concerne encore un mouvement 200 d'horlogerie, comportant au moins un tel oscillateur 100. Ce mouvement 200 comporte au moins une glace 2 transparente à des plages de longueurs d'ondes prédéterminées, et permettant le passage d'un rayon lumineux 3 pour le réglage d'au moins un tel microsystème 10.
  • L'invention concerne encore une montre 1 comportant au moins un tel microsystème 10, au moins un tel oscillateur 100. Cette montre 1 comporte au moins une glace 2 transparente à des plages de longueurs d'ondes prédéterminées, et permettant le passage d'un rayon lumineux 3 pour le réglage d'un tel microsystème 10, qui commande un composant mécanique de réglage d'une fonction horlogère de la montre, telle que mise à l'heure, réglage de quantième, de jour, de fuseau, ou similaire. L'organe de commande d'au moins un microsystème 10 que comporte la montre 1 est agencé pour commander un composant mécanique de réglage d'une fonction horlogère de la montre 1 quand ce microsystème 10 est soumis à un rayonnement lumineux approprié.
  • Dans une application particulière, les seuls moyens de réglage de cette montre 1 sont ces microsystèmes 10, et le réglage est effectué sans contact, sans soumettre la montre à un champ magnétique ni électrostatique, et est fait uniquement par apport d'énergie par au moins un rayon lumineux.
  • L'invention concerne encore un dispositif 1000 de réglage de marche d'un oscillateur d'horlogerie, comportant au moins une telle montre 1. Ce dispositif 1000 comporte des moyens de pilotage 300 agencés pour commander l'émission d'un rayon lumineux 3 vers un concentrateur optique 4 guidant un faisceau lumineux vers une zone illuminée 5 de la montre 1 au travers de la glace 2, à l'intérieur de laquelle zone illuminée 5 une zone de chauffage 6 est superposable à une zone centrale de l'actionneur thermomécanique 30 pour déclencher un mouvement d'au moins une roue-masselotte 20 lors de l'apport d'énergie lumineuse concentrée à la zone de chauffage 6.
  • Plus particulièrement, ce dispositif 1000 comporte des moyens de surveillance de la marche 400 agencés pour être disposés sur ou au voisinage d'une boîte 90 que comporte la montre 1, et des moyens de surveillance thermique 500 agencés pour être disposés sur ou au voisinage de cette boîte 90, et ces moyens de pilotage 300 sont agencés pour ne générer des rayons lumineux 3 que quand la température de la boîte 90 est inférieure à une valeur de consigne, et sont agencés pour générer des rayons lumineux 3 quand la zone de chauffage 6 est superposée à la zone centrale de l'actionneur thermomécanique 30, autant de fois que nécessaire tant que l'écart de marche est différent d'une valeur de consigne. On comprend en effet que le système est impulsionnel, et que la génération de rayon lumineux n'est pas continue, afin de limiter la température dans la boîte 90.
  • En somme, l'invention permet un réglage extrêmement précis de la marche, sans nécessiter l'ouverture de la boîte. De plus, ce réglage est discret, et donc reproductible.
  • Si l'invention trouve une application préférée pour le réglage d'un oscillateur, elle est également applicable pour d'autres applications horlogères, car elle permet d'effectuer des réglages dans une montre fermée et parfaitement étanche, ce qui est particulièrement intéressant pour des montres de plongée ou similaire, où de simples réglages de mise à l'heure ou encore de date peuvent désormais être réalisables sans aucun poussoir ou moyen de commande traversant la boîte.

Claims (28)

  1. Microsystème (10) de réglage de marche d'un oscillateur d'horlogerie, comportant au moins une roue-masselotte (20) agencée pour pivoter par rapport à une plaque de base (60) que comporte ledit microsystème (10), ladite roue-masselotte (20) comportant un balourd excentrique (22) et comportant une denture (21), ledit microsystème (10) comportant au moins un actionneur agencé pour entraîner au moins un premier cliquet actif (38) constitué par un cliquet agencé pour entraîner une roue de commande, un levier, ou une roue à cliquet, ledit cliquet actif (38) étant agencé pour entraîner ladite denture (21), et ledit microsystème (10) comportant au moins un moyen d'arrêt en position de ladite denture (21), caractérisé en ce que au moins un dit actionneur est un actionneur thermomécanique (30) à commande optique agencé pour transformer un flux d'énergie d'origine lumineuse en un déplacement d'un organe de commande que comporte ledit actionneur thermomécanique (30), lequel organe de commande porte un dit premier cliquet actif (38) ou commande directement un mouvement d'un dit premier cliquet actif (38).
  2. Microsystème (10) selon la revendication 1, caractérisé en ce que ledit au moins un moyen d'arrêt en position de ladite denture (21) est un deuxième cliquet (25) agencé pour être rappelé vers ladite denture (21) par un moyen de rappel élastique qu'il comporte.
  3. Microsystème (10) selon la revendication 1 ou 2, caractérisé en ce que ledit au moins un premier cliquet actif (38) est un cliquet monté tangentiellement à ladite denture (21) et comporte au moins une dent rappelée vers ladite denture (21) par un moyen de rappel élastique qu'il comporte.
  4. Microsystème (10) selon l'une des revendications 1 à 3, caractérisé en ce que ledit actionneur thermomécanique (30) comporte, sensiblement selon une première direction longitudinale (X) une ligne longitudinale composée d'une alternance de masses rigides (311, 45, 46, 312) et de cols flexibles (34, 35, 36) maintenue entre des ancrages (321, 322) sur ladite plaque de base (60), et en ce qu'une zone centrale dudit actionneur thermomécanique (30) comportant au moins lesdits cols (34, 35, 36) est agencée pour être superposée à une zone de chauffage (6) où ladite zone centrale peut recevoir un apport d'énergie d'origine lumineuse susceptible de mettre en compression ladite ligne longitudinale entre lesdits ancrages (321, 322) et de faire fléchir au moins un desdits cols (34, 35, 36).
  5. Microsystème (10) selon la revendication 4, caractérisé en ce que au moins un desdits cols flexibles (34, 35, 36) est décalé, selon une direction transversale (Y) orthogonale à ladite direction longitudinale (X), d'un déport transversal (dy) par rapport aux autres dits cols (34, 35, 36), transformant le mouvement de flexion d'au moins un desdits cols (34, 35, 36) en un mouvement de rotation plane, parallèlement à ladite plaque de base (60), d'au moins une masse intermédiaire (45, 46) non reliée directement à un desdits ancrages (321, 322).
  6. Microsystème (10) selon la revendication 5, caractérisé en ce que ladite masse intermédiaire (45, 46) entraînable en rotation porte une baguette (37) s'étendant sensiblement selon ladite direction transversale (Y) et comportant une extrémité distale (380) constituant ledit organe de commande.
  7. Microsystème (10) selon la revendication 6, caractérisé en ce que la course de rotation de ladite baguette (37) est limitée par des butées de baguette (39) qui l'encadrent.
  8. Microsystème (10) selon la revendication 6 ou 7, caractérisé en ce que ledit actionneur thermomécanique (30) porte, sensiblement dans le prolongement de ladite baguette (37) et du côté opposé par rapport à une ligne définie par lesdits ancrages (321, 322), au moins un contrepoids (40) destiné à empêcher le mouvement de ladite baguette (37) lors de chocs.
  9. Microsystème (10) selon l'une des revendications 4 à 8, caractérisé en ce que ladite zone centrale comporte les extrémités internes de deux bras (311, 312) directement fixés par leurs extrémités externes auxdits ancrages (321, 322) dont lesdites extrémités internes sont séparées par des évidements (33) agencés pour isoler lesdits ancrages (321, 322) de la zone chaude quand ladite zone centrale est soumise à un flux d'énergie lumineuse.
  10. Microsystème (10) selon l'une des revendications 6 à 8, caractérisé en ce que ladite zone centrale comporte l'extrémité interne de ladite baguette (37) qui est séparée de ladite extrémité distale (380) par une cavité agencée pour isoler ladite extrémité distale (380) de la zone chaude quand ladite zone centrale est soumise à un flux d'énergie lumineuse.
  11. Microsystème (10) selon la revendication 8, caractérisé en ce que ladite zone centrale comporte l'extrémité interne dudit contrepoids qui est séparée de son extrémité distale par une cavité agencée pour isoler ladite extrémité distale de la zone chaude quand ladite zone centrale est soumise à un flux d'énergie lumineuse.
  12. Microsystème (10) selon l'une des revendications 4 à 11, caractérisé en ce que ladite plaque de base (60) comporte au moins une cavité (41) agencée pour isoler la zone chaude de ladite plaque de base et de ladite au moins une roue-masselotte (20) quand ladite zone centrale est soumise à un flux d'énergie lumineuse.
  13. Microsystème (10) selon l'une des revendications 4 à 12, caractérisé en ce que ladite plaque de base (60) et ledit actionneur thermomécanique (30) sont réalisées dans le même matériau de façon à prévenir tout déréglage quand ladite plaque de base (60) et ledit actionneur thermomécanique (30) sont soumis, à l'intérieur d'une montre, aux mêmes variations de température.
  14. Microsystème (10) selon l'une des revendications 1 à 12, caractérisé en ce que au moins une dite roue-masselotte (20) est montée pivotante autour d'un axe fixe (24) rapporté sur ladite plaque de base (60) ou intégré dans ladite plaque de base (60).
  15. Microsystème (10) selon l'une des revendications 1 à 13, caractérisé en ce que au moins une dite roue-masselotte (20) est intégrée dans ladite plaque de base (60) par rapport à laquelle elle pivote portée par des guidages flexibles.
  16. Microsystème (10) selon l'une des revendications 1 à 14, caractérisé en ce que ledit microsystème (10) comporte un premier niveau constitué par ladite plaque de base (60) et un deuxième niveau comportant au moins une dite roue-masselotte (20), au moins un dit actionneur, au moins un dit premier cliquet actif (38), et au moins un dit moyen d'arrêt en position de ladite denture (21).
  17. Microsystème (10) selon l'une des revendications 1 à 15, caractérisé en ce que ledit microsystème (10) est réalisé de façon monobloc et comporte des cavités sous les organes mobiles qu'il comporte.
  18. Microsystème (10) selon la revendication 17, caractérisé en ce que ledit microsystème (10) est intégralement réalisé en silicium ou/et oxyde de silicium.
  19. Microsystème (10) selon les revendications 16 et 18, caractérisé en ce que ledit premier niveau est une couche « handle » et en ce que ledit deuxième niveau est une couche « device ».
  20. Oscillateur (100) d'horlogerie comportant au moins un microsystème (10) selon l'une des revendications 1 à 19, caractérisé en ce que ladite plaque de base (60) dudit au moins un microsystème (10) est fixée à un composant dudit oscillateur pour son réglage d'inertie pour la correction de la marche dudit oscillateur.
  21. Oscillateur (100) selon la revendication 20, caractérisé en ce qu'il comporte un balancier équipé (70) constitué par un balancier nu (7) relié à un moyen de rappel élastique ou soumis à au moins un champ de répulsion ou/et d'attraction, ledit balancier nu (7) portant au moins un dit microsystème (10) ou étant monobloc avec au moins un dit microsystème (10).
  22. Mouvement (200) d'horlogerie, comportant au moins un oscillateur (100) selon la revendication 20 ou 21, caractérisé en ce que ledit mouvement (200) comporte au moins une glace (2) transparente à des plages de longueurs d'ondes prédéterminées, et permettant le passage d'un rayon lumineux (3) pour le réglage d'un dit microsystème (10).
  23. Montre (1) comportant au moins un microsystème (10) selon l'une des revendications 1 à 19, ou au moins un oscillateur (100) selon la revendication 20 ou 21, caractérisée en ce que ladite montre (1) comporte au moins une glace (2) transparente à des plages de longueurs d'ondes prédéterminées, et permettant le passage d'un rayon lumineux (3) pour le réglage d'au moins un dit microsystème (10).
  24. Montre (1) selon la revendication 23, caractérisée en ce que ladite montre (1) comporte au moins un dit microsystème (10) selon l'une des revendications 1 à 19 dont ledit organe de commande est agencé pour commander un composant mécanique de réglage d'une fonction horlogère de ladite montre (1) quand ledit microsystème (10) est soumis à un rayonnement lumineux approprié.
  25. Montre (1) selon la revendication 23 ou 24, caractérisée en ce que les seuls moyens de réglage des fonctions horlogères qu'elle comporte sont constitués par au moins un dit microsystème (10) selon l'une des revendications 1 à 19 dont ledit organe de commande est agencé pour commander un composant mécanique de réglage d'une fonction horlogère de ladite montre (1) quand ledit microsystème (10) est soumis à un rayonnement lumineux approprié.
  26. Dispositif (1000) de réglage de marche d'un oscillateur d'horlogerie, comportant au moins une montre (1) selon l'une des revendications 23 à 25 comportant un dit microsystème (10) selon l'une des revendications 1 à 19, caractérisé en ce que ledit dispositif (1000) comporte des moyens de pilotage (300) agencés pour commander l'émission d'un rayon lumineux (3) vers un concentrateur optique (4) guidant un faisceau lumineux vers une zone illuminée (5) de ladite montre (1) au travers de ladite glace (2), à l'intérieur de laquelle zone illuminée (5) une zone de chauffage (6) est superposable à une zone centrale dudit actionneur thermomécanique (30) pour déclencher un mouvement d'au moins une dite roue-masselotte (20) lors de l'apport d'énergie lumineuse concentrée à ladite zone de chauffage (6).
  27. Dispositif (1000) selon la revendication 26, caractérisé en ce que ledit dispositif (1000) comporte des moyens de surveillance de la marche (400) agencés pour être disposés sur ou au voisinage d'une boîte (90) que comporte ladite montre (1), et des moyens de surveillance thermique (500) agencés pour être disposés sur ou au voisinage d'une boîte (90), et en ce que lesdits moyens de pilotage (300) sont agencés pour ne générer des dits rayons lumineux (3) que quand la température de ladite boîte (90) est inférieure à une valeur de consigne, et sont agencés pour générer desdits rayons lumineux (3) quand ladite zone de chauffage (6) est superposée à ladite zone centrale dudit actionneur thermomécanique (30), autant de fois que nécessaire tant que l'écart de marche n'est pas inférieur à une valeur de consigne.
  28. Dispositif (1000) selon la revendication 26 ou 27, caractérisé en ce que ledit dispositif (1000) comporte des moyens de synchronisation permettant de piloter un dit rayon lumineux (3) pour suivre, au vol, et viser au moins un dit microsystème (10) emporté par un composant dudit oscillateur (100) en cours d'oscillation.
EP15176957.7A 2015-07-16 2015-07-16 Mécanisme de réglage de marche d'un oscillateur d'horlogerie Active EP3118693B1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP15176957.7A EP3118693B1 (fr) 2015-07-16 2015-07-16 Mécanisme de réglage de marche d'un oscillateur d'horlogerie
CH01034/15A CH711336A2 (fr) 2015-07-16 2015-07-16 Microsystème de réglage de marche d'un oscillateur d'horlogerie.
US15/208,131 US9804568B2 (en) 2015-07-16 2016-07-12 Mechanism for regulating the rate of a timepiece oscillator
JP2016138278A JP6145201B2 (ja) 2015-07-16 2016-07-13 時計用振動子の歩度を設定するための機構
RU2016128898A RU2698187C1 (ru) 2015-07-16 2016-07-14 Механизм для настройки частоты генератора колебаний часов
CN201610561109.1A CN106353998B (zh) 2015-07-16 2016-07-15 用于设定钟表振荡器的日差率的机构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP15176957.7A EP3118693B1 (fr) 2015-07-16 2015-07-16 Mécanisme de réglage de marche d'un oscillateur d'horlogerie

Publications (2)

Publication Number Publication Date
EP3118693A1 EP3118693A1 (fr) 2017-01-18
EP3118693B1 true EP3118693B1 (fr) 2018-05-09

Family

ID=53673792

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15176957.7A Active EP3118693B1 (fr) 2015-07-16 2015-07-16 Mécanisme de réglage de marche d'un oscillateur d'horlogerie

Country Status (6)

Country Link
US (1) US9804568B2 (fr)
EP (1) EP3118693B1 (fr)
JP (1) JP6145201B2 (fr)
CN (1) CN106353998B (fr)
CH (1) CH711336A2 (fr)
RU (1) RU2698187C1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2990883A1 (fr) * 2014-08-29 2016-03-02 Nivarox-FAR S.A. Ensemble balancier-spiral d'horlogerie
EP3273312A1 (fr) * 2016-07-18 2018-01-24 ETA SA Manufacture Horlogère Suisse Procédé de réglage de la marche d'une pièce d'horlogerie
CH713822A2 (fr) * 2017-05-29 2018-11-30 Swatch Group Res & Dev Ltd Dispositif et procédé d'ajustement de marche et correction d'état d'une montre.
CN107144275B (zh) * 2017-07-17 2023-05-26 四川知微传感技术有限公司 一种微机械惯性传感器抗温漂结构
EP3719588B1 (fr) * 2019-04-03 2021-11-03 The Swatch Group Research and Development Ltd Oscillateur horloger auto-réglable
EP3926412A1 (fr) * 2020-06-16 2021-12-22 Montres Breguet S.A. Mécanisme régulateur d'horlogerie
EP4202565A1 (fr) * 2021-12-27 2023-06-28 The Swatch Group Research and Development Ltd Mise de fréquence d'un oscillateur d'horlogerie par déformations opto-mécaniques

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5238254A (en) * 1975-09-22 1977-03-24 Seiko Instr & Electronics Ltd Optical regulating device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1345549A (fr) * 1963-01-29 1963-12-06 Inst Dr Inc Reinhard Straumann Appareil de transformation mécanique de mouvements d'oscillation par translation en un mouvement de rotation
CH273869A4 (fr) * 1969-02-24 1970-09-30
US8100579B2 (en) * 2006-09-08 2012-01-24 Gideon Levingston Thermally compensating balance wheel
CN201532533U (zh) * 2009-11-13 2010-07-21 天津海鸥表业集团有限公司 手表的可调节摆轮
EP2410387B1 (fr) * 2010-07-19 2016-07-06 Nivarox-FAR S.A. Balancier à réglage d'inertie sans insert
EP2410386B1 (fr) 2010-07-19 2018-10-03 Nivarox-FAR S.A. Balancier à réglage d'inertie avec insert
EP2487547B1 (fr) * 2011-02-11 2017-08-09 Montres Breguet SA Régulateur de mobile horloger ou de mobile de sonnerie
JP2013195297A (ja) * 2012-03-21 2013-09-30 Seiko Instruments Inc てんぷ構造体及び機械式時計
CH707814A2 (fr) * 2013-03-19 2014-09-30 Nivarox Sa Mécanisme de réglage de spiral d'horlogerie.
CN103293938B (zh) * 2013-05-31 2015-12-02 天王电子(深圳)有限公司 具有调节惯量功能的摆轮及具有该摆轮的机械表
CL2013002293A1 (es) * 2013-08-06 2014-02-07 Asesorias Inversiones Mercoproyecciones Ltda Sistema de generacion solar que amplia escala y eficiencia de produccion de vapor y electricidad con unidades colectoras, armadura de cables/cadenas en red para el anclaje de colectores/receptores solares como velos extendidos en estructura giratoria en altura; puentes para soportar receptores termicos fotovoltaicos o motores.
JP2015118960A (ja) * 2013-12-16 2015-06-25 セイコーエプソン株式会社 ソーラー時計
JP2015143673A (ja) * 2013-12-27 2015-08-06 セイコーインスツル株式会社 てんぷ、ムーブメント、および時計
WO2015140332A2 (fr) * 2014-03-21 2015-09-24 Hublot Sa, Genève Organe tournant horloger, oscillateur horloger

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5238254A (en) * 1975-09-22 1977-03-24 Seiko Instr & Electronics Ltd Optical regulating device

Also Published As

Publication number Publication date
CN106353998B (zh) 2018-10-02
US20170017205A1 (en) 2017-01-19
US9804568B2 (en) 2017-10-31
CN106353998A (zh) 2017-01-25
EP3118693A1 (fr) 2017-01-18
RU2698187C1 (ru) 2019-08-22
JP2017026607A (ja) 2017-02-02
JP6145201B2 (ja) 2017-06-07
CH711336A2 (fr) 2017-01-31

Similar Documents

Publication Publication Date Title
EP3118693B1 (fr) Mécanisme de réglage de marche d'un oscillateur d'horlogerie
EP2596406B1 (fr) Mecanisme oscillant a pivot elastique et mobile de transmission d'energie
EP2893403B1 (fr) Ancre flexible à force constante
WO2016124436A1 (fr) Resonateur isochrone d'horlogerie
EP2423764B1 (fr) Dispositif pour la mesure du couple d'un spiral
EP3365734B1 (fr) Oscillateur pour un mouvement horloger mécanique
EP2196868A1 (fr) Spiral à élévation de courbe en matériau à base de silicium
CH709281A2 (fr) Mécanisme résonateur d'horlogerie comportant un organe oscillant portant un dispositif régulateur oscillant.
EP2908185A1 (fr) Dispositif d'entretien et de régulation d'un résonateur d'horlogerie
EP2690506B1 (fr) Spiral d'horlogerie anti-galop
EP3667432B1 (fr) Résonateur d'horlogerie comportant au moins un guidage flexible
EP3671370B1 (fr) Dispositif d'embrayage et mécanisme de chronographe comprenant un tel dispositif d'embrayage
EP3430479B1 (fr) Dispositif pour pièce d'horlogerie, mouvement horloger et pièce d'horlogerie comprenant un tel dispositif
CH710691A2 (fr) Résonateur isochrone d'horlogerie.
EP2917792B1 (fr) Mise d'inertie ou d'équilibrage d'un ensemble balancier-spiral d'horlogerie
EP3336613A1 (fr) Resonateur pour piece d'horlogerie comportant deux balanciers agences pour osciller dans un meme plan
CH715641A2 (fr) Résonateur d'horlogerie comportant au moins un guidage flexible.
EP2515185A1 (fr) Moteur à moment de force constant
CH714706A2 (fr) Ressort de rappel angulaire pour oscillateur thermo-compensé.
EP4332686A1 (fr) Spiral pour ensemble balancier-spiral d'un mouvement d'horlogerie
CH709280A2 (fr) Procédé d'entretien et de régulation d'un résonateur d'horlogerie.
CH707177A2 (fr) Ensemble balancier-spiral d'horlogerie.
CH714704A2 (fr) Ressort de rappel angulaire pour oscillateur thermo-compensé
CH719325A2 (fr) Procédé d'ajustement de la marche d'un oscillateur mécanique d'horlogerie par déformations opto-mécaniques.
EP4202565A1 (fr) Mise de fréquence d'un oscillateur d'horlogerie par déformations opto-mécaniques

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20170718

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180207

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: ICB INGENIEURS CONSEILS EN BREVETS SA, CH

Ref country code: AT

Ref legal event code: REF

Ref document number: 998117

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015010869

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180509

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180809

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180809

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180810

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 998117

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015010869

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180716

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180731

26N No opposition filed

Effective date: 20190212

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180509

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150716

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180909

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230615

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230621

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230620

Year of fee payment: 9

Ref country code: CH

Payment date: 20230801

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230620

Year of fee payment: 9