EP3113713A1 - Outil de forage pour chirurgie dentaire implantaire, comprenant un guide étagé - Google Patents

Outil de forage pour chirurgie dentaire implantaire, comprenant un guide étagé

Info

Publication number
EP3113713A1
EP3113713A1 EP15711258.2A EP15711258A EP3113713A1 EP 3113713 A1 EP3113713 A1 EP 3113713A1 EP 15711258 A EP15711258 A EP 15711258A EP 3113713 A1 EP3113713 A1 EP 3113713A1
Authority
EP
European Patent Office
Prior art keywords
tool
drilling
mesiodistal
diameter
guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP15711258.2A
Other languages
German (de)
English (en)
Inventor
Matthieu SIADOUS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WAM
WAM
Original Assignee
WAM
WAM
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WAM, WAM filed Critical WAM
Publication of EP3113713A1 publication Critical patent/EP3113713A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C1/00Dental machines for boring or cutting ; General features of dental machines or apparatus, e.g. hand-piece design
    • A61C1/08Machine parts specially adapted for dentistry
    • A61C1/082Positioning or guiding, e.g. of drills
    • A61C1/084Positioning or guiding, e.g. of drills of implanting tools
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C3/00Dental tools or instruments
    • A61C3/02Tooth drilling or cutting instruments; Instruments acting like a sandblast machine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0089Implanting tools or instruments

Definitions

  • Drill tool for implant dental surgery including a step guide
  • the invention relates to the field of dental surgery, and more specifically to implant surgery (or implantology).
  • Implant surgery is used to replace a missing tooth or a group of missing teeth with one (or more) implant (s).
  • the act of implant surgery aims to allow the patient to recover an oral appearance and functions of normal chewing and speaking.
  • Implant surgery is usually performed under local anesthesia; the act consists, in general, to mount an artificial tooth on an implant integrated in the maxillary bone of the patient.
  • the implant is generally in the form of a peg provided with an external thread, which comes directly into a bore previously made in the maxillary bone. Boring the maxillary bone is a delicate operation that requires dexterity on the part of the dentist. This operation usually includes the incision of the gingiva at the implant site right delimited by the teeth (natural or artificial) bordering. Once this incision is made, the surgeon separates the gingival flaps thus made and practices a pilot hole of small diameter (generally of the order of 2 mm) directly in the maxillary bone, by means of a drill mounted on an instrument motorized rotary. You can also operate without a flap, drilling directly through the gum.
  • the surgeon proceeds to widen it by means of drills of increasing size, until a bore of nominal diameter for the establishment of the implant.
  • pilot hole It is essential that the pilot hole is correctly made, because its positioning and orientation depend on the positioning and, respectively, the orientation of the implant and therefore the artificial tooth.
  • the drill for making the pilot hole is mounted on a contra-angle itself coupled to a motor. It is understood that, when the bore of the pilot hole is made freehand, the success of this operation is based on the precision of which the surgeon. In particular, it must be attentive to the mesiodistal and vestibulolingual positioning of its tool, and to the orientation of the axis of the drill.
  • surgeon is not immune to a false movement or spasm of the patient, likely to affect the correct completion of the pilot hole.
  • a first technique is to operate using a thermoformed gutter in which is formed a patient's oral impression, this gutter being provided with one or more perforation (s) to the right of (the) site (s) implant (s).
  • a gutter commonly referred to as a surgical guide, however, requires prior operations of taking an impression, making a mold and then manufacturing the gutter. These operations are cumbersome and costly, which explains why most surgeons give up on them in favor of a show of hands, despite the aforementioned risks.
  • a second technique is to operate using a guide secured to the drill or attached thereto, to achieve a mesiodistal guidance of the drill, the guide being positioned between two existing teeth defining the implant site, or against a single tooth delimiting a total terminal edentation.
  • Such a guide is in the form of a cylinder having an outer diameter greater than that of the drill on which it is mounted.
  • a first objective is therefore to propose a solution for improving the positioning of drilling tools in implant surgery.
  • a second objective is to propose an implant surgery tool providing guidance not only mesiodistal but also vestibulolingual.
  • this tool comprising:
  • drilling head which extends along a main axis, this drilling head having an outer diameter called drilling;
  • a mandrel secured to the head and coaxial thereto, the mandrel being adapted to be mounted in a spindle for coupling rotatively the drill head with this spindle; a mesiodistal guiding cylinder coaxial with the drill head, said mesiodistal guiding cylinder having an outer diameter, said mesiodistal guiding, greater than the drilling diameter;
  • this vestibulolingual guide cylinder coaxial with the drilling head and underlying the mesiodistal guide cylinder, this vestibulolingual guide cylinder having an outer diameter, said vestibulolingual guide, greater than the drilling diameter and less than or equal to the guide diameter mesiodistal.
  • This tool allows a guidance not only mesiodistal, but also vestibulolingual, for the benefit of the precision (and security) of the intervention.
  • the tool comprises a one-piece drill bit forming the drill head and the mandrel, and the mesiodistal guide cylinder and the vestibulolingual guide cylinder are attached mounted on the drill;
  • each cylinder is provided with a central bore for mounting freely rotated on the drill;
  • the tool comprises a depth stop in the form of a ring integral with the mandrel;
  • At least one of the cylinders is integral with the mandrel or the drill head; the mesiodistal guide diameter is between 5 mm and 12 mm;
  • the buccolingual guide diameter is between 3 mm and 6 mm;
  • the mesiodistal guide cylinder has a height of between 1 mm and 20 mm;
  • the vestibulolingual guide cylinder has a height of between 0.5 mm and 20 mm;
  • At least one of the cylinders is provided with irrigation grooves.
  • Figure 1 is an exploded perspective view showing a drilling system used in implant surgery
  • FIG. 2 is an exploded detail view of the tool of FIG. 1;
  • Figure 3 is a view showing a surgical procedure implementing the kit of Figures 1 and 2;
  • Figures 4 and 5 are, respectively, mesiodistal and vestibulolingual sectional views illustrating the implementation of the drilling kit in an implant site;
  • Figures 6 and 7 are similar views respectively to Figures 4 and 5 and illustrating the drilling of a pilot hole in the implant site;
  • FIG. 8 is a mesiodistal sectional view illustrating a drilling technique of a series of pilot holes.
  • FIG 1 a drilling system 1 for implant dental surgery.
  • This tool 1 comprises a surgical instrument 2 equipped with a motor element 3 and a contra-angle 4 fitted on the motor element 3 and incorporating a spindle 5 able to accommodate a range of tools for drilling in a maxillary bone crest (partially visible in Figure 3).
  • the system 1 further comprises a drilling tool 6.
  • the drilling tool 6 comprises, firstly, a drilling head 7 (helical in the example illustrated, although it may have a different shape, for example spherical) extending along an axis A main, called drilling.
  • a drilling head 7 helical in the example illustrated, although it may have a different shape, for example spherical
  • height is defined as any distance measured parallel to the axis A.
  • This drilling head 7 has in the example shown a conical tip 8 and a helical groove 9 (simple, or preferably double) which extends from the tip 8 to a predetermined height.
  • the drilling head 7 is arranged to allow the production of one or more pilot holes 10 in a maxillary bone crest 11, for the purpose of placing an implant intended to receive a prosthetic tooth.
  • such a pilot hole 10 is provided to be performed in an implant site 12 delimited by at least one existing 13limitrophe tooth (natural or artificial).
  • the implant site 12 may, as in the example illustrated, be delimited on either side by a pair of adjacent teeth 13, 14.
  • L is the width (measured in a mesiodistal direction) of the implant site 12, and E the thickness thereof, measured in a buccolingual direction on the vertex of the bone crest 11.
  • the pilot hole 10 when the implant site 12 is dimensioned to accommodate a single prosthetic tooth (replacing a single lost tooth), the pilot hole 10 must be made substantially equidistant from the neighboring teeth 13, 14. On the other hand, when the implant site 12 is sized to accommodate several prosthetic teeth (replacing several lost teeth), the pilot hole 10 must be positioned with reference to the nearest adjacent tooth 13, or with reference to the pilot hole 10 previously drilled, as shown in Figure 8.
  • the drilling head 7 has an external diameter D1 (overall), called drilling diameter, of between 1.5 and 3 mm. According to a particular embodiment, the diameter D1 is of the order of 2 mm.
  • the tool 6 comprises, secondly, a mandrel 15 (cylindrical in the example shown), integral with the head 7 and coaxial therewith.
  • This mandrel 15 is dimensioned (and arranged) to be mounted in the spindle 5 of the contra-angle 4 to achieve a rotational coupling of the drill head 7 with the spindle 5.
  • the coupling of the mandrel 15 to the pin 5 is made by cooperation of a key and an elastic hook (integrated pin 5) with, respectively, the flat 16 and the groove 17.
  • the tool 6 comprises, thirdly, a mesiodistal guide cylinder 18, coaxial with the drilling head 7 (and thus the mandrel 15).
  • This mesiodistal guide cylinder 18 has an outer diameter D2, called mesiodistal guidance, greater than the diameter D1 of drilling.
  • the choice of the mesiodistal guide diameter D 2 depends on the width L of the implant site 12. More specifically, the mesiodistal guide diameter D 2 corresponds substantially to the width L when the site 12 is intended to accommodate a single prosthetic tooth, or to the width (measured in the mesiodistal direction) of a prosthetic tooth when the site 12 is intended to accommodate several prosthetic teeth.
  • the mesiodistal guide diameter D 2 is preferably between 5 mm and 12 mm.
  • the mesiodistal guide cylinder 18 extends axially over a height H 2, which is preferably between 1 mm and 20 mm, which makes it possible to cover numerous oral configurations.
  • the tool 6 comprises, fourthly, a buccolingual guide cylinder 19, coaxial with the drilling head 7 (and therefore with the mandrel 15) and underlying the mesiodistal guide cylinder 18.
  • the mesiodistal guide cylinder 18 is superimposed on the buccolingual guide cylinder 19.
  • the vestibulolingual guide cylinder 19 has an external diameter D3, called vestibulolingual guide, which is also greater than the drilling diameter D1 and preferably less than or equal to (for the same tool 6) the mesiodistal guide diameter D2.
  • the choice of the vestibulolingual guide diameter D3 depends on the thickness E of the implant site 12. More specifically, the buccolingual guide diameter D3 is equal to or substantially equal to the diameter of the final bore intended to accommodate the implant, itself to be chosen equal to or less than the thickness E less a safety margin of twice 2 mm, this margin corresponding to the minimum thickness of bone material that must remain on both sides (in the vestibulolingual direction) of the final bore.
  • the buccolingual guide diameter D3 is preferably between 3 mm and 6 mm.
  • the buccolingual guide cylinder 19 has an axial height H3 which is preferably between 0.5 mm and 20 mm. This range of heights allows the practitioner to correctly visualize the vestibulolingual positioning of the tool 6, without the axial size (that is to say, the total height) of it is too important. This prevents the patient from having to open his mouth too much during the procedure.
  • the tool 6 comprises a single-piece drill 20 forming the drilling head 7 and the mandrel 15, and the mesiodistal guide cylinder 18 and the vestibulolingual guide cylinder 19 are attached by being mounted on the drill 20.
  • the drill 20 is for example made of steel of surgical quality (it is generally a chromium, nickel and molybdenum alloy - let's mention for example the grade X2CrNiMo17-12, commonly used), the head 7 being optionally coated with titanium nitride (TiN).
  • the drill 20 may be made of ceramic or titanium.
  • the cylinders 18, 19 are also preferably made of surgical steel, although they can be made of any other material compatible with implant dental surgery: titanium, stellite, zirconium oxide (ceramic), silicone, sterilizable polymer, etc. .
  • the cylinders 18, 19 could be secured in translation and / or rotation to the drill 20, for example by means of radial clamping screws, or form with the head 7 and the mandrel 15 a one-piece assembly come machining. In the latter case, a range of tools 6 must be made, including various combinations of diameters D2 and D3 and heights H2 and H3 (for the same diameter D1).
  • the cylinders 18, 19 are mounted in free translation and free rotation on the drill.
  • the mesiodistal guide cylinder 18 is provided with a central bore 21 of a diameter corresponding, with the clearance, to the outer diameter D1 of the drill 20.
  • the buccolingual guide cylinder 19 is provided with a central bore 22 of a diameter also corresponding, with play, to the outer diameter D1 of the drill 20.
  • the tool 6 may further comprise an abutment 23 of depth in the form of a ring integral with the mandrel 15 of the drill 20.
  • the 15 of the drill 20 is for example made by means of a radial screw 24 headless (typically hexagonal imprint). In this case it is an adjustable fixing, which makes it possible to modify the depth of drilling.
  • This distance d defines the stroke of the drill 20 - that is to say the depth of drilling, the latter being completed when the abutment 23 depth is applied against an upper face 26 of the cylinder
  • the practitioner also chooses the size (diameter D3, height H3) of the vestibulolingual guide cylinder 19 as a function of the thickness E of the bone crest 11. More precisely, as we have seen, the diameter D3 is chosen equal to the thickness E less than 4 millimeters.
  • the drill 20 is mounted on the contra-angle 4 by being coupled to the spindle 5, then the cylinders 18, 19 are fitted on the drill 20 - first the mesiodistal guide cylinder 18, then the buccolingual guide cylinder 19.
  • the abutment 23 of depth is adjusted according to the criteria defined above, to be distant from the mesiodistal guidance cylinder 18 of the drilling depth.
  • the practitioner can then perform the drilling operation.
  • the gingiva of the patient may previously have been incised in the mesiodistal direction, and the gingival flaps laterally spaced to clear the implant site 12 on the bone ridge thus exposed (in the figures, it was deliberately, for reasons of clarity, omitted to represent the gingiva).
  • the mesiodistal guide cylinder 18 indexes the tip 8 in the mesiodistal direction. This indexing is achieved by simply inserting the tool 6 in the implant site 12, the adjacent teeth 13, 14 being in contact (or almost) with the cylinder 18. It remains for the practitioner to correctly position the tool 6 in the direction vestibulolinguale, which it can perform judging if it is experienced, or using a depth gauge to verify that the vestibulolingual guide cylinder 19 is at the desired distance (2 mm in common practice) as we have seen) from the edge of the bone ridge.
  • the drilling can then be carried out by simply pressing the tool 6, the head 7 coming to machine (FIGS. 6 and 7) a bore 10 in the bone crest 11 with a depth equal to the stroke defined by the distance d of the stop 23 depth mesiodistal guide cylinder 18, as preset as previously indicated.
  • the cylinders 18, 19 simultaneously provide mesiodistal guidance and vestibulolingual guidance. This double guidance benefits the precision of the intervention, and the safety of the patient. The risk of failure of the operation is reduced.
  • the cylinders 18, 19 also contribute, when they are slidably mounted on the drill 20, to ensure axial guidance thereof, which limits the risk of tilting of the tool 6 during drilling and increases still the precision (and therefore the chances of success) of the intervention.
  • the tool 6 that has just been described can make it possible to drill multiple holes in a site 12 implant corresponding to several missing teeth (two in the illustrated example).
  • a first step consists in producing, by means of the tool 6 previously described, a first bore 10 in the vicinity of a first adjacent tooth 13.
  • a second step consists in momentarily setting up, in the bore thus produced, a toothed tooth template 27 comprising a tooth shape or a cylinder 28 (of a diameter corresponding to the mesiodistal bulk of the false tooth to be laid ) and a rod 29 of a diameter corresponding to the diameter of the pilot hole 10, or a slightly larger diameter to increase the stability of the template 27.
  • the installation of the template 27 is done simply by introducing the rod 29 in the pilot hole 10.
  • a third step is to drill a second pilot hole (dashed in Figure 8) in the manner previously described from the template 27 thus laid.
  • a second pilot hole dashed in Figure 8
  • the tool 6 previously described lends itself particularly, thanks to its ease and accuracy of use, this technique of multiple drilling.
  • the mesiodistal guide cylinder 18 (and possibly the vestibulolingual guide cylinder 19) could be at least partially made of a transparent or translucent material, so as to transmit the light resulting from an on-board illumination on the counter-light. angle 4, so as to illuminate the implant site 12 and thus facilitate vestibulolingual guidance.
  • the mesiodistal guiding cylinder 18 may comprise a tubular steel sleeve to allow its mounting on the drill 20, around which is molded a cylindrical body of plastic (preferably biocompatible) transparent or translucent.
  • one of the cylinders 18, 19 is made integral (for example by being made of material) of the drilling head 7, the other cylinder being free in rotation and / or in translation.
  • the mesiodistal guide cylinder 18 could be integral with the head 7, the buccolingual guide cylinder 19 being free.
  • At least one of the cylinders 18, 19 could also be provided with grooves (helical or straight) irrigation, whose function is to channel a coolant (typically saline) to the implant site 12, to cool the bone and drill 20 which tend to heat up during drilling.
  • a coolant typically saline

Landscapes

  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Dental Prosthetics (AREA)
  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)

Abstract

Outil (6) de forage pour chirurgie dentaire implantaire, cet outil (6) comprenant: une tête (7) de forage; un mandrin cylindrique solidaire de la tête (7) et coaxial à celle-ci, ce mandrin étant apte à être monté dans une broche pour réaliser un accouplement en rotation de la tête (7) de forage avec cette broche; un cylindre (18) de guidage mésiodistal, coaxial à la tête (7) de forage, ce cylindre (18) de guidage mésiodistal présentant un diamètre (D2) externe, dit de guidage mésiodistal, supérieur au diamètre (D1) de forage; un cylindre (19) de guidage vestibulolingual, coaxial à la tête (7) de forage et sous-jacent au cylindre (18) de guidage mésiodistal, ce cylindre (19) de guidage vestibulolingual présentant un diamètre (D3) externe, dit de guidage vestibulolingual, inférieur au diamètre (D2) de guidage mésiodistal.

Description

Outil de forage pour chirurgie dentaire implantaire, comprenant un guide étagé
L'invention a trait au domaine de la chirurgie dentaire, et plus précisément de la chirurgie implantaire (ou implantologie).
On a recours à la chirurgie implantaire pour remplacer une dent manquante ou un groupe de dents manquantes par un (ou plusieurs) implant(s). L'acte de chirurgie implantaire vise à permettre au patient de recouvrer une esthétique buccale et des fonctions de mastication et d'élocution normales.
La chirurgie implantaire est ordinairement conduite sous anesthésie locale ; l'acte consiste, d'une manière générale, à monter une dent artificielle sur un implant intégré à l'os maxillaire du patient. L'implant se présente généralement sous forme d'une cheville munie d'un filetage externe, qui vient se prendre directement dans un alésage préalablement pratiqué dans l'os maxillaire. L'alésage de l'os maxillaire est une opération délicate qui requiert une certaine dextérité de la part du chirurgien dentiste. Cette opération comprend usuellement l'incision de la gencive au droit du site implantaire délimité par les dents (naturelles ou artificielles) limitrophes. Une fois cette incision réalisée, le chirurgien sépare les lambeaux gingivaux ainsi réalisés et pratique un avant-trou de faible diamètre (généralement de l'ordre de 2 mm) directement dans l'os maxillaire, au moyen d'un foret monté sur un instrument rotatif motorisé. On peut également opérer sans lambeau, en forant directement au travers de la gencive.
Une fois l'avant-trou réalisé, le chirurgien procède à l'élargissement de celui-ci au moyen de forets de taille croissante, jusqu'à obtenir un alésage de diamètre nominal permettant la mise en place de l'implant.
II est essentiel que l'avant-trou soit correctement réalisé, car de son positionnement et de son orientation dépendent le positionnement et, respectivement, l'orientation de l'implant et donc de la dent artificielle.
En pratique, le foret permettant de réaliser l'avant-trou est monté sur un contre-angle lui-même accouplé à un moteur. On comprend que, lorsque l'alésage de l'avant-trou est réalisé à main levée, le succès de cette opération repose sur la précision dont sait faire preuve le chirurgien. En particulier, celui-ci doit être attentif au positionnement mésiodistal et vestibulolingual de son outil, et à l'orientation de l'axe du foret.
Cependant le chirurgien n'est à l'abri ni d'un faux-mouvement, ni d'un spasme du patient, susceptibles d'affecter la réalisation correcte de l'avant-trou.
Afin d'éviter ce genre d'incident, des solutions ont été proposées pour guider l'opération de forage.
Une première technique consiste à opérer à l'aide d'une gouttière thermoformés dans laquelle est formée une contre-empreinte buccale du patient, cette gouttière étant munie d'une ou plusieurs perforation(s) au droit du (des) site(s) implantaire(s). Une telle gouttière, couramment dénommée guide chirurgical, nécessite cependant des opérations préalables de prise d'empreinte, de réalisation d'un moule puis de fabrication de la gouttière. Ces opérations sont lourdes et coûteuses, ce qui explique que la plupart des chirurgiens y renoncent au profit d'une intervention à main levée, en dépit des risques précités.
Une deuxième technique consiste à opérer à l'aide d'un guide, solidaire du foret ou rapporté sur celui-ci, permettant de réaliser un guidage mésiodistal du foret, le guide étant positionné entre deux dents existantes délimitant le site implantaire, ou contre une dent unique délimitant une édentation terminale totale.
Un tel guide, décrit dans la demande internationale WO 2012/165093, se présente sous forme d'un cylindre ayant un diamètre externe supérieur à celui du foret sur lequel il est monté.
Si un tel guide représente, de prime abord, un progrès par rapport à la technique classique de forage à main levée, il ne va cependant pas sans inconvénients.
En effet, si le positionnement mésiodistal du foret est facilité par le guide, il n'en va pas de même du positionnement vestibulolingual. En effet, la présence du guide masque au moins partiellement le site implantaire à la vue du praticien ; à tout le moins, le guide projette sur le site implantaire une ombre en venant se placer entre celui-ci et le luminaire (dont sont équipés, pour la plupart, les contre-angles), et rend de ce fait difficile une correcte appréciation du positionnement vestibulolingual du foret. Un premier objectif est par conséquent de proposer une solution pour améliorer le positionnement des outils de forage en chirurgie implantaire.
Un deuxième objectif est de proposer un outil de chirurgie implantaire procurant un guidage non seulement mésiodistal mais également vestibulolingual.
A cet effet, il est proposé un outil de forage pour chirurgie dentaire implantaire, cet outil comprenant :
une tête de forage, qui s'étend suivant un axe principal, cette tête de forage ayant un diamètre externe dit de forage ;
un mandrin solidaire de la tête et coaxial à celle-ci, ce mandrin étant apte à être monté dans une broche pour réaliser un accouplement en rotation de la tête de forage avec cette broche ; un cylindre de guidage mésiodistal, coaxial à la tête de forage, ce cylindre de guidage mésiodistal présentant un diamètre externe, dit de guidage mésiodistal, supérieur au diamètre de forage ;
un cylindre de guidage vestibulolingual, coaxial à la tête de forage et sous-jacent au cylindre de guidage mésiodistal, ce cylindre de guidage vestibulolingual présentant un diamètre externe, dit de guidage vestibulolingual, supérieur au diamètre de forage et inférieur ou égal au diamètre de guidage mésiodistal.
Cet outil permet un guidage non seulement mésiodistal, mais également vestibulolingual, au bénéfice de la précision (et de la sécurité) de l'intervention.
Diverses caractéristiques supplémentaires peuvent être prévues, seules ou en combinaison :
l'outil comprend un foret monobloc formant la tête de forage et le mandrin, et le cylindre de guidage mésiodistal et le cylindre de guidage vestibulolingual sont rapportés en étant montés sur le foret ;
chaque cylindre est pourvu d'un alésage central pour son montage en libre rotation sur le foret ;
l'outil comprend une butée de profondeur sous forme d'une bague solidaire du mandrin ;
- au moins l'un des cylindres est solidaire du mandrin ou de la tête de forage ; le diamètre de guidage mésiodistal est compris entre 5 mm et 12 mm ;
le diamètre de guidage vestibulolingual est compris entre 3 mm et 6 mm ;
- le cylindre de guidage mésiodistal présente une hauteur comprise entre 1 mm et 20 mm ;
le cylindre de guidage vestibulolingual présente une hauteur comprise entre 0,5 mm et 20 mm ;
au moins l'un des cylindres est pourvu de rainures d'irrigation.
D'autres objets et avantages de l'invention apparaîtront à la lumière de la description d'un mode de réalisation, faite ci-après en référence aux dessins annexés dans lesquels :
la figure 1 est une vue en perspective éclatée montrant un système de forage utilisé en chirurgie implantaire ;
- la figure 2 est une vue de détail, en éclaté, de l'outillage de la figure 1 ;
la figure 3 est une vue montrant une intervention chirurgicale mettant en œuvre le kit des figures 1 et 2 ;
les figures 4 et 5 sont, respectivement, des vues en coupe mésiodistale et vestibulolinguale illustrant la mise en place du kit de forage dans un site implantaire ;
les figures 6 et 7 sont des vues similaires respectivement aux figures 4 et 5 et illustrant le forage d'un avant-trou dans le site implantaire ;
- la figure 8 est une vue en coupe mésiodistale illustrant une technique de forage d'une série d'avant-trous.
Sur la figure 1 est représenté un système 1 de forage pour chirurgie dentaire implantaire. Cet outillage 1 comprend un instrument 2 de chirurgie équipé d'un élément 3 moteur et d'un contre-angle 4 emboîté sur l'élément 3 moteur et intégrant une broche 5 apte à accueillir une gamme d'outils pour la réalisation de forages dans une crête osseuse maxillaire (partiellement visible sur la figure 3).
Le système 1 comprend par ailleurs un outil 6 de forage.
L'outil 6 de forage comprend, en premier lieu, une tête 7 de forage (hélicoïdale dans l'exemple illustré, bien qu'elle puisse présenter une forme différente, par exemple sphérique) s'étendant suivant un axe A principal, dit de forage. Dans ce qui suit, on nomme hauteur toute distance mesurée parallèlement à l'axe A.
Cette tête 7 de forage présente dans l'exemple illustré une pointe 8 conique et une rainure 9 hélicoïdale (simple, ou double de préférence) qui s'étend à partir de la pointe 8 sur une hauteur déterminée.
La tête 7 de forage est agencée pour permettre la réalisation d'un ou plusieurs avant-trou(s) 10 dans une crête 11 osseuse maxillaire, en vue de la mise en place d'un implant destiné à accueillir une dent prothétique.
Plus précisément, un tel avant-trou 10 est prévu pour être réalisé dans un site 12 implantaire délimité par au moins une dent 13limitrophe existante (naturelle ou artificielle). Le site 12 implantaire peut, comme dans l'exemple illustré, être délimité de part et d'autre par une paire de dents 13, 14 limitrophes. Dans ce cas, on note L la largeur (mesurée suivant une direction mésiodistale) du site 12 implantaire, et E l'épaisseur de celui-ci, mesurée suivant une direction vestibulolinguale sur le sommet de la crête 11 osseuse.
On observera que, lorsque le site 12 implantaire est dimensionné pour accueillir une dent prothétique unique (en remplacement d'une unique dent perdue), l'avant-trou 10 doit être réalisé sensiblement à égale distance des dents 13, 14 limitrophes. En revanche, lorsque le site implantaire 12 est dimensionné pour accueillir plusieurs dents prothétiques (en remplacement de plusieurs dents perdues), l'avant- trou 10 doit être positionné en référence à la dent 13 limitrophe la plus proche, ou en référence à l'avant-trou 10 précédemment percé, comme illustré sur la figure 8.
La tête 7 de forage présente un diamètre D1 externe (hors tout), dit diamètre de forage, compris entre 1,5 et 3 mm. Selon un mode particulier de réalisation, le diamètre D1 est de l'ordre de 2 mm.
L'outil 6 comprend, en deuxième lieu, un mandrin 15 (cylindrique dans l'exemple illustré), solidaire de la tête 7 et coaxial à celle-ci. Ce mandrin 15 est dimensionné (et agencé) pour pouvoir être monté dans la broche 5 du contre-angle 4 pour réaliser un accouplement en rotation de la tête 7 de forage avec la broche 5..
Plus précisément, et comme on le voit sur la figure 2, le mandrin
15 présente, à une extrémité distale (opposée à la tête 7), un méplat 16 et une gorge 17 périphérique. L'accouplement du mandrin 15 à la broche 5 se fait par coopération d'une clavette et d'un crochet élastique (intégrés à la broche 5) avec, respectivement, le méplat 16 et la gorge 17.
L'outil 6 comprend, en troisième lieu, un cylindre 18 de guidage mésiodistal, coaxial à la tête 7 de forage (et donc au mandrin 15). Ce cylindre 18 de guidage mésiodistal présente un diamètre D2 externe, dit de guidage mésiodistal, supérieur au diamètre D1 de forage. Le choix du diamètre D2 de guidage mésiodistal dépend de la largeur L du site 12 implantaire. Plus précisément, le diamètre D2 de guidage mésiodistal correspond sensiblement à la largeur L lorsque le site 12 est destiné à accueillir une unique dent prothétique, ou à la largeur (mesurée suivant la direction mésiodistale) d'une dent prothétique lorsque le site 12 est destiné à accueillir plusieurs dents prothétiques.
En pratique, le diamètre D2 de guidage mésiodistal est de préférence compris entre 5 mm et 12 mm.
Le cylindre 18 de guidage mésiodistal s'étend axialement sur une hauteur H2 qui, de préférence, est comprise entre 1 mm et 20 mm, ce qui permet de couvrir de nombreuses configurations buccales.
L'outil 6 comprend, en quatrième lieu, un cylindre 19 de guidage vestibulolingual, coaxial à la tête 7 de forage (et donc au mandrin 15) et sous-jacent au cylindre 18 de guidage mésiodistal. En d'autres termes, le cylindre 18 de guidage mésiodistal est superposé au cylindre 19 de guidage vestibulolingual.
Le cylindre 19 de guidage vestibulolingual présente un diamètre D3 externe, dit de guidage vestibulolingual, également supérieur au diamètre D1 de forage et de préférence inférieur ou égal (pour un même outil 6) au diamètre D2 de guidage mésiodistal.
Le choix du diamètre D3 de guidage vestibulolingual dépend de l'épaisseur E du site 12 implantaire. Plus précisément, le diamètre D3 de guidage vestibulolingual est égal ou sensiblement égal au diamètre de l'alésage final destiné à accueillir l'implant, lui-même devant être choisi égal ou inférieur à l'épaisseur E diminuée d'une marge de sécurité de deux fois 2 mm, cette marge correspondant à l'épaisseur minimale de matière osseuse qui doit demeurer de part et d'autre (dans la direction vestibulolinguale) de l'alésage final.
Ainsi :
D3 (mm) = E (mm) - 4 En pratique, le diamètre D3 de guidage vestibulolingual est de préférence compris entre 3 mm et 6 mm. Par ailleurs, le cylindre 19 de guidage vestibulolingual présente une hauteur axiale H3 qui, de préférence, est comprise entre 0,5 mm et 20 mm. Cette gamme de hauteurs permet au praticien de correctement visualiser le positionnement vestibulolingual de l'outil 6, sans que l'encombrement axial (c'est-à-dire la hauteur totale) de celui-ci ne soit trop important. Cela évite au patient de devoir trop ouvrir la bouche pendant l'intervention.
Selon un mode de réalisation illustré sur les figures, l'outil 6 comprend un foret 20 monobloc formant la tête 7 de forage et le mandrin 15, et le cylindre 18 de guidage mésiodistal et le cylindre 19 de guidage vestibulolingual sont rapportés en étant montés sur le foret 20. Le foret 20 est par exemple réalisé en acier de qualité chirurgicale (il s'agit généralement d'un alliage au chrome, nickel et molybdène - citons par exemple la nuance X2CrNiMo17-12, couramment employée), la tête 7 étant éventuellement revêtue de nitrure de titane (TiN). En variante, le foret 20 peut être réalisé en céramique ou en titane.
Les cylindres 18, 19 sont eux aussi de préférence réalisés en acier chirurgical, bien qu'ils puissent être réalisés dans tout autre matériau compatible avec la chirurgie dentaire implantaire : titane, stellite, oxyde de zirconium (céramique), silicone, polymère stérilisable, etc. Les cylindres 18, 19 pourraient être solidarisés en translation et/ou en rotation au foret 20, par exemple au moyen de vis de serrage radiales, ou former avec la tête 7 et le mandrin 15 un ensemble monobloc venu d'usinage. Dans ce dernier cas, une gamme d'outils 6 doit être réalisée, incluant diverses combinaisons de diamètres D2 et D3 et de hauteurs H2 et H3 (pour un même diamètre D1).
Cependant, selon un mode de réalisation préféré, les cylindres 18, 19 sont montés en libre translation et en libre rotation sur le foret. A cet effet, le cylindre 18 de guidage mésiodistal est pourvu d'un alésage 21 central d'un diamètre correspondant, au jeu près, au diamètre D1 externe du foret 20. De même, le cylindre 19 de guidage vestibulolingual est pourvu d'un alésage 22 central d'un diamètre correspondant également, au jeu près, au diamètre D1 externe du foret 20. Par leur montage coulissant, les cylindres 18, 19 conservent leur position par rapport à la mâchoire du patient pendant la pénétration de la tête 7 du foret 20 dans la crête 11 osseuse, au bénéfice de la précision du travail.
Comme on le voit sur les figures, et plus particulièrement sur les figures 2 et 4 à 7, l'outil 6 peut en outre comprendre une butée 23 de profondeur sous forme d'une bague solidaire du mandrin 15 du foret 20.
La fixation de la butée 23 (en rotation et en translation) sur le mandrin
15 du foret 20 est par exemple réalisée au moyen d'une vis 24 radiale sans tête (typiquement à empreinte hexagonale). Il s'agit dans ce cas d'une fixation réglable, qui permet de modifier la profondeur de forage.
On veillera à maintenir entre la butée 23 de profondeur et le cylindre 18 de guidage mésiodistal une distance d correspondant à la profondeur de forage, dans la configuration où la pointe 8 est sensiblement coplanaire avec une face 25 d'extrémité inférieure du cylindre 19 de guidage vestibulolingual (comme illustré sur les figures 4 et 5), ce qui correspond au début du forage.
Cette distance d définit la course du foret 20 - c'est-à-dire la profondeur de forage, celui-ci étant terminé lorsque la butée 23 de profondeur vient s'appliquer contre une face 26 supérieure du cylindre
18 de guidage mésiodistal (figures 6 et 7).
La réalisation d'un avant-trou 10 dans un site 12 implantaire défini entre deux dents 13, 14 limitrophes pour la pose d'un implant unique est illustrée sur les figures 3 à 7.
Le praticien commence par choisir la taille (diamètre D2, hauteur
H2) de son cylindre 18 de guidage mésiodistal en fonction de la largeur
L du site 12 implantaire.
Le praticien choisit également la taille (diamètre D3, hauteur H3) du cylindre 19 de guidage vestibulolingual en fonction de l'épaisseur E de la crête 11 osseuse. Plus précisément, comme nous l'avons vu, le diamètre D3 est choisi d'une valeur égale à l'épaisseur E diminuée de 4 millimètres.
Le foret 20 est monté sur le contre-angle 4 en étant accouplé à la broche 5, puis les cylindres 18, 19 sont emmanchés sur le foret 20 - d'abord le cylindre 18 de guidage mésiodistal, puis le cylindre 19 de guidage vestibulolingual. La butée 23 de profondeur est ajustée selon les critères définis ci-dessus, pour être distante du cylindre 18 de guidage mésiodistal de la profondeur de forage.
Le praticien peut alors réaliser l'opération de forage. La gencive du patient pourra, auparavant, avoir été incisée selon la direction mésiodistale, et les lambeaux gingivaux écartés latéralement pour dégager le site 12 implantaire sur la crête 11 osseuse ainsi mise à nu (sur les figures, on a volontairement, pour des raisons de clarté, omis de représenter la gencive). Il est cependant possible de réaliser une telle opération chirurgicale sans lambeau, c'est-à-dire en réalisant le forage directement au travers de la gencive.
Le cylindre 18 de guidage mésiodistal assure un indexage de la pointe 8 selon la direction mésiodistale. Cet indexage est réalisé par simple insertion de l'outil 6 dans le site 12 implantaire, les dents 13, 14 limitrophes étant en contact (ou presque) avec le cylindre 18. Il reste au praticien à correctement positionner l'outil 6 dans la direction vestibulolinguale, ce qu'il peut effectuer au jugé s'il est expérimenté, ou à l'aide d'une jauge de profondeur lui permettant de vérifier que le cylindre 19 de guidage vestibulolingual est à la distance souhaitée (2 mm dans la pratique courante actuelle, comme nous l'avons vu) du bord de la crête 11 osseuse.
Le forage peut alors être effectué par simple appui sur l'outil 6, la tête 7 venant usiner (figures 6 et 7) un alésage 10 dans la crête 11 osseuse d'une profondeur égale à la course définie par la distance d de la butée 23 de profondeur au cylindre 18 de guidage mésiodistal, telle que préréglée comme indiqué précédemment.
On voit ainsi que les cylindres 18, 19 procurent simultanément un guidage mésiodistal et un guidage vestibulolingual. Ce double guidage bénéficie à la précision de l'intervention, et à la sécurité du patient. Le risque d'échec de l'opération est amoindri.
On observera que les cylindres 18, 19 contribuent également, lorsqu'ils sont montés coulissants sur le foret 20, à assurer un guidage axial de celui-ci, ce qui limite le risque de basculement de l'outil 6 en cours de forage et accroît encore la précision (et donc les chances de succès) de l'intervention.
Comme cela est visible sur la figure 8, l'outil 6 qui vient d'être décrit peut permettre de pratiquer des forages 10 multiples dans un site 12 implantaire correspondant à plusieurs dents manquantes (deux dans l'exemple illustré).
Une première étape consiste à réaliser, au moyen de l'outil 6 précédemment décrit, un premier forage 10 au voisinage d'une première dent 13 limitrophe.
Une deuxième étape consiste à mettre momentanément en place, dans l'alésage ainsi réalisé, un gabarit 27 de fausse-dent comprenant une forme de dent ou un cylindre 28 (d'un diamètre correspondant à l'encombrement mésiodistal de la fausse dent à poser) et une tige 29 d'un diamètre correspondant au diamètre de l'avant-trou 10, ou d'un diamètre légèrement supérieur pour accroître la stabilité du gabarit 27. La mise en place du gabarit 27 se fait simplement, par introduction de la tige 29 dans l'avant-trou 10.
Une troisième étape consiste à forer un second avant-trou (en pointillés sur la figure 8) de la manière précédemment décrite à partir du gabarit 27 ainsi posé. Lorsque le patient est complètement édenté à partir de la dent 13 limitrophe, le guidage mésiodistal est unilatéral. En présence d'une seconde dent 14 limitrophe, celle-ci assure un guidage bilatéral.
L'outil 6 précédemment décrit se prête particulièrement, grâce à sa facilité et sa précision d'utilisation, à cette technique de forages multiples.
Diverses variantes peuvent être envisagées.
En particulier, au moins le cylindre 18 de guidage mésiodistal (et éventuellement le cylindre 19 de guidage vestibulolingual) pourrait être au moins partiellement réalisé dans un matériau transparent ou translucide, de sorte à transmettre la lumière issue d'un éclairage embarqué sur le contre-angle 4, de sorte à éclairer le site 12 implantaire et ainsi faciliter le guidage vestibulolingual.
En pratique, le cylindre 18 de guidage mésiodistal peut comprendre un manchon tubulaire en acier pour permettre son montage sur le foret 20, autour duquel est surmoulé un corps cylindrique en matière plastique (avantageusement biocompatible) transparente ou translucide.
Par ailleurs, il est envisageable de prévoir que l'un des cylindres 18, 19 soit rendu solidaire (par exemple en étant venu de matière) de la tête 7 de forage, l'autre cylindre étant libre en rotation et/ou en translation. Ainsi, le cylindre 18 de guidage mésiodistal pourrait être solidaire de la tête 7, le cylindre 19 de guidage vestibulolingual étant libre.
Au moins l'un des cylindres 18, 19 pourrait également être pourvu de rainures (hélicoïdales ou droites) d'irrigation, ayant pour fonction de canaliser un fluide caloporteur (typiquement du sérum physiologique) vers le site 12 implantaire, pour refroidir l'os et le foret 20 qui ont tendance à s'échauffer lors du forage.

Claims

REVENDICATIONS
1. Outil (6) de forage pour chirurgie dentaire implantaire, cet outil (6) comprenant :
- une tête (7) de forage, qui s'étend suivant un axe (A) principal, cette tête (7) de forage ayant un diamètre (D1) externe dit de forage ;
un mandrin (15) solidaire de la tête (7) et coaxial à celle-ci, ce mandrin (15) étant apte à être monté dans une broche (5) pour réaliser un accouplement en rotation de la tête (7) de forage avec cette broche (5) ;
un cylindre (18) de guidage mésiodistal, coaxial à la tête (7) de forage, ce cylindre (18) de guidage mésiodistal présentant un diamètre (D2) externe, dit de guidage mésiodistal, supérieur au diamètre (D1) de forage ;
cet outil (6) étant caractérisé en ce qu'il comprend un cylindre (19) de guidage vestibulolingual, coaxial à la tête (7) de forage et sous-jacent au cylindre (18) de guidage mésiodistal, ce cylindre (19) de guidage vestibulolingual présentant un diamètre (D3) externe, dit de guidage vestibulolingual, supérieur au diamètre (D1) de forage et inférieur au diamètre (D2) de guidage mésiodistal.
2. Outil (6) selon la revendication 1, caractérisé en ce qu'il comprend un foret (20) monobloc formant la tête (7) de forage et le mandrin (15), et en ce que le cylindre (18) de guidage mésiodistal et le cylindre (19) de guidage vestibulolingual sont rapportés en étant montés sur le foret (20).
3. Outil (6) selon la revendication 2, caractérisé en ce que chaque cylindre (18, 19) est pourvu d'un alésage (21, 22) central pour son montage en libre rotation sur le foret (20).
4. Outil (6) selon la revendication 3, caractérisé en ce qu'il comprend une butée (23) de profondeur sous forme d'une bague solidaire du mandrin (15).
5. Outil selon la revendication 1, caractérisé en ce qu'au moins l'un des cylindres (18, 19) est solidaire du mandrin (15) ou de la tête (7) de forage.
6. Outil (6) selon l'une des revendications précédentes, caractérisé en ce que le diamètre (D2) de guidage mésiodistal est compris entre 5 mm et 12 mm.
7. Outil (6) selon l'une des revendications précédentes, caractérisé en ce que le diamètre (D3) de guidage vestibulolingual est compris entre 3 mm et 6 mm.
8. Outil (6) selon l'une des revendications précédentes, caractérisé en ce que le cylindre (18) de guidage mésiodistal présente une hauteur (H2) comprise entre 0,5 mm et 20 mm.
9. Outil (6) selon l'une des revendications précédentes, caractérisé en ce que le cylindre (19) de guidage vestibulolingual présente une hauteur (H3) comprise entre 0,5 mm et 20 mm.
10. Outil (6) selon l'une des revendications précédentes, caractérisé en ce qu'au moins l'un des cylindres (18, 19) est pourvu de rainures d'irrigation.
EP15711258.2A 2014-03-03 2015-02-27 Outil de forage pour chirurgie dentaire implantaire, comprenant un guide étagé Withdrawn EP3113713A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1451668A FR3018040B1 (fr) 2014-03-03 2014-03-03 Outil de forage pour chirurgie dentaire implantaire, comprenant un guide etage
PCT/FR2015/050481 WO2015132513A1 (fr) 2014-03-03 2015-02-27 Outil de forage pour chirurgie dentaire implantaire, comprenant un guide étagé

Publications (1)

Publication Number Publication Date
EP3113713A1 true EP3113713A1 (fr) 2017-01-11

Family

ID=50877434

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15711258.2A Withdrawn EP3113713A1 (fr) 2014-03-03 2015-02-27 Outil de forage pour chirurgie dentaire implantaire, comprenant un guide étagé

Country Status (10)

Country Link
US (1) US20170071696A1 (fr)
EP (1) EP3113713A1 (fr)
JP (1) JP2017506984A (fr)
KR (1) KR20160130242A (fr)
CN (1) CN106061428A (fr)
AU (1) AU2015226036A1 (fr)
CA (1) CA2941542A1 (fr)
FR (1) FR3018040B1 (fr)
IL (1) IL247511A0 (fr)
WO (1) WO2015132513A1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3046049B1 (fr) * 2015-12-23 2019-04-05 Michel Claude Auguste Valery Foret dentaire, jeu de forets dentaires et trousse d'implantation dentaire
CN109464204A (zh) * 2017-09-08 2019-03-15 上海惠而顺精密工具股份有限公司 陶瓷种钉扩孔钻
KR102104908B1 (ko) * 2017-10-31 2020-04-27 김병환 임플란트 시술용 서지컬 가이드
USD879294S1 (en) * 2018-04-25 2020-03-24 Dentsply Sirona Inc. Dental tool with a transponder
USD882087S1 (en) * 2018-04-25 2020-04-21 Dentsply Sirona Inc. Dental tool having a removable peripheral ring and transponder
IL261494B (en) * 2018-08-30 2019-06-30 Noris Medical Ltd Zygomatic implant device and method
KR101959774B1 (ko) * 2018-11-29 2019-03-19 김용서 외부 주수 장치를 구비하는 치아 임플란트 시술용 서지컬 가이드 시스템
CN113440277B (zh) * 2021-06-12 2023-04-18 杭州口腔医院集团有限公司 基于牙齿支持的定位导向装置及其制作方法
USD997356S1 (en) * 2021-11-04 2023-08-29 Charles Buist, DMD, PA Hand operated tool handle with an improved tool bit adapter
KR102697489B1 (ko) * 2022-01-27 2024-08-20 윤기연 임플란트 식립 위치 가이드 장치

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5556278A (en) * 1994-09-07 1996-09-17 Meitner; Sean W. Method for making and using a template for a dental implant osteotomy and components relating thereto
US5915962A (en) * 1997-11-03 1999-06-29 Rosenlicht; Joel L. Dental implant and prosthesis positioning
US7153132B2 (en) * 2005-05-23 2006-12-26 Tedesco James L Mini-dental implant surgical stent
US20090286201A1 (en) * 2008-05-16 2009-11-19 Mike Wansik Choe Dental implant drill apparatus and method
JP5165457B2 (ja) * 2008-05-21 2013-03-21 株式会社ジーシー 歯科用ドリル用着脱式ストッパ
EP2196162B1 (fr) * 2008-12-15 2016-10-12 Straumann Holding AG Guide-foret
DE102010012960A1 (de) * 2010-03-25 2011-09-29 Hannelore Kiener Hülsengeführtes Werkzeugsystem
JP5914137B2 (ja) * 2011-06-01 2016-05-11 学校法人近畿大学 歯科インプラント用治具及びそのセット並びにドリル用バー及びそのセット

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2015132513A1 *

Also Published As

Publication number Publication date
JP2017506984A (ja) 2017-03-16
CN106061428A (zh) 2016-10-26
AU2015226036A1 (en) 2016-09-15
FR3018040A1 (fr) 2015-09-04
CA2941542A1 (fr) 2015-09-11
FR3018040B1 (fr) 2016-03-25
KR20160130242A (ko) 2016-11-10
WO2015132513A1 (fr) 2015-09-11
IL247511A0 (en) 2016-11-30
US20170071696A1 (en) 2017-03-16

Similar Documents

Publication Publication Date Title
WO2015132513A1 (fr) Outil de forage pour chirurgie dentaire implantaire, comprenant un guide étagé
EP1478298B1 (fr) Procede et dispositif pour la mise en place d'implants dentaires
CA2892981C (fr) Instrument pour l'alesage des canaux radiculaires dentaires
EP1753365B1 (fr) Guide chirurgical implantaire sur mesure et fraise associée et leur procédé de fabrication
WO2007104842A1 (fr) Dispositif de guidage d'un foret implantaire et procede de pose d'un implant axial mettant en œuvre ce dispositif
EP2037834A1 (fr) Procede de fabrication d'une prothese osseuse ou d'une simulation preimplantaire et appareillage mis en oeuvre
EP1318763A2 (fr) Jeu d'implants et implants correspondants
FR2910804A1 (fr) Dispositif de guidage et de modelage osseux pour la preparation de sites osseux en chirurgie
KR101550759B1 (ko) 치과용 임플란트 키트
EP2353540A1 (fr) Ensemble d'un implant dentaire et d'un élément prothétique
EP1194077B1 (fr) Ensemble de fraises destine a la preparation d'une dent en vue de la pose d'une couronne prothetique
EP2685929B2 (fr) Implant dentaire
EP2229909A1 (fr) Dispositif de guidage d'outil de perçage pour la mise en place d'au moins un implant dentaire
EP2149345A1 (fr) Dispositif de positionnement d'un axe de référence en vue de la détermination d'un axe de perçage pour la mise en place d'au moins un implant dentaire
FR2516784A1 (fr) Nouvel implant, outil pour la mise en place de celui-ci et procede de realisations implantaires
WO2019180673A1 (fr) Dispositif d'assistance au forage d'un puits pour implant dentaire
JP3182420U (ja) 歯科根管治療用ドリル
CA3180511A1 (fr) Instrument endodontique, notamment pour l'alesage d'un canal radiculaire
JP2006075427A (ja) スクリュー型インプラント用フィクスチャー
FR2924920A1 (fr) Guide de percage pour un implant dentaire
FR2945438A1 (fr) Instrument endodontique presentant une arete a l'intersection de deux surfaces de decoupe,l'arete presentant une serie de reliefs.
EP3380035B1 (fr) Fraise pour os cortical de mâchoire.
KR20210155581A (ko) 하이브리드 어버트먼트 블록
WO2012076420A1 (fr) Dispositif endodontique, destiné à la mise en forme d'un canal dentaire et/ou à la réalisation d'un logement de tenon
FR3001627A1 (fr) Manchon pour implantologie dentaire

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20160930

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

17Q First examination report despatched

Effective date: 20180206

18W Application withdrawn

Effective date: 20180219