EP3112688B2 - Split flow vacuum pump and vacuum system with a split flow vacuum pump - Google Patents
Split flow vacuum pump and vacuum system with a split flow vacuum pump Download PDFInfo
- Publication number
- EP3112688B2 EP3112688B2 EP15174844.9A EP15174844A EP3112688B2 EP 3112688 B2 EP3112688 B2 EP 3112688B2 EP 15174844 A EP15174844 A EP 15174844A EP 3112688 B2 EP3112688 B2 EP 3112688B2
- Authority
- EP
- European Patent Office
- Prior art keywords
- pump
- rotor
- vacuum
- vacuum pump
- turbomolecular
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000004323 axial length Effects 0.000 claims description 7
- 238000007789 sealing Methods 0.000 claims description 5
- 238000005086 pumping Methods 0.000 description 40
- 229920001971 elastomer Polymers 0.000 description 8
- 239000000806 elastomer Substances 0.000 description 8
- 238000005192 partition Methods 0.000 description 7
- 238000005553 drilling Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 230000010512 thermal transition Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D19/00—Axial-flow pumps
- F04D19/02—Multi-stage pumps
- F04D19/04—Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
- F04D19/042—Turbomolecular vacuum pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/05—Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
- F04D29/053—Shafts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/52—Casings; Connections of working fluid for axial pumps
- F04D29/522—Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/58—Cooling; Heating; Diminishing heat transfer
- F04D29/582—Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
- F04D29/5853—Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps heat insulation or conduction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D19/00—Axial-flow pumps
- F04D19/02—Multi-stage pumps
- F04D19/04—Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
Definitions
- the invention relates to a vacuum pump of the split-flow pump type.
- split-flow vacuum pumps are used in practice to evacuate several chambers, for example of a mass spectrometer system, at the same time.
- the split flow vacuum pumps make it possible to dispense with a pump system consisting of several individual pumps and to evacuate several chambers with a single pump.
- Split flow vacuum pumps have the advantage that they only require a small amount of space for the vacuum system.
- the split-flow vacuum pumps are not only used in analysis devices, but also, for example, in leak detectors whose analysis principle is also based on mass spectrometry.
- a turbomolecular pump which has a plurality of suction connections, each of which is connected to one of the vacuum chambers of a device, for example a mass spectrometer.
- the suction ports supply gas to various axially spaced locations of the rotor.
- Several so-called rotor-stator packages are arranged along the rotor axis, each of which compresses gas.
- a high vacuum side stator pack creates a pressure ratio between its inlet and outlet. The inlet is connected to a first vacuum chamber. The outlet is connected to the inlet of the next rotor-stator package. In addition, this area between two rotor-stator packages is connected to a second vacuum chamber.
- Another variant for evacuating an arrangement with several vacuum pumps is to provide each vacuum pump with its own flange. A vacuum pump suitable for the pressure range is then connected to this. This route is unpopular due to the high cost of the large number of vacuum pumps. There is also a need for compact devices. However, these cannot be realized with a large number of vacuum pumps.
- vacuum chambers In a large number of applications, several vacuum chambers are arranged in series and connected to one another by bores with a low conductivity. From one end of the series to the other, the gas pressure inside the vacuum chamber decreases.
- the holes are designed in such a way that a particle beam can pass through them and thus through the row of vacuum chambers.
- the lowest pressure vacuum chamber often contains an analysis device, such as a mass spectrometer.
- Split flow vacuum pumps are known from practice which have three or four radial inlets and which have at least four pump stages.
- Pump stages are usually turbomolecular pump stages. These are often combined with other pump stages, for example Holweck pump stages or Gaede pump stages.
- the technical problem on which the invention is based is to provide a split flow vacuum pump in which the number of inlets is increased without increasing the number of pump stages provided.
- the split-flow vacuum pump according to the invention with at least three radial inlets and with at least four pump stages, with at least two pump stages being designed as turbomolecular pump stages, is characterized in that the at least three inlets are designed as main inlets, which are arranged in the axial direction between the turbomolecular pumping stages, with at least one additional radial secondary inlet being provided, which is arranged in the area of at least one turbomolecular pumping stage and that the at least one secondary inlet is located between two Stator disks or between two rotor disks or between a stator disk and a rotor disk is arranged at least one turbomolecular pumping stage.
- the design of the vacuum pump according to the invention makes it possible to provide at least one secondary inlet in addition to the main inlets.
- the main inlets are located between the pumping stages as known in the art.
- at least one additional inlet is provided, which is arranged in the area of at least one turbomolecular pump stage. This means that what is known as a tap, that is to say the inlet, is not arranged between the turbomolecular pumping stages, but that the tapping leads radially into a disk pack of the at least one turbomolecular pumping stage.
- the invention makes it possible to evacuate as many chambers as possible in a multi-chamber system over a short axial length.
- the rotor can be designed in one piece or in several pieces.
- the at least one auxiliary inlet has a central axis and the central axis is arranged between a first and a last disk of the at least one turbomolecular pumping stage.
- the at least one secondary inlet is arranged between two stator disks or between two rotor disks or between a stator disk and a rotor disk of at least one turbomolecular pump stage. According to a further advantageous embodiment of the invention, it is provided that the secondary inlet is arranged between the disks of a stator core, while a main inlet is arranged between the stator cores.
- втори ⁇ н ⁇ е ⁇ о ⁇ оловки these can also be arranged radially offset from one another at the same axial height of the rotor.
- the secondary inlets are arranged in a disk pack between two rotor disks and distributed radially around the circumference. However, they can also lie on one level.
- the at least one auxiliary inlet is arranged between two adjacent stator disks or between adjacent rotor disks or between a stator disk and an adjacent rotor disk of at least one turbomolecular pumping stage.
- the secondary inlets are chosen to be relatively small in terms of their diameter and are arranged between the discs.
- a pumping speed of the at least one secondary inlet is lower than the pumping speed of a main inlet.
- the secondary inlets serve to increase the number of taps in a multi-chamber system to be evacuated.
- a disk pack of the turbomolecular pump stage is formed from two disks, a secondary inlet can be provided between these two disks.
- turbomolecular pumping stages can be designed with and without side inlets.
- At least one turbomolecular pump stage at least one Holweck pump stage and/or a Siegbahn pump stage and/or a Gaede pump stage and/or a side channel pump stage and/or a screw pump stage is provided.
- Split flow pumps usually consist of one or more turbomolecular pump stages and at least one other pump stage.
- the pressure conditions in the chambers to be evacuated can be adjusted accordingly.
- a main inlet between the pump stages for example between two turbomolecular pump stages, and to additionally arrange a Holweck pump stage, for example.
- at least one further secondary inlet is additionally arranged in the area of the at least two turbomolecular pump stages.
- a turbomolecular pumping stage is formed from one or more rotor disks and from one or more stator disks.
- a pump stage usually consists of at least one stator disk and at least one rotor disk.
- a plurality of stator disks and a plurality of rotor disks, which mesh alternately, are often provided.
- n panes it is advantageously provided that with n panes, n ⁇ 1 secondary inlets are provided. For example, if there is a stator disc and a rotor disc forming a turbomolecular pumping stage, the inlet is located between these discs.
- a further advantageous embodiment of the invention provides that a stator disk and an adjacent rotor disk of a turbomolecular pumping stage define an axial length L, and that a distance between two turbomolecular pumping stages is at least as large as this length L.
- At least one stator disk and one rotor disk form at least one turbomolecular pumping stage. If the distance between adjacent stator disks and/or adjacent rotor disks is so great that the length L is exceeded, a new turbomolecular pumping stage begins according to the invention. An inlet in this area between the turbomolecular pumping stages is considered the main inlet. An inlet in the area of the turbomolecular pumping stage itself is considered a side inlet.
- the embodiment according to the invention with regard to the inlets can in principle also be used in a turbomolecular pump.
- a pump stage advantageously consists of at least one rotor disk and at least one stator disk.
- the auxiliary inlet is located between the rotor disk and the stator disk.
- a vacuum system is provided with at least one vacuum pump and at least one recipient, in which a detachable connection is provided between the vacuum pump and the recipient, with at least one elastomer seal for sealing the connection towards the atmosphere side and at least one elastomer seal towards the vacuum side a gap seal is provided, which is characterized in that at least one suction channel and/or at least one suction opening is/are provided between the elastomer seal and the gap seal.
- This embodiment has the advantage that an elastomer seal is used at the sealing points on the atmosphere side. This is advantageously designed as an O-ring. At least one gap seal is used as the second sealing element between the elastomer seal and the ultra-high vacuum connection, for example. The surfaces of the recipient (chamber) and a surface of the pump housing are pressed against each other.
- the 1 shows a vacuum pump 1, which is designed as a so-called split-flow vacuum pump.
- the vacuum pump 1 is connected to a multi-chamber vacuum system 2 .
- the multi-vacuum system 2 has four chambers 3, 4, 5, 6, which are to be evacuated by the vacuum pump 1.
- the gas pressure in the chambers 3, 4, 5, 6 increases in this order.
- the chambers 3, 4, 5, 6 are separated from one another by partitions 7, 8, 9, with bores 9, 10, 11 establishing a connection.
- These holes 9, 10, 11 are, for example arranged and dimensioned in such a way that a particle beam can pass through all chambers 3, 4, 5, 6.
- first partition wall 7 separates the first chamber 3 and the second chamber 4 from each other, while the second partition wall 8 separates the second chamber 4 from the third chamber 5 and the third partition wall 9 separates the third chamber 5 from the fourth chamber 6.
- the dashed arrows in the 1 illustrate the gas flow.
- the vacuum pump 1 has a shaft 13 which carries rotor disks 14-19.
- the rotor disks 14 to 19 are in engagement with the stator disks 20.
- the rotor disks 14, 15, 16 form a first disk pack 21 and the rotor disks 17 to 19 form a second disk pack 22.
- the disk pack 22 forms with the stators 20 a high-vacuum side rotor-stator pack.
- the disk pack 21 forms, together with the stator disks 20, a rotor-stator pack on the intermediate vacuum side.
- the blades in both sets are fastened to support rings on both the stator and rotor side or are formed in one piece with the latter.
- a first gas inlet 23 is located in front of the rotor-stator core on the high-vacuum side
- a second gas inlet 24 is located in front of the rotor-stator core on the pre-vacuum side.
- a first main inlet 23 leads from the multi-chamber vacuum system into the vacuum pump 1.
- a second main inlet 24 leads into the vacuum pump 1.
- another main inlet 25 leads into the vacuum pump 1 and from the vacuum chamber 6, another main inlet leads 26 into the vacuum pump 1.
- the main inlets 23,24,25,26 are located between the turbomolecular pumping stages 21,22.
- a first secondary inlet 27 is arranged in the area of the turbomolecular pump stage 22 and leads from the vacuum chamber 5 into the vacuum pump 1 .
- another secondary inlet 28 leads from the vacuum chamber 6 in the area of the turbomolecular pump stage 21 into the vacuum pump 1.
- the secondary inlets 27, 28 are arranged in the region of the turbomolecular pump stages 21, 22.
- the rotor shaft 13 has areas with different diameters.
- a first area 29 is an area with the largest diameter.
- On both sides of the shaft 13 are two areas 30, 31 with smaller diameters. This in turn is followed by areas 32, 33 with an even smaller diameter of the shaft 13.
- No rotor disks are arranged in the region 29 of the largest diameter of the shaft 13 .
- the rotor disk 16 is arranged in the area 30 and is locally clearly defined by a stop 34 formed by the stepped shoulder between the area 29 and the area 30 .
- a further advantage of the invention lies in the fact that the rotor disks 14 to 19 are placed exactly on the shaft, as a result of which very small gaps can be formed. This increases the pumping capacity of the vacuum pump 1.
- the use of many identical parts means that the pump is inexpensive to manufacture.
- two sets of rotor disks, each with the same inner diameter are arranged on both sides of the region 29 of the shaft 13 with the largest diameter.
- Another advantageous embodiment of the invention is an embodiment in which 29 grooves 39, 40 are arranged in the region of the largest diameter, which reduce the mass of the shaft. Since the split flow vacuum pumps have a very long overall length, the modal behavior of the rotor and in particular the rotor shaft is critical. For this reason, according to the invention, the mass and thus also the weight of the shaft are reduced while the rigidity remains the same.
- the vacuum pump 1 has a housing 41 .
- the housing 41 has a constriction 42 in order to reduce thermal transitions between the high-vacuum side and the pre-vacuum side in the housing 41 .
- This constriction reduces the thermal conductivity. It is possible to additionally provide a reinforcement, not shown, in the area of the constriction 42 .
- the housing can also be divided in the area of the constriction 42 and a thermal seal can be arranged between the two parts of the housing.
- the shaft 13 is mounted on one side by means of a magnetic bearing 43 .
- Counter bearings 43b are arranged in a holder 43a, which is only shown schematically. On the other hand, the bearing is not shown.
- the bearing on the side that is not shown can be, for example, an oil-lubricated ball bearing.
- the rotor disk 15 and the stator disk 20 have an axial length L when viewed in the axial direction on.
- the distance between the turbomolecular pumping stages 21, 22 is greater than the length L.
- FIG. 2 shows the shaft 13 with rotor disk packs 44, 45, 46, which form turbomolecular pump stages 44, 45, 46 with stator disc packs (not shown).
- the gas flow is represented by an arrow 47 .
- Arrows 48 represent the gas flow fed from two main inlets 24,25 to the turbomolecular pumping stages 45,46.
- the arrows 49 indicate the gas flow which is supplied to the pumping system from two side inlets 27, 28 in the region of the turbomolecular pumping stages 44, 45.
- the secondary inlets 27, 28 are arranged in the region of the turbomolecular pumping stages 44, 45, while the main inlets 24, 25 have their supply between the turbomolecular pumping stages 44, 45 and 46.
- turbomolecular pump stages 44, 45, 46, 49 consist of rotor disks and stator disks which are arranged in an intermeshing manner.
- main inlets 23, 24, 25, 26 are provided, which are arranged in front of the pumping stage 44 or between the pumping stages 44, 45, 46, 49.
- the shaft 13 is supported by a magnetic bearing 43 and a ball bearing 50 .
- the ball bearing 50 is an oil-lubricated ball bearing.
- the shaft 13 is driven by a motor 51.
- a secondary inlet 27 is provided in the area of the turbomolecular pump stage 44 .
- a secondary inlet 28 is provided in the area of the turbomolecular pumping stage 45 and a secondary inlet 52 is provided in the area of the turbomolecular pumping stage 46 .
- This embodiment increases the number of inlets from the four main inlets 23, 24, 25, 26 to a total of seven inlets, namely plus the three secondary inlets 27, 28, 52.
- the shaft 13 has the 1 shown areas 29 with the largest diameter, the adjoining areas 30, 31 with a smaller diameter and the in turn adjoining areas 32, 33 with a further reduced diameter.
- the rotor disks 16, 17 are arranged.
- the rotor disks 15, 18, 19 are arranged.
- the rotor disks 15, 18, 19 have the same inner diameter.
- the rotor disks 16, 17 also have the same inner diameter. This makes it possible to construct an inexpensive pump using a large number of identical parts.
- the difference in diameter between the areas 29, 30 forms the stop 34. Between the areas 29, 31 the stop 36 is provided. The stop 35 is arranged between the areas 30, 32 and the stop 37 is provided between the areas 31, 33.
- the assembly direction of the discs 15, 16 is indicated by the arrow A.
- the assembly direction of the rotor disks 17, 18, 19 is indicated by the arrow B.
- a central axis of the shaft 13 is marked with M.
- FIG. The shaft 13 and the rotor disks 15, 16, 17, 18, 19 are rotationally symmetrical about the central axis M.
- figure 5 shows a shaft 13 with two turbomolecular pump stages 21, 22, which are arranged in a housing 41 of a split-flow pump.
- the housing 41 has an inlet 24 .
- This prior art embodiment shows that a customer housing 60 has an inlet 61 that is radially offset from the inlet 24 .
- the axial length of the pump and the customer chamber 60 do not match.
- the housing 41 has a web 62 in the area of the inlet 24 .
- the vacuum connection 72 has an elastomer seal 76 and a gap seal 77. Between the elastomer seal 76 and the gap seal 77 there is a suction channel 78 in which intermediate suction devices 79 are arranged. A suction opening 80 is arranged in the vacuum connection 75 . The intermediate suctions 79 lead into a through-bore 81, which leads to the intermediate stage 73. A connecting channel 82 is provided for a sealing arrangement of the vacuum connection 75 , so that the vacuum connection 75 is also evacuated via the suction opening 80 via the through-hole 82 .
- 8 12 shows a rotor 126, which is shown only schematically, with rotor disks 14, 15, 16, 17. Between the rotor disks 16, 17, two secondary inlets 27, 28 are arranged. The secondary inlets 27, 28 are radially spaced from each other and both lead between the rotor discs 16, 17.
- FIG. 9 shows a housing 60 of a vacuum pump with the vacuum connections 72, 73.
- Two secondary inlets 27, 28 are provided, which are arranged in one plane.
- FIG. 10 shows the rotor shaft 126 on which the rotor disks 14, 15 are arranged. Between the rotor disks 14, 15, a stator disk 20 is arranged schematically. The rotor disks 14, 15 each have a collar 127. The collar 127 replaces the spacer sleeve 38, which is 1 is shown.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Non-Positive Displacement Air Blowers (AREA)
Description
Die Erfindung betrifft eine Vakuumpumpe in der Bauart einer Splitflow-Pumpe.The invention relates to a vacuum pump of the split-flow pump type.
So genannte Splitflow-Vakuumpumpen werden in der Praxis eingesetzt, um mehrere Kammern, beispielsweise eines Massenspektrometersystems gleichzeitig zu evakuieren. Durch die Splitflow-Vakuumpumpen ist es möglich, auf ein Pumpensystem bestehend aus mehreren Einzelpumpen zu verzichten und die Evakuierung von mehreren Kammern mit einer einzigen Pumpe durchzuführen.
Splitflow-Vakuumpumpen weisen den Vorteil auf, dass sie lediglich einen geringen Platzbedarf für das Vakuumsystem aufweisen. Die Splitflow-Vakuumpumpen werden nicht nur in Analysegeräten, sondern zum Beispiel auch in Lecksuchern eingesetzt, deren Analyseprinzip ebenfalls auf der Massenspektrometrie beruht.So-called split-flow vacuum pumps are used in practice to evacuate several chambers, for example of a mass spectrometer system, at the same time. The split flow vacuum pumps make it possible to dispense with a pump system consisting of several individual pumps and to evacuate several chambers with a single pump.
Split flow vacuum pumps have the advantage that they only require a small amount of space for the vacuum system. The split-flow vacuum pumps are not only used in analysis devices, but also, for example, in leak detectors whose analysis principle is also based on mass spectrometry.
Aus dem Stand der Technik (
Eine weitere Variante, um eine Anordnung mit mehreren Vakuumpumpen zu evakuieren, besteht darin, jede Vakuumpumpe mit einem eigenen Flansch zu versehen. An diesen wird dann eine für den Druckbereich geeignete Vakuumpumpe angeschlossen. Dieser Weg ist aufgrund der hohen Kosten für die Vielzahl der Vakuumpumpen unbeliebt. Zudem besteht der Bedarf nach kompakten Geräten. Diese lassen sich mit einer Vielzahl von Vakuumpumpen jedoch nicht realisieren.Another variant for evacuating an arrangement with several vacuum pumps is to provide each vacuum pump with its own flange. A vacuum pump suitable for the pressure range is then connected to this. This route is unpopular due to the high cost of the large number of vacuum pumps. There is also a need for compact devices. However, these cannot be realized with a large number of vacuum pumps.
In einer Vielzahl von Anwendungen sind mehrere Vakuumkammern in Reihe angeordnet und durch Bohrungen mit geringem Leitwert miteinander verbunden. Von einem zum anderen Ende der Reihe nimmt der innerhalb der Vakuumkammer herrschende Gasdruck ab. Die Bohrungen sind derart gestaltet, dass ein Teilchenstrahl durch sie und damit durch die Reihe der Vakuumkammern hindurch treten kann. Die Vakuumkammer mit dem niedrigsten Druck enthält oft ein Analysegerät, beispielsweise ein Massenspektrometer.In a large number of applications, several vacuum chambers are arranged in series and connected to one another by bores with a low conductivity. From one end of the series to the other, the gas pressure inside the vacuum chamber decreases. The holes are designed in such a way that a particle beam can pass through them and thus through the row of vacuum chambers. The lowest pressure vacuum chamber often contains an analysis device, such as a mass spectrometer.
Aus der Praxis sind Splitflow-Vakuumpumpen bekannt, die drei oder vier radiale Einlässe aufweisen und die wenigstens vier Pumpstufen aufweisen. Pumpstufen sind in der Regel Turbomolekularpumpstufen. Diese werden häufig mit weiteren Pumpstufen, beispielsweise Holweckpumpstufen oder Gaedepumpstufen kombiniert.Split flow vacuum pumps are known from practice which have three or four radial inlets and which have at least four pump stages. Pump stages are usually turbomolecular pump stages. These are often combined with other pump stages, for example Holweck pump stages or Gaede pump stages.
In den Anwendungen ist es erforderlich, immer mehr Anzapfungen bei den Splitflow-Vakuumpumpen mit großem Saugvermögen vorzusehen. Das bedeutet, dass die Rotorscheibenpaketanzahl erhöht werden muss, was wiederum zu fertigungstechnischen Schwierigkeiten führt, wenn zum Beispiel die Rotorscheiben nur von einer Seite auf den Rotor gestapelt werden.In the applications, it is necessary to provide more and more taps for split-flow vacuum pumps with high pumping speeds. This means that the number of rotor disk packs has to be increased, which in turn leads to manufacturing difficulties if, for example, the rotor disks are only stacked on the rotor from one side.
Durch eine Variantenbildung bezüglich des Innendurchmessers der Rotorscheiben (Wellenfügedurchmesser) können mehrere Scheibenpakete mit mehreren axialen Anschlägen auf der Welle realisiert werden. Das bedeutet jedoch, dass im Zusammenbau der Pumpen viele verschiedene Scheiben vorhanden sein müssen. Diese Vielzahl verschiedener Scheiben sind auch in der Fertigung aufwendig.By forming variants with regard to the inner diameter of the rotor disks (shaft joint diameter), several disk packs with several axial stops on the shaft can be implemented. However, this means that there must be many different disks in the assembly of the pumps. This large number of different discs are also expensive to manufacture.
Zum Stand der Technik (
Weiterhin gehören zum Stand der Technik (
Das der Erfindung zugrunde liegende technische Problem besteht darin, eine Splitflow-Vakuumpumpe anzugeben, bei der die Anzahl der Einlässe erhöht wird, ohne die Anzahl der vorgesehenen Pumpstufen zu erhöhen.The technical problem on which the invention is based is to provide a split flow vacuum pump in which the number of inlets is increased without increasing the number of pump stages provided.
Dieses technische Problem wird durch eine Splitflow-Vakuumpumpe mit den Merkmalen gemäß Anspruch 1 gelöst.This technical problem is solved by a split-flow vacuum pump having the features according to
Die erfindungsgemäße Splitflow-Vakuumpumpe mit wenigstens drei radialen Einlässen und mit wenigstens vier Pumpstufen, wobei wenigstens zwei Pumpstufen als Turbomolekularpumpstufen ausgebildet sind, zeichnet sich dadurch aus, dass die wenigstens drei Einlässe als Haupteinlässe ausgebildet sind, die in axialer Richtung zwischen den Turbomolekularpumpstufen angeordnet sind, wobei zusätzlich wenigstens ein radialer Nebeneinlass vorgesehen ist, der im Bereich wenigstens einer Turbomolekularpumpstufe angeordnet ist und dass der wenigstens eine Nebeneinlass zwischen zwei Statorscheiben oder zwischen zwei Rotorscheiben oder zwischen einer Statorscheibe und einer Rotorscheibe wenigstens einer Turbomolekularpumpstufe angeordnet ist.The split-flow vacuum pump according to the invention with at least three radial inlets and with at least four pump stages, with at least two pump stages being designed as turbomolecular pump stages, is characterized in that the at least three inlets are designed as main inlets, which are arranged in the axial direction between the turbomolecular pumping stages, with at least one additional radial secondary inlet being provided, which is arranged in the area of at least one turbomolecular pumping stage and that the at least one secondary inlet is located between two Stator disks or between two rotor disks or between a stator disk and a rotor disk is arranged at least one turbomolecular pumping stage.
Durch die erfindungsgemäße Ausbildung der Vakuumpumpe ist es möglich, zusätzlich zu den Haupteinlässen wenigstens einen Nebeneinlass vorzusehen. Die Haupteinlässe sind zwischen den Pumpstufen angeordnet, wie aus dem Stand der Technik bekannt. Neu an der Erfindung ist es, wenigstens einen weiteren Einlass vorzusehen, der im Bereich wenigstens einer Turbomolekularpumpstufe angeordnet ist. Das bedeutet, dass eine so genannte Anzapfung, das heißt der Einlass nicht zwischen den Turbomolekularpumpstufen angeordnet ist, sondern dass die Anzapfung radial in ein Scheibenpaket der wenigstens einen Turbomolekularpumpstufe führt.The design of the vacuum pump according to the invention makes it possible to provide at least one secondary inlet in addition to the main inlets. The main inlets are located between the pumping stages as known in the art. What is new about the invention is that at least one additional inlet is provided, which is arranged in the area of at least one turbomolecular pump stage. This means that what is known as a tap, that is to say the inlet, is not arranged between the turbomolecular pumping stages, but that the tapping leads radially into a disk pack of the at least one turbomolecular pumping stage.
Hierdurch erreicht man deutlich mehr Anzapfungen, das heißt Einlässe mit einer einzigen Pumpe auf einer bestimmten axialen Baulänge. Durch die Erfindung ist es möglich, auf einer kurzen axialen Länge möglichst viele Kammern eines Mehrkammersystems zu evakuieren.As a result, significantly more taps are achieved, ie inlets with a single pump over a certain axial length. The invention makes it possible to evacuate as many chambers as possible in a multi-chamber system over a short axial length.
Der Rotor kann einstückig oder mehrstückig ausgebildet sein.The rotor can be designed in one piece or in several pieces.
Gemäß einer vorteilhaften Ausführungsform der Erfindung weist der wenigstens eine Nebeneinlass eine Mittelachse auf und die Mittelachse ist zwischen einer ersten und einer letzten Scheibe der wenigstens einen Turbomolekularpumpstufe angeordnet.According to an advantageous embodiment of the invention, the at least one auxiliary inlet has a central axis and the central axis is arranged between a first and a last disk of the at least one turbomolecular pumping stage.
Das bedeutet, dass der Nebeneinlass zwischen die Scheiben des Scheibenpaketes der wenigstens einen Turbomolekularpumpstufe führt. Hierdurch werden zusätzlich zu den zum Stand der Technik gehörenden Einlässen, die zwischen den Pumpstufen angeordnet sind, zusätzliche Einlässe geschaffen, so dass eine größere Anzahl von Vakuumkammern evakuiert werden kann.This means that the secondary inlet leads between the disks of the disk pack of the at least one turbomolecular pump stage. This creates additional inlets in addition to the prior art inlets located between the pumping stages, so that a larger number of vacuum chambers can be evacuated.
Gemäß der Erfindung ist vorgesehen, dass der wenigstens eine Nebeneinlass zwischen zwei Statorscheiben oder zwischen zwei Rotorscheiben oder zwischen einer Statorscheibe und einer Rotorscheibe wenigstens einer Turbomolekularpumpstufe angeordnet ist. Gemäß einer weiteren vorteilhaften Ausführungsform der Erfindung ist vorgesehen, dass der Nebeneinlass zwischen den Scheiben eines Statorpaketes angeordnet ist, während ein Haupteinlass zwischen den Statorpaketen angeordnet ist.According to the invention it is provided that the at least one secondary inlet is arranged between two stator disks or between two rotor disks or between a stator disk and a rotor disk of at least one turbomolecular pump stage. According to a further advantageous embodiment of the invention, it is provided that the secondary inlet is arranged between the disks of a stator core, while a main inlet is arranged between the stator cores.
Sind mehrere Nebeneinlässe vorgesehen, können diese auch radial versetzt zueinander auf gleicher axialer Höhe des Rotors angeordnet sein. Die Nebeneinlässe sind in diesem Fall in einem Scheibenpaket zwischen zwei Rotorscheiben angeordnet und radial am Umfang verteilt. Sie können jedoch auch auf einer Ebene liegen.If several secondary inlets are provided, these can also be arranged radially offset from one another at the same axial height of the rotor. In this case, the secondary inlets are arranged in a disk pack between two rotor disks and distributed radially around the circumference. However, they can also lie on one level.
Gemäß der Erfindung ist der wenigstens eine Nebeneinlass zwischen zwei benachbarten Statorscheiben oder zwischen benachbarten Rotorscheiben oder zwischen einer Statorscheibe und einer benachbarten Rotorscheibe wenigstens einer Turbomolekularpumpstufe angeordnet. Das bedeutet, dass die Nebeneinlässe bezüglich ihres Durchmessers relativ klein gewählt werden und zwischen den Scheiben angeordnet sind.According to the invention, the at least one auxiliary inlet is arranged between two adjacent stator disks or between adjacent rotor disks or between a stator disk and an adjacent rotor disk of at least one turbomolecular pumping stage. This means that the secondary inlets are chosen to be relatively small in terms of their diameter and are arranged between the discs.
Vorteilhaft ist vorgesehen, dass ein Saugvermögen des wenigstens einen Nebeneinlasses geringer ist als das Saugvermögen eines Haupteinlasses.It is advantageously provided that a pumping speed of the at least one secondary inlet is lower than the pumping speed of a main inlet.
Die Nebeneinlässe dienen dazu, die Anzahl der Anzapfungen eines zu evakuierenden Mehrkammersystems zu erhöhen.The secondary inlets serve to increase the number of taps in a multi-chamber system to be evacuated.
Zwischen den einzelnen Pumpstufen, das heißt zwischen den einzelnen Scheibenpaketen oder anderen Pumpstufen, beispielsweise Gaede- oder Holweckpumpstufen, ist relativ viel Platz, so dass die Haupteinlässe einen relativ großen Querschnitt aufweisen können. Die Nebeneinlässe führen zwischen Scheiben der Turbomolekularpumpstufen und weisen aus diesem Grunde lediglich einen relativ geringen Querschnitt auf.There is a relatively large amount of space between the individual pump stages, ie between the individual disk packs or other pump stages, for example Gaede or Holweck pump stages, so that the main inlets can have a relatively large cross section. The secondary inlets lead between disks of the turbomolecular pump stages and for this reason only have a relatively small cross-section.
Gemäß einer weiteren vorteilhaften Ausführungsform der Erfindung ist vorgesehen, dass bei n Scheiben n - 1 Nebeneinlässe vorgesehen sind.According to a further advantageous embodiment of the invention, it is provided that with n disks n−1 secondary inlets are provided.
Das bedeutet, dass die Anzahl der Nebeneinlässe geringer ist als die Anzahl der Scheiben. Wird ein Scheibenpaket der Turbomolekularpumpstufe aus zwei Scheiben gebildet, kann zwischen diesen beiden Scheiben ein Nebeneinlass vorgesehen sein.This means that the number of sub-intakes is less than the number of discs. If a disk pack of the turbomolecular pump stage is formed from two disks, a secondary inlet can be provided between these two disks.
Es ist jedoch auch möglich, mehrere radiale Nebeneinlässe im Bereich einer Turbomolekularpumpstufe vorzusehen. Gleichermaßen ist es auch möglich, bei mehreren Turbomolekularpumpstufen in jeder dieser Turbomolekularpumpstufen einen oder mehrere Nebeneinlässe vorzusehen. Verschiedene Turbomolekularpumpstufen können mit und ohne Nebeneinlässe ausgebildet sein.However, it is also possible to provide several radial side inlets in the area of a turbomolecular pump stage. Equally, it is also possible to provide one or more secondary inlets in each of these turbomolecular pumping stages when there are several turbomolecular pumping stages. Various turbomolecular pumping stages can be designed with and without side inlets.
Vorteilhaft ist vorgesehen, dass zusätzlich zu der wenigstens einen Turbomolekularpumpstufe wenigstens eine Holweckpumpstufe und/oder eine Siegbahnpumpstufe und/oder eine Gaedepumpstufe und/oder eine Seitenkanalpumpstufe und/oder eine Gewindepumpstufe vorgesehen ist.It is advantageously provided that in addition to the at least one turbomolecular pump stage, at least one Holweck pump stage and/or a Siegbahn pump stage and/or a Gaede pump stage and/or a side channel pump stage and/or a screw pump stage is provided.
Splitflow-Pumpen bestehen üblicherweise aus einer oder mehreren Turbomolekularpumpstufen und wenigstens einer weiteren der genannten Pumpstufen.Split flow pumps usually consist of one or more turbomolecular pump stages and at least one other pump stage.
Durch die Kombination verschiedener Pumpstufen können die Druckverhältnisse in den zu evakuierenden Kammern entsprechend eingestellt werden.By combining different pump stages, the pressure conditions in the chambers to be evacuated can be adjusted accordingly.
Beispielsweise ist es möglich, zwischen den Pumpstufen, beispielsweise zwischen zwei Turbomolekularpumpstufen einen Haupteinlass vorzusehen und beispielsweise zusätzlich eine Holweckpumpstufe anzuordnen. Gemäß der Erfindung wird zusätzlich im Bereich der wenigstens zwei Turbomolekularpumpstufen wenigstens ein weiterer Nebeneinlass angeordnet.For example, it is possible to provide a main inlet between the pump stages, for example between two turbomolecular pump stages, and to additionally arrange a Holweck pump stage, for example. According to the invention, at least one further secondary inlet is additionally arranged in the area of the at least two turbomolecular pump stages.
Gemäß einer weiteren vorteilhaften Ausführungsform der Erfindung ist vorgesehen, dass eine Turbomolekularpumpstufe aus einer oder mehreren Rotorscheiben und aus einer oder mehreren Statorscheiben gebildet ist.According to a further advantageous embodiment of the invention, it is provided that a turbomolecular pumping stage is formed from one or more rotor disks and from one or more stator disks.
Eine Pumpstufe besteht üblicherweise aus wenigstens einer Statorscheibe und wenigstens einer Rotorscheibe. Häufig sind mehrere Statorscheiben und mehrere Rotorscheiben, die abwechselnd ineinander greifen, vorgesehen. Gemäß der Erfindung ist vorteilhaft vorgesehen, dass bei n Scheiben n - 1 Nebeneinlässe vorgesehen sind. Sind beispielsweise eine Statorscheibe und eine Rotorscheibe vorgesehen, die eine Turbomolekularpumpstufe bilden, ist der Einlass zwischen diesen Scheiben angeordnet.A pump stage usually consists of at least one stator disk and at least one rotor disk. A plurality of stator disks and a plurality of rotor disks, which mesh alternately, are often provided. According to the invention, it is advantageously provided that with n panes, n−1 secondary inlets are provided. For example, if there is a stator disc and a rotor disc forming a turbomolecular pumping stage, the inlet is located between these discs.
Eine weitere vorteilhafte Ausführungsform der Erfindung sieht vor, dass eine Statorscheibe und eine benachbarte Rotorscheibe einer Turbomolekularpumpstufe eine axiale Länge L festlegen, und dass ein Abstand zwischen zwei Turbomolekularpumpstufen mindestens so groß ist wie diese Länge L.A further advantageous embodiment of the invention provides that a stator disk and an adjacent rotor disk of a turbomolecular pumping stage define an axial length L, and that a distance between two turbomolecular pumping stages is at least as large as this length L.
Hierdurch ist festgelegt, dass mindestens eine Statorscheibe und eine Rotorscheibe mindestens eine Turbomolekularpumpstufe bilden. Ist der Abstand zwischen benachbarten Statorscheiben und/oder benachbarten Rotorscheiben so groß, dass die Länge L überschritten wird, beginnt gemäß der Erfindung eine neue Turbomolekularpumpstufe. Ein Einlass in diesem Bereich zwischen den Turbomolekularpumpstufen wird als Haupteinlass angesehen. Ein Einlass im Bereich der Turbomolekularpumpstufe selbst wird als Nebeneinlass angesehen.This stipulates that at least one stator disk and one rotor disk form at least one turbomolecular pumping stage. If the distance between adjacent stator disks and/or adjacent rotor disks is so great that the length L is exceeded, a new turbomolecular pumping stage begins according to the invention. An inlet in this area between the turbomolecular pumping stages is considered the main inlet. An inlet in the area of the turbomolecular pumping stage itself is considered a side inlet.
Die erfindungsgemäße Ausführungsform bezüglich der Einlässe ist grundsätzlich auch bei einer Turbomolekularpumpe anwendbar.The embodiment according to the invention with regard to the inlets can in principle also be used in a turbomolecular pump.
Vorteilhaft besteht eine Pumpstufe aus wenigstens einer Rotorscheibe und wenigstens einer Statorscheibe. In diesem Fall ist der Nebeneinlass zwischen der Rotorscheibe und der Statorscheibe angeordnet.A pump stage advantageously consists of at least one rotor disk and at least one stator disk. In this case, the auxiliary inlet is located between the rotor disk and the stator disk.
Gemäß einer weiteren vorteilhaften Ausführungsform der Erfindung ist ein Vakuumsystem mit wenigstens einer Vakuumpumpe und wenigstens einem Rezipienten vorgesehen, bei dem zwischen der Vakuumpumpe und dem Rezipienten eine lösbare Verbindung vorgesehen ist, wobei zur Abdichtung der Verbindung zur Atmosphärenseite hin wenigstens eine Elastomerdichtung und in Richtung Vakuumseite wenigstens eine Spaltdichtung vorgesehen sind, welches dadurch gekennzeichnet ist, dass zwischen der Elastomerdichtung und der Spaltdichtung wenigstens ein Absaugkanal und/oder wenigstens eine Absaugöffnung vorgesehen sind/ist.According to a further advantageous embodiment of the invention, a vacuum system is provided with at least one vacuum pump and at least one recipient, in which a detachable connection is provided between the vacuum pump and the recipient, with at least one elastomer seal for sealing the connection towards the atmosphere side and at least one elastomer seal towards the vacuum side a gap seal is provided, which is characterized in that at least one suction channel and/or at least one suction opening is/are provided between the elastomer seal and the gap seal.
Diese Ausführungsform weist den Vorteil auf, dass an den Dichtstellen auf der Atmosphärenseite eine Elastomerdichtung zum Einsatz kommt. Diese ist vorteilhaft als O-Ring ausgebildet. Zwischen der Elastomerdichtung und dem beispielsweise Ultrahochvakuumanschluss kommt als zweites Dichtelement wenigstens eine Spaltdichtung zum Einsatz. Die Flächen des Rezipienten (Kammer) und eine Fläche des Pumpengehäuses werden aufeinander gedrückt.This embodiment has the advantage that an elastomer seal is used at the sealing points on the atmosphere side. This is advantageously designed as an O-ring. At least one gap seal is used as the second sealing element between the elastomer seal and the ultra-high vacuum connection, for example. The surfaces of the recipient (chamber) and a surface of the pump housing are pressed against each other.
Weitere Merkmale und Vorteile der Erfindung ergeben sich anhand der zugehörigen Zeichnung, in der mehrere Ausführungsbeispiele einer erfindungsgemäßen Vakuumpumpe nur beispielhaft dargestellt sind. In der Zeichnung zeigen:
- Fig. 1
- einen Längsschnitt durch eine Anordnung mit einer nicht zur Erfindung gehörenden Vakuumpumpe;
- Fig. 2
- eine schematische Darstellung eines Rotors mit Scheibenpaketen mit Haupt- und Nebeneinlässen einer nicht zur Erfindung gehörenden Vakuumpumpe;
- Fig. 3
- eine Splitflow-Vakuumpumpe im Längsschnitt;
- Fig. 4
- eine Prinzipskizze eines Rotors mit auf dem Rotor angeordneten Rotorscheiben;
- Fig. 5
- eine Prinzipskizze eines Rotors einer Splitflow-Vakuumpumpe gemäß dem Stand der Technik;
- Fig. 6
- ein geändertes Ausführungsbeispiel;
- Fig. 7
- eine Vakuumpumpe in perspektivischer Ansicht mit Vakuumanschluss.
- Fig. 8
- ein geändertes Ausführungsbeispiel eines Rotors mit zwei Nebeneinlässen;
- Fig. 9
- ein geändertes Ausführungsbeispiel einer Pumpe mit zwei Nebeneinlässen;
- Fig. 10
- ein geändertes Ausführungsbeispiel mit Rotorscheiben mit Bund.
- 1
- a longitudinal section through an arrangement with a vacuum pump not belonging to the invention;
- 2
- a schematic representation of a rotor with disk packs with main and secondary inlets of a vacuum pump not belonging to the invention;
- 3
- a longitudinal section of a split-flow vacuum pump;
- 4
- a schematic diagram of a rotor with rotor disks arranged on the rotor;
- figure 5
- a schematic diagram of a rotor of a split flow vacuum pump according to the prior art;
- 6
- a modified embodiment;
- 7
- a perspective view of a vacuum pump with a vacuum connection.
- 8
- a modified embodiment of a rotor with two side inlets;
- 9
- a modified embodiment of a pump with two auxiliary inlets;
- 10
- a modified embodiment with rotor disks with collar.
Die Vakuumpumpe 1 weist eine Welle 13 auf, welche Rotorscheiben 14 bis 19 trägt. Die Rotorscheiben 14 bis 19 stehen in Eingriff mit Statorscheiben 20. Die Rotorscheiben 14, 15, 16 bilden ein erstes Scheibenpaket 21 und die Rotorscheiben 17 bis 19 bilden ein zweites Scheibenpaket 22. Das Scheibenpaket 22 bildet mit den Statoren 20 ein hochvakuumseitiges Rotor-Statorpaket. Das Scheibenpaket 21 bildet mit den Statorscheiben 20 ein zwischenvakuumseitiges Rotor-Statorpaket. Die Schaufeln in beiden Paketen sind dabei, wie im Stand der Technik bekannt, sowohl stator- als auch rotorseitig an Tragringen befestigt oder mit diesem einstückig ausgebildet. Vor dem hochvakuumseitigen Rotor-Statorpaket befindet sich ein erster Gaseinlass 23, vor dem vorvakuumseitigen Rotor-Statorpaket befindet sich ein zweiter Gaseinlass 24.The
Von der Mehrkammervakuumanlage führt ein erster Haupteinlass 23 in die Vakuumpumpe 1. Von der zweiten Kammer 4 führt ein zweiter Haupteinlass 24 in die Vakuumpumpe 1. Von der Vakuumkammer 5 führt ein weiterer Haupteinlass 25 in die Vakuumpumpe 1 und von der Vakuumkammer 6 führt ein weiterer Haupteinlass 26 in die Vakuumpumpe 1.A first
Die Haupteinlässe 23, 24, 25, 26 sind zwischen den Turbomolekularpumpstufen 21, 22 angeordnet.The
Im Bereich der Turbomolekularpumpstufe 22 ist ein erster Nebeneinlass 27 angeordnet, der von der Vakuumkammer 5 in die Vakuumpumpe 1 führt. Von der Vakuumkammer 6 führt darüber hinaus ein weiterer Nebeneinlass 28 im Bereich der Turbomolekularpumpstufe 21 in die Vakuumpumpe 1.A first
Damit wird die Anzahl der Einlässe durch die Nebeneinlässe 27, 28 erhöht. Die Nebeneinlässe 27, 28 sind im Bereich der Turbomolekularpumpstufen 21, 22 angeordnet.Thus, the number of inlets through the sub-inlets 27, 28 is increased. The
Die Rotorwelle 13 weist Bereiche mit unterschiedlichen Durchmessern auf.The
Ein erster Bereich 29 ist ein Bereich mit dem größten Durchmesser. Beidseitig der Welle 13 schließen sich zwei Bereiche 30, 31 mit kleineren Durchmessern an. Hieran schließen sich wiederum Bereiche 32, 33 mit noch kleinerem Durchmesser der Welle 13 an. Im Bereich 29 des größten Durchmessers der Welle 13 sind keine Rotorscheiben angeordnet. Im Bereich 30 ist die Rotorscheibe 16 angeordnet, die durch einen Anschlag 34, der durch den stufenförmigen Absatz zwischen dem Bereich 29 und dem Bereich 30 gebildet, lokal eindeutig festgelegt.A
Gleiches gilt für die Rotorscheibe 15, die durch einen Anschlag 35 zwischen den Bereichen 30, 32 festgelegt wird.The same applies to the
Ebenso gilt dies für die Rotorscheibe 17, die durch einen Anschlag 36 auf der Welle 13 festgelegt ist und die Rotorscheibe 18, die durch einen Anschlag 37 an der Welle 13 festgelegt ist. Zwischen den Rotorscheiben 14, 15 und den Rotorscheiben 18, 19 ist jeweils eine Abstandshülse 38 angeordnet. Durch die Anschläge 34 bis 37 werden die Rotorscheiben 14 bis 19 auf der Welle 13 exakt platziert, so dass zwischen den Rotorscheiben 14 bis 19 und den Statorscheiben 20 schmale Spalte ausgebildet werden können.This also applies to the
Ein weiterer Vorteil der Erfindung liegt darin, dass die Rotorscheiben 14 bis 19 exakt auf der Welle platziert werden, wodurch sehr geringe Spalte ausgebildet werden können. Hierdurch erhöht sich die Pumpleistung der Vakuumpumpe 1. Durch die Verwendung vieler Gleichteile ist die Pumpe preiswert in der Herstellung. Im vorliegenden Ausführungsbeispiel werden auf den beiden Seiten des Bereiches 29 der Welle 13 mit dem größten Durchmesser jeweils zwei Rotorscheibenpakete mit jeweils gleichem Innendurchmesser angeordnet.A further advantage of the invention lies in the fact that the
Eine weitere vorteilhafte Ausführungsform der Erfindung ist eine Ausführungsform, bei der im Bereich des größten Durchmessers 29 Nuten 39, 40 angeordnet sind, die die Masse der Welle verringern. Da die Splitflow-Vakuumpumpen eine sehr lange Baulänge aufweisen, ist das modale Verhalten des Rotors und insbesondere der Rotorwelle kritisch. Aus diesem Grunde wird gemäß der Erfindung die Masse und damit auch die Gewichtskraft der Welle reduziert bei gleichbleibender Steifigkeit.Another advantageous embodiment of the invention is an embodiment in which 29
Die Vakuumpumpe 1 weist ein Gehäuse 41 auf. Um thermische Übergänge zwischen der Hochvakuumseite und Vorvakuumseite im Gehäuse 41 zu reduzieren, weist das Gehäuse 41 eine Einschnürung 42 auf. Durch diese Einschnürung wird die Wärmeleitfähigkeit reduziert. Es ist möglich, im Bereich der Einschnürung 42 zusätzlich eine nicht dargestellte Armierung vorzusehen. Das Gehäuse kann im Bereich der Einschnürung 42 auch geteilt ausgebildet sein und zwischen beiden Teilen des Gehäuses kann eine thermische Dichtung angeordnet sein.The
Die Welle 13 ist mittels eines Magnetlagers 43 auf der einen Seite gelagert. In einer lediglich schematisch dargestellten Halterung 43a sind Gegenlager 43b angeordnet. Auf der anderen Seite ist das Lager nicht dargestellt. Es kann sich bei der Lagerung auf der nicht dargestellten Seite beispielsweise um ein Öl geschmiertes Kugellager handeln.The
In
Es besteht auch die Möglichkeit, zusätzlich zu den Turbomolekularpumpstufen eine Holweckpumpstufe und/oder eine Siegbahn-Pumpstufe und/oder eine Gaedepumpstufe und/oder eine Seitenkanal-Pumpstufe und/oder eine GewindePumpstufe vorzusehen.There is also the possibility of providing a Holweck pump stage and/or a Siegbahn pump stage and/or a Gaede pump stage and/or a side channel pump stage and/or a threaded pump stage in addition to the turbomolecular pump stages.
Die Rotorscheibe 15 und die Statorscheibe 20 weisen in axialer Richtung gesehen eine axiale Länge L auf. Der Abstand zwischen den Turbomolekularpumpstufen 21, 22 ist größer als die Länge L.The
Pfeile 48 stellen den Gasstrom dar, der von zwei Haupteinlässen 24, 25 den Turbomolekularpumpstufen 45, 46 zugeführt wird. Die Pfeile 49 kennzeichnen den Gasstrom, der von zwei Nebeneinlässen 27, 28 im Bereich der Turbomolekularpumpstufen 44, 45 dem Pumpsystem zugeführt wird.
Die Nebeneinlässe 27, 28 sind im Bereich der Turbomolekularpumpstufen 44, 45 angeordnet, während die Haupteinlässe 24, 25 ihre Zuführung zwischen den Turbomolekularpumpstufen 44, 45 und 46 haben.The
Die Welle 13 ist mittels eines Magnetlagers 43 und eines Kugellagers 50 gelagert. Bei dem Kugellager 50 handelt es sich um ein Öl geschmiertes Kugellager. Die Welle 13 wird von einem Motor 51 angetrieben.The
Im Bereich der Turbomolekularpumpstufe 44 ist ein Nebeneinlass 27 vorgesehen. Im Bereich der Turbomolekularpumpstufe 45 ist ein Nebeneinlass 28 vorgesehen und im Bereich der Turbomolekularpumpstufe 46 ist ein Nebeneinlass 52 vorgesehen.A
Durch diese Ausführungsform wird die Anzahl der Einlässe von den vier Haupteinlässen 23, 24, 25, 26 auf insgesamt sieben Einlässe, nämlich zuzüglich der drei Nebeneinlässe 27, 28, 52 erhöht.This embodiment increases the number of inlets from the four
Der Durchmesserunterschied zwischen den Bereichen 29, 30 bildet den Anschlag 34. Zwischen den Bereichen 29, 31 ist der Anschlag 36 vorgesehen. Zwischen den Bereichen 30, 32 ist der Anschlag 35 angeordnet und zwischen den Bereichen 31, 33 ist der Anschlag 37 vorgesehen.The difference in diameter between the
Die Montagerichtung der Scheiben 15, 16 ist durch den Pfeil A gekennzeichnet. Die Montagerichtung der Rotorscheiben 17, 18, 19 ist durch den Pfeil B gekennzeichnet. Mit M ist eine Mittelachse der Welle 13 gekennzeichnet. Die Welle 13 und die Rotorscheiben 15, 16, 17, 18, 19 sind rotationssymmetrisch um die Mittelachse M aufgebaut.The assembly direction of the
Diese zum Stand der Technik gehörende Ausführungsform zeigt, dass ein Kundengehäuse 60 einen Einlass 61 aufweist, der in radialer Richtung versetzt zu dem Einlass 24 ausgebildet ist. Die axiale Länge der Pumpe und der Kundenkammer 60 passen nicht zusammen.This prior art embodiment shows that a
Gemäß
- 11
- Vakuumpumpevacuum pump
- 22
- MehrkammervakuumpumpanlageMulti-chamber vacuum pump system
- 33
- Kammerchamber
- 44
- Kammerchamber
- 55
- Kammerchamber
- 66
- Kammerchamber
- 77
- Trennwändepartitions
- 88th
- Trennwändepartitions
- 99
- Trennwändepartitions
- 1010
- Bohrungendrilling
- 1111
- Bohrungendrilling
- 1212
- Bohrungendrilling
- 1313
- WelleWave
- 1414
- Rotorscheibenrotor discs
- 1515
- Rotorscheibenrotor discs
- 1616
- Rotorscheibenrotor discs
- 1717
- Rotorscheibenrotor discs
- 1818
- Rotorscheibenrotor discs
- 1919
- Rotorscheibenrotor discs
- 2020
- Statorscheibenstator discs
- 2121
- Turbomolekularpumpstufe mit ScheibenpaketTurbomolecular pump stage with disc pack
- 2222
- Turbomolekularpumpstufe mit ScheibenpaketTurbomolecular pump stage with disc pack
- 2323
- Haupteinlassmain entrance
- 2424
- Haupteinlassmain entrance
- 2525
- Haupteinlassmain entrance
- 2626
- Haupteinlassmain entrance
- 2727
- Nebeneinlassside entrance
- 2828
- Nebeneinlassside entrance
- 2929
-
Bereich der Welle 13 mit größtem DurchmesserArea of the
shaft 13 with the largest diameter - 3030
-
Bereich der Welle 13 mit geringerem DurchmesserArea of the
shaft 13 with a smaller diameter - 3131
-
Bereich der Welle 13 mit geringerem DurchmesserArea of the
shaft 13 with a smaller diameter - 3232
-
Bereich der Welle 13 mit kleinstem DurchmesserArea of the
shaft 13 with the smallest diameter - 3333
-
Bereich der Welle 13 mit kleinstem DurchmesserArea of the
shaft 13 with the smallest diameter - 3434
- Anschlagattack
- 3535
- Anschlagattack
- 3636
- Anschlagattack
- 3737
- Anschlagattack
- 3838
- Hülsesleeve
- 3939
- Nutgroove
- 4040
- Nutgroove
- 4141
- GehäuseHousing
- 4242
- Einschnürungconstriction
- 4343
- Magnetlagermagnetic bearing
- 43a43a
- Halterungbracket
- 43b43b
- Gegenlagercounter bearing
- 4444
- Turbomolekularpumpstufe mit RotorscheibenpaketenTurbomolecular pump stage with rotor disk packs
- 4545
- Turbomolekularpumpstufe mit RotorscheibenpaketenTurbomolecular pump stage with rotor disk packs
- 4646
- Turbomolekularpumpstufe mit RotorscheibenpaketenTurbomolecular pump stage with rotor disk packs
- 4747
- Pfeil Gasstromarrow gas flow
- 4848
- Pfeil Gasstromarrow gas flow
- 4949
- Turbomolekularpumpstufeturbomolecular pumping stage
- 5050
- Kugellagerball-bearing
- 5151
- Motorengine
- 5252
- Nebeneinlassside entrance
- 5353
- Nutgroove
- 5454
- Nutgroove
- 5555
- Bohrungendrilling
- 5656
- Schnittpunktintersection
- 5757
- Nutgroove
- 5858
- Nutgroove
- 5959
- Hülsesleeve
- 6060
- GehäuseHousing
- 6161
- Einlassinlet
- 6262
- Stegweb
- 7272
- Vakuumanschlüssevacuum connections
- 7373
- Vakuumanschlüssevacuum connections
- 7575
- Vakuumanschlüssevacuum connections
- 7676
- Elastomerdichtungelastomer seal
- 7777
- Spaltdichtunggap seal
- 7878
- Absaugkanalsuction channel
- 7979
- Zwischenabsaugungenintermediate suction
- 8080
- Absaugöffnungsuction port
- 8181
- Durchführungsbohrungthrough hole
- 8282
- Verbindungconnection
- 126126
- Rotorrotor
- 127127
- BundFederation
- AA
- PfeilArrow
- BB
- PfeilArrow
- LL
- axiale Längeaxial length
- MM
- Mittelachsecentral axis
Claims (8)
- A split flow vacuum pump (1) with at least three radial inlets (24, 25, 26) and with at least four pump stages (21,22,44,45,46), wherein at least two pump stages are formed as turbomolecular pump stages (44, 45, 46),- characterised in that the at least three inlets (24,25,26) are formed as main inlets, which are arranged in axial direction between the turbomolecular pump stages (44, 45, 46),- wherein there is provided in addition at least one radial auxiliary inlet (27, 28, 52), which is arranged in the region of at least one turbomolecular pump stage (44, 45, 46)- and in that the at least one auxiliary inlet (27, 28,52) is arranged between two stator discs (20) or- between two rotor discs (14 to 19) or- between a stator disc (20) and a rotor disc (14 to 19) of at least one turbomolecular pump stage (1).
- A split flow vacuum pump according to claim 1, characterised in that the at least one auxiliary inlet (27, 28, 52) has a central axis and in that the central axis is arranged between a first and a last disc (14 to 19; 20) of the at least one turbomolecular pump stage (21, 22, 44, 45, 46).
- A split flow vacuum pump according to claim 1 or 2, characterised in that at least two auxiliary inputs (124, 125) are arranged radially of offset to each other.
- A split flow vacuum pump according to claim 1, characterised in that the at least one auxiliary inlet (52) is arranged between two adjacent stator discs (20) and/or between two adjacent rotor discs (14 to 19) and/or between a stator disc (20) and an adjacent rotor disc (14 to 19) of at least one turbomolecular pump stage (1).
- A split flow vacuum pump according to any one of the preceding claims , characterised in that a suction capacity of the at least one auxiliary inlet (27, 28, 52) is smaller than the suction capacity of a main inlet (23, 24, 25, 26).
- A split flow vacuum pump according to any one of the preceding claims, characterised in that with n discs (14 to 19, 20) there are provide n-1 auxiliary inlets (27, 28, 52).
- A split flow vacuum pump according to any one of the preceding claims, characterised in that a stator disc (20) and an adjacent rotor disc (14 to 19) of a turbomolecular pump stage (21, 22, 44, 45, 46) determines an axial length (L), and in that a spacing between two turbomolecular pump stages (21, 22, 44, 45, 46) is at least as large as the length (L).
- A vacuum system with at least one split flow vacuum pump according to any one of the preceding claims , and at least one container in which between the vacuum pump and the container there is provided a releasable connection, wherein there are provided for sealing the connection with respect to the atmospheric side at least one elastomeric seal (76) and in the direction of the vacuum side at least one gap seal (77), characterised in that between the elastomeric seal (76) and the gap seal (77) at least one suction channel and/or at least one suction opening (80) is/are provided.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15174844.9A EP3112688B2 (en) | 2015-07-01 | 2015-07-01 | Split flow vacuum pump and vacuum system with a split flow vacuum pump |
JP2016128671A JP6253719B2 (en) | 2015-07-01 | 2016-06-29 | Split flow vacuum pump and vacuum system with split flow vacuum pump |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15174844.9A EP3112688B2 (en) | 2015-07-01 | 2015-07-01 | Split flow vacuum pump and vacuum system with a split flow vacuum pump |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3112688A1 EP3112688A1 (en) | 2017-01-04 |
EP3112688B1 EP3112688B1 (en) | 2019-06-12 |
EP3112688B2 true EP3112688B2 (en) | 2022-05-11 |
Family
ID=53496581
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15174844.9A Active EP3112688B2 (en) | 2015-07-01 | 2015-07-01 | Split flow vacuum pump and vacuum system with a split flow vacuum pump |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP3112688B2 (en) |
JP (1) | JP6253719B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106678058A (en) * | 2017-02-22 | 2017-05-17 | 上海优耐特斯压缩机有限公司 | Superspeed rotor structure of high-speed motor direct-driven turbine machine |
EP3441617B1 (en) * | 2017-08-09 | 2019-12-25 | Pfeiffer Vacuum Gmbh | Method for heating a rotor of a vacuum pump |
DE102018119747B3 (en) | 2018-08-14 | 2020-02-13 | Bruker Daltonik Gmbh | TURBOMOLECULAR PUMP FOR MASS SPECTROMETERS |
EP3767109B1 (en) | 2019-07-15 | 2021-09-08 | Pfeiffer Vacuum Gmbh | Vacuum system |
GB2604382A (en) * | 2021-03-04 | 2022-09-07 | Edwards S R O | Stator Assembly |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090092484A1 (en) † | 2007-09-20 | 2009-04-09 | Andeas Zipp | Vacuum pump |
WO2014173961A1 (en) † | 2013-04-25 | 2014-10-30 | Oerlikon Leybold Vacuum Gmbh | Sealing of the interface between a multi-inlet vacuum pump and the housing into which the pump is inserted |
US20150056060A1 (en) † | 2013-08-20 | 2015-02-26 | Thermo Fisher Scientific (Bremen) Gmbh | Multiple Port Vacuum Pump System |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60116895A (en) * | 1983-11-30 | 1985-06-24 | Hitachi Ltd | Vacuum pump |
DE4331589C2 (en) | 1992-12-24 | 2003-06-26 | Pfeiffer Vacuum Gmbh | Vacuum pumping system |
JP2002303293A (en) * | 2001-04-06 | 2002-10-18 | Boc Edwards Technologies Ltd | Turbo-molecular pump |
GB0409139D0 (en) * | 2003-09-30 | 2004-05-26 | Boc Group Plc | Vacuum pump |
GB0424198D0 (en) * | 2004-11-01 | 2004-12-01 | Boc Group Plc | Pumping arrangement |
JP4916655B2 (en) * | 2004-11-17 | 2012-04-18 | 株式会社島津製作所 | Vacuum pump |
DE102007010068B4 (en) * | 2007-02-28 | 2024-06-13 | Thermo Fisher Scientific (Bremen) Gmbh | Vacuum pump or vacuum apparatus with vacuum pump |
DE102007027352A1 (en) * | 2007-06-11 | 2008-12-18 | Oerlikon Leybold Vacuum Gmbh | Mass Spectrometer arrangement |
DE102009035332A1 (en) * | 2009-07-30 | 2011-02-03 | Pfeiffer Vacuum Gmbh | vacuum pump |
US8481923B1 (en) * | 2012-06-29 | 2013-07-09 | Agilent Technologies, Inc. | Atmospheric pressure plasma mass spectrometer |
DE102013103650A1 (en) * | 2013-04-11 | 2014-10-16 | Pfeiffer Vacuum Gmbh | vacuum system |
DE102013109637A1 (en) * | 2013-09-04 | 2015-03-05 | Pfeiffer Vacuum Gmbh | Vacuum pump and arrangement with a vacuum pump |
JP6484919B2 (en) * | 2013-09-24 | 2019-03-20 | 株式会社島津製作所 | Turbo molecular pump |
-
2015
- 2015-07-01 EP EP15174844.9A patent/EP3112688B2/en active Active
-
2016
- 2016-06-29 JP JP2016128671A patent/JP6253719B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090092484A1 (en) † | 2007-09-20 | 2009-04-09 | Andeas Zipp | Vacuum pump |
WO2014173961A1 (en) † | 2013-04-25 | 2014-10-30 | Oerlikon Leybold Vacuum Gmbh | Sealing of the interface between a multi-inlet vacuum pump and the housing into which the pump is inserted |
US20150056060A1 (en) † | 2013-08-20 | 2015-02-26 | Thermo Fisher Scientific (Bremen) Gmbh | Multiple Port Vacuum Pump System |
Also Published As
Publication number | Publication date |
---|---|
JP2017020502A (en) | 2017-01-26 |
JP6253719B2 (en) | 2017-12-27 |
EP3112688B1 (en) | 2019-06-12 |
EP3112688A1 (en) | 2017-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3112688B2 (en) | Split flow vacuum pump and vacuum system with a split flow vacuum pump | |
EP2295812B1 (en) | Vacuum pump | |
EP1090231B2 (en) | Frictional vacuum pump with chassis, rotor, housing and device fitted with such a frictional vacuum pump | |
EP1078166A1 (en) | Friction vacuum pump with a stator and a rotor | |
DE602004008089T2 (en) | VACUUM PUMP | |
EP2039941B1 (en) | Vacuum pump | |
DE3722164C2 (en) | Turbomolecular pump | |
EP2846044B1 (en) | Vacuum pump and assembly with a vacuum pump | |
CH679237A5 (en) | ||
DE10211134C1 (en) | Turbomolecular pump for low pressure applications has coaxial central opening providing free access to center | |
DE10150015A1 (en) | Multiple chamber plant used for degassing, coating or etching substrates comprises an evacuating system connected to chambers | |
EP2228540B1 (en) | Assembly with vacuum pump | |
EP3112689B1 (en) | Split flow vacuum pump | |
EP1706645A1 (en) | Multi-stage friction vacuum pump | |
DE102008009715A1 (en) | Vacuum pumping system and use of a multi-stage vacuum pump | |
EP3085963B1 (en) | Vacuum pump | |
DE19901340B4 (en) | Friction vacuum pump with chassis, rotor and housing and device equipped with a friction vacuum pump of this type | |
EP3296571B1 (en) | Vacuum pump | |
DE102015111049B4 (en) | vacuum pump | |
EP2902637B1 (en) | Vacuum pump | |
EP3623634B1 (en) | Vacuum pump comprising a holweck pump stage and two side channel pump stages | |
EP3327293B1 (en) | Vacuum pump having multiple inlets | |
EP3267040B1 (en) | Turbomolecular pump | |
EP3767109B1 (en) | Vacuum system | |
EP4293232A1 (en) | Pump |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170606 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20180516 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190207 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1142907 Country of ref document: AT Kind code of ref document: T Effective date: 20190615 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502015009283 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20190612 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190612 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190612 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190612 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190912 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190612 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190612 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190912 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190612 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190913 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190612 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190612 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190612 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190612 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191014 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190612 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191012 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190612 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190612 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 502015009283 Country of ref document: DE |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190612 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190612 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190731 |
|
26 | Opposition filed |
Opponent name: EDWARDS LIMITED Effective date: 20200312 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190612 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190612 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190731 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190731 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190731 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190701 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190612 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200224 |
|
PG2D | Information on lapse in contracting state deleted |
Ref country code: IS |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190812 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190701 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190612 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190612 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20150701 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1142907 Country of ref document: AT Kind code of ref document: T Effective date: 20200701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200701 |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form |
Effective date: 20220511 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R102 Ref document number: 502015009283 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190612 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240620 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20240506 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240627 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240621 Year of fee payment: 10 |