EP3096537B1 - Wellenförmige aufhängungskantenstruktur und vibrationseinheit - Google Patents

Wellenförmige aufhängungskantenstruktur und vibrationseinheit Download PDF

Info

Publication number
EP3096537B1
EP3096537B1 EP15737028.9A EP15737028A EP3096537B1 EP 3096537 B1 EP3096537 B1 EP 3096537B1 EP 15737028 A EP15737028 A EP 15737028A EP 3096537 B1 EP3096537 B1 EP 3096537B1
Authority
EP
European Patent Office
Prior art keywords
wave
vibration
shaped
vibration element
suspension edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15737028.9A
Other languages
English (en)
French (fr)
Other versions
EP3096537A4 (de
EP3096537A1 (de
Inventor
Hsinmin Huang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tang Band Industries Co Ltd
Original Assignee
Tang Band Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tang Band Industries Co Ltd filed Critical Tang Band Industries Co Ltd
Publication of EP3096537A1 publication Critical patent/EP3096537A1/de
Publication of EP3096537A4 publication Critical patent/EP3096537A4/de
Application granted granted Critical
Publication of EP3096537B1 publication Critical patent/EP3096537B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/16Mounting or tensioning of diaphragms or cones
    • H04R7/18Mounting or tensioning of diaphragms or cones at the periphery
    • H04R7/20Securing diaphragm or cone resiliently to support by flexible material, springs, cords, or strands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2307/00Details of diaphragms or cones for electromechanical transducers, their suspension or their manufacture covered by H04R7/00 or H04R31/003, not provided for in any of its subgroups
    • H04R2307/207Shape aspects of the outer suspension of loudspeaker diaphragms

Definitions

  • the present invention relates to a wave-shaped suspension edge structure of a vibration unit of a loudspeaker.
  • a conventional acoustic device such as a speaker, generally comprises a speaker frame, a vibration diaphragm supported by the speaker frame, a voice coil coupled at the vibration diaphragm, and a magnetic coil unit magnetically inducing with voice coil in order to drive the vibration diaphragm to vibrate for sound reproduction.
  • the vibration diaphragm is mounted at an opening of the speaker frame, wherein when the voice coil is magnetically induced to reciprocatingly move, the vibration diaphragm is driven to vibrate correspondingly.
  • the vibration direction of the vibration diaphragm is uncontrollable, such that the vibration diaphragm cannot reproduce good sound quality.
  • the vibration diaphragm should only be reciprocatingly moved along one direction with even amplitude.
  • the vibration diaphragm should only be reciprocatingly moved in a vertical (up-and-down) direction while the upward displacement of the vibration diaphragm should be the same as the downward displacement of the vibration diaphragm.
  • a vibration unit of a typical conventional speaker is illustrated, the vibration unit can be used as a vibration system of a speaker to connect with the voice coil in response to the input of the audio signals, or the vibration unit can be used as a passive vibration unit to be driven by other speaker systems due to air pressure changes to reproduce an auxiliary sound.
  • a vibration unit of a typical and conventional speaker comprises an intermediate vibration block 1, a suspension 2 around the vibration block 1 and an outer frame 3.
  • the suspension 2 is arch-shaped and is coaxial with the vibration block 1.
  • the suspension 2 cannot retain the vibration directions of the vibration block 1 in the axial direction. Because when the vibration block 1 deviates from the axial direction, the suspension 2 cannot apply a responding pulling force to prevent the deviating movement of the vibration block 1, while an eccentric force of the vibration block 1 does not decrease until being transferred to the connection of the suspension 2 and the outer frame 3. In other words, the suspension 2 cannot effectively prevent the vibration block 1 from deviating.
  • FIG. 2A and Fig. 2B of the drawings a conventional solution is illustrated.
  • a plurality of reinforcing ribs 4 is provided between the suspension 2 and the outer frame 3.
  • the reinforcing ribs 4 provide a retaining effect so as to prevent the vibration block 1 deviating from the axial direction. In other words, when the vibration block 1 is about to deviate, the eccentric force will be transferred to these reinforcing ribs 4 so as to be offset.
  • Fig. 2A and Fig. 2B of the drawings a conventional solution is illustrated.
  • the reinforcing ribs 4 provide a retaining effect so as to prevent the vibration block 1 deviating from the axial direction. In other words, when the vibration block 1 is about to deviate, the eccentric force will be transferred to these reinforcing ribs 4 so as to be offset.
  • the stroke of the vibration unit or the vibration diaphragm need to be as large as possible, and the solutions in the traditional audio devices usually are making a vibration unit or a vibration diaphragm with large size, as a result the conventional acoustic devices are not small enough. While many small sized devices with audio arrangement such as flat-panel TVs, mobile phones and laptops need to be flat and thin, so that the small sized devices can maintain compact product designs and unique shapes. The acoustic arrangement with a big size is not suitable for these small sized products.
  • An advantage of the present invention according to claim 1 is to provide a wave-shaped suspension edge structure of a vibration unit, wherein the vibration unit comprises a vibration element, a supporting frame and an elastic suspension edge provided around the vibration element, the elastic suspension edge forms a wave shape along a circumferential direction of the center axis of the vibration unit, thereby effectively preventing the vibration element from shaking and deviating along the central axis direction.
  • Another advantage of the present invention is to provide a wave-shaped suspension edge structure of a vibration unit, the elastic suspension edge comprises a plurality of wave-shaped retaining sections formed around the vibration element, the plurality of wave-shaped retaining sections form a wave shape along the circumferential direction, so that the plurality of wave-shaped retaining sections retain the vibration element from radial deviation.
  • Another advantage of the present invention is to provide a wave-shaped suspension edge structure of a vibration unit, in the conventional vibration unit, the radial cross section of the suspension is arch-shaped or wave-shaped, while the vibration unit of the present invention forms a wave-shaped shape along the circumferential direction of the central axis of the vibration element, thereby when the vibration element deviates from the center axis and moves along a radial direction, the wave-shaped structure formed by the wave-shaped retaining sections around can effectively prevent the radial deviation, so that the vibration element is retained in the axial direction.
  • Another advantage of the present invention is to provide a wave-shaped suspension edge structure of a vibration unit, a wave-shaped suspension of a conventional vibration unit has a waveform extending along the circumferential direction of the vibrating element and the suspension of the conventional vibration unit cannot offset the eccentric force, while the elastic suspension edge of the present invention the can effectively provide an offset role to prevent the deviation of the vibrating element.
  • Another advantage of the present invention is to provide a wave-shaped suspension edge structure of a vibration unit, a plurality of spaced grooves arranged annularly is formed around the vibration element, so that the elastic suspension edge forms a series of concave-convex structures around the vibration element, and the concave-convex structures can form a wave shape so as to prevent a further radial displacement of the vibration element.
  • Another advantage of the present invention is to provide a wave-shaped suspension edge structure of a vibration unit, the elastic suspension edge can be bonded with the supporting frame and the vibration element by glue, or during a forming process of the elastic suspension edge, the elastic material can be simultaneously coated on the vibrating element, so that the production method is easy and has a low cost.
  • Another advantage of the present invention is to provide a wave-shaped suspension edge structure of a vibration unit, the vibration unit can be used to make speakers or a passive vibration plate providing an auxiliary sound effect, and can also improve the sound quality especially the bass quality.
  • Another advantage of the present invention is to provide a wave-shaped suspension edge structure of a vibration unit, the vibration unit has a small size and volume and can reach to a larger stroke, so that the vibration unit of the present invention can be applied to compact digital products such as flat-panel TVs, mobile phones, laptops and so on.
  • a wave-shaped suspension structure which is provided between a vibration element and a supporting frame, wherein the wave-shaped suspension edge structure comprises an elastic suspension edge provided around the vibration element and extended between the vibration element and the supporting frame, wherein the elastic suspension edge structure comprises a plurality of wave-shaped retaining sections forming a wave-shaped structure around the vibration element along a circumferential direction so as to restrict a movement direction of the vibration element to an axial direction and to prevent the vibration element from shaking and deviating.
  • a groove is formed between two adjacent wave-shaped retaining sections so as to form the wave-shaped structure, wherein the shape of the wave-shaped structure is selected from the group consisting of sinusoidal waveform, sinusoidal waveform, triangular waveform and saw-tooth waveform.
  • each of the wave-shaped retaining sections perpendicularly extends from an outer peripheral surface of the vibration element to an interior peripheral surface of the supporting frame.
  • each of the wave-shaped retaining sections is slantedly extended from an outer peripheral surface of the vibration element to an interior peripheral surface of the supporting frame.
  • each of the wave-shaped retaining sections which is connected to the vibration element has a sinusoidal waveform shaped inner edge.
  • an inner edge of each of the wave-shaped retaining sections which is connected to the vibration element has a shape selected from the group consisting of sinusoidal waveform, sinusoidal waveform, triangular waveform and saw-tooth waveform.
  • each of the wave-shaped retaining sections which is connected to the supporting frame has an outer edge which is arc-shaped along a circumferential direction.
  • each of the wave-shaped retaining sections which is connected to the supporting frame has an outer edge which is sinusoidal-waveform-shaped.
  • each of the wave-shaped retaining sections which is connected to the supporting frame has an outer edge which is arc-shaped along a circumferential direction.
  • each of the wave-shaped retaining sections which is connected to the supporting frame has an outer edge which has a shape selected from the group consisting of sinusoidal waveform, sinusoidal waveform, triangular waveform and saw-tooth waveform.
  • each vibration element connection end of each wave-shaped retaining section which is connected with the supporting frame, comprises two portions forming one angle therebetween.
  • each supporting frame connection end of each wave-shaped retaining section comprises two portions forming one angle therebetween.
  • supporting frame connection ends of each wave-shaped retaining sections are connected to each other to form a ring-shaped outer edge coaxial with the vibration element.
  • the angle formed between the two portions of the vibration element connection ends is selected from the group consisting of an acute angle, a right angle and an obtuse angle.
  • wave crests of the wave-shaped retaining sections have lower height than a level surface of an outer surface of the vibration element.
  • wave crests of the wave-shaped retaining sections have higher height than a level surface of an outer surface of the vibration element.
  • the plurality of wave-shaped retaining sections is arranged symmetrically relative to a center of the vibration element.
  • the vibration element has a shape which is selected from the group consisting of circular, oval, rectangle, and polygon.
  • the vibration element is circular-shaped and each wave-shaped retaining sections are arranged along a radial direction of the vibration element so as to form a radial configuration of the wave-shaped retaining sections.
  • the number of the wave-shaped retaining sections is 2-200 and the ripple amplitude of each wave-shaped retaining sections is 1-500mm.
  • the area of the vibration element is 0.005-0.2m 2 .
  • the vibration element comprises a vibration weighted element and a coating layer coated on the vibration weighted element, and is made of same material with the elastic suspension edge.
  • the elastic suspension edge is bonded with the supporting frame and the vibration element.
  • the vibration unit is connected to a voice coil coupling with a magnetic coil system so as to form a loudspeaker.
  • the vibration unit is a passive vibrating plate sharing a vibration cavity with at least one main vibration speaker, wherein the main vibration speaker makes response to input of audio signals to vibrate to produce sounds and the vibration unit is driven to vibrate to produce an auxiliary sound by the air pressure changes within the vibration cavity.
  • the main vibration speaker and the vibration unit are arranged side by side.
  • the main vibration speaker and the vibration unit are coaxial arranged back-to-back.
  • a vibration unit 100 according to an example which is not part of the present invention is illustrated, wherein the vibration unit 100 comprises a vibration element 10 in the middle, and a suspension structure around the vibration element 10.
  • the suspension structure comprises an elastic suspension edge 20 and a supporting frame 30 positioned around the elastic suspension edge 20.
  • the elastic suspension edge 20 is made of an elastic material and extends between the vibration element 10 and the supporting frame 30 to confine the vibration of the vibration element 10.
  • the shape of the vibration element 10 can be implied as circular, oval, square or other polygonal shape, in this preferred embodiment, the vibration element 10 is elliptical.
  • the elastic suspension edge 20 correspondingly forms a substantially elliptical shape around the vibration element 10.
  • the supporting frame 30 can have a variety of shapes, the present invention is not intended to be limiting in this aspect.
  • the vibration unit 100 further comprises a plurality of retaining ribs 40 extending between the vibration element 10 and the supporting frame 30, so that an undulating structure is formed between the vibration element 10 and the supporting frame 30.
  • the retaining ribs 40 are adapted for providing a confining effect to prevent the vibration element 10 deviating from the center axis of displacement. More specifically, when the vibration element 10 is about to deviate from the center axis to cause an deviation, the corresponding retaining ribs 40 produces an offset biasing force to counteract an eccentric force which causes a displacement of the vibration element 10.
  • the retaining ribs 40 can extend along a direction which is perpendicular to an outer circumferential surface of the corresponding vibration element 10 and an inner circumferential surface of the corresponding supporting frame 30. As shown in Fig. 3 , the retaining ribs 40 can be provided along a radial direction of the vibration element 10 or be provided aslant. This arrangement can produce a corresponding tensile force along these directions so as to effectively prevent the vibration element 10 producing offset along these directions.
  • the retaining ribs 40 can be uniformly arranged around the 10 and is symmetrically arranged with respect to the center of the vibration element 10.
  • the retaining ribs 40 comprises a left retaining rib 401 and a right retaining rib 402.
  • the vibration unit 100 When the vibration unit 100 is positioned vertically and operated normally, the vibration element 10 moves up and down along an axial direction.
  • the right retaining rib 402 When the vibration element 10 is about to deviate to the left, the right retaining rib 402 immediately exerts a reverse tensile force along a right direction on the vibration element 10 so as to prevent the vibration element 10 from further deviating to the left.
  • the left retaining rib 401 immediately exerts a reverse tensile force along a left direction on the vibration element 10 so as to prevent the vibration element 10 from further deviating to the right.
  • the elastic suspension edge 20 and the retaining ribs 40 can effectively confine the vibration direction of the vibration element 10 between the upward and downward direction of the axial directions.
  • the elastic suspension edge 20 can have a structure as shown in Fig. 1 , wherein the elastic suspension edge 20 is provided coaxially with the vibration element 10 and has a wave-shaped or arched cross section along a radial direction of the vibration element 10 as shown in Fig.5B so as to form a ring embossing along a central axis of the vibration element 10. It is worth mentioning that each of the retaining ribs 40 is protruded from the elastic suspension edge 20 to form the undulating structure in a circumferential direction of the vibration element 10.
  • the "wave-shaped" of the present invention is not strictly similar to a wave formed by water, but is a drape structure or is similar to a corrugated paper structure formed around the vibration element 10.
  • the plurality of retaining ribs 40 substantially divides the elastic suspension edge 20 to a plurality of suspension edge portions 201.
  • the number of the retaining ribs 40 is not intended to be limiting, and can be adjusted according to different needs. In the example in the Fig. 3 , eight retaining ribs 40 divide the elastic suspension edge 20 into eight suspension edge portions 201.
  • Each of the retaining ribs 40 is made of elastic materials and can be made of same or different elastic materials with the elastic suspension edge 20. When the retaining ribs 40 and the elastic suspension edge 20 are made of the same elastic materials, the plurality of retaining ribs 40 and the elastic suspension edge 20 can be molded in one piece.
  • a mould is injected with a predetermined elastic material in one molding step, so that a combination with the plurality of retaining ribs 40 and the elastic suspension edge 20 is made.
  • the predetermined elastic material can be coated with the vibration element 10 so as to form a elastic coating layer 12.
  • the vibration element 10 comprises an internal vibration weighted element 11 and the external elastic coating layer 12.
  • the elastic suspension edge 20 and the retaining ribs 40 can be bonded with the supporting frame 30 and the vibration element 10 using a conventional method by glue.
  • the arched structure of the elastic suspension edge 20 can form a ring-shaped groove 202.
  • Each of the retaining ribs 40 can be disposed on two sides of the elastic suspension edge 20 and bulges outwardly, or can be disposed on one side of the vibration element 10.
  • each of the retaining ribs 40 and the ring-shaped groove 202 are positioned on two sides of the elastic suspension edge 20.
  • each of the retaining ribs 40 is not extended into the ring-shaped groove 202 and is extended on one side of the vibration element 10, as shown in Fig. 5B , each of the retaining ribs 40 protrudes from the upper side of the vibration element 10. While a groove 203 is formed between two adjacent retaining ribs 40, so that the elastic suspension edge 20 and the retaining ribs 40 from a undulating structure around the vibration element 10.
  • each of the retaining ribs 40 can be triangle, trapezoidal, rhombus and so on, so that not only each of the retaining ribs 40 is firmly located and connected with each other, but also does not hinder an axial motion of the vibration element 10. More specifically, in the example as shown in Fig.3 and Fig. 5A , each of the retaining ribs 40 is sheet-shaped and has a triangular cross section.
  • the retaining ribs 40 can be connected with the vibration element 10 by one base of the triangle and is connected with the supporting frame 30 by one vertex of the triangle, or the retaining ribs 40 can be connected with the supporting frame 30 by one base of the triangle and is connected with the vibration element 10 by one vertex of the triangle.
  • each of the retaining ribs 40 comprises a vibration element connecting end 41 and a supporting frame connecting end 42.
  • the vibration element connecting end 41 and a outer peripheral surface 101 of the vibration element 10 are line-to-line connected, in other words, the base of the triangle of the retaining ribs 40 and the outer peripheral surface 101 of the vibration element 10 are connected to contact.
  • the supporting frame connecting end 42 and an interior peripheral surface 301 of the supporting frame 30 are point-to-point connected, in other words, the vertex of the triangle of the retaining ribs 40 and the interior peripheral surface 301 of the supporting frame 30 are connected to contact.
  • the shape of the triangle which is the cross section of the retaining ribs 40 can be any triangle shape, such as right-angled triangle, isosceles triangle, regular triangle and so on. It is worth mentioning that each side of these triangles can be straight line and curved line. As shown in Fig. 5A , the connected portion of each of the retaining ribs 40 and the elastic suspension edge 20 can be connected to form an arc shape.
  • this design makes the connection strength of the retaining ribs 40 and the vibration element 10 bigger than the connection strength of the retaining ribs 40 and the supporting frame 30, so that at the same time the vibration element 10 is prevented from shifting, the pushing force which pushes the vibration element 10 to move axially is not quickly transferred to the supporting frame 30, while the stroke which is the axial displacement of the vibration element 10 is not greatly affected.
  • the pulling force which is applied to the retaining ribs 40 by the supporting frame 30 and which pulls the vibration element 10 back to its initial position is not quickly transmitted to the vibration element 10, while the vibration element 10 is pulled to reach the maximum axial displacement as far as possible.
  • the reinforcing ribs 4 and the vibration block 1 are connected line-to-line and have substantially rectangular cross-sections, in this way two ends of the reinforcing ribs 4 have a same connection structure with the vibration block 1 and with the outer frame 3, so that two ends of the reinforcing ribs 4 have a same connection strength.
  • the pulling force which the outer frame 3 and the reinforcing ribs 4 pull back the vibration block 1 can apply to the vibration block 1 in real time, and the axial displacement of the vibration block 1 is influenced.
  • each of the retaining ribs 40 is connected to the supporting frame 30 point-to-point, while other end thereof is connected to the vibration element 10 line-to-line, which not only prevents the vibration element 10 from swaying and shifting, but also not affect the axis displacement of the vibration element 10.
  • a vibration unit 100A according to a first preferred embodiment of the present invention is illustrated, wherein the vibration unit 100A comprises a vibration element 10A and a wave-shaped suspension structure around the vibration element 10A.
  • the wavy suspension structure comprises an elastic suspension edge 20A and a supporting frame 30A.
  • the elastic suspension edge 20A extends between the vibration element 10A and the supporting frame 30A.
  • the elastic suspension edge 20A forms a wave-shaped structure around the vibration element 10A along a circumferential direction thereof.
  • the elastic suspension edge 20A comprises a plurality of wave-shaped retaining sections 21A disposed along the circumferential direction, so that the plurality of wave-shaped retaining sections 21A form the wave-shaped structure around the vibration element 10A. While the suspension 2 in Fig.1 only forms an arched or wave-shaped structure in a radial direction of the vibration block 1, so that the shifting of the vibration element 10A is not effectively prevented.
  • the plurality of wave-shaped retaining sections 21A of the present invention is for providing a retaining effect, so as to prevent a displacement of the vibration element 10A deviating from a center X-axial. More specifically, when the vibration element 10A is about to deviate from the center X-axial to deviate in a certain direction, the corresponding wave-shaped retaining sections 21A applies a pulling force in an opposite direction to offset a deviation force which results in a deviation of the vibration element 10A. It is worth mentioning that these wave-shaped retaining sections 21A can be arranged evenly around the vibration element 10A and be arranged symmetrically relative to a center of the vibration element 10A.
  • each of the wave-shaped retaining sections 21A comprises a left wave-shaped retaining section 21A and a right wave-shaped retaining section 21A.
  • the vibration unit 100A When the vibration unit 100A is positioned vertically and operated normally, the vibration element 10A moves up and down along a X-axis.
  • the vibration element 10A When the vibration element 10A is about to deviate to left along a Y-axial as shown in Fig. 6 , the vibration element 10A will be applied by a reversed pulling force to the right by the right wave-shaped retaining sections 21A so as to prevent the vibration element 10A from further deviating to the left. Otherwise, when the vibration element 10A is about to deviate to right along the Y-axial as shown in Fig.
  • the vibration element l0A will be immediately applied by a reversed pulling force to the left by the left wave-shaped retaining sections 21A so as to prevent the vibration element 10A from further deviating to the right.
  • the elastic suspension edge 20A is able to effectively limit a vibration direction of the vibration element 10A along an upward and downward direction of the X-axial.
  • Each of the wave-shaped retaining sections 21A comprises a vibration element connection end 211A and a supporting frame connection end 212A.
  • a cross section along a circumferential direction of the vibration element connection end 211A is wave-shaped and the vibration element connection end 211A is connected to an outer peripheral surface 101A of the vibration element 10A.
  • the supporting frame connection end 212A is an outer edge, which is connected to an interior peripheral surface 301A of the supporting frame 30A. More specifically, to be described in more detail, as shown in Fig. 8 , in this preferred embodiment, the vibration element connection end 211A has two lower connection sites 2111A, 2112A and an upper connection site 2113A.
  • the lines connecting the two lower connection site 2111A, 2112A and the upper connection site 2113A can form a triangle.
  • Three connecting sites 2121A, 2122A and 2123A are respectively extended from the two lower connection site 2111A, 2112A and the upper connection site 2113A to the interior peripheral surface 301A of the supporting frame 30A.
  • the three connecting sites 2121A, 2122A and 2123A are formed in the supporting frame connection end 212A and lines connecting the three connecting sites 2121A, 2122A and 2123A are along the interior peripheral surface 301 and are arc-shaped.
  • the wave-shaped retaining sections 21A has an inner edge and an outer edge, and the inner edge connecting to the outer peripheral surface 101A of the vibration element 10A is wave-shaped or arch-shaped, the outer edge connecting to the interior peripheral surface 301A of the supporting frame 30A extends along the interior peripheral surface 301A of the supporting frame 30A and is arc-shaped and is positioned in a same level surface perpendicular to the center X-axis of the vibration element 10A.
  • each of the wave-shaped retaining sections 21A is divided into two portions, an angle is formed between the two portions.
  • the formed angle can be acute, right or obtuse angle.
  • This wave-shaped structure of the present invention can prevent the vibration element 10A from skewing, and the pushing force which pushes the vibration element 10A to move axially will not quickly transferred to the supporting frame 30A, while the stroke of the vibration element 10A which is an axial displacement will not be greatly affected.
  • a tensile force which the supporting frame 30A applies to the wave-shaped retaining sections 21A and which pulls the vibration element 10A back to its initial position will not be quickly transmitted to the vibration element 10A, so that the vibration element 10A reaches a maximum axial displacement to the greatest extent.
  • the joint strength of the wave-shaped retaining sections 21A and the vibration element 10A is bigger than the joint strength of the wave-shaped retaining sections 21A and the supporting frame 30A.
  • a connection structure of the inner edge of the wave-shaped retaining sections 21A and the vibration element 10A is triangular-shaped and is more stable, so that the joint strength of the wave-shaped retaining sections 21A and the vibration element 10A is stronger than the joint strength of the outer edge of the wave-shaped retaining sections 21A and the supporting frame 30A.
  • the connection type can be reversed.
  • the outer edge of the wave-shaped retaining sections 21A and the supporting frame 30A have a triangular-shaped connection structure, while the outer edge of the wave-shaped retaining sections 21A and the vibration element 10A have an arc-shaped connection in a same level surface rather than an undulating-shaped connection.
  • a groove 203A is formed between the two adjacent wave-shaped retaining sections 21A, so that a series of the groove 203A which are arranged spaced apart are formed along a circumferential direction of the vibration element 10A and the wave-shaped structure is formed.
  • the wave-shaped retaining sections 21A in the preferred embodiment of the present invention can be molded in one piece by using a mould injected with the predetermined elastic material in a molding step. It is worth mentioning that the in the molding process, the predetermined elastic material can be coated on the vibration element 10A so as to form an elastic coating layer 12A. In other words, as shown in Fig. 9 , the vibration element 10A comprises an internal vibration weighted element 11A and the external elastic coating layer 12A. It is worth mentioning that the elastic suspension edge 20A can also be bonded with the supporting frame 30A and the vibration element 10A using a conventional method by glue.
  • the structure configuration in the alternative mode is similar to the structure configuration in the preferred embodiment except the formed wave height of the wave-shaped retaining sections 21A.
  • the wave crest of each of the wave-shaped retaining sections 21A can be lower than an outer surface 102A of the vibration element 10A and can be lower than an outer surface 302A of the supporting frame 30A.
  • the wave crest of each of the wave-shaped retaining sections 21A' can be higher than the outer surface 102A of the vibration element 10A and can be higher than the outer surface 302A of the supporting frame 30A.
  • the resonant frequency of the vibration unit 100A is 5-200Hz
  • the elastic suspension edge 20A can be made of any thermoset rubber or thermoplastic elastomer material.
  • the elastic suspension edge 20A also has a predetermined rigidity.
  • the shore hardness of the elastic suspension edge 20A preferably is about 5-85A.
  • the ripple amplitude of each of the wave-shaped retaining sections 21A is 1-500mm and the ripple number of each of the wave-shaped retaining sections 21A is 2-100.
  • the area size of the vibration element 10A is 0.005-0.2m 2 . It is worth mentioning that these detailed numerical values are only examples and are not intended to be limiting, and can be adjusted according to needs in practical use. It is worth mentioning that these detailed numerical values are suitable for the vibration units obtained in other embodiments of the present invention.
  • the vibration unit 100A can be used as a vibration system of a speaker 1000A.
  • the vibration element 10A of the vibration unit 100A is connected with a voice coil 110A.
  • the voice coil 110A has an electromagnetic induction with a magnetic coil system 120A, so that when the speaker 1000A is input with the audio signal, the voice coil 110A is magnetically induced to reciprocating move in the magnetic field of the magnetic coil system 120A, so that the vibration element 10A is driven to vibrate to produce sound.
  • the elastic suspension edge 20A of the present invention retains the movement of the vibration element 10A in the axial direction by the wave-shaped structure, so that the reproduced sound is purer.
  • the vibration unit 100A can be used as a passive vibrating plate of a speaker 1000A'.
  • the speaker 1000A' comprises a main vibration speaker 1100A' and the vibration unit 100A.
  • the main vibration speaker 1100A' vibrates to produce sounds in response to the input of the audio signal.
  • the vibration unit 100A and the main vibration speaker 1100A' share a vibration cavity 1200A'.
  • the vibration unit 100A is also driven to vibrate to produce an auxiliary sound effect by means of the air pressure changes within the vibration cavity 1200A', so that the sound quality is improved, and especially the bass quality is strengthened.
  • the main vibration speaker 1100A can be a conventional speaker structure and it can also be a horn or speaker made by the vibration unit 100A of the present invention.
  • the speaker 1000A' comprises one or more main vibration speakers 1100A' and one or more vibration units 1100A and the main vibration speakers 1100A' and the vibration units 100A are arranged side by side or coaxial arranged back-to-back as shown in Fig. 11A .
  • the speaker 1000A and the passive vibrating plate of the speaker 1000A both use the vibration unit 100A according to the preferred embodiment of the present invention.
  • the vibration unit according to other embodiment can be applied to make the speaker 1000A and the passive vibrating plate of the speaker 1000A'.
  • a vibration unit 100B according to an example which does not form part of the present invention is illustrated, wherein the vibration unit 100B comprises a vibration element 10B and a wave-shaped suspension structure around the vibration element 10B.
  • the wary suspension structure comprises an elastic suspension edge elastic suspension edge 20B and a supporting frame 30B.
  • the elastic suspension edge 20B is extended between the vibration element 10B and the supporting frame 30B.
  • the elastic suspension edge 20B forms a wave-shaped structure around the vibration element 10B along a circumferential direction thereof.
  • the elastic suspension edge 20B comprises a plurality of wave-shaped retaining sections 21B disposed along the circumferential direction, so that the plurality of wave-shaped retaining sections 21B form the wave-shaped structure around the vibration element 10B.
  • the vibration unit 100B according to the example and the vibration unit 100A according to the example have a similar structure except that two ends of each of the wave-shaped retaining sections 21B which are a vibration element connection end 211B and a 212B have the same structure.
  • an inner edge and an outer edge of the wave-shaped retaining sections 21B are wave-shaped or arch-shaped.
  • an upper vertex and two lower bottom points are connected to form a triangle.
  • the vibration element 10B is circular.
  • the plurality of wave-shaped retaining sections 21B is disposed along a radial direction of the vibration element 10B so as to form a plurality of radial wave-shaped retaining sections 21B.
  • the wave-shaped retaining sections 21B can be radially and coaxially arranged.
  • the plurality of wave-shaped retaining sections 21B retains the position of the vibration element 10B in the radial direction to prevent the vibration element 10B deviates along a certain radial direction, so that the vibration element 10B only move along the axial direction.
  • a vibration unit 100C in an alternative mode is illustrated, wherein the vibration unit 100C comprises a vibration element 10C and a wave-shaped suspension structure around the vibration element 10C.
  • the wavy suspension structure comprises an elastic suspension edge 20C and a supporting frame 30C.
  • the elastic suspension edge 20C is extended between the vibration element 10C and the supporting frame 30C.
  • the elastic suspension edge 20C forms a wave-shaped structure around the vibration element 10C along a circumferential direction thereof.
  • the elastic suspension edge 20C comprises multiple sets of connecting ribs 22C.
  • Each set of the connecting ribs 22C comprise at least one top connecting rib 221C and at least one bottom connecting rib 222C adjacent to the top connecting rib 221C.
  • the elastic suspension edge 20C further comprises a connecting section 23C respectively extended between the adjacent connecting ribs 22C (221C, 222C).
  • the top connecting rib 221C is extended from the top side of an outer peripheral surface 101C of the vibration element 10C to an interior peripheral surface 301C of the supporting frame 30C.
  • the bottom connecting rib 222C is extended from the bottom side of the outer peripheral surface 101C to the interior peripheral surface 301C of the supporting frame 30C.
  • the arc-shaped connecting section 23C is formed between the top connecting rib 221C and the bottom connecting rib 222C.
  • the connecting ribs 22C alternatively extend from the top side and the bottom side of the vibration element 10C to the supporting frame 30C, so that the elastic suspension edge 20C forms the wave-shaped structure around the vibration element 10C.
  • the plurality of grooves 203C is also formed around the vibration element 10C.
  • the connecting ribs 22C and the connecting section 23C can be made of different or same elastic materials.
  • the elastic suspension edge 20C is made by injecting an elastic material into a mould such that the connecting ribs 22C and the connecting section 23C are integrally formed, so that a similar structure to the vibration unit 100B in the above first preferred embodiment is obtained.
  • the vibration element 10C in the preferred embodiment of the present invention can be circular, so that these connecting ribs 22C are disposed along a radial direction of the vibration element 10C, so that the plurality of radial connecting ribs 22C are formed to prevent the vibration element 10C from skewing to the radial direction.
  • a vibration unit 100D according to a second preferred embodiment of the present invention is illustrated, wherein the vibration unit 100D comprises a vibration element 10D and a wave-shaped suspension structure around the vibration element 10D.
  • the wavy suspension structure comprises an elastic suspension edge 20D and a supporting frame 30D.
  • the elastic suspension edge 20D is extended between the vibration element 10D and the supporting frame 30D.
  • the elastic suspension edge 20D forms a wave-shaped structure around the vibration element 10D along a circumferential direction thereof.
  • the vibration unit 100D according to the embodiment and the wave-shaped structure according to the first preferred embodiment have a similar structure, and the vibration unit 100D comprises a plurality of wave-shaped retaining sections 21D.
  • each of the wave-shaped retaining sections 21D has a vibration element connection end 211D and a supporting frame connection end 212D.
  • An outer edge which is the vibration element connection end 211D and which is connected to an outer peripheral surface 101D of the vibration element 10D does not form a sharp corner, and a rectangular will be obtained if connecting each vertexes.
  • the waveform in this preferred embodiment is about square wave. It is expected that each above vertexes can be connected to form a trapezoid.
  • the vibration unit 100D in this embodiment of the present invention is obtained by a transform of the vibration unit 100C in the previous example.
  • the vibration unit 100D in the embodiment of the present invention is obtained.
  • the vibration element connection end 211D which is an inner edge of the wave-shaped retaining sections 21D and which is connected to the outer peripheral surface 101D of the vibration element 10D can be a poly-line comprising different line segments
  • the supporting frame connection end 212D which is an outer edge of the wave-shaped retaining sections 21D and which is connected to the interior peripheral surface 301D of the supporting frame 30D only forms one line, so that the connecting strength of the elastic suspension edge 20D and the vibration element 10D is bigger than the connecting strength of the elastic suspension edge 20D and the supporting frame 30D.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Audible-Bandwidth Dynamoelectric Transducers Other Than Pickups (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)

Claims (15)

  1. Wellenförmige Aufhängungskantenstruktur für einen Lautsprecher, welche ein Vibrationselement (10A) und einen Tragrahmen (30A) umfasst, wobei die wellenförmige Aufhängungskantenstruktur eine elastische Aufhängungskante (20A) umfasst, die angeordnet ist, um sich um das Vibrationselement (10A) herum zu erstrecken und sich zwischen dem Vibrationselement (10A) und dem Tragrahmen (30A) zu erstrecken, wobei die elastische Aufhängungskante mehrere wellenförmige Halteabschnitte (21A) umfasst, die entlang einer Umfangsrichtung um das Vibrationselement (10A) herum eine wellenförmige Struktur bilden, um sicherzustellen, dass eine Bewegungsrichtung des Vibrationselements (10A) entlang einer axialen Richtung beibehalten wird, und um zu verhindern, dass das Vibrationselement (10A) wackelt und abweicht,
    dadurch gekennzeichnet, dass eine Welligkeitsamplitude von jedem der wellenförmigen Halteabschnitte (21A) von einer Außenumfangsoberfläche (101A) des Vibrationselements (10A) zu einer Innenumfangsoberfläche (301A) des Tragrahmens (30A) abnimmt.
  2. Wellenförmige Aufhängungskantenstruktur nach Anspruch 1, wobei zwischen zwei benachbarten wellenförmigen Halteabschnitten (21A) eine Rille (203A) gebildet ist, um so die wellenförmige Struktur zu bilden, wobei die Form der wellenförmigen Struktur aus der Gruppe bestehend aus einer sinusförmigen Wellenform, einer dreieckigen Wellenform und einer Sägezahnwellenform ausgewählt wird.
  3. Wellenförmige Aufhängungskantenstruktur nach Anspruch 1, wobei sich jeder der wellenförmigen Halteabschnitte (21A) im rechten Winkel von einer Außenumfangsoberfläche (101A) des Vibrationselements (10A) zu einer Innenumfangsoberfläche (301A) des Tragrahmens (30A) erstreckt.
  4. Wellenförmige Aufhängungskantenstruktur nach Anspruch 1, wobei jeder der wellenförmigen Halteabschnitte (21A), der dazu ausgebildet ist, mit dem Schwingungselement (10A) verbunden zu werden, eine sinuswellenförmige Innenkante aufweist, wobei jeder der wellenförmigen Halteabschnitte (21A), der dazu ausgebildet ist, mit dem Tragrahmen (30A) verbunden zu werden, eine Außenkante aufweist, die eine Bogenform entlang einer Umfangsrichtung oder eine Sinuswellenform ist.
  5. Wellenförmige Aufhängungskantenstruktur nach Anspruch 1, wobei eine Innenkante von jedem der wellenförmigen Halteabschnitte (21A), die dazu ausgebildet ist, mit dem Vibrationselement (10A) verbunden zu werden, eine Form aufweist, die aus der Gruppe bestehend aus einer Sinuswellenform, einer Dreieckswellenform und einer Sägezahnwellenform ausgewählt wird, wobei jeder der wellenförmigen Halteabschnitte (21A), der dazu ausgebildet ist, mit dem Tragrahmen (30A) verbunden zu werden, eine Außenkante aufweist, die bogenförmig entlang einer Umfangsrichtung ist oder eine Form aufweist, die aus der Gruppe bestehend aus Sinuswellenform, Dreieckswellenform und Sägezahnwellenform ausgewählt wird.
  6. Wellenförmige Aufhängungskantenstruktur nach Anspruch 1, wobei jedes Vibrationselementverbindungsende (211A) von jedem der wellenförmigen Halteabschnitte (21A), welches dazu ausgebildet ist, mit dem Vibrationselement (10A) verbunden zu werden, zwei Abschnitte umfasst, die dazwischen einen Winkel bilden, wobei Tragrahmenverbindungsenden (212A) der wellenförmigen Halteabschnitte (21A), die dazu ausgebildet sind, mit dem Tragrahmen (30A) verbunden zu werden, dazu ausgebildet sind, miteinander verbunden zu werden, um eine ringförmige Außenkante koaxial mit dem Vibrationselement (10A) zu bilden.
  7. Wellenförmige Aufhängungskantenstruktur nach Anspruch 1, wobei Wellenberge der wellenförmigen Halteabschnitte (21A) eine geringere Höhe als eine ebene Oberfläche einer Außenoberfläche des Vibrationselements (10A) aufweisen.
  8. Wellenförmige Aufhängungskantenstruktur nach Anspruch 1, wobei jeder von Wellenbergen von mindestens einem der wellenförmigen Halteabschnitte (21A) eine Höhe aufweist, die höher als eine ebene Oberfläche einer Außenoberfläche des Vibrationselements (10A) ist.
  9. Wellenförmige Aufhängungskantenstruktur nach Anspruch 1, wobei die wellenförmigen Halteabschnitte (21A) relativ zu einer Mitte des Vibrationselements (10A) symmetrisch angeordnet sind.
  10. Vibrationseinheit (100A), umfassend ein Vibrationselement (10A), einen Tragrahmen (30A) und eine wellenförmige Aufhängungskantenstruktur nach einem beliebigen der Ansprüche 1 bis 9.
  11. Vibrationseinheit (100A) nach Anspruch 10, wobei das Vibrationselement (10A) eine Form aufweist, die aus der Gruppe bestehend aus kreisförmig, oval, rechteckig und vieleckig ausgewählt wird, wobei eine Anzahl der wellenförmigen Halteabschnitte (21A) 2-200 beträgt und die Welligkeitsamplitude von jedem wellenförmigen Halteabschnitt (21A) 1-500 mm ist, wobei die Flächengröße des Vibrationselements (10A) 0,005-0,2 m2 beträgt.
  12. Vibrationseinheit (100A) nach Anspruch 10, wobei das Vibrationselement (10A) ein Vibrationsgewichtsbelastungselement (11) und eine Beschichtungslage (12), die auf dem Vibrationsgewichtsbelastungselement (11) aufgebracht ist, umfasst, wobei die Beschichtungslage (12) aus demselben Material wie die elastische Aufhängungskante (20A) hergestellt ist.
  13. Vibrationseinheit (100A) nach Anspruch 10, wobei die elastische Aufhängungskante (20A) mit dem Halterahmen (30A) und dem Vibrationselement (10A) verbunden ist, wobei die Vibrationseinheit (100A) mit einer Schwingspule (110A) verbunden ist, die mit einem Magnetspulensystem (120A) gekoppelt ist, um einen Lautsprecher zu bilden.
  14. Vibrationseinheit (100A) nach Anspruch 10, wobei die Vibrationseinheit (100A) eine passive Vibrationsplatte ist, die sich einen Vibrationshohlraum (1200A') mit mindestens einem Hauptvibrationslautsprecher (1100A') teilt, wobei der Hauptvibrationslautsprecher (1100A') vibriert, um als Reaktion auf eine Eingabe von Audiosignalen Töne zu erzeugen, wobei die Vibrationseinheit (100A) angesteuert wird, um zu vibrieren, um einen Zusatzton mittels der Luftdruckänderungen innerhalb des Vibrationshohlraums (1200A') zu erzeugen, wobei der Hauptvibrationslautsprecher (1100A') und die Vibrationseinheit (100A) Seite an Seite angeordnet sind.
  15. Vibrationseinheit (100A) nach Anspruch 10, wobei die Vibrationseinheit (100A) eine passive Vibrationsplatte ist, die sich einen Vibrationshohlraum (1200A') mit mindestens einem Hauptvibrationslautsprecher (1100A') teilt, wobei der Hauptvibrationslautsprecher (1100A') vibriert, um als Reaktion auf eine Eingabe von Audiosignalen Töne zu erzeugen, wobei die Vibrationseinheit (100A) angesteuert wird, um zu vibrieren, um einen Zusatzton mittels der Luftdruckänderungen innerhalb des Vibrationshohlraums (1200A') zu erzeugen, wobei der Hauptvibrationslautsprecher (1100A') und die Vibrationseinheit (100A) koaxial Rückseite an Rückseite angeordnet sind.
EP15737028.9A 2014-01-16 2015-01-14 Wellenförmige aufhängungskantenstruktur und vibrationseinheit Active EP3096537B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201410019799 2014-01-16
CN201410328141.6A CN104796825B (zh) 2014-01-16 2014-07-10 一种波浪形悬边结构
PCT/CN2015/070682 WO2015106685A1 (zh) 2014-01-16 2015-01-14 波浪形悬边结构及振动单元

Publications (3)

Publication Number Publication Date
EP3096537A1 EP3096537A1 (de) 2016-11-23
EP3096537A4 EP3096537A4 (de) 2017-10-18
EP3096537B1 true EP3096537B1 (de) 2019-10-16

Family

ID=53542410

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15737028.9A Active EP3096537B1 (de) 2014-01-16 2015-01-14 Wellenförmige aufhängungskantenstruktur und vibrationseinheit

Country Status (3)

Country Link
EP (1) EP3096537B1 (de)
CN (1) CN104796825B (de)
WO (1) WO2015106685A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207340149U (zh) * 2016-04-01 2018-05-08 宁波升亚电子有限公司 全方位发声式音箱
CN207039882U (zh) * 2016-05-18 2018-02-23 宁波升亚电子有限公司 辐射器及双悬边扬声器和音箱
CN109788408B (zh) * 2017-11-10 2023-08-22 惠州迪芬尼声学科技股份有限公司 扬声器的悬边结构
CN111920394A (zh) * 2020-06-23 2020-11-13 泰安市泰医医疗器械有限公司 气囊式脉搏探头及其制作和使用方法
WO2023108466A1 (en) * 2021-12-15 2023-06-22 Sonos, Inc. Suspension elements for playback devices
WO2023274399A1 (en) * 2021-07-02 2023-01-05 Sonos, Inc. Systems and methods for stabilizing playback device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB368926A (en) * 1931-01-29 1932-03-17 Victor Talking Machine Co Improvements in acoustic diaphragms
US2442791A (en) * 1945-09-07 1948-06-08 Bell Telephone Labor Inc Acoustic device
JPS5434589Y2 (de) * 1978-02-23 1979-10-23
GB2374753B (en) * 2001-01-29 2004-12-22 Goodmans Loudspeakers Ltd Loudspeaker suspension
JP5088526B2 (ja) * 2005-04-18 2012-12-05 ソニー株式会社 噴流発生装置及び電子機器
CN201403189Y (zh) * 2009-04-17 2010-02-10 天津市中环电子信息集团有限公司 一种超薄型扬声器复合盆
CN201499297U (zh) * 2009-09-24 2010-06-02 无锡杰夫电声有限公司 不用定位支片的薄型扬声器
CN202135035U (zh) * 2011-06-27 2012-02-01 歌尔声学股份有限公司 水平振动电机
CN102984631B (zh) * 2012-11-14 2015-12-09 宁波升亚电子有限公司 音效片、由音效片制成的扬声器、音箱及其制备工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3096537A4 (de) 2017-10-18
WO2015106685A1 (zh) 2015-07-23
CN104796825A (zh) 2015-07-22
EP3096537A1 (de) 2016-11-23
CN104796825B (zh) 2019-07-12

Similar Documents

Publication Publication Date Title
EP3096537B1 (de) Wellenförmige aufhängungskantenstruktur und vibrationseinheit
US9961448B2 (en) Diaphragm and suspension edge having elastic ribs, and speaker
US6851513B2 (en) Tangential stress reduction system in a loudspeaker suspension
WO2018006535A1 (zh) 一种无源辐射器及扬声器
US9398376B2 (en) Electroacoustic transducer
CN102984631B (zh) 音效片、由音效片制成的扬声器、音箱及其制备工艺
CN101946525A (zh) 音频转换器用振动体及扬声器装置
KR20060069450A (ko) 파상막을 갖는 라우드스피커
US10771901B2 (en) Loudspeaker driver surround
US10142736B2 (en) Electroacoustic transducer
CN104796824B (zh) 一种扬声器振动单元的悬边结构
CN204069313U (zh) 一种波浪形振动单元
CN204046800U (zh) 一种波浪形振动单元
CN204231653U (zh) 一种扬声器振动单元
US10129650B2 (en) Vibration unit for acoustic arrangement
CN204231654U (zh) 一种波浪形振动单元
CN104735593B (zh) 用于声音装置的振动单元
JP4617518B2 (ja) スピーカー振動板およびこれを用いたスピーカー
JP2016082321A (ja) 電気音響変換器
CN204362299U (zh) 弹肋式悬边
JPH03213100A (ja) スピーカ
JP6481480B2 (ja) 電気音響変換器
CN202957949U (zh) 音效片、由音效片制成的扬声器及音箱
CN211959518U (zh) 振膜及发声器件
CN108810755A (zh) 膜片组件、传感器及制造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160816

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

A4 Supplementary search report drawn up and despatched

Effective date: 20170919

RIC1 Information provided on ipc code assigned before grant

Ipc: H04R 7/20 20060101ALI20170912BHEP

Ipc: H04R 9/06 20060101AFI20170912BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190415

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20190905

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015039901

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1192492

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191115

REG Reference to a national code

Ref country code: FI

Ref legal event code: FGE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191016

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20191016

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1192492

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200217

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200117

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200116

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015039901

Country of ref document: DE

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200216

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

26N No opposition filed

Effective date: 20200717

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200114

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG PATENT- UND MARKENANWAELTE, CH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20221213

Year of fee payment: 9

Ref country code: FI

Payment date: 20221214

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230201

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240301

Year of fee payment: 10

Ref country code: GB

Payment date: 20240301

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240305

Year of fee payment: 10

Ref country code: FR

Payment date: 20240301

Year of fee payment: 10