EP3105455A1 - Système de pompage et procédé de descente en pression dans un sas de chargement et de déchargement - Google Patents

Système de pompage et procédé de descente en pression dans un sas de chargement et de déchargement

Info

Publication number
EP3105455A1
EP3105455A1 EP15708739.6A EP15708739A EP3105455A1 EP 3105455 A1 EP3105455 A1 EP 3105455A1 EP 15708739 A EP15708739 A EP 15708739A EP 3105455 A1 EP3105455 A1 EP 3105455A1
Authority
EP
European Patent Office
Prior art keywords
pumping
primary
maximum
pump
vacuum pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP15708739.6A
Other languages
German (de)
English (en)
Other versions
EP3105455B1 (fr
Inventor
Nicolas Becourt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pfeiffer Vacuum SAS
Original Assignee
Pfeiffer Vacuum SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pfeiffer Vacuum SAS filed Critical Pfeiffer Vacuum SAS
Publication of EP3105455A1 publication Critical patent/EP3105455A1/fr
Application granted granted Critical
Publication of EP3105455B1 publication Critical patent/EP3105455B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/14Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B41/00Pumping installations or systems specially adapted for elastic fluids
    • F04B41/06Combinations of two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C25/00Adaptations of pumps for special use of pumps for elastic fluids
    • F04C25/02Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum

Definitions

  • the present invention relates to a pumping system and a method of descent in pressure in a lock of loading and unloading (or "load-lock" in English) of a substrate, such as a flat screen display ("or flat panel display “in English) or a photovoltaic substrate, from atmospheric pressure to a low pressure for the loading and unloading of the substrate in a treatment chamber maintained at low pressure.
  • a substrate such as a flat screen display ("or flat panel display "in English) or a photovoltaic substrate
  • an important step is to treat a low pressure controlled atmosphere substrate in a process chamber.
  • the atmosphere surrounding the substrate is first lowered at low pressure in a loading chamber and unloading communicating with the treatment chamber.
  • the airlock comprises a sealed chamber, a first door communicates the interior of the chamber with an atmospheric pressure zone, such as a clean room, for loading at least one substrate.
  • the chamber of the chamber is connected to a pumping unit for lowering the pressure in the chamber until a suitable low pressure is reached similar to that prevailing in the treatment chamber so as to transfer the substrate to the treatment chamber .
  • the airlock further includes a second door for unloading the substrate into the treatment chamber after being evacuated. This same airlock is generally also used for the rise in pressure of the substrate at the end of its treatment, and its discharge at atmospheric pressure.
  • each loading of substrates necessitates lowering and then alternately raising the pressure in the enclosure of the airlock in a relatively short time to reach the desired low pressure.
  • This constraint is even more difficult to respect for large substrates.
  • the chamber of the chamber necessarily having the appropriate volume to contain one or more flat screens.
  • the enclosures of airlock used for the manufacture of flat screens have volumes generally of the order of 500 to 1000 liters, sometimes exceeding 5000 liters, which must therefore be pumped as quickly as possible.
  • the pumping solution Since it is a question of lowering the pressure in the chamber from a high pressure to a low pressure, the pumping solution must perform well at high or low pressure in order to limit the pumping time to the desired low pressure. This goal can be difficult to achieve because it uses characteristics of vacuum pumps a priori antagonistic.
  • the rotors of the vacuum pumps generally undergo a temporary slowing down of the speed of rotation, allowing the absorption of the overload caused by the pumping at high pressure. Once the excess charge is removed, the rotation can accelerate until the maximum performance of the pump is reached.
  • Pumps of low inertia are therefore preferred, which facilitates their rotation and re-acceleration after the deceleration phase. Pumps of low inertia are generally small and have a relatively low volumetric flow rate. Also, the pumping performance of low inertia pumps are limited and may not achieve the desired low pressures within the time limit.
  • a gas flow is injected between the chamber of the lock chamber and the pump during or at the end of the pumping.
  • the walls of the enclosure or the surfaces of the substrates can release a non-negligible degassing flow.
  • One of the aims of the present invention is to propose a pumping system and a pressure descent method in a loading and unloading chamber, which solve the disadvantages of the state of the art at a lower cost and at least in part.
  • the subject of the invention is a pumping system intended to be connected to a chamber for loading and unloading a substrate, comprising at least a first primary pumping group having a first maximum pumping speed and a second primary pumping unit having a second maximum pumping rate, each primary pumping unit comprising a single-stage Roots vacuum pump and a primary vacuum pump, the single-stage Roots vacuum pump being mounted in series and upstream of the pumping pump.
  • said first and second primary pumping groups being connected in parallel and configured to simultaneously pump the enclosure of the loading and unloading chamber of the substrate, characterized in that said first group primary pumping system has pumping characteristics distinct from said second primary pumping group, the difference between the primary pumping second and second maximum pump speeds being greater than 500 m 3 / h.
  • the invention also relates to a pumping system intended to be connected to a chamber for loading and unloading a substrate, comprising at least a first primary vacuum pump having a first maximum pump speed and a second pump primary vacuum pump having a second maximum pump speed, the first and second primary vacuum pumps being connected in parallel and configured to simultaneously pump the enclosure of the loading and unloading chamber of the substrate, characterized in that the first vacuum pump primary has separate pumping characteristics of the second primary vacuum pump, the difference between the first and second maximum pump speeds being greater than 500 m 3 / h.
  • a first primary vacuum pumping device such as a primary pumping unit or a primary vacuum pump
  • a second primary vacuum pumping device such as a primary pumping unit or a primary vacuum pump
  • the rotation of the rotors of the two pumping devices in primary vacuum will slow down to allow the absorption of the overload caused by the high pressure pumping.
  • the low-inertial primary vacuum pumping device will be able to re-accelerate faster than the high-inertia primary vacuum pumping device to reach its full speed.
  • Acceleration of the rotation of the primary vacuum pumping device of high inertia will be slower but will achieve high volumetric flow rates at low pressure in order to meet the time limit to reach the desired pressure.
  • the pumping system thus makes it possible to benefit from the advantages and to compensate for the weak points of each pumping device in order to quickly obtain the desired pressure, at a controlled cost.
  • the first maximum pumping speed is greater than or equal to 2000 m 3 / h, denoting a "high-inertia primary vacuum pumping device", and the second maximum pumping speed is less than 2000 m 3 / h , designating a "low-inertia primary vacuum pumping device”.
  • the difference between the first maximum pump speed and the second maximum pump speed is between 500 and 3500 m 3 / h.
  • the difference between the pumping speeds is thus sufficiently large for a first primary vacuum pumping device to be more efficient than the second pumping device in primary vacuum at low pressure and reciprocally at high pressure.
  • the pumping system comprises at least two primary vacuum pumps or at least two primary pumping groups, having substantially identical pumping characteristics.
  • the subject of the invention is also a method for descent in pressure in a chamber for loading and unloading by a pumping system as described above, characterized in that the chamber of loading and unloading chambers is simultaneously pumped. of the substrate by means of at least a first primary pumping group having a first maximum pumping rate and a second primary pumping group having a second maximum pumping rate, said primary pumping units being connected in parallel and having pumping, the difference between the first and the second maximum pumping rate of said primary pumping groups being greater than 500 m 3 / h.
  • the subject of the invention is also a method of descent in pressure in a chamber for loading and unloading by a pumping system as described above, characterized in that the chamber of loading chamber and discharging the substrate by means of at least a first primary vacuum pump having a first maximum pumping rate and a second primary vacuum pump having a second maximum pumping rate, said first and second primary vacuum pumps being connected in parallel and having distinct pumping characteristics, the difference between the first and the second maximum pumping rate of said primary vacuum pumps being greater than 500 m 3 / h.
  • FIG. 1 represents a schematic view of a first example of a pumping system connected to an enclosure for a loading and unloading chamber
  • FIG. 2 is a graph showing the pumping speed (in m 3 / h). of a first primary pumping group as a function of the pressure (Curve A, in mbar) and the pumping speed (in m 3 / h) of a second primary pumping group as a function of the pressure (Curve B, in mbar), and
  • FIG. 3 is a graph showing pressure descent curves (in mbar) as a function of time (in seconds) in a loading and unloading chamber for different pumping configurations
  • FIG. a schematic representation of a second example of a pumping system connected to the chamber of loading and unloading lock.
  • FIG. 1 shows a first example of a pumping system 1 connected to an enclosure 2 of a loading and unloading chamber (or "load lock").
  • the chamber 2 of the loading and unloading chamber has a first door 4 placing the interior of the chamber 2 in communication with a zone under atmospheric pressure, such as a clean room, for loading. at least one large substrate 5, such as a flat panel display ("flat panel display” in English) or a photovoltaic substrate.
  • a zone under atmospheric pressure such as a clean room
  • the chamber 2 further comprises a second door 6 for discharging the substrate 5 into a treatment chamber 7 after evacuation, as well as a device for introducing a neutral gas 8, in particular for the return to the pressure in the chamber 2 after the transfer of the substrate 5.
  • the pumping system 1 comprises at least first and second primary vacuum pump devices connected in parallel, configured to simultaneously pump the chamber 2.
  • the term "primary vacuum pump device” designates a volumetric pumping device in which the gas to be pumped is sucked, compressed and discharged, in order to obtain a primary vacuum, that is to say to obtain a pressure of between 10 2 and 10 Pa.
  • the primary vacuum pumping device can operate at atmospheric pressure, as opposed to a turbomolecular pumping device.
  • the primary vacuum pumping device may be a primary vacuum pump 13a, 13b, 14a, 14b ( Figure 4) or a primary pumping group 9a, 10a, 9b, 10b ( Figure 1).
  • a primary pumping unit 9a, 10a, 9b, 10b comprises a single-stage Roots vacuum pump 15 and a primary vacuum pump 13, the single-stage Roots vacuum pump 15 being connected in series and upstream of the primary vacuum pump 3 in the direction of flow of the gases to be pumped (arrow G in FIG. 1).
  • the single-stage Roots vacuum pump 5 also known as the Roots depressor, is not a turbomolecular vacuum pump because the single-stage Roots vacuum pump 5 can achieve only a primary boundary vacuum, i.e. low pressure between 0 2 and 0 Pa.
  • the parallel connection of the primary pumping units 9a, 0a, 9b, 10b is ensured by the connection of the respective inputs of the primary pumping groups 9a, 0a, 9b, 0b to the enclosure 2 by a vacuum line comprising a valve of isolation 2 allowing the isolation of the primary pumping groups 9a, 0a, 9b, 0b, especially for the rise at atmospheric pressure in the chamber 2.
  • This assembly is such that during the pressure drop, the gas to be pumped from the chamber 2, circulates at the same time and in parallel through all the primary pumping groups 9a, 10a, 9b, 10b.
  • the vacuum line 11 has substantially the same conductance between the chamber 2 and the respective inlet of the primary pumping groups 9a, 10a, 9b, 10b during the pressure drop.
  • the vacuum line 11 is in particular devoid of specific devices called slow pumping (or "soft pumping" in English).
  • the pumping system 1 comprises four primary pumping groups 9a, 10a, 9b, 10b.
  • a primary pumping unit 9a, 10a, 9b, 10b comprises a primary vacuum pump 13 and a single-stage Roots vacuum pump 15, the single-stage Roots vacuum pump 15 being connected in series and upstream of the pump.
  • primary vacuum 13 in the flow direction of the gases to be pumped.
  • the primary vacuum pump 13 is for example a multi-stage dry vacuum pump, that is to say having several pumping stages connected in series one after the other, and fluidly connected in series one after the other. others by interstage channels.
  • the inter-stage channels connect the output of the preceding pump stage to the input of the next stage, between a suction of the primary vacuum pump 13 and its discharge.
  • the primary vacuum pump 13 comprises two rotors of identical profiles, rotating in the housing in opposite directions. During the rotation, the sucked gas is trapped in the free space between the rotors and the stator, then it is pumped to the next pumping stage.
  • the rotors are carried by shafts extending into the pumping stages and are driven by a motor of the primary vacuum pump 13.
  • the pumping stages are joined together to form a monobloc pump body, traversed by the shafts of the pumps. rotors.
  • the primary vacuum pump 3 is for example rotary lobes such as Roots type or a similar principle, such as Claw type.
  • a rotary lobe vacuum pump “Roots” comprises two rotors of identical profiles, carried by two shafts extending in the pumping stages and driven by a motor to rotate inside a stator in sense opposite. During the rotation, the sucked gas is trapped in the free space between the rotors and the stator, then it is repressed. The operation is carried out without any mechanical contact between the rotors and the stator of the primary vacuum pump, which allows the total absence of oil in the pumping stages.
  • the single-stage Roots vacuum pump 5 differs from the primary vacuum pump 3 in that it has only one pumping stage and requires the use of a vacuum pump.
  • primary 13 connected in series to its discharge. It is, like the primary vacuum pump 13, a volumetric vacuum pump, that is to say which, with the aid of rotors sucks, transfers and then delivers the gas to be pumped.
  • a single-stage Roots vacuum pump 15 comprises a clean motor adapted to drive rotors in rotation in its single pumping stage.
  • a pumping stage of a multi-stage primary vacuum pump can not be considered as a single-stage Roots vacuum pump within the meaning of the present invention.
  • At least one first and at least one second primary pumping groups 9a, 10a, 9b, 10b have distinct pumping characteristics.
  • the pumping characteristics are generally defined by the distribution of the pumping speeds as a function of pressure as represented by the curves A and B in FIG. 2. This distribution is generally a data item of the manufacturer.
  • the first primary pumping group 9a has a first maximum pumping speed, for example greater than or equal to 2000m 3 / h, denoting a "high-inertia primary vacuum pumping device", and the second primary pumping group 0a has a second maximum pumping rate less than 2000m 3 / h, denoting a "low inertia primary vacuum pumping device".
  • the difference between the first maximum pumping speed S of the first primary pumping group 9a, 9b and the second maximum pumping rate S2 of the second primary pumping group 0a, 0b is greater than 500 m 3 / h, as between 500 and 3500 m 3 / h.
  • the difference between the primary pumping groups is thus large enough for a first primary pumping group 9a, 9b to be more efficient than the second primary pumping group 0a, 0b at low pressure and reciprocally at high pressure.
  • the first maximum pumping speed S of the two first primary pumping groups 9a, 9b is of the order of 2600m 3 / h for a corresponding pressure of the order 0.3 mbar (or 35 Pa).
  • the second maximum pumping rate S2 of the two second primary pumping groups 0a, 0b is of the order of 700 m 3 / h for a corresponding pressure of the order of 0.5 mbar (or 50 Pa). Because of their large pumping capacities, the first primary pumping groups 9a, 9b have a greater dimensioning and inertia than the second primary pumping groups 10a, 10b.
  • the acceleration of the rotation of the two single-stage Roots vacuum pumps 15 of the first primary pumping groups 9a, 9b of high inertia will be slower but will allow high volumetric flow rates to be reached at low pressure in order to be able to respect the time allowed to reach the desired pressure.
  • the pumping system 1 thus makes it possible to benefit from the advantages and to compensate for the weak points of each pumping device in order to quickly obtain the desired pressure, at a controlled cost.
  • Curve C represents the pressure drop versus time curve for two first primary pumping groups 9a of high inertia having identical pumping characteristics, mounted in parallel. It is found that a pressure of 0.025 mbar is reached at about 24 seconds.
  • Curve D represents the pressure drop versus time curve for first and second primary pumping groups 9a, 10b having distinct pumping characteristics, respectively of high and low inertia, connected in parallel.
  • the desired pressure is reached from 0.025 mbar to 23 seconds, within the specified time.
  • Curve E represents the pressure drop versus time curve for two second low inertia primary pumping groups 10a having identical pumping characteristics, connected in parallel. It can be seen with this configuration that the desired pressure of 0.025 mbar is reached after 27 seconds.
  • Curve F represents the pressure drop versus time curve for three first primary pumping groups 9a of high inertia having identical pumping characteristics, connected in parallel. It is found that a pressure of 0.025 mbar is reached in about 16 seconds.
  • Curve G represents the pressure drop versus time curve for three second low inertia primary pumping groups 10a having identical pumping characteristics, connected in parallel. It is found that the desired pressure of 0.025 mbar is reached after 18 seconds.
  • the first primary pumping group with high inertia thus has a lower efficiency at high and medium pressure than the second primary low inertia pumping group but allows on the other hand to obtain a better pumping speed at low pressure.
  • the second primary low-inertia pumping group makes it possible to obtain a high pumping speed at high pressure but gives low performance at low pressure.
  • FIG. 4 shows another example of a pumping system 1 'connected to an enclosure 2 for an airlock for loading and unloading a substrate 5.
  • the pumping system V comprises at least a first primary vacuum pump 13a, 13b having a first maximum pumping rate and a second primary vacuum pump 4a, 4b having a second maximum pumping speed.
  • the primary vacuum pumps 3a, 3b, 4a, 14b may be multi-stage dry vacuum pumps, that is to say having several pumping stages connected in series one after the other, and fluidly connected. in series one after the other by the inter-floor channels.
  • the rotors are carried by shafts extending into the pumping stages and are driven by a motor of the primary vacuum pump 3a, 13b, 14a, 14b.
  • the pumping stages are joined together to form a one-piece pump body, crossed by the trees of the rotors.
  • the primary vacuum pump 13a, 13b, 14a, 14b is for example rotary lobes such as Roots type or a similar principle, such as Claw type. It can only reach a primary limit vacuum, that is to say a low pressure between 0 2 and 0 1 Pa.
  • the first and second primary vacuum pumps 13a, 3b, 14a, 14b are connected in parallel and configured to simultaneously pump the chamber 2 of the loading and unloading chamber of the substrate.
  • At least a first and a second primary vacuum pump have distinct pumping characteristics.
  • the first two primary vacuum pumps 13a, 13b have pumping characteristics distinct from the two primary vacuum pumps 14a, 14b.
  • the first primary vacuum pumps 13a, 13b have a first maximum pumping speed, for example greater than or equal to 2000m 3 / h, and the second primary vacuum pumps 14a, 14b have a second maximum pumping speed, for example less than 2000 m 3. / h.
  • the difference between the first maximum pump speeds of the first primary vacuum pumps 13a, 13b and the second maximum pump speeds of the second primary vacuum pumps 14a, 14b is greater than 500 m 3 / h, such that between 500 and 3500 m 3 / h.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

L'invention concerne un système de pompage destiné à être raccordé à une enceinte (2) de sas de chargement et de déchargement d'un substrat (5), comportant au moins un premier groupe de pompage primaire (9a, 9b) ayant une première vitesse de pompage maximale (S1) et un deuxième groupe de pompage primaire (10a, 10b) ayant une deuxième vitesse de pompage maximale (S2), chaque groupe de pompage primaire (9a, 9b, 10a, 10b) comprenant une pompe à vide Roots monoétagée (15) et une pompe à vide primaire (13), la pompe à vide Roots monoétagée (15) étant montée en série et en amont de la pompe à vide primaire (13) dans le sens d'écoulement des gaz à pomper, lesdits premier et deuxième groupes de pompage primaire (9a, 9b, 10a, 10b) étant montés en parallèle et configurés pour pomper simultanément l'enceinte (2) du sas de chargement et de déchargement du substrat, caractérisé en ce que ledit premier groupe de pompage primaire (9a, 9b) présente des caractéristiques de pompage distinctes dudit deuxième groupe de pompage primaire (10a, 10b), l'écart entre les première et deuxième vitesses de pompage maximales desdits premier et deuxième groupes de pompage primaire (9a, 9b, 10a, 10b) étant supérieur à 500 m3/h. L'invention concerne également un procédé de descente en pression dans une enceinte (2) de sas de chargement et de déchargement.

Description

Système de pompage et procédé de descente en pression dans un sas de chargement et de déchargement
La présente invention concerne un système de pompage et un procédé de descente en pression dans un sas de chargement et de déchargement (ou « load-lock » en anglais) d'un substrat, tel qu'un écran plat d'affichage (« ou flat panel display » en anglais) ou un substrat photovoltaïque, depuis une pression atmosphérique vers une basse pression pour le chargement et le déchargement du substrat dans une chambre de traitement maintenue à basse pression.
Dans certains procédés de fabrication, une étape importante consiste à traiter un substrat sous atmosphère contrôlée à basse pression dans une chambre de traitement. Pour maintenir une cadence acceptable et pour éviter la présence de toute impureté et de toute pollution, l'atmosphère environnant le substrat est d'abord descendu à basse pression dans un sas de chargement et de déchargement communiquant avec la chambre de traitement.
Pour cela, le sas comporte une enceinte étanche dont une première porte met en communication l'intérieur de l'enceinte avec une zone sous pression atmosphérique, telle qu'une salle blanche, pour le chargement d'au moins un substrat. L'enceinte du sas est raccordée à un groupe de pompage permettant de descendre la pression dans l'enceinte jusqu'à atteindre une basse pression appropriée similaire à celle régnant dans la chambre de traitement de manière à pouvoir transférer le substrat vers la chambre de traitement. Le sas comporte en outre une deuxième porte pour le déchargement du substrat dans la chambre de traitement après avoir été mis sous vide. Ce même sas est généralement également utilisé pour la remontée en pression du substrat à l'issue de son traitement, et son déchargement à pression atmosphérique.
On comprend cependant que chaque chargement de substrats nécessite de descendre puis de remonter alternativement la pression dans l'enceinte du sas, en un temps relativement court pour atteindre la basse pression souhaitée. Cette contrainte est d'autant plus difficile à respecter pour des substrats de grande dimension. Tel est le cas notamment, pour la fabrication des écrans plats d'affichage ou de substrats photovoltaïques, l'enceinte du sas ayant nécessairement le volume approprié pour contenir un ou plusieurs écrans plats. Par exemple, actuellement, les enceintes des sas utilisées pour la fabrication des écrans plats présentent des volumes généralement de l'ordre de 500 à 1000 litres, dépassant parfois 5000 litres, qu'il faut donc pomper le plus rapidement possible.
Comme il s'agit d'abaisser la pression dans l'enceinte depuis une pression élevée vers une basse pression, la solution de pompage doit être performante aussi bien à haute qu'à basse pression afin de limiter le temps du pompage jusqu'à la basse pression souhaitée. Cet objectif peut s'avérer difficilement atteignable car il fait appel à des caractéristiques de pompes à vide à priori antagonistes.
En effet, au début du pompage, les rotors des pompes à vide subissent généralement un ralentissement temporaire de la vitesse de rotation, permettant l'absorption de la surcharge occasionnée par le pompage à haute pression. Une fois l'excès de charge évacué, la rotation peut accélérer jusqu'à atteindre les performances maximales de la pompe. On préfère donc des pompes de faible inertie, ce qui facilite leur mise en rotation et la ré-accélération après la phase de ralentissement. Les pompes de faible inertie sont en général de petites dimensions et présentent un débit volumétrique relativement faible. Aussi, les performances de pompage des pompes de faible inertie sont limitées et peuvent ne pas permettre d'atteindre les basses pressions souhaitées dans le délai imparti.
En outre, dans certains cas, un flux de gaz est injecté entre l'enceinte du sas et la pompe pendant ou à la fin du pompage. Egalement, les parois de l'enceinte ou les surfaces des substrats peuvent libérer un flux de dégazage non négligeable. Ces débits de gaz supplémentaires qui sont contraignants surtout à basse pression, font qu'il est alors préférable d'utiliser des pompes présentant de fortes capacités de pompage à basse pression, présentant notamment de grandes dimensions. Cependant, ces pompes de grandes dimensions présentent en général une forte inertie, ce qui les rend relativement inefficaces au début du pompage à haute et moyenne pression.
Un des buts de la présente invention est de proposer un système de pompage et un procédé de descente en pression dans un sas de chargement et de déchargement, qui résolvent à moindres coûts et au moins en partie les inconvénients de l'état de la technique.
A cet effet, l'invention a pour objet un système de pompage destiné à être raccordé à une enceinte de sas de chargement et de déchargement d'un substrat, comportant au moins un premier groupe de pompage primaire ayant une première vitesse de pompage maximale et un deuxième groupe de pompage primaire ayant une deuxième vitesse de pompage maximale, chaque groupe de pompage primaire comprenant une pompe à vide Roots monoétagée et une pompe à vide primaire, la pompe à vide Roots monoétagée étant montée en série et en amont de la pompe à vide primaire dans le sens d'écoulement des gaz à pomper, lesdits premier et deuxième groupes de pompage primaire étant montés en parallèle et configurés pour pomper simultanément l'enceinte du sas de chargement et de déchargement du substrat, caractérisé en ce que ledit premier groupe de pompage primaire présente des caractéristiques de pompage distinctes dudit deuxième groupe de pompage primaire, l'écart entre les première et deuxième vitesses de pompage maximales étant supérieur à 500 m3/h. L'invention a aussi pour objet un système de pompage destiné à être raccordé à une enceinte de sas de chargement et de déchargement d'un substrat, comportant au moins une première pompe à vide primaire ayant une première vitesse de pompage maximale et une deuxième pompe à vide primaire ayant une deuxième vitesse de pompage maximale, les première et deuxième pompes à vide primaire étant montées en parallèle et configurées pour pomper simultanément l'enceinte du sas de chargement et de déchargement du substrat, caractérisé en ce que la première pompe à vide primaire présente des caractéristiques de pompage distinctes de la deuxième pompe à vide primaire, l'écart entre les première et deuxième vitesses de pompage maximales étant supérieur à 500 m3/h.
En utilisant un premier dispositif de pompage en vide primaire, tel qu'un groupe de pompage primaire ou une pompe à vide primaire, de forte inertie en parallèle d'un deuxième dispositif de pompage en vide primaire, tel qu'un groupe de pompage primaire ou une pompe à vide primaire, de faible inertie, au début du pompage, la rotation des rotors des deux dispositifs de pompage en vide primaire va ralentir pour permettre l'absorption de la surcharge occasionnée par le pompage haute pression. Une fois l'excès de charge évacué, le dispositif de pompage en vide primaire de faible inertie va pouvoir ré-accélérer plus rapidement que le dispositif de pompage en vide primaire de forte inertie pour atteindre son plein régime. L'accélération de la rotation du dispositif de pompage en vide primaire de forte inertie sera plus lente mais permettra d'atteindre des débits volumétriques importants à basse pression afin de pouvoir respecter le délai imparti pour atteindre la pression souhaitée. Le système de pompage permet ainsi de bénéficier des avantages et de compenser les points faibles de chaque dispositif de pompage pour obtenir rapidement la pression souhaitée, à un coût maîtrisé.
Selon un exemple de réalisation, la première vitesse de pompage maximale est supérieure ou égale à 2000m3/h, désignant un « dispositif de pompage en vide primaire de forte inertie », et la deuxième vitesse de pompage maximale est inférieure à 2000m3/h, désignant un « dispositif de pompage en vide primaire de faible inertie ».
Par exemple, l'écart entre la première vitesse de pompage maximale et la deuxième vitesse de pompage maximale est compris entre 500 et 3500 m3/h. La différence entre les vitesses de pompage est ainsi suffisamment importante pour qu'un premier dispositif de pompage en vide primaire soit plus performant que le deuxième dispositif de pompage en vide primaire à basse pression et réciproquement à haute pression.
Selon un exemple de réalisation, le système de pompage comporte au moins deux pompes à vide primaire ou au moins deux groupes de pompage primaire, présentant des caractéristiques de pompage sensiblement identiques. L'invention a aussi pour objet un procédé de descente en pression dans une enceinte de sas de chargement et de déchargement par un système de pompage tel que décrit précédemment caractérisé en ce qu'on pompe simultanément l'enceinte de sas de chargement et de déchargement du substrat au moyen d'au moins un premier groupe de pompage primaire ayant une première vitesse de pompage maximale et un deuxième groupe de pompage primaire ayant une deuxième vitesse de pompage maximale, lesdits groupes de pompage primaire étant montés en parallèle et présentant des caractéristiques de pompage distinctes, l'écart entre la première et la deuxième vitesses de pompage maximale desdits groupes de pompage primaire étant supérieur à 500 m3/h.
L'invention a encore pour objet un procédé de descente en pression dans une enceinte de sas de chargement et de déchargement par un système de pompage tel que décrit précédemment, caractérisé en ce qu'on pompe simultanément l'enceinte de sas de chargement et de déchargement du substrat au moyen d'au moins une première pompe à vide primaire ayant une première vitesse de pompage maximale et une deuxième pompe à vide primaire ayant une deuxième vitesse de pompage maximale, lesdites première et deuxième pompes à vide primaire étant montées en parallèle et présentant des caractéristiques de pompage distinctes, l'écart entre la première et la deuxième vitesses de pompage maximale desdites pompes à vide primaire étant supérieur à 500 m3 /h.
D'autres caractéristiques et avantages de l'invention ressortiront de la description suivante, donnée à titre d'exemple, sans caractère limitatif, en regard des dessins annexés sur lesquels:
la figure 1 représente une vue schématique d'un premier exemple de système de pompage raccordé à une enceinte de sas de chargement et de déchargement, la figure 2 est un graphique sur lequel on a représenté la vitesse de pompage (en m3/h) d'un premier groupe de pompage primaire en fonction de la pression (Courbe A, en mbar) et la vitesse de pompage (en m3/h) d'un deuxième groupe de pompage primaire en fonction de la pression (Courbe B, en mbar), et
la figure 3 est un graphique sur lequel on a représenté des courbes de descente en pression (en mbar) en fonction du temps (en secondes) dans une enceinte de sas de chargement et de déchargement pour différentes configurations de pompage, et la figure 4 montre une représentation schématique d'un deuxième exemple de système de pompage raccordé à l'enceinte de sas de chargement et de déchargement. Sur ces figures, les éléments identiques portent les mêmes numéros de référence. La figure 1 montre un premier exemple de système de pompage 1 raccordé à une enceinte 2 de sas de chargement et de déchargement (ou « load lock » en anglais).
De façon connue en soi, l'enceinte 2 de sas de chargement et de déchargement présente une première porte 4 mettant en communication l'intérieur de l'enceinte 2 avec une zone sous pression atmosphérique, telle qu'une salle blanche, pour le chargement d'au moins un substrat 5 de grande dimension, tel qu'un écran plat d'affichage (« flat panel display » en anglais) ou un substrat photovoltaïque. De telles enceintes présentent un volume généralement compris entre 500 et 5000 litres. L'enceinte 2 comporte en outre une deuxième porte 6 pour le déchargement du substrat 5 dans une chambre de traitement 7 après mise sous vide, ainsi qu'un dispositif d'introduction d'un gaz neutre 8, notamment pour le retour à la pression atmosphérique dans l'enceinte 2 après le transfert du substrat 5.
Le système de pompage 1 comporte au moins un premier et un deuxième dispositifs de pompage en vide primaire montés en parallèle, configurés pour pomper simultanément l'enceinte 2.
On désigne par dispositif de pompage en vide primaire, un dispositif de pompage volumétrique dans lequel le gaz à pomper est aspiré, comprimé puis refoulé, pour l'obtention d'un vide primaire, c'est-à-dire pour l'obtention d'une pression comprise entre 102 et 10 Pa. Le dispositif de pompage en vide primaire peut fonctionner dès la pression atmosphérique, par opposition à un dispositif de pompage de type turbomoléculaire.
Le dispositif de pompage en vide primaire peut être une pompe à vide primaire 13a, 13b, 14a, 14b (figure 4) ou un groupe de pompage primaire 9a, 10a, 9b, 10b (figure 1).
Un groupe de pompage primaire 9a, 10a, 9b, 10b comporte une pompe à vide Roots monoétagée 15 et une pompe à vide primaire 13, la pompe à vide Roots monoétagée 15 étant montée en série et en amont de la pompe à vide primaire 3 dans le sens d'écoulement des gaz à pomper (flèche G sur la figure 1).
La pompe à vide Roots monoétagée 5, également appelée « dépresseur Roots », n'est pas une pompe à vide turbomoléculaire car la pompe à vide Roots monoétagée 5 ne peut atteindre qu'un vide limite primaire, c'est-à-dire une basse pression comprise entre 02 et 0 Pa.
Le montage en parallèle des groupes de pompage primaire 9a, 0a, 9b, 10b est assuré par le raccordement des entrées respectives des groupes de pompage primaire 9a, 0a, 9b, 0b à l'enceinte 2 par une ligne de vide comportant une vanne d'isolation 2 permettant l'isolation des groupes de pompage primaire 9a, 0a, 9b, 0b, notamment pour la remontée à pression atmosphérique dans l'enceinte 2. Ce montage est tel qu'au cours de la descente en pression, le gaz à pomper provenant de l'enceinte 2, circule en même temps et en parallèle à travers tous les groupes de pompage primaire 9a, 10a, 9b, 10b.
On prévoit en outre que la ligne de vide 11 présente sensiblement la même conductance entre l'enceinte 2 et l'entrée respective des groupes de pompage primaire 9a, 10a, 9b, 10b pendant la descente en pression. La ligne de vide 11 est notamment dépourvue de dispositifs spécifique dit de pompage lent (ou « soft pumping » en anglais).
Dans l'exemple représenté sur la figure 1 , le système de pompage 1 comporte quatre groupes de pompage primaire 9a, 10a, 9b, 10b.
Comme évoqué précédemment, un groupe de pompage primaire 9a, 10a, 9b, 10b comporte une pompe à vide primaire 13 et une pompe à vide Roots monoétagée 15, la pompe à vide Roots monoétagée 15 étant montée en série et en amont de la pompe à vide primaire 13 dans le sens d'écoulement des gaz à pomper.
La pompe à vide primaire 13 est par exemple une pompe à vide sèche multiétagée, c'est-à- dire comportant plusieurs étages de pompage montés en série les uns à la suite des autres, et fluidiquement raccordés en série les uns à la suite des autres par les canaux inter-étages. Les canaux inter-étages raccordent la sortie de l'étage de pompage qui précède à l'entrée de l'étage qui suit, entre une aspiration de la pompe à vide primaire 13 et son refoulement.
A l'intérieur, la pompe à vide primaire 13 comporte deux rotors de profils identiques, tournant dans les logements en sens opposé. Lors de la rotation, le gaz aspiré est emprisonné dans l'espace libre compris entre les rotors et le stator, puis il est refoulé vers l'étage de pompage suivant. Les rotors sont portés par des arbres qui s'étendent dans les étages de pompage et sont entraînés par un moteur de la pompe à vide primaire 13. Les étages de pompage sont solidarisés ensemble pour former un corps de pompe monobloc, traversé par les arbres des rotors. La pompe à vide primaire 3 est par exemple à lobes rotatifs tels que de type Roots ou d'un principe similaire, tel que de type Claw.
De façon générale, une pompe à vide à lobes rotatifs " Roots " comprend deux rotors de profils identiques, portés par deux arbres s'étendant dans les étages de pompage et entraînés par un moteur pour tourner à l'intérieur d'un stator en sens opposé. Lors de la rotation, le gaz aspiré est emprisonné dans l'espace libre compris entre les rotors et le stator, puis il est refoulé. Le fonctionnement s'effectue sans aucun contact mécanique entre les rotors et le stator de la pompe à vide primaire, ce qui permet l'absence totale d'huile dans les étages de pompage.
La pompe à vide Roots monoétagée 5 se différencie de la pompe à vide primaire 3 par le fait qu'elle ne présente qu'un seul étage de pompage et nécessite l'utilisation d'une pompe à vide primaire 13 raccordée en série à son refoulement. C'est, comme la pompe à vide primaire 13, une pompe à vide volumétrique, c'est-à-dire qui, à l'aide de rotors aspire, transfère puis refoule le gaz à pomper.
Une pompe à vide Roots monoétagée 15 comporte un moteur propre apte à entraîner les rotors en rotation dans son unique étage de pompage.
Ainsi, un étage de pompage d'une pompe à vide primaire multiétagée ne peut pas être considéré comme une pompe à vide Roots monoétagée au sens de la présente invention.
En outre, au moins un premier et au moins un deuxième groupes de pompage primaire 9a, 10a, 9b, 10b présentent des caractéristiques de pompage distinctes.
Dans l'exemple représenté en figure 1, les deux premiers groupes de pompage primaire 9a,
9b présentent des caractéristiques de pompage distinctes des deux deuxièmes groupes de pompage primaire 10a, 10b.
Les caractéristiques de pompage sont généralement définies par la distribution des vitesses de pompage en fonction de la pression telles que représentées par les courbes A et B sur la figure 2. Cette distribution est généralement une donnée du constructeur.
Le premier groupe de pompage primaire 9a présente une première vitesse de pompage maximale par exemple supérieure ou égale à 2000m3/h, désignant un « dispositif de pompage en vide primaire de forte inertie », et le deuxième groupe de pompage primaire 0a présente une deuxième vitesse de pompage maximale inférieure à 2000m3/h, désignant un « dispositif de pompage en vide primaire de faible inertie ».
En outre, l'écart entre la première vitesse de pompage maximale S du premier groupe de pompage primaire 9a, 9b et la deuxième vitesse de pompage maximale S2 du deuxième groupe de pompage primaire 0a, 0b, est supérieur à 500 m3/h, tel que compris entre 500 et 3500 m3/h. La différence entre les groupes de pompage primaire est ainsi suffisamment importante pour qu'un premier groupe de pompage primaire 9a, 9b soit plus performant que le deuxième groupe de pompage primaire 0a, 0b à basse pression et réciproquement à haute pression.
Par exemple, et comme représenté sur la courbe A de la figure 2, la première vitesse de pompage maximale S des deux premiers groupes de pompage primaire 9a, 9b est de l'ordre de 2600m3/h pour une pression correspondante de l'ordre de 0, 35 mbar (ou 35 Pa).
La deuxième vitesse de pompage maximale S2 des deux deuxièmes groupes de pompage primaire 0a, 0b est de l'ordre de 700 m3/h pour une pression correspondante de l'ordre de 0,5 mbar (ou 50 Pa). Du fait de leurs importantes capacités de pompage, les premiers groupes de pompage primaire 9a, 9b présentent un dimensionnement et une inertie plus importants que les deuxièmes groupes de pompage primaire 10a, 10b.
En utilisant ainsi deux premiers groupes de pompage primaire 9a, 9b de forte inertie en parallèle de deux deuxièmes groupes de pompage primaire 10a, 10b de faible inertie, la rotation des rotors des quatre pompes à vide Roots monoétagée 15 va ralentir pour permettre l'absorption de la surcharge occasionnée par le pompage haute pression. Une fois l'excès de charge évacué, les pompes à vide Roots monoétagée 15 des deux deuxièmes groupes de pompage primaire 10a, 10b, de faible inertie vont pouvoir ré-accélérer plus rapidement que les pompes à vide Roots monoétagée 15 des deux premiers groupes de pompage primaire de forte inertie pour atteindre leur plein régime. L'accélération de la rotation des deux pompes à vide Roots monoétagée 15 des premiers groupes de pompage primaire 9a, 9b de forte inertie sera plus lente mais permettra d'atteindre des débits volumétriques importants à basse pression afin de pouvoir respecter le délai imparti pour atteindre la pression souhaitée. Le système de pompage 1 permet ainsi de bénéficier des avantages et de compenser les points faibles de chaque dispositif de pompage pour obtenir rapidement la pression souhaitée, à un coût maîtrisé.
On se réfère maintenant aux courbes de descente en pression en fonction du temps de la figure 3, dans une enceinte de sas de chargement et de déchargement de 1000 litres pour différentes configurations de pompage. Dans cet exemple, une pression de 0,025mbar doit être atteinte en 23, 5 secondes à partir de la pression atmosphérique (environ lOOOmbars). Cette contrainte est illustrée par le point O sur la figure 3.
La courbe C représente la courbe de descente en pression en fonction du temps pour deux premiers groupes de pompage primaire 9a de forte inertie présentant des caractéristiques de pompage identiques, montés en parallèle. On constate qu'une pression de 0, 025 mbar est atteinte à environ 24 secondes.
La courbe D représente la courbe de descente en pression en fonction du temps pour un premier et un deuxième groupes de pompage primaire 9a, 10b présentant des caractéristiques de pompage distinctes, respectivement de forte et de faible inertie, montés en parallèle. On atteint la pression souhaitée de 0,025 mbar à 23 secondes, dans le délai imparti.
La courbe E représente la courbe de descente en pression en fonction du temps pour deux deuxièmes groupes de pompage primaire 10a de faible inertie présentant des caractéristiques de pompage identiques, montés en parallèle. On constate avec cette configuration que, la pression souhaitée de 0, 025 mbar est atteinte après 27 secondes. La courbe F représente la courbe de descente en pression en fonction du temps pour trois premiers groupes de pompage primaire 9a de forte inertie présentant des caractéristiques de pompage identiques, montés en parallèle. On constate qu'une pression de 0,025 mbar est atteinte en environ 16 secondes.
La courbe G représente la courbe de descente en pression en fonction du temps pour trois deuxièmes groupes de pompage primaire 10a de faible inertie présentant des caractéristiques de pompage identiques, montés en parallèle. On constate que la pression souhaitée de 0,025 mbar est atteinte après 18 secondes.
Par conséquent, avec des groupes de pompage primaire présentant des caractéristiques de pompage identiques, il est nécessaire de tripler le montage en parallèle pour respecter la contrainte de pression de 0,025mbar dans le délai imparti de 23, 5 secondes (courbes F et G).
En revanche, avec des groupes de pompage primaire 9a, 10a présentant des caractéristiques de pompage distinctes, choisis de manière appropriée pour combiner des groupes de pompage primaire de forte et de faible inertie (courbe D), on peut atteindre la pression souhaitée dans le délai imparti.
En effet, au début du pompage, à haute pression, la ré-accélération de la vitesse de rotation des rotors après le ralentissement dû à l'absorption de surcharge de gaz, est plus lente pour le premier groupe de pompage primaire à forte inertie. Le premier groupe de pompage primaire à forte inertie présente ainsi une efficacité moindre à haute et moyenne pression que le deuxième groupe de pompage primaire à faible inertie mais permet en revanche d'obtenir une meilleure vitesse de pompage à basse pression. A l'inverse, le deuxième groupe de pompage primaire à faible inertie permet l'obtention d'une forte vitesse de pompage à haute pression mais donne de faibles performances à basse pression.
La figure 4 montre un autre exemple de système de pompage 1 ' raccordé à une enceinte 2 de sas de chargement et de déchargement d'un substrat 5.
Le système de pompage V comporte au moins une première pompe à vide primaire 13a, 13b ayant une première vitesse de pompage maximale et une deuxième pompe à vide primaire 4a, 4b ayant une deuxième vitesse de pompage maximale.
Comme décrit précédemment les pompes à vide primaire 3a, 3b, 4a, 14b peuvent être des pompes à vide sèche multiétagées, c'est-à-dire comportant plusieurs étages de pompage montés en série les uns à la suite des autres, et fluidiquement raccordés en série les uns à la suite des autres par les canaux inter-étages. Les rotors sont portés par des arbres qui s'étendent dans les étages de pompage et sont entraînés par un moteur de la pompe à vide primaire 3a, 13b, 14a, 14b. Les étages de pompage sont solidarisés ensemble pour former un corps de pompe monobloc, traversé par les arbres des rotors. La pompe à vide primaire 13a, 13b, 14a, 14b est par exemple à lobes rotatifs tels que de type Roots ou d'un principe similaire, tel que de type Claw. Elle ne peut atteindre qu'un vide limite primaire, c'est-à-dire une basse pression comprise entre 02 et 01 Pa.
Les première et deuxième pompes à vide primaire 13a, 3b, 14a, 14b sont montées en parallèle et configurées pour pomper simultanément l'enceinte 2 du sas de chargement et de déchargement du substrat.
Au moins une première et une deuxième pompe à vide primaire présentent des caractéristiques de pompage distinctes.
Dans l'exemple représenté en figure 4, les deux premières pompes à vide primaire 13a, 13b présentent des caractéristiques de pompage distinctes des deux pompes à vide primaire 14a, 14b.
Les premières pompes à vide primaire 13a, 13b présentent une première vitesse de pompage maximale par exemple supérieure ou égale à 2000m3/h, et les deuxièmes pompes à vide primaire 14a, 14b présentent une deuxième vitesse de pompage maximale par exemple inférieure à 2000m3/h.
En outre, l'écart entre les premières vitesses de pompage maximale des premières pompes à vide primaire 13a, 13b et les deuxièmes vitesses de pompage maximales des deuxièmes pompes à vide primaire 14a, 14b, est supérieur à 500 m3/h, tel que compris entre 500 et 3500 m3/h.

Claims

REVENDICATIONS
1. Système de pompage destiné à être raccordé à une enceinte (2) de sas de chargement et de déchargement d'un substrat (5), comportant au moins :
- un premier groupe de pompage primaire (9a, 9b) ayant une première vitesse de pompage maximale (SI), et
- un deuxième groupe de pompage primaire (10a, 10b) ayant une deuxième vitesse de pompage maximale (S2),
- chaque groupe de pompage primaire (9a, 9b, 10a, 10b) comprenant une pompe à vide Roots monoétagée (15) et une pompe à vide primaire (13), la pompe à vide Roots monoétagée (15) étant montée en série et en amont de la pompe à vide primaire (13) dans le sens d'écoulement des gaz à pomper,
- lesdits premier et deuxième groupes de pompage primaire (9a, 9b, 10a, 10b) étant montés en parallèle et configurés pour pomper simultanément l'enceinte (2) du sas de chargement et de déchargement du substrat,
- caractérisé en ce que ledit premier groupe de pompage primaire (9a, 9b) présente des caractéristiques de pompage distinctes dudit deuxième groupe de pompage primaire (10a, 10b), l'écart entre les première et deuxième vitesses de pompage maximales (SI, S2) desdits premier et deuxième groupes de pompage primaire (9a, 9b, 10a, 10b) étant supérieur à 500 m3/h.
2. Système de pompage destiné à être raccordé à une enceinte (2) de sas de chargement et de déchargement d'un substrat (5), comportant au moins une première pompe à vide primaire (13a, 13b) ayant une première vitesse de pompage maximale et une deuxième pompe à vide primaire (14a, 14b) ayant une deuxième vitesse de pompage maximale, les première et deuxième pompes à vide primaire (13a, 13b, 14a, 14b) étant montées en parallèle et configurées pour pomper simultanément l'enceinte (2) du sas de chargement et de déchargement du substrat, caractérisé en ce que la première pompe à vide primaire (13a, 13b) présente des caractéristiques de pompage distinctes de la deuxième pompe à vide primaire (14a, 14b), l'écart entre les première et deuxième vitesses de pompage maximales étant supérieur à 500 m3 /h.
3. Système de pompage selon l'une des revendications précédentes, caractérisé en ce que la première vitesse de pompage maximale (SI) est supérieure ou égale à 2000m3/h et la deuxième vitesse de pompage maximale (S2) est inférieure à 2000m3/h. Système de pompage selon l'une des revendications précédentes, caractérisé en ce que l'écart entre la première vitesse de pompage maximale (SI) et la deuxième vitesse de pompage maximale (S2) est compris entre 500 et 3500 m3/h.
Système de pompage selon l'une des revendications précédentes, caractérisé en ce qu'il comporte au moins deux pompes à vide primaire (13a, 13b ; 14a, 14b) ou au moins deux groupes de pompage primaire (9a, 9b ; 10a, 10b) présentant des caractéristiques de pompage sensiblement identiques.
Procédé de descente en pression dans une enceinte (2) de sas de chargement et de déchargement par un système de pompage (1) selon la revendication 1, caractérisé en ce qu'on pompe simultanément l'enceinte (2) de sas de chargement et de déchargement du substrat au moyen d'au moins un premier groupe de pompage primaire (9a, 9b) ayant une première vitesse de pompage maximale (SI) et un deuxième groupe de pompage primaire (10a, 10b) ayant une deuxième vitesse de pompage maximale (S2), lesdits groupes de pompage primaire (9a, 9b, 10a, 10b) étant montés en parallèle et présentant des caractéristiques de pompage distinctes, l'écart entre la première et la deuxième vitesses de pompage maximale étant supérieur à 500 m3/h.
Procédé de descente en pression dans une enceinte (2) de sas de chargement et de déchargement par un système de pompage (1') selon la revendication 2, caractérisé en ce qu'on pompe simultanément l'enceinte (2) de sas de chargement et de déchargement du substrat au moyen d'au moins une première pompe à vide primaire (13a, 13b) ayant une première vitesse de pompage maximale et une deuxième pompe à vide primaire (14a, 14b) ayant une deuxième vitesse de pompage maximale, lesdites pompes à vide primaire (13a, 13b, 14a, 14b) étant montées en parallèle et présentant des caractéristiques de pompage distinctes, l'écart entre la première et la deuxième vitesses de pompage maximale étant supérieur à 500 m3/h.
EP15708739.6A 2014-02-12 2015-02-10 Système de pompage et procédé de descente en pression dans un sas de chargement et de déchargement Active EP3105455B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1451075A FR3017425A1 (fr) 2014-02-12 2014-02-12 Systeme de pompage et procede de descente en pression dans un sas de chargement et de dechargement
PCT/EP2015/052698 WO2015121222A1 (fr) 2014-02-12 2015-02-10 Système de pompage et procédé de descente en pression dans un sas de chargement et de déchargement

Publications (2)

Publication Number Publication Date
EP3105455A1 true EP3105455A1 (fr) 2016-12-21
EP3105455B1 EP3105455B1 (fr) 2018-08-29

Family

ID=50549139

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15708739.6A Active EP3105455B1 (fr) 2014-02-12 2015-02-10 Système de pompage et procédé de descente en pression dans un sas de chargement et de déchargement

Country Status (5)

Country Link
EP (1) EP3105455B1 (fr)
KR (1) KR102229080B1 (fr)
CN (1) CN105980706B (fr)
FR (1) FR3017425A1 (fr)
WO (1) WO2015121222A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3054005B1 (fr) * 2016-07-13 2018-08-24 Pfeiffer Vacuum Procede de descente en pression dans un sas de chargement et de dechargement et groupe de pompage associe
US20230003208A1 (en) * 2019-12-04 2023-01-05 Ateliers Busch Sa Redundant pumping system and pumping method by means of this pumping system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04103767A (ja) * 1990-08-22 1992-04-06 Nec Corp 低圧化学気相成長装置
DE19500823A1 (de) * 1995-01-13 1996-07-18 Sgi Prozess Technik Gmbh Vakuum-Pumpstand
DE19524609A1 (de) * 1995-07-06 1997-01-09 Leybold Ag Vorrichtung zum raschen Evakuieren einer Vakuumkammer
DE10048210B4 (de) * 2000-09-28 2007-02-15 Singulus Technologies Ag Vorrichtung und Verfahren zum Einschleusen eines Werkstücks über eine Vorvakuumkammer in eine Hochvakuumkammer und deren Verwendung
GB0418771D0 (en) * 2004-08-20 2004-09-22 Boc Group Plc Evacuation of a load lock enclosure
FR2883934B1 (fr) * 2005-04-05 2010-08-20 Cit Alcatel Pompage rapide d'enceinte avec limitation d'energie
KR20090071724A (ko) * 2007-12-28 2009-07-02 알카텔진공코리아유한회사 듀얼 진공 펌프 시스템
CN101857111B (zh) * 2010-05-21 2013-05-15 北京航空航天大学 一种用于真空容器容积200m3级的真空抽气系统
CN102966518A (zh) * 2012-11-28 2013-03-13 北京卫星环境工程研究所 大型空间环境模拟器清洁真空抽气系统及抽气方法

Also Published As

Publication number Publication date
KR20160122759A (ko) 2016-10-24
CN105980706A (zh) 2016-09-28
CN105980706B (zh) 2018-06-22
WO2015121222A1 (fr) 2015-08-20
FR3017425A1 (fr) 2015-08-14
KR102229080B1 (ko) 2021-03-16
EP3105455B1 (fr) 2018-08-29

Similar Documents

Publication Publication Date Title
EP3485168B1 (fr) Procédé de descente en pression dans un sas de chargement et de déchargement et groupe de pompage associé
FR2883934A1 (fr) Pompage rapide d'enceinte avec limitation d'energie
EP2501936B1 (fr) Procede et dispositif de pompage a consommation d'energie reduite
EP3607204B1 (fr) Groupe de pompage et utilisation
EP2767717A1 (fr) Pompe à vide multi-étagée de type sèche
EP3737864A1 (fr) Pompe à vide de type sèche et procédé de commande d'un moteur synchrone de pompe à vide
EP1589227A1 (fr) Pompe à vide multi-étagée et installation de pompage comprenant une telle pompe
EP3105455B1 (fr) Système de pompage et procédé de descente en pression dans un sas de chargement et de déchargement
EP1746287A1 (fr) Pompage rapide d'enceinte avec économie d'énergie
EP2549112B1 (fr) Pompe à vide multi-étagée de type sèche
WO2020201218A1 (fr) Pompe à vide de type sèche et installation de pompage
WO2009040412A1 (fr) Pompe a vide a deux rotors helicoïdaux
EP3676589A1 (fr) Détecteur de fuites et procédé de détection de fuites pour le contrôle de l'étanchéité d'objets à tester
FR2968730A1 (fr) Dispositif de pompage a consommation d'energie reduite
WO2021008834A1 (fr) Groupe de pompage
EP3775558B1 (fr) Pompe à vide de type sèche
WO2013087822A1 (fr) Dispositif de pompe a vide multi-etage
EP2823182B1 (fr) Installation de pompage amelioree et le procede de controle d'une telle installation de pompage
EP1249610A1 (fr) Atténuateur dynamique du bruit de refoulement sur les machines à vide rotatives
FR2971018A1 (fr) Pompe a vide primaire, installation pour le traitement de substrats et procede de pompage

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20160817

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180418

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1035441

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015015506

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180829

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181130

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181129

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181229

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181129

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1035441

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015015506

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190210

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190228

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190210

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240228

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240227

Year of fee payment: 10