EP3112688B1 - Splitflow-vakuumpumpe sowie vakuum-system mit einer splitflow-vakuumpumpe - Google Patents

Splitflow-vakuumpumpe sowie vakuum-system mit einer splitflow-vakuumpumpe Download PDF

Info

Publication number
EP3112688B1
EP3112688B1 EP15174844.9A EP15174844A EP3112688B1 EP 3112688 B1 EP3112688 B1 EP 3112688B1 EP 15174844 A EP15174844 A EP 15174844A EP 3112688 B1 EP3112688 B1 EP 3112688B1
Authority
EP
European Patent Office
Prior art keywords
rotor
vacuum pump
turbomolecular
vacuum
inlets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15174844.9A
Other languages
English (en)
French (fr)
Other versions
EP3112688B2 (de
EP3112688A1 (de
Inventor
Tobias Stoll
Michael Schweighöfer
Jan Hofmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pfeiffer Vacuum GmbH
Original Assignee
Pfeiffer Vacuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=53496581&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3112688(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Pfeiffer Vacuum GmbH filed Critical Pfeiffer Vacuum GmbH
Priority to EP15174844.9A priority Critical patent/EP3112688B2/de
Priority to JP2016128671A priority patent/JP6253719B2/ja
Publication of EP3112688A1 publication Critical patent/EP3112688A1/de
Publication of EP3112688B1 publication Critical patent/EP3112688B1/de
Application granted granted Critical
Publication of EP3112688B2 publication Critical patent/EP3112688B2/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/053Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/522Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/5853Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps heat insulation or conduction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps

Definitions

  • the invention relates to a vacuum pump in the design of a split flow pump.
  • split-flow vacuum pumps are used in practice to simultaneously evacuate a plurality of chambers, for example a mass spectrometer system.
  • the split-flow vacuum pumps make it possible to dispense with a pump system consisting of several individual pumps and to carry out the evacuation of several chambers with a single pump.
  • Split-flow vacuum pumps have the advantage that they only have a small space requirement for the vacuum system.
  • the split-flow vacuum pumps are not only used in analytical instruments, but also, for example, in leak detectors whose analysis principle is also based on mass spectrometry.
  • a turbomolecular pump which has a plurality of suction ports, which is in each case connected to one of the vacuum chambers of a device, for example a mass spectrometer.
  • the suction ports deliver gas to various axially spaced locations of the rotor.
  • several so-called rotor-stator packages are arranged, each compressing gas.
  • a high vacuum side stator pack creates a pressure ratio between its inlet and outlet.
  • the inlet is connected to a first vacuum chamber.
  • the outlet is connected to the inlet of the next rotor-stator pack.
  • this area is connected between two rotor-stator packages with a second vacuum chamber.
  • each suction port is assigned a rotor-stator package. It turns out that compared to the diameter very long rotors are difficult to handle, since the rotors are operated at speeds in the range of some 10,000 revolutions per minute.
  • each vacuum pump to be provided with its own flange. At this then a suitable for the pressure range vacuum pump is connected. This approach is unpopular due to the high cost of the plurality of vacuum pumps. There is also a need for compact devices. However, these can not be realized with a large number of vacuum pumps.
  • multiple vacuum chambers are arranged in series and interconnected by low conductance holes. From one to the other end of the row decreases the pressure prevailing within the vacuum chamber gas pressure.
  • the bores are designed so that a particle beam can pass through them and thus through the row of vacuum chambers.
  • the vacuum chamber with the lowest pressure often contains an analyzer, such as a mass spectrometer.
  • split-flow vacuum pumps which have three or four radial inlets and which have at least four pumping stages.
  • Pumping stages are usually turbomolecular pumping stages. These are often combined with other pumping stages, for example Holweckpump taskn or Gaedepumpsayn.
  • the prior art ( DE 10 2009 035 332 A1 and EP 2 789 889 A1 ) include vacuum pumps having multiple turbomolecular pumping stages. Inlets are provided between the turbomolecular pump stages to evacuate various chambers of a chamber system. In these state-of-the-art vacuum pumps, the inlets are arranged between or in front of the individual pumping stages. These state-of-the-art vacuum pumps can be further improved in terms of their pumping power and their potential applications.
  • the technical problem underlying the invention is to provide a split-flow vacuum pump in which the number of inlets is increased, without increasing the number of pump stages provided.
  • the split-flow vacuum pump according to the invention having at least three radial inlets and at least four pumping stages, wherein at least two pumping stages are designed as turbomolecular pumping stages, is characterized in that the at least three inlets are designed as main inlets, which are arranged in the axial direction between the turbomolecular pumping stages, wherein additionally at least one radial Secondary inlet is provided, which is arranged in the region of at least one turbomolecular pumping stage and that the at least one secondary inlet between two stator disks or between two rotor disks or between a stator and a rotor disk at least one turbomolecular pumping stage is arranged.
  • the inventive design of the vacuum pump it is possible to provide at least one secondary inlet in addition to the main inlets.
  • the main inlets are located between the pumping stages as known in the art.
  • a novelty of the invention is to provide at least one further inlet, which is arranged in the region of at least one turbomolecular pumping stage. This means that a so-called tap, that is the inlet is not arranged between the turbomolecular pumping stages, but that the tap leads radially into a disk pack of the at least one turbomolecular pumping stage.
  • the rotor may be formed in one piece or in several pieces.
  • the at least one secondary inlet has a central axis and the central axis is arranged between a first and a last slice of the at least one turbomolecular pumping stage.
  • the secondary inlet leads between the disks of the disk package of the at least one turbomolecular pumping stage.
  • additional inlets created, so that a larger number of vacuum chambers can be evacuated.
  • the at least one secondary inlet is arranged between two stator disks or between two rotor disks or between a stator disk and a rotor disk of at least one turbomolecular pumping stage. According to a further advantageous embodiment of the invention it is provided that the secondary inlet is arranged between the disks of a stator, while a main inlet is arranged between the stator.
  • втори ⁇ н ⁇ е ⁇ о ⁇ оловки can also be arranged radially offset from one another at the same axial height of the rotor.
  • the secondary inlets are arranged in this case in a disk package between two rotor disks and distributed radially on the circumference. However, they can also be on one level.
  • the at least one secondary inlet is arranged between two adjacent stator disks or between adjacent rotor disks or between a stator disk and an adjacent rotor disk of at least one turbomolecular pumping stage.
  • the secondary inlets are chosen to be relatively small in diameter and arranged between the discs.
  • a pumping speed of the at least one secondary inlet is less than the suction capacity of a main inlet.
  • the secondary inlets serve to increase the number of taps of a multi-chamber system to be evacuated.
  • the main inlets can have a relatively large cross section.
  • the secondary inlets lead between disks of turbomolecular pumping stages and therefore have only a relatively small cross-section.
  • n-1 secondary inlets are provided in the case of n disks.
  • the number of secondary inlets is less than the number of slices. If a disk pack of the turbomolecular pumping stage is formed from two disks, a secondary inlet can be provided between these two disks.
  • turbomolecular pumping stage it is also possible to provide a plurality of radial secondary inlets in the region of a turbomolecular pumping stage. Likewise, it is also possible to provide one or more secondary inlets at multiple turbomolecular pumping stages in each of these turbomolecular pumping stages. Various turbomolecular pumping stages may be formed with and without secondary inlets.
  • At least one turbomolecular pumping stage at least one Holweck pumping stage and / or one Siegbahn pumping stage and / or one Gaedepumpprocess and / or a 9.kanalpumpprocess and / or a Gewindepumpch is provided.
  • Split-flow pumps usually consist of one or more turbomolecular pumping stages and at least one other of said pumping stages.
  • the pressure conditions in the chambers to be evacuated can be adjusted accordingly.
  • a main inlet between the pumping stages for example between two turbomolecular pumping stages, and for example additionally to arrange a Holweck pumping stage.
  • at least one further secondary inlet is additionally arranged in the region of the at least two turbomolecular pumping stages.
  • a turbomolecular pump stage is formed from one or more rotor disks and / or from one or more stator disks.
  • a pumping stage usually consists of at least one stator disk and at least one rotor disk. Often, a plurality of stator disks and a plurality of rotor disks, which engage alternately, are provided. According to the invention, it is advantageously provided that n-1 secondary inlets are provided for n disks. For example, if a stator disk and a rotor disk are provided which form a turbomolecular pump stage, the inlet is arranged between these disks.
  • a further advantageous embodiment of the invention provides that a stator disk and an adjacent rotor disk of a turbomolecular pumping stage define an axial length L, and that a distance between two turbomolecular pump stages at least as long as this length L.
  • At least one stator disk and / or one rotor disk form at least one turbomolecular pumping stage. If the distance between adjacent stator disks and / or adjacent rotor disks is so great that the length L is exceeded, a new turbomolecular pumping stage commences according to the invention. An inlet in this area between the turbomolecular pumping stages is considered to be the main inlet. An inlet in the area of the turbomolecular pumping stage itself is considered as a secondary inlet.
  • a turbomolecular pump stage is formed from at least one rotor disk.
  • the embodiment according to the invention with regard to the inlets can in principle also be used in a turbomolecular pump.
  • a pumping stage consists of at least one rotor disk and at least one stator disk.
  • the secondary inlet is arranged between the rotor disk and the stator disk.
  • a vacuum system is provided with at least one vacuum pump and at least one recipient, in which between the vacuum pump and the recipient a detachable Connection is provided, wherein for sealing the connection to the atmosphere side at least one elastomeric seal and in the direction of vacuum side at least one gap seal are provided, which is characterized in that between the elastomeric seal and the gap seal at least one suction channel and / or at least one suction opening is / is provided ,
  • This embodiment has the advantage that an elastomeric seal is used at the sealing points on the atmosphere side. This is advantageously designed as an O-ring. At least one gap seal is used as the second sealing element between the elastomer seal and the, for example, ultra-high vacuum connection. The surfaces of the recipient (chamber) and a surface of the pump housing are pressed against each other.
  • Fig. 1 shows a vacuum pump 1, which is designed as a so-called split-flow vacuum pump.
  • the vacuum pump 1 is connected to a multi-chamber vacuum system 2.
  • the multi-vacuum system 2 has four chambers 3, 4, 5, 6, which are to be evacuated by the vacuum pump 1.
  • the gas pressure in the chambers 3, 4, 5, 6 is increasing in this order.
  • the chambers 3, 4, 5, 6 are separated by partitions 7, 8, 9, wherein holes 9, 10, 11 establish a connection.
  • These bores 9, 10, 11 are arranged and dimensioned, for example, such that a particle beam passes through all the chambers 3, 4, 5, 6 can.
  • first partition 7 separates the first chamber 3 and the second chamber 4
  • second partition 8 separates the second chamber 4 from the third chamber 5
  • third partition 9 separates the third chamber 5 from the fourth chamber 6.
  • the dashed arrows in the Fig. 1 illustrate the gas flow.
  • the vacuum pump 1 has a shaft 13 which carries rotor disks 14 to 19.
  • the rotor disks 14 to 19 are in engagement with stator disks 20.
  • the rotor disks 14, 15, 16 form a first disk package 21 and the rotor disks 17 to 19 form a second disk package 22.
  • the disk package 22 forms a high-vacuum-side rotor stator package with the stators 20.
  • the disk package 21 forms with the stator 20 a septvakuum discoveredes rotor stator.
  • the blades in both packages are, as known in the art, both stator and rotor side attached to support rings or integrally formed with this.
  • a first gas inlet 23 is located in front of the high-vacuum-side rotor stator packet, and a second gas inlet 24 is located in front of the forward-vacuum-side rotor stator packet.
  • a first main inlet 23 leads into the vacuum pump 1.
  • a second main inlet 24 leads into the vacuum pump 1.
  • a further main inlet 25 leads into the vacuum pump 1 and from the vacuum chamber 6, a further main inlet 26 in the vacuum pump. 1
  • the main inlets 23, 24, 25, 26 are arranged between the turbomolecular pumping stages 21, 22.
  • a first secondary inlet 27 is arranged, which is separated from the vacuum chamber 5 leads into the vacuum pump 1.
  • a further secondary inlet 28 leads from the vacuum chamber 6 in the region of the turbomolecular pumping stage 21 into the vacuum pump 1.
  • the secondary inlets 27, 28 are arranged in the region of the turbomolecular pumping stages 21, 22.
  • the rotor shaft 13 has areas with different diameters.
  • a first region 29 is a region with the largest diameter. On both sides of the shaft 13, two areas 30, 31 with smaller diameters join. This is in turn followed by regions 32, 33 with an even smaller diameter of the shaft 13. In the region 29 of the largest diameter of the shaft 13, no rotor disks are arranged. In the area 30, the rotor disk 16 is arranged, which is determined by a stop 34, which formed by the step-shaped shoulder between the region 29 and the region 30, locally unique.
  • Another advantage of the invention is that the rotor disks 14 to 19 are placed exactly on the shaft, whereby very small gaps can be formed. This increases the pumping power of the vacuum pump 1. By using many identical parts, the pump is inexpensive to manufacture. In the present embodiment, in each case two rotor disk packs each having the same inner diameter are arranged on the two sides of the region 29 of the shaft 13 with the largest diameter.
  • a further advantageous embodiment of the invention is an embodiment in which in the region of the largest diameter 29 grooves 39, 40 are arranged, which reduce the mass of the shaft. Since the split-flow vacuum pumps have a very long length, the modal behavior of the rotor and in particular of the rotor shaft is critical. For this reason, according to the invention, the mass and thus the weight of the shaft is reduced while maintaining rigidity.
  • the vacuum pump 1 has a housing 41.
  • the housing 41 In order to reduce thermal transitions between the high-vacuum side and the fore-vacuum side in the housing 41, the housing 41 has a constriction 42. This constriction reduces the thermal conductivity. It is possible to additionally provide a reinforcement, not shown, in the region of the constriction 42.
  • the housing may also be designed to be divided in the region of the constriction 42, and a thermal seal may be arranged between the two parts of the housing.
  • the shaft 13 is supported by a magnetic bearing 43 on one side.
  • abutment 43 b are arranged.
  • the camp is not shown.
  • it may be an oil-lubricated ball bearing.
  • turbomolecular pumping stages it is also possible, in addition to the turbomolecular pumping stages, to provide a Holweck pumping stage and / or a Siegbahn pumping stage and / or a Gaedepump stage and / or a side channel pumping stage and / or a threaded pumping stage.
  • the rotor disk 15 and the stator disk 20 have an axial length L as viewed in the axial direction.
  • the distance between the turbomolecular pump stages 21, 22 is greater than the length L.
  • Fig. 2 shows the shaft 13 with rotor disk packages 44, 45, 46 which form turbomolecular pumping stages 44, 45, 46 with stator disk packages (not shown).
  • the gas flow is shown by an arrow 47.
  • Arrows 48 represent the gas flow which is supplied from two main inlets 24, 25 to the turbomolecular pumping stages 45, 46.
  • the arrows 49 indicate the gas flow which is supplied from two secondary inlets 27, 28 in the region of the turbomolecular pumping stages 44, 45 to the pumping system.
  • the secondary inlets 27, 28 are arranged in the region of the turbomolecular pumping stages 44, 45, while the main inlets 24, 25 have their supply between the turbomolecular pumping stages 44, 45 and 46.
  • Fig. 3 shows vacuum pump 1 with the once again clarified, the turbomolecular pumping stages 44, 45, 46, 49 has.
  • the turbomolecular pump stages 44, 45, 46, 49 consist of rotor disks and stator disks, which are arranged intermeshing.
  • main inlets 23, 24, 25, 26 are provided, which are arranged in front of the pumping stage 44 or between the pumping stages 44, 45, 46, 49.
  • the shaft 13 is supported by means of a magnetic bearing 43 and a ball bearing 50.
  • the ball bearing 50 is an oil lubricated ball bearing.
  • the shaft 13 is driven by a motor 51.
  • a secondary inlet 27 is provided in the area of the turbomolecular pumping stage 44.
  • a secondary inlet 28 is provided in the region of the turbomolecular pumping stage 45, and a secondary inlet 52 is provided in the region of the turbomolecular pumping stage 46.
  • the number of inlets from the four main inlets 23, 24, 25, 26 to a total of seven inlets, namely plus the three side inlets 27, 28, 52 increases.
  • Fig. 4 shows a partial section through the shaft 13.
  • the shaft 13 has the in Fig. 1 shown areas 29 having the largest diameter, the adjoining areas 30, 31 with a smaller diameter and in turn adjoining areas 32, 33 with a further reduced diameter.
  • the rotor disks 16, 17 are arranged.
  • the rotor disks 15, 18, 19 are arranged.
  • the rotor disks 15, 18, 19 have the same inner diameter.
  • the rotor disks 16, 17 have the same inner diameter on. This makes it possible to build a low-cost pump by a large number of identical parts.
  • the difference in diameter between the areas 29, 30 forms the stop 34. Between the areas 29, 31 of the stopper 36 is provided. Between the areas 30, 32 of the stop 35 is arranged and between the areas 31, 33 of the stop 37 is provided.
  • the mounting direction of the discs 15, 16 is indicated by the arrow A.
  • the mounting direction of the rotor disks 17, 18, 19 is indicated by the arrow B.
  • M denotes a central axis of the shaft 13.
  • the shaft 13 and the rotor disks 15, 16, 17, 18, 19 are constructed rotationally symmetrically about the center axis M.
  • Fig. 5 shows a shaft 13 with two turbomolecular pumping stages 21, 22, which are arranged in a housing 41 of a split flow pump.
  • the housing 41 has an inlet 24.
  • This prior art embodiment shows that a customer housing 60 has an inlet 61 formed radially offset from the inlet 24.
  • the axial length of the pump and the customer chamber 60 do not match.
  • the housing 41 has a web 62 in the region of the inlet 24. Due to the design of the web on which the stator disks (not shown) can be attached, one obtains a larger cross section and thus a higher conductance in the region of the inlet 24.
  • Fig. 7 shows a vacuum pump 1 with vacuum ports 72, 73, 75.
  • the vacuum port 72 has an elastomeric seal 76 and a gap seal 77 on. Between the elastomeric seal 76 and the gap seal 77, a suction channel 78 is arranged, are arranged in the insectsaugungen 79. In the vacuum port 75, a suction opening 80 is arranged. The insectsaugungen 79 lead into a feedthrough bore 81, which is guided to the intermediate stage 73.
  • a connection channel 82 is provided, so that the vacuum connection 75 is also evacuated via the suction opening 80 via the feed-through bore 82.
  • Fig. 8 shows a rotor 126, which is shown only schematically with rotor disks 14, 15, 16, 17. Between the rotor disks 16, 17, two secondary inlets 27, 28 are arranged. The secondary inlets 27, 28 are radially spaced apart and both lead between the rotor disks 16, 17th
  • Fig. 9 shows a housing 60 of a vacuum pump with the vacuum ports 72, 73. There are two secondary inlets 27, 28 are provided, which are arranged in a plane.
  • Fig. 10 shows the rotor shaft 126, on which rotor disks 14, 15 are arranged. Between the rotor disks 14, 15, a stator 20 is schematically arranged. The rotor disks 14, 15 each have a collar 127. The collar 127 replaces the spacer sleeve 38, which in Fig. 1 is shown.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Description

  • Die Erfindung betrifft eine Vakuumpumpe in der Bauart einer Splitflow-Pumpe.
  • So genannte Splitflow-Vakuumpumpen werden in der Praxis eingesetzt, um mehrere Kammern, beispielsweise eines Massenspektrometersystems gleichzeitig zu evakuieren. Durch die Splitflow-Vakuumpumpen ist es möglich, auf ein Pumpensystem bestehend aus mehreren Einzelpumpen zu verzichten und die Evakuierung von mehreren Kammern mit einer einzigen Pumpe durchzuführen.
    Splitflow-Vakuumpumpen weisen den Vorteil auf, dass sie lediglich einen geringen Platzbedarf für das Vakuumsystem aufweisen. Die Splitflow-Vakuumpumpen werden nicht nur in Analysegeräten, sondern zum Beispiel auch in Lecksuchern eingesetzt, deren Analyseprinzip ebenfalls auf der Massenspektrometrie beruht.
  • Aus dem Stand der Technik ( DE 43 31 589 A1 ) ist eine Turbomolekularpumpe bekannt, welche mehrere Sauganschlüsse aufweist, die jeweils mit einer der Vakuumkammern einer Vorrichtung, beispielsweise eines Massenspektrometers verbunden wird. Die Sauganschlüsse führen Gas an verschiedene axial beabstandete Stellen des Rotors. Entlang der Rotorachse sind mehrere so genannte Rotor-Stator-Pakete angeordnet, die jeweils Gas komprimieren. Ein hochvakuumseitiges Statorpaket erzeugt ein Druckverhältnis zwischen seinem Einlass und seinem Auslass. Der Einlass ist mit einer ersten Vakuumkammer verbunden. Der Auslass ist mit dem Einlass des nächsten Rotor-Stator-Paketes verbunden. Zusätzlich ist dieser Bereich zwischen zwei Rotor-Stator-Paketen mit einer zweiten Vakuumkammer verbunden. Aufgrund des von dem ersten Rotor-Stator-Paket erzeugten Druckverhältnisses und des schlechten Leitwertes zwischen den Vakuumkammern ist der Druck in den beiden Vakuumkammern unterschiedlich. Durch eine entsprechende Anzahl von Rotor-Stator-Paketen können mehrere Vakuumkammern auf verschiedene Drücke evakuiert werden, wobei jedem Sauganschluss ein Rotor-Stator-Paket zugeordnet wird. Es zeigt sich, dass im Vergleich zum Durchmesser sehr lange Rotoren schwer zu handhaben sind, da die Rotoren mit Drehzahlen im Bereich von einigen 10.000 Umdrehungen pro Minute betrieben werden.
  • Eine weitere Variante, um eine Anordnung mit mehreren Vakuumpumpen zu evakuieren, besteht darin, jede Vakuumpumpe mit einem eigenen Flansch zu versehen. An diesen wird dann eine für den Druckbereich geeignete Vakuumpumpe angeschlossen. Dieser Weg ist aufgrund der hohen Kosten für die Vielzahl der Vakuumpumpen unbeliebt. Zudem besteht der Bedarf nach kompakten Geräten. Diese lassen sich mit einer Vielzahl von Vakuumpumpen jedoch nicht realisieren.
  • In einer Vielzahl von Anwendungen sind mehrere Vakuumkammern in Reihe angeordnet und durch Bohrungen mit geringem Leitwert miteinander verbunden. Von einem zum anderen Ende der Reihe nimmt der innerhalb der Vakuumkammer herrschende Gasdruck ab. Die Bohrungen sind derart gestaltet, dass ein Teilchenstrahl durch sie und damit durch die Reihe der Vakuumkammern hindurch treten kann. Die Vakuumkammer mit dem niedrigsten Druck enthält oft ein Analysegerät, beispielsweise ein Massenspektrometer.
  • Aus der Praxis sind Splitflow-Vakuumpumpen bekannt, die drei oder vier radiale Einlässe aufweisen und die wenigstens vier Pumpstufen aufweisen. Pumpstufen sind in der Regel Turbomolekularpumpstufen. Diese werden häufig mit weiteren Pumpstufen, beispielsweise Holweckpumpstufen oder Gaedepumpstufen kombiniert.
  • In den Anwendungen ist es erforderlich, immer mehr Anzapfungen bei den Splitflow-Vakuumpumpen mit großem Saugvermögen vorzusehen. Das bedeutet, dass die Rotorscheibenpaketanzahl erhöht werden muss, was wiederum zu fertigungstechnischen Schwierigkeiten führt, wenn zum Beispiel die Rotorscheiben nur von einer Seite auf den Rotor gestapelt werden.
  • Durch eine Variantenbildung bezüglich des Innendurchmessers der Rotorscheiben (Wellenfügedurchmesser) können mehrere Scheibenpakete mit mehreren axialen Anschlägen auf der Welle realisiert werden. Das bedeutet jedoch, dass im Zusammenbau der Pumpen viele verschiedene Scheiben vorhanden sein müssen. Diese Vielzahl verschiedener Scheiben sind auch in der Fertigung aufwendig.
  • Zum Stand der Technik ( DE 10 2009 035 332 A1 und EP 2 789 889 A1 ) gehören Vakuumpumpen, die mehrere Turbomolukularpumpstufen aufweisen. Zwischen den Turbomolekularpumpstufen sind Einlässe vorgesehen, um verschiedene Kammern eines Kammersystems zu evakuieren. Bei diesen zum Stand der Technik gehörenden Vakuumpumpen sind die Einlässe zwischen oder vor den einzelnen Pumpstufen angeordnet. Diese zum Stand der Technik gehörenden Vakuumpumpen können hinsichtlich ihrer Pumpleistung und ihrer Einsatzmöglichkeiten weiter verbessert werden.
  • Weiterhin gehören zum Stand der Technik ( EP 2 378 129 A2 und EP 1 807 627 B1 ) Vakuumpumpen, bei denen ebenfalls Einlässe vor und zwischen Pumpstufen, die als Hohlweckpumpstufen oder Turbomolekularpumpstufen ausgebildet sind, vorgesehen sind. Auch diese Pumpen können hinsichtlich ihrer Einsatzmöglichkeiten weiter verbessert werden.
  • Das der Erfindung zugrunde liegende technische Problem besteht darin, eine Splitflow-Vakuumpumpe anzugeben, bei der die Anzahl der Einlässe erhöht wird, ohne die Anzahl der vorgesehenen Pumpstufen zu erhöhen.
  • Dieses technische Problem wird durch eine Splitflow-Vakuumpumpe mit den Merkmalen gemäß Anspruch 1 gelöst.
  • Die erfindungsgemäße Splitflow-Vakuumpumpe mit wenigstens drei radialen Einlässen und mit wenigstens vier Pumpstufen, wobei wenigstens zwei Pumpstufen als Turbomolekularpumpstufen ausgebildet sind, zeichnet sich dadurch aus, dass die wenigstens drei Einlässe als Haupteinlässe ausgebildet sind, die in axialer Richtung zwischen den Turbomolekularpumpstufen angeordnet sind, wobei zusätzlich wenigstens ein radialer Nebeneinlass vorgesehen ist, der im Bereich wenigstens einer Turbomolekularpumpstufe angeordnet ist und dass der wenigstens eine Nebeneinlass zwischen zwei Statorscheiben oder zwischen zwei Rotorscheiben oder zwischen einer Statorscheibe und einer Rotorscheibe wenigstens einer Turbomolekularpumpstufe angeordnet ist.
  • Durch die erfindungsgemäße Ausbildung der Vakuumpumpe ist es möglich, zusätzlich zu den Haupteinlässen wenigstens einen Nebeneinlass vorzusehen. Die Haupteinlässe sind zwischen den Pumpstufen angeordnet, wie aus dem Stand der Technik bekannt. Neu an der Erfindung ist es, wenigstens einen weiteren Einlass vorzusehen, der im Bereich wenigstens einer Turbomolekularpumpstufe angeordnet ist. Das bedeutet, dass eine so genannte Anzapfung, das heißt der Einlass nicht zwischen den Turbomolekularpumpstufen angeordnet ist, sondern dass die Anzapfung radial in ein Scheibenpaket der wenigstens einen Turbomolekularpumpstufe führt.
  • Hierdurch erreicht man deutlich mehr Anzapfungen, das heißt Einlässe mit einer einzigen Pumpe auf einer bestimmten axialen Baulänge. Durch die Erfindung ist es möglich, auf einer kurzen axialen Länge möglichst viele Kammern eines Mehrkammersystems zu evakuieren.
  • Der Rotor kann einstückig oder mehrstückig ausgebildet sein.
  • Gemäß einer vorteilhaften Ausführungsform der Erfindung weist der wenigstens eine Nebeneinlass eine Mittelachse auf und die Mittelachse ist zwischen einer ersten und einer letzten Scheibe der wenigstens einen Turbomolekularpumpstufe angeordnet.
  • Das bedeutet, dass der Nebeneinlass zwischen die Scheiben des Scheibenpaketes der wenigstens einen Turbomolekularpumpstufe führt. Hierdurch werden zusätzlich zu den zum Stand der Technik gehörenden Einlässen, die zwischen den Pumpstufen angeordnet sind, zusätzliche Einlässe geschaffen, so dass eine größere Anzahl von Vakuumkammern evakuiert werden kann.
  • Gemäß der Erfindung ist vorgesehen, dass der wenigstens eine Nebeneinlass zwischen zwei Statorscheiben oder zwischen zwei Rotorscheiben oder zwischen einer Statorscheibe und einer Rotorscheibe wenigstens einer Turbomolekularpumpstufe angeordnet ist. Gemäß einer weiteren vorteilhaften Ausführungsform der Erfindung ist vorgesehen, dass der Nebeneinlass zwischen den Scheiben eines Statorpaketes angeordnet ist, während ein Haupteinlass zwischen den Statorpaketen angeordnet ist.
  • Sind mehrere Nebeneinlässe vorgesehen, können diese auch radial versetzt zueinander auf gleicher axialer Höhe des Rotors angeordnet sein. Die Nebeneinlässe sind in diesem Fall in einem Scheibenpaket zwischen zwei Rotorscheiben angeordnet und radial am Umfang verteilt. Sie können jedoch auch auf einer Ebene liegen.
  • Gemäß der Erfindung ist der wenigstens eine Nebeneinlass zwischen zwei benachbarten Statorscheiben oder zwischen benachbarten Rotorscheiben oder zwischen einer Statorscheibe und einer benachbarten Rotorscheibe wenigstens einer Turbomolekularpumpstufe angeordnet. Das bedeutet, dass die Nebeneinlässe bezüglich ihres Durchmessers relativ klein gewählt werden und zwischen den Scheiben angeordnet sind.
  • Vorteilhaft ist vorgesehen, dass ein Saugvermögen des wenigstens einen Nebeneinlasses geringer ist als das Saugvermögen eines Haupteinlasses.
  • Die Nebeneinlässe dienen dazu, die Anzahl der Anzapfungen eines zu evakuierenden Mehrkammersystems zu erhöhen.
  • Zwischen den einzelnen Pumpstufen, das heißt zwischen den einzelnen Scheibenpaketen oder anderen Pumpstufen, beispielsweise Gaede- oder Holweckpumpstufen, ist relativ viel Platz, so dass die Haupteinlässe einen relativ großen Querschnitt aufweisen können. Die Nebeneinlässe führen zwischen Scheiben der Turbomolekularpumpstufen und weisen aus diesem Grunde lediglich einen relativ geringen Querschnitt auf.
  • Gemäß einer weiteren vorteilhaften Ausführungsform der Erfindung ist vorgesehen, dass bei n Scheiben n - 1 Nebeneinlässe vorgesehen sind.
  • Das bedeutet, dass die Anzahl der Nebeneinlässe geringer ist als die Anzahl der Scheiben. Wird ein Scheibenpaket der Turbomolekularpumpstufe aus zwei Scheiben gebildet, kann zwischen diesen beiden Scheiben ein Nebeneinlass vorgesehen sein.
  • Es ist jedoch auch möglich, mehrere radiale Nebeneinlässe im Bereich einer Turbomolekularpumpstufe vorzusehen. Gleichermaßen ist es auch möglich, bei mehreren Turbomolekularpumpstufen in jeder dieser Turbomolekularpumpstufen einen oder mehrere Nebeneinlässe vorzusehen. Verschiedene Turbomolekularpumpstufen können mit und ohne Nebeneinlässe ausgebildet sein.
  • Vorteilhaft ist vorgesehen, dass zusätzlich zu der wenigstens einen Turbomolekularpumpstufe wenigstens eine Holweckpumpstufe und/oder eine Siegbahnpumpstufe und/oder eine Gaedepumpstufe und/oder eine Seitenkanalpumpstufe und/oder eine Gewindepumpstufe vorgesehen ist.
  • Splitflow-Pumpen bestehen üblicherweise aus einer oder mehreren Turbomolekularpumpstufen und wenigstens einer weiteren der genannten Pumpstufen.
  • Durch die Kombination verschiedener Pumpstufen können die Druckverhältnisse in den zu evakuierenden Kammern entsprechend eingestellt werden.
  • Beispielsweise ist es möglich, zwischen den Pumpstufen, beispielsweise zwischen zwei Turbomolekularpumpstufen einen Haupteinlass vorzusehen und beispielsweise zusätzlich eine Holweckpumpstufe anzuordnen. Gemäß der Erfindung wird zusätzlich im Bereich der wenigstens zwei Turbomolekularpumpstufen wenigstens ein weiterer Nebeneinlass angeordnet.
  • Gemäß einer weiteren vorteilhaften Ausführungsform der Erfindung ist vorgesehen, dass eine Turbomolekularpumpstufe aus einer oder mehreren Rotorscheiben und/oder aus einer oder mehreren Statorscheiben gebildet ist.
  • Eine Pumpstufe besteht üblicherweise aus wenigstens einer Statorscheibe und wenigstens einer Rotorscheibe. Häufig sind mehrere Statorscheiben und mehrere Rotorscheiben, die abwechselnd ineinander greifen, vorgesehen. Gemäß der Erfindung ist vorteilhaft vorgesehen, dass bei n Scheiben n - 1 Nebeneinlässe vorgesehen sind. Sind beispielsweise eine Statorscheibe und eine Rotorscheibe vorgesehen, die eine Turbomolekularpumpstufe bilden, ist der Einlass zwischen diesen Scheiben angeordnet.
  • Eine weitere vorteilhafte Ausführungsform der Erfindung sieht vor, dass eine Statorscheibe und eine benachbarte Rotorscheibe einer Turbomolekularpumpstufe eine axiale Länge L festlegen, und dass ein Abstand zwischen zwei Turbomolekularpumpstufen mindestens so groß ist wie diese Länge L.
  • Hierdurch ist festgelegt, dass mindestens eine Statorscheibe und/oder eine Rotorscheibe mindestens eine Turbomolekularpumpstufe bilden. Ist der Abstand zwischen benachbarten Statorscheiben und/oder benachbarten Rotorscheiben so groß, dass die Länge L überschritten wird, beginnt gemäß der Erfindung eine neue Turbomolekularpumpstufe. Ein Einlass in diesem Bereich zwischen den Turbomolekularpumpstufen wird als Haupteinlass angesehen. Ein Einlass im Bereich der Turbomolekularpumpstufe selbst wird als Nebeneinlass angesehen.
  • Gemäß einer weiteren Ausführungsform der Erfindung ist vorgesehen, dass eine Turbomolekularpumpstufe aus wenigstens einer Rotorscheibe gebildet ist.
  • Die erfindungsgemäße Ausführungsform bezüglich der Einlässe ist grundsätzlich auch bei einer Turbomolekularpumpe anwendbar.
  • Vorteilhaft besteht eine Pumpstufe aus wenigstens einer Rotorscheibe und wenigstens einer Statorscheibe. In diesem Fall ist der Nebeneinlass zwischen der Rotorscheibe und der Statorscheibe angeordnet.
  • Gemäß einer weiteren vorteilhaften Ausführungsform der Erfindung ist ein Vakuumsystem mit wenigstens einer Vakuumpumpe und wenigstens einem Rezipienten vorgesehen, bei dem zwischen der Vakuumpumpe und dem Rezipienten eine lösbare Verbindung vorgesehen ist, wobei zur Abdichtung der Verbindung zur Atmosphärenseite hin wenigstens eine Elastomerdichtung und in Richtung Vakuumseite wenigstens eine Spaltdichtung vorgesehen sind, welches dadurch gekennzeichnet ist, dass zwischen der Elastomerdichtung und der Spaltdichtung wenigstens ein Absaugkanal und/oder wenigstens eine Absaugöffnung vorgesehen sind/ist.
  • Diese Ausführungsform weist den Vorteil auf, dass an den Dichtstellen auf der Atmosphärenseite eine Elastomerdichtung zum Einsatz kommt. Diese ist vorteilhaft als O-Ring ausgebildet. Zwischen der Elastomerdichtung und dem beispielsweise Ultrahochvakuumanschluss kommt als zweites Dichtelement wenigstens eine Spaltdichtung zum Einsatz. Die Flächen des Rezipienten (Kammer) und eine Fläche des Pumpengehäuses werden aufeinander gedrückt.
  • Weitere Merkmale und Vorteile der Erfindung ergeben sich anhand der zugehörigen Zeichnung, in der mehrere Ausführungsbeispiele einer erfindungsgemäßen Vakuumpumpe nur beispielhaft dargestellt sind. In der Zeichnung zeigen:
  • Fig. 1
    einen Längsschnitt durch eine Anordnung mit einer nicht zur Erfindung gehörenden Vakuumpumpe;
    Fig. 2
    eine schematische Darstellung eines Rotors mit Scheibenpaketen mit Haupt- und Nebeneinlässen einer nicht zur Erfindung gehörenden Vakuumpumpe;
    Fig. 3
    eine Splitflow-Vakuumpumpe im Längsschnitt;
    Fig. 4
    eine Prinzipskizze eines Rotors mit auf dem Rotor angeordneten Rotorscheiben;
    Fig. 5
    eine Prinzipskizze eines Rotors einer Splitflow-Vakuumpumpe gemäß dem Stand der Technik;
    Fig. 6
    ein geändertes Ausführungsbeispiel;
    Fig. 7
    eine Vakuumpumpe in perspektivischer Ansicht mit Vakuumanschluss.
    Fig. 8
    ein geändertes Ausführungsbeispiel eines Rotors mit zwei Nebeneinlässen;
    Fig. 9
    ein geändertes Ausführungsbeispiel einer Pumpe mit zwei Nebeneinlässen;
    Fig. 10
    ein geändertes Ausführungsbeispiel mit Rotorscheiben mit Bund.
  • Fig. 1 zeigt eine Vakuumpumpe 1, die als so genannte Splitflow-Vakuumpumpe ausgebildet ist. Die Vakuumpumpe 1 ist an einer Mehrkammervakuumanlage 2 angeschlossen. Die Mehrvakuumanlage 2 weist vier Kammern 3, 4, 5, 6 auf, die von der Vakuumpumpe 1 evakuiert werden sollen. Der Gasdruck in den Kammern 3, 4, 5, 6 ist in dieser Reihenfolge steigend. Die Kammern 3, 4, 5, 6 sind durch Trennwände 7, 8, 9 voneinander getrennt, wobei Bohrungen 9, 10, 11 eine Verbindung herstellen. Diese Bohrungen 9, 10, 11 sind beispielsweise so angeordnet und dimensioniert, dass ein Teilchenstrahl durch sämtliche Kammern 3, 4, 5, 6 hindurch treten kann. Insbesondere trennt die erste Trennwand 7 die erste Kammer 3 und die zweite Kammer 4 voneinander, während die zweite Trennwand 8 die zweite Kammer 4 von der dritten Kammer 5 trennt und die dritte Trennwand 9 die dritte Kammer 5 von der vierten Kammer 6 trennt. Die gestrichelten Pfeile in der Fig. 1 veranschaulichen den Gasfluss.
  • Die Vakuumpumpe 1 weist eine Welle 13 auf, welche Rotorscheiben 14 bis 19 trägt. Die Rotorscheiben 14 bis 19 stehen in Eingriff mit Statorscheiben 20. Die Rotorscheiben 14, 15, 16 bilden ein erstes Scheibenpaket 21 und die Rotorscheiben 17 bis 19 bilden ein zweites Scheibenpaket 22. Das Scheibenpaket 22 bildet mit den Statoren 20 ein hochvakuumseitiges Rotor-Statorpaket. Das Scheibenpaket 21 bildet mit den Statorscheiben 20 ein zwischenvakuumseitiges Rotor-Statorpaket. Die Schaufeln in beiden Paketen sind dabei, wie im Stand der Technik bekannt, sowohl stator- als auch rotorseitig an Tragringen befestigt oder mit diesem einstückig ausgebildet. Vor dem hochvakuumseitigen Rotor-Statorpaket befindet sich ein erster Gaseinlass 23, vor dem vorvakuumseitigen Rotor-Statorpaket befindet sich ein zweiter Gaseinlass 24.
  • Von der Mehrkammervakuumanlage führt ein erster Haupteinlass 23 in die Vakuumpumpe 1. Von der zweiten Kammer 4 führt ein zweiter Haupteinlass 24 in die Vakuumpumpe 1. Von der Vakuumkammer 5 führt ein weiterer Haupteinlass 25 in die Vakuumpumpe 1 und von der Vakuumkammer 6 führt ein weiterer Haupteinlass 26 in die Vakuumpumpe 1.
  • Die Haupteinlässe 23, 24, 25, 26 sind zwischen den Turbomolekularpumpstufen 21, 22 angeordnet.
  • Im Bereich der Turbomolekularpumpstufe 22 ist ein erster Nebeneinlass 27 angeordnet, der von der Vakuumkammer 5 in die Vakuumpumpe 1 führt. Von der Vakuumkammer 6 führt darüber hinaus ein weiterer Nebeneinlass 28 im Bereich der Turbomolekularpumpstufe 21 in die Vakuumpumpe 1.
  • Damit wird die Anzahl der Einlässe durch die Nebeneinlässe 27, 28 erhöht. Die Nebeneinlässe 27, 28 sind im Bereich der Turbomolekularpumpstufen 21, 22 angeordnet.
  • Die Rotorwelle 13 weist Bereiche mit unterschiedlichen Durchmessern auf.
  • Ein erster Bereich 29 ist ein Bereich mit dem größten Durchmesser. Beidseitig der Welle 13 schließen sich zwei Bereiche 30, 31 mit kleineren Durchmessern an. Hieran schließen sich wiederum Bereiche 32, 33 mit noch kleinerem Durchmesser der Welle 13 an. Im Bereich 29 des größten Durchmessers der Welle 13 sind keine Rotorscheiben angeordnet. Im Bereich 30 ist die Rotorscheibe 16 angeordnet, die durch einen Anschlag 34, der durch den stufenförmigen Absatz zwischen dem Bereich 29 und dem Bereich 30 gebildet, lokal eindeutig festgelegt.
  • Gleiches gilt für die Rotorscheibe 15, die durch einen Anschlag 35 zwischen den Bereichen 30, 32 festgelegt wird.
  • Ebenso gilt dies für die Rotorscheibe 17, die durch einen Anschlag 36 auf der Welle 13 festgelegt ist und die Rotorscheibe 18, die durch einen Anschlag 37 an der Welle 13 festgelegt ist. Zwischen den Rotorscheiben 14, 15 und den Rotorscheiben 18, 19 ist jeweils eine Abstandshülse 38 angeordnet. Durch die Anschläge 34 bis 37 werden die Rotorscheiben 14 bis 19 auf der Welle 13 exakt platziert, so dass zwischen den Rotorscheiben 14 bis 19 und den Statorscheiben 20 schmale Spalte ausgebildet werden können.
  • Ein weiterer Vorteil der Erfindung liegt darin, dass die Rotorscheiben 14 bis 19 exakt auf der Welle platziert werden, wodurch sehr geringe Spalte ausgebildet werden können. Hierdurch erhöht sich die Pumpleistung der Vakuumpumpe 1. Durch die Verwendung vieler Gleichteile ist die Pumpe preiswert in der Herstellung. Im vorliegenden Ausführungsbeispiel werden auf den beiden Seiten des Bereiches 29 der Welle 13 mit dem größten Durchmesser jeweils zwei Rotorscheibenpakete mit jeweils gleichem Innendurchmesser angeordnet.
  • Eine weitere vorteilhafte Ausführungsform der Erfindung ist eine Ausführungsform, bei der im Bereich des größten Durchmessers 29 Nuten 39, 40 angeordnet sind, die die Masse der Welle verringern. Da die Splitflow-Vakuumpumpen eine sehr lange Baulänge aufweisen, ist das modale Verhalten des Rotors und insbesondere der Rotorwelle kritisch. Aus diesem Grunde wird gemäß der Erfindung die Masse und damit auch die Gewichtskraft der Welle reduziert bei gleichbleibender Steifigkeit.
  • Die Vakuumpumpe 1 weist ein Gehäuse 41 auf. Um thermische Übergänge zwischen der Hochvakuumseite und Vorvakuumseite im Gehäuse 41 zu reduzieren, weist das Gehäuse 41 eine Einschnürung 42 auf. Durch diese Einschnürung wird die Wärmeleitfähigkeit reduziert. Es ist möglich, im Bereich der Einschnürung 42 zusätzlich eine nicht dargestellte Armierung vorzusehen. Das Gehäuse kann im Bereich der Einschnürung 42 auch geteilt ausgebildet sein und zwischen beiden Teilen des Gehäuses kann eine thermische Dichtung angeordnet sein.
  • Die Welle 13 ist mittels eines Magnetlagers 43 auf der einen Seite gelagert. In einer lediglich schematisch dargestellten Halterung 43a sind Gegenlager 43b angeordnet. Auf der anderen Seite ist das Lager nicht dargestellt. Es kann sich bei der Lagerung auf der nicht dargestellten Seite beispielsweise um ein Öl geschmiertes Kugellager handeln.
  • In Fig. 1 sind lediglich Turbomolekularpumpstufen 21, 22 dargestellt.
  • Es besteht auch die Möglichkeit, zusätzlich zu den Turbomolekularpumpstufen eine Holweckpumpstufe und/oder eine Siegbahn-Pumpstufe und/oder eine Gaedepumpstufe und/oder eine Seitenkanal-Pumpstufe und/oder eine GewindePumpstufe vorzusehen.
  • Die Rotorscheibe 15 und die Statorscheibe 20 weisen in axialer Richtung gesehen eine axiale Länge L auf. Der Abstand zwischen den Turbomolekularpumpstufen 21, 22 ist größer als die Länge L.
  • Fig. 2 zeigt die Welle 13 mit Rotorscheibenpaketen 44, 45, 46, die mit nicht dargestellten Statorscheiben-Paketen Turbomolekularpumpstufen 44, 45, 46 bilden. Der Gasstrom ist durch einen Pfeil 47 dargestellt.
  • Pfeile 48 stellen den Gasstrom dar, der von zwei Haupteinlässen 24, 25 den Turbomolekularpumpstufen 45, 46 zugeführt wird. Die Pfeile 49 kennzeichnen den Gasstrom, der von zwei Nebeneinlässen 27, 28 im Bereich der Turbomolekularpumpstufen 44, 45 dem Pumpsystem zugeführt wird.
  • Die Nebeneinlässe 27, 28 sind im Bereich der Turbomolekularpumpstufen 44, 45 angeordnet, während die Haupteinlässe 24, 25 ihre Zuführung zwischen den Turbomolekularpumpstufen 44, 45 und 46 haben.
  • Fig. 3 zeigt Vakuumpumpe 1 mit der noch einmal verdeutlich wird, die Turbomolekularpumpstufen 44, 45, 46, 49 aufweist. Die Turbomolekularpumpstufen 44, 45, 46, 49 bestehen aus Rotorscheiben und Statorscheiben, die ineinandergreifend angeordnet sind. Darüber hinaus sind Haupteinlässe 23, 24, 25, 26 vorgesehen, die vor der Pumpstufe 44 oder zwischen den Pumpstufen 44, 45, 46, 49 angeordnet sind.
  • Die Welle 13 ist mittels eines Magnetlagers 43 und eines Kugellagers 50 gelagert. Bei dem Kugellager 50 handelt es sich um ein Öl geschmiertes Kugellager. Die Welle 13 wird von einem Motor 51 angetrieben.
  • Im Bereich der Turbomolekularpumpstufe 44 ist ein Nebeneinlass 27 vorgesehen. Im Bereich der Turbomolekularpumpstufe 45 ist ein Nebeneinlass 28 vorgesehen und im Bereich der Turbomolekularpumpstufe 46 ist ein Nebeneinlass 52 vorgesehen.
  • Durch diese Ausführungsform wird die Anzahl der Einlässe von den vier Haupteinlässen 23, 24, 25, 26 auf insgesamt sieben Einlässe, nämlich zuzüglich der drei Nebeneinlässe 27, 28, 52 erhöht.
  • Fig. 4 zeigt einen Teilschnitt durch die Welle 13. Die Welle 13 weist die in Fig. 1 dargestellten Bereiche 29 mit dem größten Durchmesser, die daran sich anschließenden Bereiche 30, 31 mit geringerem Durchmesser und die sich wiederum daran anschließenden Bereiche 32, 33 mit nochmals vermindertem Durchmesser auf. In den Bereichen 30, 31 sind die Rotorscheiben 16, 17 angeordnet. In den Bereichen 32, 33 sind die Rotorscheiben 15, 18, 19 angeordnet. Die Rotorscheiben 15, 18, 19 weisen denselben Innendurchmesser auf. Auch die Rotorscheiben 16, 17 weisen denselben Innendurchmesser auf. Hierdurch ist es möglich, durch eine große Anzahl von Gleichteilen eine preiswerte Pumpe aufzubauen.
  • Der Durchmesserunterschied zwischen den Bereichen 29, 30 bildet den Anschlag 34. Zwischen den Bereichen 29, 31 ist der Anschlag 36 vorgesehen. Zwischen den Bereichen 30, 32 ist der Anschlag 35 angeordnet und zwischen den Bereichen 31, 33 ist der Anschlag 37 vorgesehen.
  • Die Montagerichtung der Scheiben 15, 16 ist durch den Pfeil A gekennzeichnet. Die Montagerichtung der Rotorscheiben 17, 18, 19 ist durch den Pfeil B gekennzeichnet. Mit M ist eine Mittelachse der Welle 13 gekennzeichnet. Die Welle 13 und die Rotorscheiben 15, 16, 17, 18, 19 sind rotationssymmetrisch um die Mittelachse M aufgebaut.
  • Fig. 5 zeigt eine Welle 13 mit zwei Turbomolekularpumpstufen 21, 22, die in einem Gehäuse 41 einer Splitflow-Pumpe angeordnet sind. Das Gehäuse 41 weist einen Einlass 24 auf.
  • Diese zum Stand der Technik gehörende Ausführungsform zeigt, dass ein Kundengehäuse 60 einen Einlass 61 aufweist, der in radialer Richtung versetzt zu dem Einlass 24 ausgebildet ist. Die axiale Länge der Pumpe und der Kundenkammer 60 passen nicht zusammen.
  • Gemäß Fig. 6 ist eine Lösung dargestellt, wie trotzdem ein möglichst hoher Leitwert erzielt werden kann. Das Gehäuse 41 weist hierzu im Bereich des Einlasses 24 einen Steg 62 auf. Durch die Ausbildung des Steges, an dem die Statorscheiben (nicht dargestellt) befestigt werden können, erhält man im Bereich des Einlasses 24 einen größeren Querschnitt und damit einen höheren Leitwert.
  • Fig. 7 zeigt eine Vakuumpumpe 1 mit Vakuumanschlüssen 72, 73, 75. Der Vakuumanschluss 72 weist eine Elastomerdichtung 76 sowie eine Spaltdichtung 77 auf. Zwischen der Elastomerdichtung 76 und der Spaltdichtung 77 ist ein Absaugkanal 78 angeordnet, in dem Zwischenabsaugungen 79 angeordnet sind. In dem Vakuumanschluss 75 ist eine Absaugöffnung 80 angeordnet. Die Zwischenabsaugungen 79 führen in eine Durchführungsbohrung 81, die zur Zwischenstufe 73 geführt ist. Für eine Dichtungsanordnung des Vakuumanschlusses 75 ist ein Verbindungskanal 82 vorgesehen, so dass der Vakuumanschluss 75 über die Absaugöffnung 80 ebenfalls über die Durchführungsbohrung 82 evakuiert wird.
  • Fig. 8 zeigt einen Rotor 126, der lediglich schematisch dargestellt ist mit Rotorscheiben 14, 15, 16, 17. Zwischen den Rotorscheiben 16, 17 sind zwei Nebeneinlässe 27, 28 angeordnet. Die Nebeneinlässe 27, 28 sind radial voneinander beabstandet und führen beide zwischen die Rotorscheiben 16, 17.
  • Fig. 9 zeigt ein Gehäuse 60 einer Vakuumpumpe mit den Vakuumanschlüssen 72, 73. Es sind zwei Nebeneinlässe 27, 28 vorgesehen, welche in einer Ebene angeordnet sind.
  • Fig. 10 zeigt die Rotorwelle 126, auf der Rotorscheiben 14, 15 angeordnet sind. Zwischen den Rotorscheiben 14, 15 ist schematisch eine Statorscheibe 20 angeordnet. Die Rotorscheiben 14, 15 weisen jeweils einen Bund 127 auf. Der Bund 127 ersetzt die Abstandshülse 38, die in Fig. 1 dargestellt ist.
  • Bezugszahlen
  • 1
    Vakuumpumpe
    2
    Mehrkammervakuumpumpanlage
    3
    Kammer
    4
    Kammer
    5
    Kammer
    6
    Kammer
    7
    Trennwände
    8
    Trennwände
    9
    Trennwände
    10
    Bohrungen
    11
    Bohrungen
    12
    Bohrungen
    13
    Welle
    14
    Rotorscheiben
    15
    Rotorscheiben
    16
    Rotorscheiben
    17
    Rotorscheiben
    18
    Rotorscheiben
    19
    Rotorscheiben
    20
    Statorscheiben
    21
    Turbomolekularpumpstufe mit Scheibenpaket
    22
    Turbomolekularpumpstufe mit Scheibenpaket
    23
    Haupteinlass
    24
    Haupteinlass
    25
    Haupteinlass
    26
    Haupteinlass
    27
    Nebeneinlass
    28
    Nebeneinlass
    29
    Bereich der Welle 13 mit größtem Durchmesser
    30
    Bereich der Welle 13 mit geringerem Durchmesser
    31
    Bereich der Welle 13 mit geringerem Durchmesser
    32
    Bereich der Welle 13 mit kleinstem Durchmesser
    33
    Bereich der Welle 13 mit kleinstem Durchmesser
    34
    Anschlag
    35
    Anschlag
    36
    Anschlag
    37
    Anschlag
    38
    Hülse
    39
    Nut
    40
    Nut
    41
    Gehäuse
    42
    Einschnürung
    43
    Magnetlager
    43a
    Halterung
    43b
    Gegenlager
    44
    Turbomolekularpumpstufe mit Rotorscheibenpaketen
    45
    Turbomolekularpumpstufe mit Rotorscheibenpaketen
    46
    Turbomolekularpumpstufe mit Rotorscheibenpaketen
    47
    Pfeil Gasstrom
    48
    Pfeil Gasstrom
    49
    Turbomolekularpumpstufe
    50
    Kugellager
    51
    Motor
    52
    Nebeneinlass
    53
    Nut
    54
    Nut
    55
    Bohrungen
    56
    Schnittpunkt
    57
    Nut
    58
    Nut
    59
    Hülse
    60
    Gehäuse
    61
    Einlass
    62
    Steg
    72
    Vakuumanschlüsse
    73
    Vakuumanschlüsse
    75
    Vakuumanschlüsse
    76
    Elastomerdichtung
    77
    Spaltdichtung
    78
    Absaugkanal
    79
    Zwischenabsaugungen
    80
    Absaugöffnung
    81
    Durchführungsbohrung
    82
    Verbindung
    126
    Rotor
    127
    Bund
    A
    Pfeil
    B
    Pfeil
    L
    axiale Länge
    M
    Mittelachse

Claims (8)

  1. Splitflow-Vakuumpumpe (1) mit wenigstens drei radialen Einlässen (24, 25, 26) und mit wenigstens vier Pumpstufen (21, 22, 44, 45, 46), wobei wenigstens zwei Pumpstufen als Turbomolekularpumpstufen (44, 45, 46) ausgebildet sind,
    dadurch gekennzeichnet,
    - dass die wenigstens drei Einlässe (24, 25, 26) als Haupteinlässe ausgebildet sind, die in axialer Richtung zwischen den Turbomolekularpumpstufen (44, 45, 46) angeordnet sind,
    - wobei zusätzlich wenigstens ein radialer Nebeneinlass (27, 28, 52) vorgesehen ist, der im Bereich wenigstens einer Turbomolekularpumpstufe (44, 45, 46) angeordnet ist
    - und dass der wenigstens eine Nebeneinlass (27, 28, 52) zwischen zwei Statorscheiben (20) oder
    - zwischen zwei Rotorscheiben (14 bis 19) oder
    - zwischen einer Statorscheibe (20) und einer Rotorscheibe (14 bis 19) wenigstens einer Turbomolekularpumpstufe (1) angeordnet ist.
  2. Splitflow-Vakuumpumpe nach Anspruch 1, dadurch gekennzeichnet, dass der wenigstens eine Nebeneinlass (27, 28, 52) eine Mittelachse aufweist und dass die Mittelachse zwischen einer ersten und einer letzten Scheibe (14 bis 19; 20) der wenigstens einen Turbomolekularpumpstufe (21, 22, 44, 45, 46) angeordnet ist.
  3. Splitflow-Vakuumpumpe nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass wenigstens zwei Nebeneinlässe (124, 125) radial versetzt zueinander angeordnet sind.
  4. Splitflow-Vakuumpumpe nach Anspruch 1, dadurch gekennzeichnet, dass der wenigstens eine Nebeneinlass (52) zwischen zwei benachbarten Statorscheiben (20) und/oder zwischen zwei benachbarten Rotorscheiben (14 bis 19) und/oder zwischen einer Statorscheibe (20) und einer benachbarten Rotorscheibe (14 bis 19) wenigstens einer Turbomolekularpumpstufe (1) angeordnet ist.
  5. Splitflow-Vakuumpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Saugvermögen des wenigstens einen Nebeneinlasses (27, 28, 52) geringer ist als das Saugvermögen eines Haupteinlasses (23, 24, 25, 26) .
  6. Splitflow-Vakuumpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass bei n Scheiben (14 bis 19, 20) n-1 Nebeneinlässe (27, 28, 52) vorgesehen sind.
  7. Splitflow-Vakuumpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Statorscheibe (20) und eine benachbarte Rotorscheibe (14 bis 19) einer Turbomolekularpumpstufe (21, 22, 44, 45, 46) eine axiale Länge (L) festlegt, und dass ein Abstand zwischen zwei Turbomolekularpumpstufen (21, 22, 44, 45, 46) mindestens so groß ist wie die Länge (L).
  8. Vakuumsystem mit wenigstens einer Splitflow-Vakuumpumpe nach einem der vorhergehenden Ansprüche und wenigstens einem Rezipienten, bei dem zwischen der Vakuumpumpe und dem Rezipienten eine lösbare Verbindung vorgesehen ist, wobei zur Abdichtung der Verbindung zur Atmosphärenseite hin wenigstens eine Elastomerdichtung (76) und in Richtung Vakuumseite wenigstens eine Spaltdichtung (77) vorgesehen sind, dadurch gekennzeichnet, dass zwischen der Elastomerdichtung (76) und der Spaltdichtung (77) wenigstens ein Absaugkanal und/oder wenigstens eine Absaugöffnung (80) vorgesehen sind/ist.
EP15174844.9A 2015-07-01 2015-07-01 Splitflow-vakuumpumpe sowie vakuum-system mit einer splitflow-vakuumpumpe Active EP3112688B2 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15174844.9A EP3112688B2 (de) 2015-07-01 2015-07-01 Splitflow-vakuumpumpe sowie vakuum-system mit einer splitflow-vakuumpumpe
JP2016128671A JP6253719B2 (ja) 2015-07-01 2016-06-29 スプリットフロー真空ポンプ及びスプリットフロー真空ポンプを有する真空システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP15174844.9A EP3112688B2 (de) 2015-07-01 2015-07-01 Splitflow-vakuumpumpe sowie vakuum-system mit einer splitflow-vakuumpumpe

Publications (3)

Publication Number Publication Date
EP3112688A1 EP3112688A1 (de) 2017-01-04
EP3112688B1 true EP3112688B1 (de) 2019-06-12
EP3112688B2 EP3112688B2 (de) 2022-05-11

Family

ID=53496581

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15174844.9A Active EP3112688B2 (de) 2015-07-01 2015-07-01 Splitflow-vakuumpumpe sowie vakuum-system mit einer splitflow-vakuumpumpe

Country Status (2)

Country Link
EP (1) EP3112688B2 (de)
JP (1) JP6253719B2 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106678058A (zh) * 2017-02-22 2017-05-17 上海优耐特斯压缩机有限公司 高速电机直驱透平机械的超高速转子结构
EP3441617B1 (de) * 2017-08-09 2019-12-25 Pfeiffer Vacuum Gmbh Verfahren zum erwärmen eines rotors einer vakuumpumpe
DE102018119747B3 (de) 2018-08-14 2020-02-13 Bruker Daltonik Gmbh Turbomolekularpumpe für massenspektrometer
EP3767109B1 (de) 2019-07-15 2021-09-08 Pfeiffer Vacuum Gmbh Vakuumsystem
GB2604382A (en) * 2021-03-04 2022-09-07 Edwards S R O Stator Assembly

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60116895A (ja) * 1983-11-30 1985-06-24 Hitachi Ltd 真空ポンプ
DE4331589C2 (de) 1992-12-24 2003-06-26 Pfeiffer Vacuum Gmbh Vakuumpumpsystem
JP2002303293A (ja) * 2001-04-06 2002-10-18 Boc Edwards Technologies Ltd ターボ分子ポンプ
GB0409139D0 (en) * 2003-09-30 2004-05-26 Boc Group Plc Vacuum pump
GB0424198D0 (en) * 2004-11-01 2004-12-01 Boc Group Plc Pumping arrangement
JP4916655B2 (ja) * 2004-11-17 2012-04-18 株式会社島津製作所 真空ポンプ
DE102007010068A1 (de) * 2007-02-28 2008-09-04 Thermo Fisher Scientific (Bremen) Gmbh Vakuumpumpe oder Vakuumapparatur mit Vakuumpumpe
DE102007027352A1 (de) * 2007-06-11 2008-12-18 Oerlikon Leybold Vacuum Gmbh Massenspektrometer-Anordnung
DE102007044945A1 (de) 2007-09-20 2009-04-09 Pfeiffer Vacuum Gmbh Vakuumpumpe
DE102009035332A1 (de) * 2009-07-30 2011-02-03 Pfeiffer Vacuum Gmbh Vakuumpumpe
US8481923B1 (en) * 2012-06-29 2013-07-09 Agilent Technologies, Inc. Atmospheric pressure plasma mass spectrometer
DE102013103650A1 (de) * 2013-04-11 2014-10-16 Pfeiffer Vacuum Gmbh Vakuumsystem
DE202013003855U1 (de) * 2013-04-25 2014-07-28 Oerlikon Leybold Vacuum Gmbh Untersuchungseinrichtung sowie Multi-Inlet-Vakuumpumpe
GB201314841D0 (en) 2013-08-20 2013-10-02 Thermo Fisher Scient Bremen Multiple port vacuum pump system
DE102013109637A1 (de) * 2013-09-04 2015-03-05 Pfeiffer Vacuum Gmbh Vakuumpumpe sowie Anordnung mit einer Vakuumpumpe
JP6484919B2 (ja) * 2013-09-24 2019-03-20 株式会社島津製作所 ターボ分子ポンプ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
JP6253719B2 (ja) 2017-12-27
EP3112688B2 (de) 2022-05-11
EP3112688A1 (de) 2017-01-04
JP2017020502A (ja) 2017-01-26

Similar Documents

Publication Publication Date Title
EP3112688B1 (de) Splitflow-vakuumpumpe sowie vakuum-system mit einer splitflow-vakuumpumpe
EP2295812B1 (de) Vakuumpumpe
EP1078166B2 (de) Reibungsvakuumpumpe mit stator und rotor
EP1090231B2 (de) Reibungsvakuumpumpe mit chassis, rotor und gehäuse sowie einrichtung, ausgerüstet mit einer reibungsvakuumpumpe dieser art
DE602004008089T2 (de) Vakuumpumpe
EP1252445A1 (de) Reibungsvakuumpumpe
EP2039941B1 (de) Vakuumpumpe
DE3722164C2 (de) Turbomolekularpumpe
EP3112689B1 (de) Splitflow-vakuumpumpe
DE10211134C1 (de) Turbomolekularpumpe mit koaxial zentralem Durchgang
WO2005047707A1 (de) Mehrstufige reibungsvakuumpumpe
EP3085963B1 (de) Vakuumpumpe
EP3851680B1 (de) Molekularvakuumpumpe und verfahren zum beeinflussen des saugvermögens einer solchen
DE102015113821B4 (de) Vakuumpumpe
EP1422423B2 (de) Gerät mit evakuierbarer Kammer
DE102018119747B3 (de) Turbomolekularpumpe für massenspektrometer
DE102015111049B4 (de) Vakuumpumpe
EP3267040B1 (de) Turbomolekularpumpe
EP2902637B1 (de) Vakuumpumpe
EP3327293B1 (de) Vakuumpumpe mit mehreren einlässen
EP3623634B1 (de) Vakuumpumpe umfassend eine holweckpumpstufe und zwei seitenkanalpumpstufen
EP3767109B1 (de) Vakuumsystem
EP4293232A1 (de) Pumpe
EP3564538A1 (de) Vakuumsystem und verfahren zur herstellung eines solchen
DE102022122860A1 (de) Molekularpumpenstufe für Turbomolekularpumpe mit Diskontinuität in Kanal

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170606

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180516

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190207

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1142907

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015009283

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190612

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190912

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190912

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190913

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191014

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191012

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502015009283

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190731

26 Opposition filed

Opponent name: EDWARDS LIMITED

Effective date: 20200312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190701

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190812

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190701

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150701

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1142907

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200701

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20220511

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502015009283

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20230418

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230726

Year of fee payment: 9

Ref country code: GB

Payment date: 20230608

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230622

Year of fee payment: 9