EP3094915B1 - Sealed and thermally insulating tank comprising metal strips - Google Patents

Sealed and thermally insulating tank comprising metal strips Download PDF

Info

Publication number
EP3094915B1
EP3094915B1 EP14831013.9A EP14831013A EP3094915B1 EP 3094915 B1 EP3094915 B1 EP 3094915B1 EP 14831013 A EP14831013 A EP 14831013A EP 3094915 B1 EP3094915 B1 EP 3094915B1
Authority
EP
European Patent Office
Prior art keywords
tank
metal
strake
thickness
strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14831013.9A
Other languages
German (de)
French (fr)
Other versions
EP3094915A2 (en
Inventor
Nicolas LAURAIN
Roland PANIER
Pierre-Louis Reydet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gaztransport et Technigaz SA
Original Assignee
Gaztransport et Technigaz SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaztransport et Technigaz SA filed Critical Gaztransport et Technigaz SA
Publication of EP3094915A2 publication Critical patent/EP3094915A2/en
Application granted granted Critical
Publication of EP3094915B1 publication Critical patent/EP3094915B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/025Bulk storage in barges or on ships
    • F17C3/027Wallpanels for so-called membrane tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/001Thermal insulation specially adapted for cryogenic vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0157Polygonal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0358Thermal insulations by solid means in form of panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0626Multiple walls
    • F17C2203/0631Three or more walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0648Alloys or compositions of metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0648Alloys or compositions of metals
    • F17C2203/0651Invar
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/22Assembling processes
    • F17C2209/221Welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/011Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/014Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/035Propane butane, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/012Reducing weight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • F17C2270/0107Wall panels

Definitions

  • the invention relates to the field of the manufacture of sealed and thermally insulating tanks and their constituent parts.
  • the present invention relates to tanks for the storage or transport of cold or hot liquids, for example tanks for the storage and / or transport of liquefied gas by sea.
  • LNG liquefied natural gas
  • a storage tank integrated in the hull of a ship whose sealed barrier, in particular a primary sealed barrier in contact with the product contained in the tank, consists of metal strakes which are connected together, in leaktight manner, by raised edges defining deformable bellows on either side of a welding wing. These strakes are connected at their ends to a connecting ring through the furring sheets both welded to the connecting ring and strakes.
  • such a tank may comprise one or more of the following characteristics.
  • the metal strake consists of a single metal strip extending in one piece between the two opposite edges of the tank wall, and in which the two end portions of the strip are more thick as the intermediate portion and are each assembled to the respective stop structure at opposite edges of the vessel wall.
  • the metal strake comprises a second continuous metal strip joined end to end with the first continuous metal strip in the extension of the first continuous metal strip, in which each of the two continuous metal strips has, at the level of the zone assembly of the two metal strips, an end portion thicker than the intermediate portion of the strip.
  • At least one of the two continuous metal strips has, at the end opposite the assembly zone of the two metal strips, a second end portion that is thicker than the intermediate portion of the strip, the second end portion being joined to the stop structure at an edge of the vessel wall.
  • At least one of the two continuous metal strips has, at the end opposite the assembly zone of the two metal strips, a second end portion of the same thickness as the intermediate portion of the strip, the second end portion being joined to the stop structure at an edge of the vessel wall.
  • each end portion of the strake is sealingly welded to the respective stop structure.
  • the strake is welded to the stop structure by a CMT (Cold Metal Transfer) or TIG (Tungsten Inert Gas) process or by welding. Cold.
  • CMT Cold Metal Transfer
  • TIG Tungsten Inert Gas
  • the stop structure comprises a plate positioned above the insulation barrier and the end portion comprises a first segment resting on the plate of the stop structure and a second segment in pressing on the thermal insulation barrier, the first segment and the second segment being connected by a folded segment forming a recess in the direction of thickness of the metal strake.
  • the welding wings are interrupted before the end of the metal strake, the raised edges of two adjacent metal strips being welded to each other by an edge weld disposed on a portion of their length to the end of the metal strake.
  • the edge edge welds are made using a cold metal or TIG with wire transfer method.
  • the end portion has a thickness greater than or equal to 0.9 mm.
  • the intermediate portion has a thickness of less than 0.9 mm and preferably a thickness of 0.7 mm.
  • the stop structure is welded to a supporting wall.
  • the metal strake and the stop structure are made of nickel alloy steel with a low coefficient of expansion, in particular known as Invar®.
  • the metal strake is made of iron-based alloy and comprises by weight: 34.5 % ⁇ Or ⁇ 53.5 % 0.15 % ⁇ mn ⁇ 1.5 % 0 ⁇ Yes ⁇ 0.35 % , preferably 0.1 % ⁇ Yes ⁇ 0.35 % 0 ⁇ VS ⁇ 0.07 % optionally: 0 ⁇ Co ⁇ 20 % 0 ⁇ Ti ⁇ 0.5 % 0.01 % ⁇ Cr ⁇ 0.5 % the rest being iron and impurities necessarily resulting from the elaboration.
  • the thickness varies gradually over a distance of 500mm. According to embodiments, the end portion extends over 400mm.
  • Such a tank can be part of a land storage facility, for example to store LNG or be installed in a floating structure, coastal or deep water, including a LNG tank, a floating storage and regasification unit (FSRU) , a floating production and remote storage unit (FPSO) and others.
  • FSRU floating storage and regasification unit
  • FPSO floating production and remote storage unit
  • a vessel for the transport of a cold liquid product comprises a double hull and a aforementioned tank disposed in the double hull.
  • the invention also provides a method of loading or unloading such a vessel, in which a cold liquid product is conveyed through isolated pipes from or to a floating or land storage facility to or from the vessel vessel.
  • the invention also provides a transfer system for a cold liquid product, the system comprising the abovementioned vessel, insulated pipes arranged to connect the vessel installed in the hull of the vessel to a floating storage facility. or terrestrial and a pump for driving a flow of cold liquid product through the insulated pipelines from or to the floating or land storage facility to or from the vessel vessel.
  • the first reinforced zone has a first average grain size and the second zone has a second average grain size, the difference in absolute value between the first grain size and the second grain size being less than or equal to at 0.5 index according to ASTM E1 12-10.
  • the iron-based alloy comprises by weight: 34.5 ⁇ Or ⁇ 42.5 % 0.15 % ⁇ mn ⁇ 0.5 % 0.1 % ⁇ Yes ⁇ 0.35 % 0,010 % ⁇ VS ⁇ 0,050 % optionally: 0 ⁇ Co ⁇ 20 % 0 ⁇ Ti ⁇ 0.5 % 0.01 % ⁇ Cr ⁇ 0.5 % the rest being iron and impurities necessarily resulting from the elaboration.
  • the invention starts from the observation that the quantity of material necessary for the manufacture of a bearing structure comprising a sealed and thermally insulated tank depends on the fatigue resistance of the tank.
  • the fatigue resistance of the tank depends on the fatigue resistance of the welds present on the impervious barriers forming the tank.
  • an idea underlying the invention is to provide a sealed and thermally insulated tank which comprises a sealed barrier having good fatigue resistance while limiting the amount of material necessary for producing such a sealed barrier.
  • the impervious barrier is made using strakes extending in one piece between two stop structures, and the strakes have a variable thickness so as to be directly connected to the structures. stop at their ends while having a smaller thickness between these ends.
  • the waterproof barrier is made using strakes composed of several bands welded end to end to each other at the reinforced portions of these strips, so that the resistance of this welded assembly is high.
  • Certain aspects of the invention start from the idea of connecting the strakes to the stop structures with the aid of a weld having good resistance to fatigue.
  • the figure 1 represents watertight and insulating walls of a tank integrated in a carrying structure of a ship.
  • the bearing structure of the tank is here constituted by the inner hull of a double-hulled vessel, the bottom wall of which has been represented by the number 1, and by transverse partitions 2, which define compartments in the inner hull of the ship.
  • the walls of the supporting structure are adjacent two by two at edges.
  • a corresponding wall of the tank is made by superposing, successively, a secondary insulation layer 3, a secondary sealed barrier 4, a primary insulation layer 5 and a primary sealed barrier 6.
  • a connecting ring 10 in the form of a square tube.
  • the connecting ring 10 forms a structure which makes it possible to take up the tension forces resulting from the thermal contraction, in particular the metallic elements forming the impermeable barriers, the deformation of the hull at sea and the movements of the cargo.
  • a possible structure of the connecting ring 10 is described in more detail in FR-A-2549575 .
  • the primary insulating layer and the secondary insulating layer consist of heat-insulating element and more particularly parallelepiped heat insulating boxes 20 and 21 juxtaposed in a regular pattern.
  • Each insulating casing 20 and 21 has a bottom panel and a cover panel 23.
  • Side panels 24 and internal webs 25 extend between the bottom panel and the cover panel 23.
  • the panels delimit a space in which is setting up a heat insulating lining which may for example consist of expanded perlite.
  • Each box 20 and 21 is held on the supporting structure by means of anchoring members 26.
  • the boxes 20 and 21 of the primary insulating layer 5 and the secondary insulating layer 3 bear respectively the primary watertight barrier 6 and the secondary watertight barrier 4.
  • the secondary 4 and primary 6 watertight barriers each consist of a series of parallel Invar® 8 strakes with raised edges, which are alternately arranged with elongate welding supports 9, also in Invar®.
  • the strakes 8 extend from a first square tube at a first transverse partition 2 to a second square tube of a second not shown transverse partition located at an opposite side of the vessel.
  • the raised edges 13 of the strakes are welded to the welding supports 9 in a sealed manner.
  • the soldering supports 9 are retained each time at the underlying insulating layer 3 or 5, for example by being housed in the inverted T-shaped grooves 7 formed in the cover panels 23 of the boxes 20 and 21.
  • This alternating structure is formed over the entire surface of the walls, which may involve very long lengths of strakes 8.
  • the sealed welds between the raised edges 13 of the strakes 8 and the welding supports 9 interposed between them can be made in the form of weld beads 17 rectilinear and parallel to the wall.
  • Strakes with raised edges 8 are connected directly to the connecting ring 10.
  • the straightened edge strakes 8 have an end edge 11 welded continuously to the fins Inva® 27, 28 of the connecting ring. 10 to resume tension efforts.
  • the primary watertight barrier 5 and the secondary watertight barrier 3 are thus welded respectively to a primary fin 27 and a secondary fin 28.
  • Primary heat insulating caissons 20 are positioned between the primary fin 27 and the secondary fin 28.
  • the primary fin 27 is attached to the primary heat insulated casings 20 by screws 30.
  • the secondary vane 28 is fixed in the same way on the secondary heat insulating elements.
  • the square tube is connected to the walls 1 and 2 by means of plates 31 which extend in the continuity of the sealed membranes 4 and 6 and fins 27, 28. These plates 31 are welded to flat welded perpendicularly to the walls 1 and 2 of the supporting structure.
  • the figure 2 shows in greater detail the zone of connection of two strakes 8 of the primary watertight barrier 6 on the welding fin 27. It should be noted that the zone of connection of the strakes 8 of the secondary watertight barrier 4 on the welding wing 28 is performed in the same way.
  • the raised edges 13 of the raised edge strake 8 have a profile including an inclined portion 14 which rises progressively from the edge 11 in the direction of the strakes 8, then a horizontal portion 15.
  • the strakes 8 are welded edge to edge continuous and sealed at their upper edge along a first portion 29 using a CMT automatic process.
  • the welding support 9 interposed between two strakes 8 ends slightly before the fin 27.
  • the tight connection between the raised edges 13 of the strakes 8 and the weld supports 9 is formed by the straight weld beads 17, which extend approximately halfway up the raised edges 13 on either side of the weld support 9 and parallel to the support surface.
  • the welding beads 17 are made by a welding machine with wheels.
  • the rectilinear weld bead 17 extends to near the first portion 29, the weld bead then has an upward curvature to join the edge weld edge-to-edge on the first portion 29.
  • FIG. 3 illustrates in greater detail the arrangement of the vessel wall at the seam between the fin 27 of the connecting ring 10 and the raised-edge strake 8 presented in FIG. figure 2 .
  • the fin 27 is fixed on the heat-insulating elements 20 by means of screws 30 passing through the fin 27 and screwed into the upper panels 23 of the heat-insulating elements 20.
  • the fastening by means of a screw enables the fin 27 to be stabilized.
  • the strake 8 extends in one piece between its two end edges 11. Between these two end edges the strake 8 is, on a first part of its length, resting on the fins 27 and on a second part of its length, resting on the primary insulating layer 5.
  • the strake 8 has a folded segment 34, to ensure the support of the strake 8 on both the fin 27 and the primary insulating layer 5, for most of its lower surface.
  • the folded section extends near the edge of the fin 27 parallel to the fin 27 and compensates for the thickness thereof.
  • the strake 8 further has a variable thickness along its length.
  • the strake 8 has at its end edges 11 a thick portion 33 fixed to the fins 27.
  • a thin portion 35 extends between the thick portions 33 and has a constant thickness.
  • the thin portion 35 is connected to the thick portions 33 by transition portions 36 in which the thickness gradually decreases from each thick portion 33 to the thin portion 35.
  • the thick portion 33 has a thickness of 0.9mm and extends over a length of 400mm and comprises the folded segment 34.
  • the transition portion 36 then extends over a distance of 500mm and has a thickness decreasing from 0.9mm to 0.7mm.
  • most of the tank wall is covered by the thin portion 35 of the strake 8 which has a thickness of 0.7mm.
  • the thick portion 33 is connected to the fin 27 by a weld bead 37 made between the edge 11 of the strake 8 and the upper surface of the fin 27, the fin 27 having a thickness of 1.5 mm.
  • the weld bead making the junction between the strake 8 and the fin 27, namely the welding of a 0.9mm thick strip on a 1.5mm thick strip has good fatigue resistance.
  • a strake 8 of variable thickness makes it possible to avoid or limit the use, in the length of the strake 8, of a set of metal sheets having different thicknesses, interconnected by weld seams that have insufficient fatigue strength.
  • a weld made between a sheet of 0.9mm and a sheet of 0.7mm has a lower fatigue resistance than a weld between a sheet of 0.9mm and a sheet of 1.5mm.
  • the lower the fatigue resistance of the sealed barrier the more necessary hull criteria for the vessel in which the tank is integrated are binding, which requires stiffening of the hull important. This stiffening of the hull is reflected in particular by a large amount of steel necessary for the realization of the hull.
  • strake 8 whose thickness varies along its length allows for a waterproof membrane 6 having good fatigue resistance, while avoiding the use of thick strakes along their entire length.
  • a tank as described above can be incorporated into a ship adapted to a dynamic hull criterion of 95 MPa and a static hull criterion of 145 MPa.
  • strake 8 made in one piece over the entire length of the wall also makes it possible to reduce the welding time required for the production of the primary watertight barrier 6 and to reduce the control times of the welds in tank.
  • the secondary watertight barrier 4 has a configuration similar to the configuration of the primary watertight barrier 6.
  • Strake 8 of variable thickness can be obtained by a method which will be described below. An example of a method of manufacturing a band of varying thickness according to its alloy length mainly based on iron and nickel will first be described.
  • an initial strip 101 obtained by hot rolling is provided.
  • the initial band 101 is a cryogenic Invar type alloy strip.
  • This alloy comprises by weight: 34.5 % ⁇ Or ⁇ 53.5 % 0.15 % ⁇ mn ⁇ 1.5 % 0 ⁇ Yes ⁇ 0.35 % , preferably 0.1 % ⁇ Yes ⁇ 0.35 % 0 ⁇ VS ⁇ 0.07 % optionally: 0 ⁇ Co ⁇ 20 % 0 ⁇ Ti ⁇ 0.5 % 0.01 % ⁇ Cr ⁇ 0.5 % the rest being iron and impurities necessarily resulting from the elaboration.
  • the function of the silicon is notably to allow the deoxidation and to improve the corrosion resistance of the alloy.
  • the alloy used has the following composition, in% by weight: 34.5 ⁇ Or ⁇ 42.5 % 0.15 % ⁇ mn ⁇ 0.5 % 0 ⁇ Yes ⁇ 0.35 % , preferably 0.1 % ⁇ Yes ⁇ 0.35 % 0,010 % ⁇ VS ⁇ 0,050 % optionally: 0 ⁇ Co ⁇ 20 % 0 ⁇ Ti ⁇ 0.5 % 0.01 % ⁇ Cr ⁇ 0.5 % the rest being iron and impurities necessarily resulting from the elaboration.
  • Such an alloy is a cryogenic Invar® type alloy.
  • the trade name of this alloy is Invar®-M93.
  • the alloys used are produced in electric arc furnace or vacuum induction furnace.
  • the alloys are cast into semi-finished products, which are heat-treated, in particular by hot rolling, to obtain strips.
  • These semi-products are for example ingots.
  • it is slabs continuously cast by means of a continuous slab casting plant.
  • the strip thus obtained is etched and polished in a continuous process in order to limit its defects: calamine, oxidized penetration, straw and inhomogeneity in thickness in the direction of the length and the width of the strip.
  • the polishing is in particular carried out by means of grinding wheels or abrasive paper.
  • a function of the polishing is to eliminate the residues of the stripping.
  • the strip is subjected to a homogenization annealing of the microstructure.
  • This homogenization annealing of the microstructure is particularly carried out at run in a heat treatment furnace, called a homogenization annealing furnace of the microstructure in the following description, with a residence time in the homogenization annealing furnace of the microstructure of between 2 minutes and 25 minutes and a temperature of the strip during homogenization annealing of the microstructure between 850 ° C and 1200 ° C.
  • the initial band 101 has a constant thickness E 0 between 1.9 mm and 18 mm (see figure 5 ).
  • the initial web 101 is then rolled during a homogeneous cold rolling step.
  • the homogeneous rolling is carried out along the length of the initial band 101.
  • homogeneous rolling is meant a rolling transforming a band of constant thickness into a thinner band of constant thickness.
  • the homogeneous rolling step comprises one or more passes in a rolling mill where the band passes through a rolling gap delimited between working rolls.
  • the thickness of this rolling slot remains constant during each pass of the homogeneous rolling step.
  • This homogeneous rolling step results in an intermediate strip 103 of constant thickness E c according to the rolling direction, that is to say along the length of the intermediate strip 103 (cf. figure 6 ).
  • the homogeneous rolling step comprises at least one intermediate recrystallization annealing.
  • the intermediate recrystallization annealing is carried out between two successive homogeneous rolling passes. Alternatively or optionally, it is performed before the flexible rolling step at the end of the homogeneous rolling step, ie after all the rolling passes made during the homogeneous rolling step.
  • the intermediate recrystallization annealing is carried out by passing through an intermediate annealing furnace with a temperature of the strip during the intermediate annealing of between 850 ° C. and 1200 ° C. and residence time in the intermediate annealing furnace between 30 seconds and 5 minutes.
  • the intermediate recrystallization annealing or if several is carried out, the last recrystallization intermediate annealing of the homogeneous rolling step, is carried out when the strip has a thickness E i between the thickness E 0 of the initial strip. 101 and the thickness E c of the intermediate band 103.
  • the thickness E i of the strip during the intermediate recrystallization annealing is equal to the thickness E c of the intermediate strip 103 at the beginning of the flexible rolling step.
  • a single recrystallization intermediate annealing is carried out.
  • this intermediate recrystallization annealing is carried out between two successive homogeneous rolling passes when the strip has a thickness E i strictly greater than the thickness E c of the intermediate strip 103.
  • the homogeneous rolling step does not include intermediate annealing.
  • the intermediate strip 103 of thickness E c obtained at the end of the homogeneous rolling step is then subjected to a cold flexible rolling step.
  • the flexible rolling is carried out in a rolling direction extending along the length of the intermediate strip 103.
  • the thickness of the rolling slot of the rolling mill used is continuously varied. This variation is a function of the desired thickness of the zone of the strip during rolling so as to obtain a strip of variable thickness along its length.
  • a strip 104 of variable thickness is obtained comprising first zones 107 having a first thickness e + s and second zones 110 having a second thickness e, smaller than the first thickness e + s.
  • the first thickness e + s and the second thickness e each correspond to a given rolling slot thickness.
  • the first zones 107 and the second zones 110 each have a substantially constant thickness, respectively e + s and e.
  • connection areas 111 are interconnected by connecting zones 111 of non-constant thickness along the length of the band 104 of variable thickness.
  • the thickness of the connection areas 111 varies between e and e + s. In one example, it varies linearly between e and e + s.
  • the homogeneous rolling step and the flexible rolling step generate in the first zones 107, that is to say in the thickest zones of the strip 104, a rate ⁇ 1 of plastic deformation, after a possible annealing. intermediate recrystallization, greater than or equal to 30%, more particularly between 30% and 98%, more particularly between 30% and 80%.
  • the rate ⁇ 1 of plastic deformation is advantageously greater than or equal to 35%, more particularly greater than or equal to 40%, and even more particularly greater than or equal to 50%.
  • the rate ⁇ 1 of plastic deformation is strictly less than the total reduction rate generated in the first zones 107 by the homogeneous rolling step and the cold flexible rolling step.
  • the rate ⁇ 2 of plastic deformation, after a possible intermediate recrystallization annealing, generated in the second zones 110, is strictly greater than the rate ⁇ 1 of plastic deformation in the first zones 107. It is calculated analogously, replacing e + s in formulas (1) and (2) above.
  • This difference ⁇ ⁇ is advantageously less than or equal to 13% if the thickness E 0 is strictly greater than 2 mm. It is advantageously less than or equal to 10% if the thickness E 0 is less than or equal to 2 mm.
  • the difference ⁇ ⁇ is less than or equal to 10% if E 0 is strictly greater than 2mm, and the difference ⁇ ⁇ is less than or equal to 8% if E 0 is less than or equal to 2mm.
  • the thickness E c of the intermediate strip 103 before the flexible rolling step is in particular equal to the thickness e of the second zones 110 multiplied by a reduction coefficient k of between 1.05 and 1.5.
  • k is approximately equal to 1.3.
  • the first thickness e + s is equal to the second thickness e multiplied by a multiplication coefficient of between 1.05 and 1.5.
  • the thickness e of the second zones 110 is between 0.05 mm and 10 mm, more particularly between 0.15 mm and 10 mm, even more particularly between 0.25 mm and 8.5 mm.
  • the thickness e is less than or equal to 2 mm, advantageously between 0.25 mm and 2 mm.
  • the thickness e is strictly greater than 2 mm, in particular between 2.1 mm and 10 mm, more particularly between 2.1 mm and 8.5 mm.
  • the band 104 of variable thickness resulting from the flexible rolling step is then subjected to a final recrystallization annealing.
  • the final recrystallization annealing is carried out in a final annealing furnace.
  • the temperature of the final annealing furnace is constant during the final recrystallization annealing.
  • the temperature of the web 104 during the final recrystallization anneal is between 850 ° C and 1200 ° C.
  • the residence time in the final annealing furnace is between 20 seconds and 5 minutes, more particularly between 30 seconds and 3 minutes.
  • the running speed of the web 104 in the final annealing furnace is constant. It is for example between 2m / min and 20m / min for a final annealing furnace with a heating length equal to 10m.
  • the temperature of the band 104 during the final annealing is 1025 ° C.
  • the residence time in the final annealing furnace is for example between 30 seconds and 60 seconds for a band 104 of variable thickness having second zones 110 of thickness e less than or equal to 2 mm.
  • the residence time in the final annealing furnace is for example between 3 minutes and 5 minutes for a band 104 of variable thickness having second zones 110 of thickness e strictly greater than 2 mm.
  • the residence time in the final annealing furnace, as well as the final annealing temperature, are chosen so as to obtain, after the final recrystallization annealing, a strip 104 having mechanical properties and grain sizes that are almost homogeneous between the first zones 107 and the second zones 110.
  • the remainder of the description specifies the meaning of "almost homogeneous”.
  • the final annealing is carried out under a reducing atmosphere, that is to say for example under pure hydrogen or under H 2 -N 2 atmosphere.
  • the frost temperature is preferably below -40 ° C.
  • the N 2 content can be between 0% and 95%.
  • the H 2 -N 2 atmosphere comprises, for example, approximately 70% of H 2 and 30% of N 2 .
  • the band 104 of variable thickness passes continuously from the flexible rolling mill to the final annealing furnace, that is to say without intermediate winding of the variable thickness band 104.
  • variable-thickness strip 104 is rolled up for transport to the final annealing furnace, then rolled out and subjected to the final recrystallization anneal.
  • the wound strip 104 has for example a length of between 100 m and 2500 m, especially if the thickness e of the second zones 110 of the strip 104 is approximately 0.7 mm.
  • first zones 107 of thickness e + s and second zones of thickness e possibly interconnected by connecting zones 111 of thickness varying between e and e + s.
  • the difference in absolute value between the average grain size of the first zones 107 and the average grain size of the second zones 110 is less than or equal to 0.5 index according to ASTM standard E1 12-10.
  • the average grain size in ASTM index is determined using the standard image comparison method described in ASTM E1 12-10. According to this method, in order to determine the average grain size of a sample, an image of the screen grain structure obtained by means of an optical microscope at a given magnification of the sample having undergone a dye attack is compared ( Contrast etch in English) with typical images illustrating twinned grains of different sizes having undergone a coloring attack (corresponding to plate III of the standard). The average grain size index of the sample is determined as the index corresponding to the magnification used on the standard image most closely resembling the image seen on the microscope screen.
  • the index of the average grain size of the image seen under the microscope is determined as being the arithmetic mean between the corresponding indices. magnification used worn on each of the two typical images.
  • the G1 ASTM index of the average grain size of the first zones 107 is at most 0.5 less than the G2 ASTM index of the average grain size of the second zones 110.
  • the band 104 of variable thickness may have almost homogeneous mechanical properties.
  • elastic limit at 0.2% is meant, in a conventional manner, the value of the stress at 0.2% of plastic deformation.
  • the load at break corresponds to the maximum stress before necking of the test sample.
  • the band 104 of variable thickness has a repeating pattern periodically along the entire length of the strip 104.
  • This pattern comprises successively a half of the first zone 107 of length The 1 2 , a linking zone 111 of length L3, a second zone 110 of length L2, a connecting zone 111 of length L3 and a first zone half 107 of length The 1 2 .
  • the length L2 of the second zone 110 is very clearly greater than the length L1 of the first zone 107.
  • the length L2 is between 20 and 100 times the length L1.
  • Each sequence formed of a first zone 107 flanked by two connecting zones 111 forms a zone of excess thickness of the band 104 of variable thickness, that is to say a zone of thickness greater than e.
  • the band 104 of variable thickness comprises second zones 110 of length L2 of thickness e, separated from each other by zones of extra thickness.
  • the strip 104 of variable thickness is cut in the zones of excess thickness, preferably in the middle of the zones of extra thickness.
  • blanks 112 illustrated on the figure 8 comprising a second zone of length L2 framed at each of its longitudinal ends by a connecting zone 111 of length L3 and by a half of first zone 107 of length The 1 2 .
  • the blanks 112 are planed according to a known planing method.
  • the blanks 112 are then wound in coils to the unit.
  • the strip 104 of variable thickness is planed after the final recrystallization annealing and before the blanks 112 are cut.
  • the web 104 of variable thickness which is planar, is cut in the zones of excess thickness to form the blanks 112.
  • the strip 104 is cut in the middle of the excess thickness zones.
  • the cutting is for example carried out on the leveling machine used for the flattening of the strip 104.
  • the flat strip 104 is wound into a coil and then cut on a machine different from the planer.
  • the blanks 112 are then wound in coils to the unit.
  • blanks 112 formed of a workpiece comprising a central zone 113 of thickness e, framed by reinforced ends 114, ie of thickness greater than the thickness e of the zone, are obtained by means of the manufacturing method described above.
  • the ends 114 correspond to zones of excess thickness of the band 104 of variable thickness and the central zone 113 corresponds to a second zone 110 of the band 104 of variable thickness from which the blank 112 has been cut.
  • the blanks 112 may for example be obtained by cutting the strip 104 at other places than in two zones of successive overthicknesses. For example, they can be obtained by cutting alternately in a zone of extra thickness and in a second zone 110. In this case, blanks 112 having a single reinforced end 114 having a thickness greater than e are obtained. Such a flank makes it possible to obtain the strake 108 of the figure 11
  • They can also be obtained by cutting in two second successive zones 110.
  • a blank 112 with a second piece 116 by welding one of the reinforced ends 114 of the blank 112 to an edge of the second piece 16.
  • the thickness of the second piece 116 is preferably greater than the thickness of the blank.
  • the weld performed is more particularly a weld clap, also called lap weld.
  • the piece 116 may be a blank 112 as described above.
  • the second thickness e is in particular approximately equal to 0.7 mm.
  • the first thickness e + s is approximately equal to 0.9 mm.
  • a non-planar piece is formed from the blank 112.
  • the method of manufacturing a strip of variable thickness along its length described above is particularly advantageous. Indeed, it makes it possible to obtain an alloy strip mainly based on iron and nickel having the chemical composition defined above having zones of different thicknesses but quasi-homogeneous mechanical properties. These properties are obtained through the use of a plastic deformation rate after a possible recrystallization intermediate annealing generated by the homogeneous rolling and flexible rolling steps in the thickest zones greater than or equal to 30%.
  • strips of variable thickness have been manufactured, that is to say strips 104 of variable thickness whose thickness e of the second zones 10 is less than or equal to 2 mm.
  • Table 1 illustrates the manufacturing trials of strips of variable thickness without intermediate recrystallization annealing.
  • Table 2 below contains characteristics of the strips obtained by the tests in Table 1.
  • Table 3 illustrates the manufacturing trials of strips of variable thickness with an intermediate recrystallization annealing at the thickness E i .
  • Table 4 below contains characteristics of the strips obtained by the tests in Table 3.
  • sheets of variable thickness have been manufactured, that is to say strips 104 of variable thickness whose thickness e of the second zones 110 is strictly greater than 2 mm.
  • Table 5 illustrates tests for manufacturing sheets of variable thickness with or without intermediate annealing.
  • Table 6 below contains characteristics of the sheets obtained by the tests in Table 5.
  • the strip 104 of variable thickness obtained has a difference in average grain size between the average grain size of the first zones 107 (thickness e + s) and the grain size of the second zones 110 (thickness e) less than or equal to 0.5 ASTM index in absolute value.
  • This small difference in average grain size between the first zones 107 and the second zones 110 results in quasi-homogeneous mechanical properties, namely a difference of 0.2% elastic limit ⁇ Rp between the first zones 107 and the second zones 110. zones 110 less than or equal to 6 MPa in absolute value, and a difference between the load at break ⁇ Rm of the first zones 107 and the second zones 110 less than or equal to 6 MPa in absolute value.
  • the figure 11 is a schematic view from above of the primary waterproof membrane of a wall of a sealed and insulating tank constructed similarly to the tank of the figure 1 .
  • the ends of the tank wall are symbolized by the welding fins 27 partially shown.
  • the three metal strakes 8, 108 and 208 shown on the figure 11 are manufactured according to three different embodiments.
  • a waterproof membrane can be constructed with strakes all corresponding to the same embodiment, or by combining strakes of several embodiments in any appropriate order.
  • the welding supports 9 are also sketched on the figure 11 , in an exploded representation that places the welding supports 9 away from the strakes 8, 108 and 208 to facilitate understanding.
  • the strakes of the three embodiments have the common point of extending longitudinally from one end to the other of the tank wall to be welded to the two solder fins 27 and have two raised side edges 13.
  • the width of the flat central portion of the strake is between 40 and 60 cm and the height of the raised edge 13 is between 2 and 6 cm.
  • the raised edges 13 of the variable thickness strake 8 can be obtained from the flat side 112 by means of a folder comprising three rollers on each side of the sidewall 112.
  • the rollers exert a pressure on the sidewall in order to deform the flank to generate the raised edges.
  • Hydraulic jacks are used to change the position of the rollers and the pressure exerted by them depending on the variation of the thickness of the sidewall.
  • Strake 8 corresponds to the embodiment described above with reference to figures 2 and3: it is a metal strip extending in one piece from one end to the other of the tank wall and having the reinforced portions 114 at both ends of the strip and the central portion of more thin thickness 113 between them.
  • the boundaries between the thinner portion 113 and the thicker reinforced portions 114 have been drawn in fine dashed lines, but it is understood that this limit may extend over a relatively large transition zone .
  • the strake 8 is placed in one piece in the tank. Cutting the inclined portion 14 at both ends of the two raised edges of the strake 8, before proceeding to the assembly and sealing welds with the connecting rings.
  • the strake 108 or 208 on the other hand, consists of several successive longitudinal strips with raised edges which can be placed one after the other, which makes these embodiments particularly suitable for a very long vessel wall, for example approximately 30 to 50m per longitudinal band, ie a total length greater than 50m.
  • Each successive band is continuous, that is to say that it is obtained from a single flank described above, and not by welding several flanks together.
  • the strake 108 comprises two metal strips with raised edges 13 which are assembled end to end in the extension of one another at an assembly area 40, for example by welding.
  • Each metal band is continuous and has a portion thicker reinforced end end 114 adjacent to the joining zone 40 and having a lower uniform thickness over the rest of its length 113, to the edge of the tank wall where it is joined to the welding fin 27.
  • the strake 208 is constructed similarly to the strake 108, but with strips whose two ends 114 are reinforced by a greater thickness. As a result, the thicker reinforced ends 114 of the strips constituting the strake 208 are present both at the connection zone 40 between the strips and at the edges of the tank wall where the strake 208 is joined to the fins. As a variant, the strake 208 may be constructed with a higher number of continuous strips laid end to end in the same manner.
  • each strake 108 or 208 may be placed in the middle of the tank wall or at other locations. Preferably, these locations are offset longitudinally from one strake to another, thereby to avoid forming a continuous weld line in the transverse direction of the wall.
  • the boxes can be made with other forms of insulating materials.
  • the boxes may include a layer of insulating foam.
  • the tanks described above can be used in various types of installations such as land installations or in a floating structure such as a LNG tank or other.
  • a cutaway view of a LNG tanker 70 shows a sealed and insulated tank 71 of generally prismatic shape mounted in the double hull 72 of the ship.
  • the wall of the tank 71 comprises a primary sealed barrier intended to be in contact with the LNG contained in the tank, a secondary sealed barrier arranged between the primary watertight barrier and the double hull of the ship, and two thermally insulating barriers respectively arranged between the primary watertight barrier and the secondary watertight barrier, and between the secondary watertight barrier and the double hull 72.
  • loading / unloading lines arranged on the upper deck of the ship can be connected, by means of appropriate connectors, to a marine or port terminal to transfer a cargo of LNG from or to the tank 71.
  • the figure 4 represents an example of a marine terminal comprising a loading and unloading station 75, an underwater pipe 76 and an onshore installation 77.
  • the loading and unloading station 75 is an off-shore fixed installation comprising a movable arm 74 and a tower 78 which supports the movable arm 74.
  • the movable arm 74 carries a bundle of insulated flexible pipes 79 that can connect to the loading / unloading pipes 73.
  • the movable arm 74 can be adapted to all gauges LNG carriers.
  • a connection pipe (not shown) extends inside the tower 78.
  • the loading and unloading station 75 enables the loading and unloading of the LNG tank 70 from or to the shore facility 77.
  • the underwater line 76 allows the transfer of the liquefied gas between the loading or unloading station 75 and the onshore installation 77 over a large distance, for example 5 km, which makes it possible to keep the tanker vessel 70 at great distance from the coast during the loading and unloading operations.
  • pumps on board the ship 70 and / or pumps equipping the shore installation 77 and / or pumps equipping the loading and unloading station 75 are used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

L'invention se rapporte au domaine de la fabrication de cuves étanches et thermiquement isolantes et de leurs parties constitutives. En particulier, la présente invention se rapporte à des cuves destinées au stockage ou au transport de liquides froids ou chauds, par exemple des cuves pour le stockage et/ou le transport de gaz liquéfié par voie maritime.The invention relates to the field of the manufacture of sealed and thermally insulating tanks and their constituent parts. In particular, the present invention relates to tanks for the storage or transport of cold or hot liquids, for example tanks for the storage and / or transport of liquefied gas by sea.

Des cuves étanches et thermiquement isolantes peuvent être utilisées dans différentes industries pour stocker des produits chauds ou froids. Par exemple, dans le domaine de l'énergie, le gaz naturel liquéfié (GNL) est un liquide qui peut être stocké à pression atmosphérique à environ -163°C dans des cuves de stockage terrestres ou dans des cuves embarquées dans des structures flottantes.Waterproof and thermally insulating vessels can be used in different industries to store hot or cold products. For example, in the energy field, liquefied natural gas (LNG) is a liquid that can be stored at atmospheric pressure at about -163 ° C in land-based storage tanks or tanks embedded in floating structures.

On connaît, par exemple d'après FR-A-2968284 , une cuve de stockage intégrée dans la coque d'un navire, dont la barrière étanche, notamment une barrière étanche primaire en contact avec le produit contenu dans la cuve, est constituée de virures métalliques qui sont reliées entre elles, de manière étanche, par des bords relevés définissant des soufflets déformables de part et d'autre d'une aile de soudure. Ces virures sont reliées en leurs extrémités à un anneau de raccordement par l'intermédiaire des tôles de fourrures à la fois soudées sur l'anneau de raccordement et sur les virures.We know, for example according to FR-A-2968284 , a storage tank integrated in the hull of a ship, whose sealed barrier, in particular a primary sealed barrier in contact with the product contained in the tank, consists of metal strakes which are connected together, in leaktight manner, by raised edges defining deformable bellows on either side of a welding wing. These strakes are connected at their ends to a connecting ring through the furring sheets both welded to the connecting ring and strakes.

Selon un mode de réalisation, l'invention fournit une cuve étanche et thermiquement isolante intégrée dans une structure porteuse, la structure porteuse comportant une pluralité de parois porteuses, la cuve comportant
une pluralité de parois de cuve fixées à chaque fois sur une paroi porteuse respective, une paroi de cuve comportant :

  • une barrière d'isolation thermique retenue sur la paroi porteuse, la barrière d'isolation thermique présentant une surface de support plane parallèle à la paroi porteuse respective,
  • une barrière d'étanchéité supportée par la barrière d'isolation et comportant une structure répétée comportant alternativement une virure métallique allongée et une aile de soudure allongée liée à la surface de support et saillante par rapport à celle-ci, l'aile de soudure s'étendant parallèlement à la virure métallique sur au moins une partie de la longueur de la virure métallique, la virure métallique comportant dans le sens de la largeur une portion centrale plane posée sur la surface de support et des bords latéraux relevés par rapport à la surface de support qui sont disposés contre les ailes de soudure adjacentes et soudés de manière étanche aux ailes de soudure,
dans laquelle la virure métallique s'étend entre deux bords opposés de la paroi de cuve et présente deux portions d'extrémité qui sont chacune assemblées de manière étanche à une structure d'arrêt respective au niveau desdits bords opposés de la paroi de cuve,
caractérisée en ce que la virure métallique est constituée d'au moins une bande métallique continue présentant plusieurs portions longitudinales ayant des épaisseurs différentes, les portions longitudinales comportant une portion intermédiaire et au moins une portion d'extrémité dont l'épaisseur est supérieure à l'épaisseur de la portion intermédiaire de la bande, la portion d'extrémité plus épaisse formant une zone d'assemblage de la bande avec la structure d'arrêt ou avec une autre bande métallique continue assemblée bout à bout avec la première bande métallique continue pour constituer la virure métallique.According to one embodiment, the invention provides a sealed and thermally insulating tank integrated into a supporting structure, the carrying structure comprising a plurality of load-bearing walls, the tank comprising
a plurality of tank walls each fixed to a respective bearing wall, a tank wall comprising:
  • a thermal insulation barrier retained on the load-bearing wall, the thermal insulation barrier having a flat support surface parallel to the respective bearing wall,
  • a sealing barrier supported by the insulation barrier and having a repeating structure alternately having an elongated metal strake and an elongate weld wing bonded to and protruding from the support surface, the weld wing extending parallel to the metal strake over at least a portion of the length of the metal strake, the metal strake having in the width direction a flat central portion on the support surface and raised side edges with respect to the surface of support which are arranged against the adjacent welding wings and welded sealingly to the welding wings,
wherein the metal strake extends between two opposite edges of the vessel wall and has two end portions which are each sealingly joined to a respective stop structure at said opposite sides of the vessel wall,
characterized in that the metal strake consists of at least one continuous metal strip having a plurality of longitudinal portions having different thicknesses, the longitudinal portions having an intermediate portion and at least one end portion having a thickness greater than the thickness of the intermediate portion of the strip, the thicker end portion forming an assembly zone of the strip with the stop structure or with another continuous metal strip joined end to end with the first continuous metal strip to constitute the metal strake.

Selon des modes de réalisation, une telle cuve peut comporter une ou plusieurs des caractéristiques suivantes.According to embodiments, such a tank may comprise one or more of the following characteristics.

Selon un mode de réalisation, la virure métallique est constituée d'une seule bande métallique s'étendant d'un seul tenant entre les deux bords opposés de la paroi de cuve, et dans laquelle les deux portions d'extrémité de la bande sont plus épaisses que la portion intermédiaire et sont chacune assemblées à la structure d'arrêt respective au niveau des bords opposés de la paroi de cuve.According to one embodiment, the metal strake consists of a single metal strip extending in one piece between the two opposite edges of the tank wall, and in which the two end portions of the strip are more thick as the intermediate portion and are each assembled to the respective stop structure at opposite edges of the vessel wall.

Selon un mode de réalisation, la virure métallique comporte une deuxième bande métallique continue assemblée bout à bout avec la première bande métallique continue dans le prolongement de la première bande métallique continue, dans laquelle chacune des deux bandes métalliques continues présente, au niveau de la zone d'assemblage des deux bandes métalliques, une portion d'extrémité plus épaisse que la portion intermédiaire de la bande.According to one embodiment, the metal strake comprises a second continuous metal strip joined end to end with the first continuous metal strip in the extension of the first continuous metal strip, in which each of the two continuous metal strips has, at the level of the zone assembly of the two metal strips, an end portion thicker than the intermediate portion of the strip.

Selon un mode de réalisation, au moins une des deux bandes métalliques continues présente, au niveau de l'extrémité opposée à la zone d'assemblage des deux bandes métalliques, une deuxième portion d'extrémité plus épaisse que la portion intermédiaire de la bande, la deuxième portion d'extrémité étant assemblée à la structure d'arrêt au niveau d'un bord de la paroi de cuve.According to one embodiment, at least one of the two continuous metal strips has, at the end opposite the assembly zone of the two metal strips, a second end portion that is thicker than the intermediate portion of the strip, the second end portion being joined to the stop structure at an edge of the vessel wall.

Selon un mode de réalisation, au moins une des deux bandes métalliques continues présente, au niveau de l'extrémité opposée à la zone d'assemblage des deux bandes métalliques, une deuxième portion d'extrémité de même épaisseur épaisse que la portion intermédiaire de la bande, la deuxième portion d'extrémité étant assemblée à la structure d'arrêt au niveau d'un bord de la paroi de cuve.According to one embodiment, at least one of the two continuous metal strips has, at the end opposite the assembly zone of the two metal strips, a second end portion of the same thickness as the intermediate portion of the strip, the second end portion being joined to the stop structure at an edge of the vessel wall.

Selon des modes de réalisation, chaque portion d'extrémité de la virure est soudée de manière étanche à la structure d'arrêt respective.According to embodiments, each end portion of the strake is sealingly welded to the respective stop structure.

Selon des modes de réalisation, la virure est soudée sur la structure d'arrêt par un procédé CMT (pour transfert de métal à froid, de l'anglais Cold Metal Transfer) ou TIG (pour l'anglais Tungsten Inert Gas) ou par soudure à froid.According to embodiments, the strake is welded to the stop structure by a CMT (Cold Metal Transfer) or TIG (Tungsten Inert Gas) process or by welding. Cold.

Selon des modes de réalisation, la structure d'arrêt comporte une plaque positionnée au-dessus de la barrière d'isolation et la portion d'extrémité comporte un premier segment en appui sur la plaque de la structure d'arrêt et un second segment en appui sur la barrière d'isolation thermique, le premier segment et le second segment étant reliés par un segment plié formant un décrochement dans la direction d'épaisseur de la virure métallique.According to embodiments, the stop structure comprises a plate positioned above the insulation barrier and the end portion comprises a first segment resting on the plate of the stop structure and a second segment in pressing on the thermal insulation barrier, the first segment and the second segment being connected by a folded segment forming a recess in the direction of thickness of the metal strake.

Selon des modes de réalisation, les ailes de soudure s'interrompent avant l'extrémité de la virure métallique, les bords relevés de deux bandes métalliques adjacentes étant soudés l'une à l'autre par une soudure d'arête disposée sur une partie de leur longueur jusqu'à l'extrémité de la virure métallique.According to embodiments, the welding wings are interrupted before the end of the metal strake, the raised edges of two adjacent metal strips being welded to each other by an edge weld disposed on a portion of their length to the end of the metal strake.

Selon des modes de réalisation, la soudure d'arête des bords relevés est réalisée à l'aide d'un procédé de transfert de métal à froid ou TIG avec fil d'apport.According to embodiments, the edge edge welds are made using a cold metal or TIG with wire transfer method.

Selon des modes de réalisation, la portion d'extrémité présente une épaisseur supérieure ou égale à 0.9mm.According to embodiments, the end portion has a thickness greater than or equal to 0.9 mm.

Selon des modes de réalisation, la portion intermédiaire présente une épaisseur inférieure à 0.9mm et de préférence une épaisseur de 0.7mm.According to embodiments, the intermediate portion has a thickness of less than 0.9 mm and preferably a thickness of 0.7 mm.

Selon des modes de réalisation, la structure d'arrêt est soudée à une paroi porteuse.According to embodiments, the stop structure is welded to a supporting wall.

Selon des modes de réalisation, la virure métallique et la structure d'arrêt sont réalisées en alliage d'acier au nickel à faible coefficient de dilatation, notamment connu sous le nom d'Invar®.According to embodiments, the metal strake and the stop structure are made of nickel alloy steel with a low coefficient of expansion, in particular known as Invar®.

Selon un mode de réalisation, la virure métallique est en alliage à base de fer et comprend en poids: 34,5 % Ni 53,5 %

Figure imgb0001
0,15 % Mn 1,5 %
Figure imgb0002
0 Si 0,35 % , de préférence 0,1 % Si 0,35 %
Figure imgb0003
0 C 0,07 %
Figure imgb0004
optionnellement : 0 Co 20 %
Figure imgb0005
0 Ti 0,5 %
Figure imgb0006
0,01 % Cr 0,5 %
Figure imgb0007
le reste étant du fer et des impuretés résultant nécessairement de l'élaboration.According to one embodiment, the metal strake is made of iron-based alloy and comprises by weight: 34.5 % Or 53.5 %
Figure imgb0001
0.15 % mn 1.5 %
Figure imgb0002
0 Yes 0.35 % , preferably 0.1 % Yes 0.35 %
Figure imgb0003
0 VS 0.07 %
Figure imgb0004
optionally: 0 Co 20 %
Figure imgb0005
0 Ti 0.5 %
Figure imgb0006
0.01 % Cr 0.5 %
Figure imgb0007
the rest being iron and impurities necessarily resulting from the elaboration.

Selon des modes de réalisation, la paroi de cuve comporte en outre :

  • une barrière d'isolation thermique secondaire réalisée similairement à la barrière d'isolation primaire,
  • une barrière d'étanchéité secondaire supportée par la barrière d'isolation secondaire et portant la barrière d'isolation primaire,
  • La barrière d'étanchéité secondaire étant réalisée similairement à la barrière d'étanchéité primaire.
According to embodiments, the vessel wall further comprises:
  • a secondary thermal insulation barrier similar to the primary insulation barrier,
  • a secondary sealing barrier supported by the secondary insulation barrier and carrying the primary insulation barrier,
  • The secondary sealing barrier being made similar to the primary sealing barrier.

Selon des modes de réalisation, l'épaisseur varie progressivement sur une distance de 500mm. Selon des modes de réalisation, la portion d'extrémité s'étend sur 400mm.According to embodiments, the thickness varies gradually over a distance of 500mm. According to embodiments, the end portion extends over 400mm.

Une telle cuve peut faire partie d'une installation de stockage terrestre, par exemple pour stocker du GNL ou être installée dans une structure flottante, côtière ou en eau profonde, notamment un navire méthanier, une unité flottante de stockage et de regazéification (FSRU), une unité flottante de production et de stockage déporté (FPSO) et autres.Such a tank can be part of a land storage facility, for example to store LNG or be installed in a floating structure, coastal or deep water, including a LNG tank, a floating storage and regasification unit (FSRU) , a floating production and remote storage unit (FPSO) and others.

Selon un mode de réalisation, un navire pour le transport d'un produit liquide froid comporte une double coque et une cuve précitée disposée dans la double coque.According to one embodiment, a vessel for the transport of a cold liquid product comprises a double hull and a aforementioned tank disposed in the double hull.

Selon un mode de réalisation, l'invention fournit aussi un procédé de chargement ou déchargement d'un tel navire, dans lequel on achemine un produit liquide froid à travers des canalisations isolées depuis ou vers une installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.According to one embodiment, the invention also provides a method of loading or unloading such a vessel, in which a cold liquid product is conveyed through isolated pipes from or to a floating or land storage facility to or from the vessel vessel.

Selon un mode de réalisation, l'invention fournit aussi un système de transfert pour un produit liquide froid, le système comportant le navire précité, des canalisations isolées agencées de manière à relier la cuve installée dans la coque du navire à une installation de stockage flottante ou terrestre et une pompe pour entraîner un flux de produit liquide froid à travers les canalisations isolées depuis ou vers l'installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.According to one embodiment, the invention also provides a transfer system for a cold liquid product, the system comprising the abovementioned vessel, insulated pipes arranged to connect the vessel installed in the hull of the vessel to a floating storage facility. or terrestrial and a pump for driving a flow of cold liquid product through the insulated pipelines from or to the floating or land storage facility to or from the vessel vessel.

Selon un mode de réalisation, la première zone renforcée présente une première taille moyenne de grains et la deuxième zone présente une deuxième taille moyenne de grain, la différence en valeur absolue entre la première taille de grains et la deuxième taille de grains étant inférieure ou égale à 0,5 indice selon la norme ASTM E1 12-10.According to one embodiment, the first reinforced zone has a first average grain size and the second zone has a second average grain size, the difference in absolute value between the first grain size and the second grain size being less than or equal to at 0.5 index according to ASTM E1 12-10.

Selon un mode de réalisation, l'alliage à base de fer comprend en poids : 34,5 Ni 42,5 %

Figure imgb0008
0,15 % Mn 0,5 %
Figure imgb0009
0,1 % Si 0,35 %
Figure imgb0010
0,010 % C 0,050 %
Figure imgb0011
optionnellement : 0 Co 20 %
Figure imgb0012
0 Ti 0,5 %
Figure imgb0013
0,01 % Cr 0,5 %
Figure imgb0014
le reste étant du fer et des impuretés résultant nécessairement de l'élaboration.According to one embodiment, the iron-based alloy comprises by weight: 34.5 Or 42.5 %
Figure imgb0008
0.15 % mn 0.5 %
Figure imgb0009
0.1 % Yes 0.35 %
Figure imgb0010
0,010 % VS 0,050 %
Figure imgb0011
optionally: 0 Co 20 %
Figure imgb0012
0 Ti 0.5 %
Figure imgb0013
0.01 % Cr 0.5 %
Figure imgb0014
the rest being iron and impurities necessarily resulting from the elaboration.

L'invention part du constat que la quantité de matière nécessaire à la fabrication d'une structure porteuse comportant une cuve étanche et thermiquement isolée dépend de la résistance à la fatigue de la cuve. En particulier, la résistance à la fatigue de la cuve dépend de la résistance à la fatigue des soudures présentes sur les barrières étanches formant la cuve.The invention starts from the observation that the quantity of material necessary for the manufacture of a bearing structure comprising a sealed and thermally insulated tank depends on the fatigue resistance of the tank. In particular, the fatigue resistance of the tank depends on the fatigue resistance of the welds present on the impervious barriers forming the tank.

Ainsi, une idée à la base de l'invention est de proposer une cuve étanche et thermiquement isolée qui comprend une barrière étanche présentant une bonne résistance à la fatigue tout en limitant la quantité de matière nécessaire à la réalisation d'une telle barrière étanche. Selon un aspect de l'invention, la barrière étanche est réalisée à l'aide de virures s'étendant d'un seul tenant entre deux structures d'arrêt, et les virures présentent une épaisseur variable de manière à pouvoir être reliées directement aux structures d'arrêt en leurs extrémités tout en présentant une épaisseur plus faible entre ces extrémités. Selon un autre aspect de l'invention, la barrière étanche est réalisée à l'aide de virures composées de plusieurs bandes soudées bout à bout les unes aux autres au niveau de portions renforcées de ces bandes, afin que la résistance de cet assemblage soudé soit élevée.Thus, an idea underlying the invention is to provide a sealed and thermally insulated tank which comprises a sealed barrier having good fatigue resistance while limiting the amount of material necessary for producing such a sealed barrier. According to one aspect of the invention, the impervious barrier is made using strakes extending in one piece between two stop structures, and the strakes have a variable thickness so as to be directly connected to the structures. stop at their ends while having a smaller thickness between these ends. According to another aspect of the invention, the waterproof barrier is made using strakes composed of several bands welded end to end to each other at the reinforced portions of these strips, so that the resistance of this welded assembly is high.

Certains aspects de l'invention partent de l'idée de relier les virures aux structures d'arrêt à l'aide d'une soudure présentant une bonne résistance à la fatigue.Certain aspects of the invention start from the idea of connecting the strakes to the stop structures with the aid of a weld having good resistance to fatigue.

L'invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement au cours de la description suivante de plusieurs modes de réalisation particuliers de l'invention, donnés uniquement à titre illustratif et non limitatif, en référence aux dessins annexés.The invention will be better understood, and other objects, details, features and advantages thereof will become more apparent in the following description of several particular embodiments. of the invention, given solely for illustrative and non-limiting purposes, with reference to the accompanying drawings.

Sur ces dessins :

  • La figure 1 est une vue partielle en perspective écorchée d'une paroi de cuve étanche et thermiquement isolant dans laquelle des modes de réalisation de l'invention peuvent être employés.
  • La figure 2 est une vue partielle en perspective de la zone II de la figure 1 représentant la membrane étanche primaire.
  • La figure 3 est une vue en coupe d'un détail d'une membrane étanche de la paroi de cuve de la figure 1 selon la ligne III-III.
  • La figure 4 est une représentation schématique écorchée d'une cuve de navire méthanier et d'un terminal de chargement/déchargement de cette cuve.
  • La figure 5 est une vue schématique en section longitudinale d'une bande initiale.
  • La figure 6 est une vue schématique en section longitudinale d'une bande intermédiaire.
  • La figure 7 est une vue schématique en section longitudinale d'une bande d'épaisseur variable.
  • La figure 8 est une représentation schématique d'un flan obtenu à partir de la bande d'épaisseur variable.
  • La figure 9 est une représentation schématique en section longitudinale d'un premier assemblage d'un flan avec une deuxième pièce.
  • La figure 10 est une représentation schématique en section longitudinale de deux flancs assemblés bout à bout.
  • La figure 11 est une vue de dessus schématique représentant plusieurs modes de réalisation d'une virure à bords latéraux relevés convenant pour réaliser une membrane étanche.
On these drawings:
  • The figure 1 is a cut away perspective view of a sealed and thermally insulating vessel wall in which embodiments of the invention may be employed.
  • The figure 2 is a partial perspective view of Zone II of the figure 1 representing the primary waterproof membrane.
  • The figure 3 is a sectional view of a detail of a waterproof membrane of the tank wall of the figure 1 along line III-III.
  • The figure 4 is a cutaway schematic representation of a tank of LNG tanker and a loading / unloading terminal of this tank.
  • The figure 5 is a schematic view in longitudinal section of an initial band.
  • The figure 6 is a schematic view in longitudinal section of an intermediate band.
  • The figure 7 is a schematic view in longitudinal section of a band of variable thickness.
  • The figure 8 is a schematic representation of a blank obtained from the band of varying thickness.
  • The figure 9 is a schematic representation in longitudinal section of a first assembly of a blank with a second part.
  • The figure 10 is a schematic representation in longitudinal section of two side walls assembled end to end.
  • The figure 11 is a schematic top view showing several embodiments of a strake with raised side edges suitable for producing a waterproof membrane.

La figure 1 représente des parois étanches et isolantes d'une cuve intégrée dans une structure porteuse d'un navire.The figure 1 represents watertight and insulating walls of a tank integrated in a carrying structure of a ship.

La structure porteuse de la cuve est ici constituée par la coque interne d'un navire à double coque, dont on a représenté la paroi de fond par le chiffre 1, et par des cloisons transversales 2, qui définissent des compartiments dans la coque interne du navire. Les parois de la structure porteuse sont adjacentes deux à deux au niveau d'arêtes.The bearing structure of the tank is here constituted by the inner hull of a double-hulled vessel, the bottom wall of which has been represented by the number 1, and by transverse partitions 2, which define compartments in the inner hull of the ship. The walls of the supporting structure are adjacent two by two at edges.

Sur chaque paroi de la structure porteuse, une paroi correspondante de la cuve est réalisée par superposition de, successivement, une couche d'isolation secondaire 3, une barrière étanche secondaire 4, une couche d'isolation primaire 5 et une barrière étanche primaire 6. Au niveau de l'angle entre les deux parois 1 et 2, les barrières étanches secondaires 4 des deux parois 1 et 2 et les barrières étanches primaires 6 des deux parois sont reliées par un anneau de raccordement 10 sous la forme d'un tube carré. L'anneau de raccordement 10 forme une structure qui permet de reprendre les efforts de tension résultant de la contraction thermique, notamment des éléments métalliques formant les barrières étanches, de la déformation de la coque à la mer et des mouvements de la cargaison. Une structure possible de l'anneau de raccordement 10 est décrite plus en détails dans FR-A-2549575 .On each wall of the supporting structure, a corresponding wall of the tank is made by superposing, successively, a secondary insulation layer 3, a secondary sealed barrier 4, a primary insulation layer 5 and a primary sealed barrier 6. At the angle between the two walls 1 and 2, the secondary watertight barriers 4 of the two walls 1 and 2 and the primary watertight barriers 6 of the two walls are connected by a connecting ring 10 in the form of a square tube. . The connecting ring 10 forms a structure which makes it possible to take up the tension forces resulting from the thermal contraction, in particular the metallic elements forming the impermeable barriers, the deformation of the hull at sea and the movements of the cargo. A possible structure of the connecting ring 10 is described in more detail in FR-A-2549575 .

La couche d'isolation primaire et la couche d'isolation secondaire sont constituées d'élément calorifuges et plus particulièrement de caissons calorifuges parallélépipédiques 20 et 21 juxtaposés selon un motif régulier. Chaque caisson calorifuge 20 et 21 comporte un panneau de fond et un panneau de couvercle 23. Des panneaux latéraux 24 et des voiles internes 25 s'étendent entre le panneau de fond et le panneau de couvercle 23. Les panneaux délimitent un espace dans lequel est mise en place une garniture calorifuge qui peut par exemple être constituée de perlite expansée. Chaque caisson 20 et 21 est maintenu sur la structure porteuse par l'intermédiaire d'organes d'ancrage 26. Les caissons 20 et 21 de la couche isolante primaire 5 et de la couche isolante secondaire 3 portent respectivement la barrière étanche primaire 6 et la barrière étanche secondaire 4.The primary insulating layer and the secondary insulating layer consist of heat-insulating element and more particularly parallelepiped heat insulating boxes 20 and 21 juxtaposed in a regular pattern. Each insulating casing 20 and 21 has a bottom panel and a cover panel 23. Side panels 24 and internal webs 25 extend between the bottom panel and the cover panel 23. The panels delimit a space in which is setting up a heat insulating lining which may for example consist of expanded perlite. Each box 20 and 21 is held on the supporting structure by means of anchoring members 26. The boxes 20 and 21 of the primary insulating layer 5 and the secondary insulating layer 3 bear respectively the primary watertight barrier 6 and the secondary watertight barrier 4.

Les barrières étanches secondaire 4 et primaire 6 sont à chaque fois constituées d'une série de virures en Invar® 8 parallèles à bords relevés, qui sont disposées alternativement avec des supports de soudure allongés 9, également en Invar®. Les virures 8 s'étendent depuis un premier tube carré au niveau d'une première cloison transversale 2 jusqu'à un deuxième tube carré d'une deuxième cloison transversale non représentée située en un côté opposé de la cuve. Les bords relevés 13 des virures sont soudés aux supports de soudure 9 de manière étanche. Les supports de soudure 9 sont retenus à chaque fois à la couche isolante sous-jacente 3 ou 5, par exemple en étant logés dans des rainures 7 en forme de T inversé ménagées dans les panneaux de couvercles 23 des caissons 20 et 21.The secondary 4 and primary 6 watertight barriers each consist of a series of parallel Invar® 8 strakes with raised edges, which are alternately arranged with elongate welding supports 9, also in Invar®. The strakes 8 extend from a first square tube at a first transverse partition 2 to a second square tube of a second not shown transverse partition located at an opposite side of the vessel. The raised edges 13 of the strakes are welded to the welding supports 9 in a sealed manner. The soldering supports 9 are retained each time at the underlying insulating layer 3 or 5, for example by being housed in the inverted T-shaped grooves 7 formed in the cover panels 23 of the boxes 20 and 21.

Cette structure alternée est réalisée sur toute la surface des parois, ce qui peut impliquer de très grandes longueurs de virures 8. Sur ces grandes longueurs, les soudures étanches entre les bords relevés 13 des virures 8 et les supports de soudure 9 intercalés entre eux peuvent être réalisées sous la forme de cordons de soudure 17 rectilignes et parallèles à la paroi.This alternating structure is formed over the entire surface of the walls, which may involve very long lengths of strakes 8. On these long lengths, the sealed welds between the raised edges 13 of the strakes 8 and the welding supports 9 interposed between them can be made in the form of weld beads 17 rectilinear and parallel to the wall.

Les virures à bords relevés 8 sont raccordées directement à l'anneau de raccordement 10. A cet effet, les virures à bord relevés 8 présentent un bord d'extrémité 11 soudé continûment aux ailettes en Inva® 27, 28 de l'anneau de raccordement 10 pour reprendre les efforts de tension. La barrière étanche primaire 5 et la barrière étanche secondaire 3 sont ainsi soudées respectivement à une ailette primaire 27 et une ailette secondaires 28. Des caissons calorifuges primaires 20 sont positionnés entre l'ailette primaire 27 et l'ailette secondaire 28. L'ailette primaire 27 est fixée sur les caissons calorifuges primaires 20 par des vis 30. L'ailette secondaire 28 est fixée de la même manière sur les éléments calorifuges secondaires.Strakes with raised edges 8 are connected directly to the connecting ring 10. For this purpose, the straightened edge strakes 8 have an end edge 11 welded continuously to the fins Inva® 27, 28 of the connecting ring. 10 to resume tension efforts. The primary watertight barrier 5 and the secondary watertight barrier 3 are thus welded respectively to a primary fin 27 and a secondary fin 28. Primary heat insulating caissons 20 are positioned between the primary fin 27 and the secondary fin 28. The primary fin 27 is attached to the primary heat insulated casings 20 by screws 30. The secondary vane 28 is fixed in the same way on the secondary heat insulating elements.

Le tube carré est relié aux parois 1 et 2 par l'intermédiaire de plaques 31 qui s'étendent dans la continuité des membranes étanches 4 et 6 et des ailettes 27, 28. Ces plaques 31 sont soudées à des plats soudés perpendiculairement aux parois 1 et 2 de la structure porteuse.The square tube is connected to the walls 1 and 2 by means of plates 31 which extend in the continuity of the sealed membranes 4 and 6 and fins 27, 28. These plates 31 are welded to flat welded perpendicularly to the walls 1 and 2 of the supporting structure.

La figure 2 représente plus en détail la zone de raccordement de deux virures 8 de la barrière étanche primaire 6 sur l'ailette de soudure 27. Il est à noter que la zone de raccordement des virures 8 de la barrière étanche secondaire 4 sur l'aile de soudure 28 est réalisée de la même manière.The figure 2 shows in greater detail the zone of connection of two strakes 8 of the primary watertight barrier 6 on the welding fin 27. It should be noted that the zone of connection of the strakes 8 of the secondary watertight barrier 4 on the welding wing 28 is performed in the same way.

Les bords relevés 13 de la virure à bords relevés 8 présentent un profil comportant une portion inclinée 14 qui s'élève progressivement depuis le bord 11 en direction des virures 8, puis une portion horizontale 15. Les virures 8 sont soudées bords à bords de manière continue et étanche au niveau de leur arête supérieure le long d'une première portion 29 à l'aide d'un procédé automatique CMT.The raised edges 13 of the raised edge strake 8 have a profile including an inclined portion 14 which rises progressively from the edge 11 in the direction of the strakes 8, then a horizontal portion 15. The strakes 8 are welded edge to edge continuous and sealed at their upper edge along a first portion 29 using a CMT automatic process.

Le support de soudure 9 intercalé entre deux virures 8 se termine légèrement avant l'ailette 27. Tout au long de la portion centrale de la paroi de cuve, et jusqu'à proximité de la zone du bord d'extrémité 11, la liaison étanche entre les bords relevés 13 des virures 8 et les supports de soudure 9 est réalisée par les cordons de soudures rectilignes 17, qui s'étendent à peu près à mi-hauteur des bords relevés 13 de part et d'autre du support de soudure 9 et parallèlement à la surface de support. Les cordons de soudure 17 sont réalisés par une machine de soudage à molettes.The welding support 9 interposed between two strakes 8 ends slightly before the fin 27. Throughout the central portion of the vessel wall, and to the vicinity of the end edge zone 11, the tight connection between the raised edges 13 of the strakes 8 and the weld supports 9 is formed by the straight weld beads 17, which extend approximately halfway up the raised edges 13 on either side of the weld support 9 and parallel to the support surface. The welding beads 17 are made by a welding machine with wheels.

Le cordon de soudure rectiligne 17 s'étend jusqu'à proximité de la première portion 29, le cordon de soudure présente ensuite une courbure vers le haut pour rejoindre la soudure d'arête effectuée bord à bord sur la première portion 29.The rectilinear weld bead 17 extends to near the first portion 29, the weld bead then has an upward curvature to join the edge weld edge-to-edge on the first portion 29.

La figure 3 illustre plus en détail l'agencement de la paroi de cuve au niveau de la soudure entre l'ailette 27 de l'anneau de raccordement 10 et la virure à bords relevés 8 présentée dans la figure 2.The figure 3 illustrates in greater detail the arrangement of the vessel wall at the seam between the fin 27 of the connecting ring 10 and the raised-edge strake 8 presented in FIG. figure 2 .

L'ailette 27 est fixée sur les éléments calorifuges 20 par l'intermédiaire de vis 30 traversant l'ailette 27 et vissées dans les panneaux supérieurs 23 des éléments calorifuges 20. La fixation par vis permet notamment la stabilisation de l'ailette 27.The fin 27 is fixed on the heat-insulating elements 20 by means of screws 30 passing through the fin 27 and screwed into the upper panels 23 of the heat-insulating elements 20. The fastening by means of a screw enables the fin 27 to be stabilized.

La virure 8 s'étend d'un seul tenant entre ses deux bords d'extrémité 11. Entre ces deux bords d'extrémité la virure 8 est, sur une première partie de sa longueur, en appui sur les ailettes 27 et sur une seconde partie de sa longueur, en appui sur la couche isolante primaire 5.The strake 8 extends in one piece between its two end edges 11. Between these two end edges the strake 8 is, on a first part of its length, resting on the fins 27 and on a second part of its length, resting on the primary insulating layer 5.

La virure 8 présente un segment plié 34, pour assurer l'appui de la virure 8 sur à la fois l'ailette 27 et la couche isolante primaire 5, pour la majeure partie de sa surface inférieure. La section pliée s'étend à proximité du bord de l'ailette 27 parallèlement à l'ailette 27 et permet de compenser l'épaisseur de celle-ci.The strake 8 has a folded segment 34, to ensure the support of the strake 8 on both the fin 27 and the primary insulating layer 5, for most of its lower surface. The folded section extends near the edge of the fin 27 parallel to the fin 27 and compensates for the thickness thereof.

La virure 8 présente en outre une épaisseur variable le long de sa longueur. Ainsi, la virure 8 présente au niveau de ses bords d'extrémités 11 une portion épaisse 33 fixées aux ailettes 27. Une portion fine 35 s'étend entre les portions épaisses 33 et présente une épaisseur constante. La portion fine 35 est reliée aux portions épaisses 33 par des portions de transition 36 dans lesquelles l'épaisseur diminue progressivement depuis chaque portion épaisse 33 jusqu'à la portion fine 35.The strake 8 further has a variable thickness along its length. Thus, the strake 8 has at its end edges 11 a thick portion 33 fixed to the fins 27. A thin portion 35 extends between the thick portions 33 and has a constant thickness. The thin portion 35 is connected to the thick portions 33 by transition portions 36 in which the thickness gradually decreases from each thick portion 33 to the thin portion 35.

Plus particulièrement, selon un mode de réalisation, la portion épaisse 33 présente une épaisseur de 0.9mm et s'étend sur une longueur de 400mm et comprend le segment plié 34. La portion de transition 36 s'étend ensuite sur une distance de 500mm et présente une épaisseur diminuant de 0.9mm jusque 0.7mm. Ainsi, la majeure partie de la paroi de cuve est recouverte par la portion fine 35 de la virure 8 qui présente une épaisseur de 0.7mm.More particularly, according to one embodiment, the thick portion 33 has a thickness of 0.9mm and extends over a length of 400mm and comprises the folded segment 34. The transition portion 36 then extends over a distance of 500mm and has a thickness decreasing from 0.9mm to 0.7mm. Thus, most of the tank wall is covered by the thin portion 35 of the strake 8 which has a thickness of 0.7mm.

La portion épaisse 33 est reliée à l'ailette 27 par un cordon de soudure 37 réalisé entre le bord 11 de la virure 8 et la surface supérieure de l'ailette 27, l'ailette 27 présentant une épaisseur de 1,5mm. Ainsi, le cordon de soudure réalisant la jonction entre la virure 8 et l'ailette 27, à savoir la soudure d'une bande épaisse de 0.9mm sur une bande épaisse de 1,5mm, présente une bonne résistance à la fatigue.The thick portion 33 is connected to the fin 27 by a weld bead 37 made between the edge 11 of the strake 8 and the upper surface of the fin 27, the fin 27 having a thickness of 1.5 mm. Thus, the weld bead making the junction between the strake 8 and the fin 27, namely the welding of a 0.9mm thick strip on a 1.5mm thick strip, has good fatigue resistance.

L'utilisation d'une telle virure 8 à épaisseur variable permet d'éviter ou de limiter l'utilisation, dans la longueur de la virure 8, d'un ensemble de tôles métalliques présentant des épaisseurs différentes, reliées entre elles par des cordons de soudure qui présenteraient une résistance à la fatigue insuffisante. En effet, une soudure réalisée entre une tôle de 0.9mm et une tôle de 0.7mm présente une moins bonne résistance à la fatigue qu'une soudure entre une tôle de 0.9mm et une tôle de 1,5mm. Or, plus la résistance à la fatigue de la barrière étanche est basse, plus les critères de coque nécessaires pour le navire dans lequel la cuve est intégrée sont contraignants, ce qui nécessite un raidissage de la coque important. Ce raidissage de la coque se traduit notamment par une quantité importante d'acier nécessaire à la réalisation de la coque.The use of such a strake 8 of variable thickness makes it possible to avoid or limit the use, in the length of the strake 8, of a set of metal sheets having different thicknesses, interconnected by weld seams that have insufficient fatigue strength. Indeed, a weld made between a sheet of 0.9mm and a sheet of 0.7mm has a lower fatigue resistance than a weld between a sheet of 0.9mm and a sheet of 1.5mm. However, the lower the fatigue resistance of the sealed barrier, the more necessary hull criteria for the vessel in which the tank is integrated are binding, which requires stiffening of the hull important. This stiffening of the hull is reflected in particular by a large amount of steel necessary for the realization of the hull.

L'utilisation d'une virure 8 dont l'épaisseur varie le long de sa longueur permet de réaliser une membrane étanche 6 présentant une bonne résistance à la fatigue, tout en évitant d'utiliser des virures épaisses sur toute leur longueur.The use of a strake 8 whose thickness varies along its length allows for a waterproof membrane 6 having good fatigue resistance, while avoiding the use of thick strakes along their entire length.

La résistance à la fatigue étant plus importante, les critères de coque sont moins contraignants et permettent notamment une économie d'acier pour la réalisation de la coque. Une cuve telle que décrite ci-dessus peut être notamment intégrée dans un navire adapté à un critère de coque dynamique de 95MPa et un critère de coque statique de 145MPa.Fatigue resistance being more important, the hull criteria are less restrictive and allow in particular a saving of steel for the realization of the hull. A tank as described above can be incorporated into a ship adapted to a dynamic hull criterion of 95 MPa and a static hull criterion of 145 MPa.

L'utilisation d'une virure 8 réalisée d'un seul tenant sur toute la longueur de la paroi permet en outre de réduire le temps de soudage nécessaire pour la réalisation de la barrière étanche primaire 6 et de réduire les temps de contrôle des soudures dans la cuve.The use of a strake 8 made in one piece over the entire length of the wall also makes it possible to reduce the welding time required for the production of the primary watertight barrier 6 and to reduce the control times of the welds in tank.

La barrière étanche secondaire 4 présente une configuration similaire à la configuration de la barrière étanche primaire 6.The secondary watertight barrier 4 has a configuration similar to the configuration of the primary watertight barrier 6.

La virure 8 d'épaisseur variable peut être obtenue par un procédé qui va être décrit ci-dessous. Un exemple de procédé de fabrication d'une bande d'épaisseur variable selon sa longueur en alliage principalement à base de fer et de nickel va d'abord être décrit.Strake 8 of variable thickness can be obtained by a method which will be described below. An example of a method of manufacturing a band of varying thickness according to its alloy length mainly based on iron and nickel will first be described.

Dans une première étape de ce procédé, on fournit une bande initiale 101 obtenue par laminage à chaud.In a first step of this process, an initial strip 101 obtained by hot rolling is provided.

La bande initiale 101 est une bande en alliage de type Invar cryogénique. Cet alliage comprend en poids : 34,5 % Ni 53,5 %

Figure imgb0015
0,15 % Mn 1,5 %
Figure imgb0016
0 Si 0,35 % , de préférence 0,1 % Si 0,35 %
Figure imgb0017
0 C 0,07 %
Figure imgb0018
optionnellement : 0 Co 20 %
Figure imgb0019
0 Ti 0,5 %
Figure imgb0020
0,01 % Cr 0,5 %
Figure imgb0021
le reste étant du fer et des impuretés résultant nécessairement de l'élaboration.The initial band 101 is a cryogenic Invar type alloy strip. This alloy comprises by weight: 34.5 % Or 53.5 %
Figure imgb0015
0.15 % mn 1.5 %
Figure imgb0016
0 Yes 0.35 % , preferably 0.1 % Yes 0.35 %
Figure imgb0017
0 VS 0.07 %
Figure imgb0018
optionally: 0 Co 20 %
Figure imgb0019
0 Ti 0.5 %
Figure imgb0020
0.01 % Cr 0.5 %
Figure imgb0021
the rest being iron and impurities necessarily resulting from the elaboration.

Le silicium a notamment pour fonction de permettre la désoxydation et d'améliorer la résistance à la corrosion de l'alliage.The function of the silicon is notably to allow the deoxidation and to improve the corrosion resistance of the alloy.

Un alliage de type Invar cryogénique est un alliage qui présente trois propriétés principales :

  • Il est stable vis-à-vis de la transformation martensitique jusqu'au-dessous de la température TL de liquéfaction d'un fluide cryogénique. Ce fluide cryogénique est par exemple du butane, du propane, du méthane, de l'azote ou de l'oxygène liquide. Les teneurs en éléments gammagènes, nickel (Ni), manganèse (Mn) et carbone (C), de l'alliage sont ajustées de façon à ce que la température de début de la transformation martensitique soit strictement inférieure à la température TL de liquéfaction du fluide cryogénique.
  • Il présente un faible coefficient moyen de dilatation thermique entre la température ambiante et la température TL de liquéfaction du fluide cryogénique.
  • Il ne présente pas de transition de résilience « ductile-fragile ».
A cryogenic Invar type alloy is an alloy that has three main properties:
  • It is stable with respect to the martensitic transformation to below the temperature T L for liquefying a cryogenic fluid. This cryogenic fluid is for example butane, propane, methane, nitrogen or liquid oxygen. The contents of gammagene elements, nickel (Ni), manganese (Mn) and carbon (C), of the alloy are adjusted so that the start temperature of the martensitic transformation is strictly lower than the temperature L L of liquefaction cryogenic fluid.
  • It has a low average coefficient of thermal expansion between the ambient temperature and the temperature L L liquefaction of the cryogenic fluid.
  • It does not have a "ductile-fragile" resilience transition.

L'alliage utilisé a de préférence :

  • un coefficient moyen de dilatation thermique entre 20°C et 100°C inférieur ou égal à 10,5x10-6 K-1, en particulier inférieur ou égal à 2,5x10-6 K-1 ;
  • un coefficient moyen de dilatation thermique entre -180°C et 0°C inférieur ou égal à 10x10-6K-1, en particulier inférieur ou égal à 2x10-6K-1 ; et
  • une résilience supérieure ou égale à 100 joule/cm2, en particulier supérieure ou égale à 150 joule/cm2, à une température supérieure ou égale à -196°C.
The alloy used preferably has:
  • an average coefficient of thermal expansion between 20 ° C and 100 ° C less than or equal to 10.5x10 -6 K -1 , in particular less than or equal to 2.5x10 -6 K -1 ;
  • an average coefficient of thermal expansion between -180 ° C and 0 ° C less than or equal to 10x10 -6 K -1 , in particular less than or equal to 2x10 -6 K -1 ; and
  • greater than or equal to 100 joule / cm 2 resilience, in particular greater than or equal to 150 joule / cm 2 at a temperature greater than or equal to -196 ° C.

De préférence, l'alliage utilisé présente la composition suivante, en % en poids : 34,5 Ni 42,5 %

Figure imgb0022
0,15 % Mn 0,5 %
Figure imgb0023
0 Si 0,35 % , de préférence 0,1 % Si 0,35 %
Figure imgb0024
0,010 % C 0,050 %
Figure imgb0025
optionnellement : 0 Co 20 %
Figure imgb0026
0 Ti 0,5 %
Figure imgb0027
0,01 % Cr 0,5 %
Figure imgb0028
le reste étant du fer et des impuretés résultant nécessairement de l'élaboration.Preferably, the alloy used has the following composition, in% by weight: 34.5 Or 42.5 %
Figure imgb0022
0.15 % mn 0.5 %
Figure imgb0023
0 Yes 0.35 % , preferably 0.1 % Yes 0.35 %
Figure imgb0024
0,010 % VS 0,050 %
Figure imgb0025
optionally: 0 Co 20 %
Figure imgb0026
0 Ti 0.5 %
Figure imgb0027
0.01 % Cr 0.5 %
Figure imgb0028
the rest being iron and impurities necessarily resulting from the elaboration.

Dans ce cas, l'alliage utilisé a de préférence :

  • un coefficient moyen de dilatation thermique entre 20°C et 100°C inférieur ou égal à 5,5x 10-6 K-1 ;
  • un coefficient moyen de dilatation thermique entre -180°C et 0°C inférieur ou égal à 5x10-6 K-1; et
  • une résilience supérieure ou égale à 100 joule/cm2, en particulier supérieure ou égale à 150 joule/cm2, à une température supérieure ou égale à -196°C.
In this case, the alloy used preferably has:
  • an average coefficient of thermal expansion between 20 ° C and 100 ° C less than or equal to 5.5x10 -6 K -1 ;
  • an average coefficient of thermal expansion between -180 ° C and 0 ° C less than or equal to 5x10 -6 K -1 ; and
  • greater than or equal to 100 joule / cm 2 resilience, in particular greater than or equal to 150 joule / cm 2 at a temperature greater than or equal to -196 ° C.

Encore plus particulièrement, 35 % Ni 36,5 %

Figure imgb0029
0,2 % Mn 0,4 %
Figure imgb0030
0,02 C 0,04 %
Figure imgb0031
0,15 Si 0,25 %
Figure imgb0032
optionnellement 0 Co 20 %
Figure imgb0033
0 Ti 0,5 %
Figure imgb0034
0,01 % Cr 0,5 %
Figure imgb0035
le reste étant du fer et des impuretés résultant nécessairement de l'élaboration.Even more particularly, 35 % Or 36.5 %
Figure imgb0029
0.2 % mn 0.4 %
Figure imgb0030
0.02 VS 0.04 %
Figure imgb0031
0.15 Yes 0.25 %
Figure imgb0032
optionally 0 Co 20 %
Figure imgb0033
0 Ti 0.5 %
Figure imgb0034
0.01 % Cr 0.5 %
Figure imgb0035
the rest being iron and impurities necessarily resulting from the elaboration.

Dans ce cas, l'alliage présente de préférence :

  • un coefficient moyen de dilatation thermique entre 20°C et 100°C inférieur ou égal à 1,5x10-6 K-1 ;
  • un coefficient moyen de dilatation thermique entre -180°C et 0°C inférieur ou égal à 2x10-6 K-1 ;
  • une résilience supérieure ou égale à 200 joule/cm2 à une température supérieure ou égale à -196°C.
In this case, the alloy preferably has:
  • an average coefficient of thermal expansion between 20 ° C and 100 ° C less than or equal to 1.5x10 -6 K -1;
  • an average coefficient of thermal expansion between -180 ° C and 0 ° C less than or equal to 2x10 -6 K -1 ;
  • a resiliency greater than or equal to 200 joule / cm 2 at a temperature greater than or equal to -196 ° C.

Un tel alliage est un alliage de type Invar® cryogénique. Le nom commercial de cet alliage est Invar®-M93.Such an alloy is a cryogenic Invar® type alloy. The trade name of this alloy is Invar®-M93.

De manière classique, les alliages utilisés sont élaborés en four à arc électrique ou en four sous vide à induction.Conventionally, the alloys used are produced in electric arc furnace or vacuum induction furnace.

Après des opérations d'affinage en poche permettant de régler les teneurs en éléments d'alliage résiduels, les alliages sont coulés en demi-produits, lesquels sont transformés à chaud, en particulier par laminage à chaud, afin d'obtenir des bandes.After pocket refining operations to adjust residual alloy content, the alloys are cast into semi-finished products, which are heat-treated, in particular by hot rolling, to obtain strips.

Ces demi-produits sont par exemple des lingots. En variante, il s'agit de brames coulées en continu au moyen d'une installation de coulée continue de brames.These semi-products are for example ingots. Alternatively, it is slabs continuously cast by means of a continuous slab casting plant.

La bande ainsi obtenue est décapée et polie en procédé continu afin de limiter ses défauts : calamine, pénétration oxydée, paille et inhomogénéité en épaisseur dans le sens de la longueur et de la largeur de la bande.The strip thus obtained is etched and polished in a continuous process in order to limit its defects: calamine, oxidized penetration, straw and inhomogeneity in thickness in the direction of the length and the width of the strip.

Le polissage est notamment réalisé au moyen de meules ou de papiers abrasifs. Une fonction du polissage est d'éliminer les résidus du décapage.The polishing is in particular carried out by means of grinding wheels or abrasive paper. A function of the polishing is to eliminate the residues of the stripping.

A l'issue de cette étape de polissage, on obtient la bande initiale 1 fournie dans la première étape du procédé.At the end of this polishing step, the initial band 1 provided in the first step of the process is obtained.

En option, avant l'étape de laminage homogène à froid, on effectue sur la bande un recuit d'homogénéisation de la microstructure. Ce recuit d'homogénéisation de la microstructure est notamment réalisé au défilé dans un four de traitement thermique, appelé four de recuit d'homogénéisation de la microstructure dans la suite de la description, avec un temps de séjour dans le four de recuit d'homogénéisation de la microstructure compris entre 2 minutes et 25 minutes et une température de la bande lors du recuit d'homogénéisation de la microstructure comprise entre 850°C et 1200°C.Optionally, before the homogeneous cold rolling step, the strip is subjected to a homogenization annealing of the microstructure. This homogenization annealing of the microstructure is particularly carried out at run in a heat treatment furnace, called a homogenization annealing furnace of the microstructure in the following description, with a residence time in the homogenization annealing furnace of the microstructure of between 2 minutes and 25 minutes and a temperature of the strip during homogenization annealing of the microstructure between 850 ° C and 1200 ° C.

La bande initiale 101 a une épaisseur E0 constante comprise entre 1,9 mm et 18 mm (voir figure 5).The initial band 101 has a constant thickness E 0 between 1.9 mm and 18 mm (see figure 5 ).

On lamine ensuite la bande initiale 101 au cours d'une étape de laminage homogène à froid. Le laminage homogène est effectué suivant la longueur de la bande initiale 101.The initial web 101 is then rolled during a homogeneous cold rolling step. The homogeneous rolling is carried out along the length of the initial band 101.

Par laminage homogène, on entend un laminage transformant une bande d'épaisseur constante en une bande plus fine d'épaisseur également constante.By homogeneous rolling is meant a rolling transforming a band of constant thickness into a thinner band of constant thickness.

Plus particulièrement, l'étape de laminage homogène comprend une ou plusieurs passes assurées dans un laminoir où la bande passe dans une fente de laminage délimitée entre des rouleaux de travail. L'épaisseur de cette fente de laminage reste constante au cours de chaque passe de l'étape de laminage homogène.More particularly, the homogeneous rolling step comprises one or more passes in a rolling mill where the band passes through a rolling gap delimited between working rolls. The thickness of this rolling slot remains constant during each pass of the homogeneous rolling step.

Cette étape de laminage homogène aboutit à une bande intermédiaire 103 d'épaisseur Ec constante selon la direction de laminage, c'est-à-dire selon la longueur de la bande intermédiaire 103 (voir figure 6).This homogeneous rolling step results in an intermediate strip 103 of constant thickness E c according to the rolling direction, that is to say along the length of the intermediate strip 103 (cf. figure 6 ).

En option, l'étape de laminage homogène comprend au moins un recuit intermédiaire de recristallisation.Optionally, the homogeneous rolling step comprises at least one intermediate recrystallization annealing.

Lorsqu'il est présent, le recuit intermédiaire de recristallisation est effectué entre deux passes de laminage homogène successives. En variante ou en option, il est réalisé avant l'étape de laminage flexible à la fin de l'étape de laminage homogène, c'est-à-dire après toutes les passes de laminage réalisées pendant l'étape de laminage homogène.When present, the intermediate recrystallization annealing is carried out between two successive homogeneous rolling passes. Alternatively or optionally, it is performed before the flexible rolling step at the end of the homogeneous rolling step, ie after all the rolling passes made during the homogeneous rolling step.

Par exemple, le recuit intermédiaire de recristallisation est réalisé au défilé dans un four de recuit intermédiaire avec une température de la bande lors du recuit intermédiaire comprise entre 850°C et 1200°C et un temps de séjour dans le four de recuit intermédiaire compris entre 30 secondes et 5 minutes.For example, the intermediate recrystallization annealing is carried out by passing through an intermediate annealing furnace with a temperature of the strip during the intermediate annealing of between 850 ° C. and 1200 ° C. and residence time in the intermediate annealing furnace between 30 seconds and 5 minutes.

Le recuit intermédiaire de recristallisation, ou s'il en est effectué plusieurs, le dernier recuit intermédiaire de recristallisation de l'étape de laminage homogène, est effectué lorsque la bande présente une épaisseur Ei comprise entre l'épaisseur E0 de la bande initiale 101 et l'épaisseur Ec de la bande intermédiaire 103.The intermediate recrystallization annealing, or if several is carried out, the last recrystallization intermediate annealing of the homogeneous rolling step, is carried out when the strip has a thickness E i between the thickness E 0 of the initial strip. 101 and the thickness E c of the intermediate band 103.

Lorsque le recuit intermédiaire de recristallisation est réalisé à la fin de l'étape de laminage homogène, l'épaisseur Ei de la bande lors du recuit intermédiaire de recristallisation est égale à l'épaisseur Ec de la bande intermédiaire 103 au début de l'étape de laminage flexible.When the intermediate recrystallization annealing is carried out at the end of the homogeneous rolling step, the thickness E i of the strip during the intermediate recrystallization annealing is equal to the thickness E c of the intermediate strip 103 at the beginning of the flexible rolling step.

Avantageusement, dans le mode de réalisation dans lequel au moins un recuit intermédiaire de recristallisation est réalisé, on effectue un seul recuit intermédiaire de recristallisation. En particulier, ce recuit intermédiaire de recristallisation unique est effectué entre deux passes de laminage homogène successives lorsque la bande présente une épaisseur Ei strictement supérieure à l'épaisseur Ec de la bande intermédiaire 103.Advantageously, in the embodiment in which at least one intermediate recrystallization annealing is carried out, a single recrystallization intermediate annealing is carried out. In particular, this intermediate recrystallization annealing is carried out between two successive homogeneous rolling passes when the strip has a thickness E i strictly greater than the thickness E c of the intermediate strip 103.

De manière préférée, l'étape de laminage homogène ne comprend pas de recuit intermédiaire.Preferably, the homogeneous rolling step does not include intermediate annealing.

La bande intermédiaire 103 d'épaisseur Ec obtenue à l'issue de l'étape de laminage homogène est ensuite soumise à une étape de laminage flexible à froid.The intermediate strip 103 of thickness E c obtained at the end of the homogeneous rolling step is then subjected to a cold flexible rolling step.

Le laminage flexible est réalisé selon une direction de laminage s'étendant suivant la longueur de la bande intermédiaire 103.The flexible rolling is carried out in a rolling direction extending along the length of the intermediate strip 103.

Le laminage flexible permet d'obtenir une bande d'épaisseur variable selon sa longueur.Flexible rolling makes it possible to obtain a strip of variable thickness depending on its length.

Pour cela, on fait varier en continu l'épaisseur de la fente de laminage du laminoir utilisé. Cette variation est fonction de l'épaisseur souhaitée de la zone de la bande en cours de laminage de manière à obtenir une bande d'épaisseur variable selon sa longueur.For this purpose, the thickness of the rolling slot of the rolling mill used is continuously varied. This variation is a function of the desired thickness of the zone of the strip during rolling so as to obtain a strip of variable thickness along its length.

Plus particulièrement, et comme illustré sur la figure 7, on obtient à l'issue de l'étape de laminage flexible une bande 104 d'épaisseur variable comprenant des premières zones 107 ayant une première épaisseur e+s et des deuxièmes zones 110 ayant une deuxième épaisseur e, inférieure à la première épaisseur e+s. La première épaisseur e+s et la deuxième épaisseur e correspondent chacune à une épaisseur de fente de laminage donnée.More particularly, and as illustrated on the figure 7 at the end of the flexible rolling step, a strip 104 of variable thickness is obtained comprising first zones 107 having a first thickness e + s and second zones 110 having a second thickness e, smaller than the first thickness e + s. The first thickness e + s and the second thickness e each correspond to a given rolling slot thickness.

Les premières zones 107 et les deuxièmes zones 110 ont chacune une épaisseur sensiblement constante, respectivement e+s et e.The first zones 107 and the second zones 110 each have a substantially constant thickness, respectively e + s and e.

Elles sont reliées entre elles par des zones de liaison 111 d'épaisseur non constante selon la longueur de la bande 104 d'épaisseur variable. L'épaisseur des zones de liaison 111 varie entre e et e+s. Selon un exemple, elle varie linéairement entre e et e+s.They are interconnected by connecting zones 111 of non-constant thickness along the length of the band 104 of variable thickness. The thickness of the connection areas 111 varies between e and e + s. In one example, it varies linearly between e and e + s.

L'étape de laminage homogène et l'étape de laminage flexible engendrent dans les premières zones 107, c'est-à-dire dans les zones les plus épaisses de la bande 104, un taux τ 1 de déformation plastique, après un éventuel recuit intermédiaire de recristallisation, supérieur ou égal à 30%, plus particulièrement compris entre 30% et 98%, encore plus particulièrement compris entre 30% et 80%. Dans les plages précitées, le taux τ 1 de déformation plastique est avantageusement supérieur ou égal à 35%, plus particulièrement supérieur ou égal à 40%, et encore plus particulièrement supérieur ou égal à 50%.The homogeneous rolling step and the flexible rolling step generate in the first zones 107, that is to say in the thickest zones of the strip 104, a rate τ 1 of plastic deformation, after a possible annealing. intermediate recrystallization, greater than or equal to 30%, more particularly between 30% and 98%, more particularly between 30% and 80%. In the abovementioned ranges, the rate τ 1 of plastic deformation is advantageously greater than or equal to 35%, more particularly greater than or equal to 40%, and even more particularly greater than or equal to 50%.

Le taux τ 1 de déformation plastique engendré dans les premières zones 107 est défini comme suit :

  • Si aucun recuit intermédiaire de recristallisation n'est effectué pendant l'étape de laminage homogène, le taux τ 1 de déformation plastique est le taux de réduction total engendré dans les premières zones 107 de la bande 104 par l'étape de laminage homogène et l'étape de laminage flexible, c'est-à-dire résultant de la réduction d'épaisseur depuis l'épaisseur initiale E0 jusqu'à l'épaisseur e+s.
The rate τ 1 of plastic deformation generated in the first zones 107 is defined as follows:
  • If no recrystallization intermediate annealing is performed during the homogeneous rolling step, the plastic strain rate τ 1 is the total reduction ratio generated in the first zones 107 of the strip 104 by the homogeneous rolling step and the flexible rolling step, that is to say resulting from the reduction in thickness from the initial thickness E 0 to the thickness e + s.

Dans ce cas, le taux τ1 de déformation plastique, en pourcentage, est donné par la formule suivante : τ 1 = E 0 e + s E 0 × 100

Figure imgb0036
In this case, the rate τ 1 of plastic deformation, in percentage, is given by the following formula: τ 1 = E 0 - e + s E 0 × 100
Figure imgb0036

Ainsi, dans le cas où aucun recuit intermédiaire de recristallisation n'est effectué, le taux τ 1 de déformation plastique est égal au taux de réduction total engendré dans les premières zones 107 par l'étape de laminage homogène et l'étape de laminage flexible.

  • Si au moins un recuit intermédiaire de recristallisation est effectué pendant l'étape de laminage homogène, le taux τ1 de déformation plastique est le taux de réduction engendré dans les premières zones 107 du fait de la réduction d'épaisseur de la bande de l'épaisseur Ei qu'elle présente lors du dernier recuit intermédiaire de recristallisation effectué pendant l'étape de laminage homogène jusqu'à l'épaisseur e+s.
Thus, in the case where no intermediate recrystallization annealing is performed, the rate τ 1 of plastic deformation is equal to the total reduction rate generated in the first zones 107 by the homogeneous rolling step and the flexible rolling step .
  • If at least one recrystallization intermediate annealing is carried out during the homogeneous rolling step, the rate of plastic deformation τ 1 is the reduction rate generated in the first zones 107 because of the reduction in thickness of the strip of the thickness E i that it presents during the last intermediate recrystallization annealing carried out during the homogeneous rolling step up to the thickness e + s.

Dans ce cas, le taux τ 1 de déformation plastique, en pourcentage, est donné par la formule suivante : τ 1 = E i e + s E i × 100

Figure imgb0037
In this case, the rate τ 1 of plastic deformation, in percentage, is given by the following formula: τ 1 = E i - e + s E i × 100
Figure imgb0037

Ainsi, dans le cas où un ou plusieurs recuits intermédiaires sont effectués pendant l'étape de laminage homogène, le taux τ 1 de déformation plastique est strictement inférieur au taux de réduction total engendré dans les premières zones 107 par l'étape de laminage homogène et l'étape de laminage flexible à froid.Thus, in the case where one or more intermediate annealings are carried out during the homogeneous rolling step, the rate τ 1 of plastic deformation is strictly less than the total reduction rate generated in the first zones 107 by the homogeneous rolling step and the cold flexible rolling step.

Le taux τ 2 de déformation plastique, après un éventuel recuit intermédiaire de recristallisation, engendré dans les deuxièmes zones 110, est strictement supérieur au taux τ 1 de déformation plastique dans les premières zones 107. Il est calculé de manière analogue, en remplaçant e+s par e dans les formules (1) et (2) ci-dessus.The rate τ 2 of plastic deformation, after a possible intermediate recrystallization annealing, generated in the second zones 110, is strictly greater than the rate τ 1 of plastic deformation in the first zones 107. It is calculated analogously, replacing e + s in formulas (1) and (2) above.

La différence Δτ de taux de déformation plastique entre les deuxièmes zones 110 et les premières zones 107 est donnée par la relation Δτ = τ 2 - τ 1 . The difference Δ τ of plastic strain rate between the second zones 110 and the first zones 107 is given by the relation Δ τ = τ 2 - τ 1 .

Cette différence Δτ est avantageusement inférieure ou égale à 13% si l'épaisseur E0 est strictement supérieure à 2 mm. Elle est avantageusement inférieure ou égale à 10% si l'épaisseur E0 est inférieure ou égale à 2 mm.This difference Δ τ is advantageously less than or equal to 13% if the thickness E 0 is strictly greater than 2 mm. It is advantageously less than or equal to 10% if the thickness E 0 is less than or equal to 2 mm.

Plus particulièrement, la différence Δτ est inférieure ou égale à 10% si E0 est strictement supérieure à 2mm, et la différence Δτ est inférieure ou égale à 8% si E0 est inférieure ou égale à 2mm.More particularly, the difference Δ τ is less than or equal to 10% if E 0 is strictly greater than 2mm, and the difference Δ τ is less than or equal to 8% if E 0 is less than or equal to 2mm.

Avantageusement, l'épaisseur Ec de la bande intermédiaire 103 avant l'étape de laminage flexible est en particulier égale à l'épaisseur e des deuxièmes zones 110 multipliée par un coefficient de réduction k compris entre 1,05 et 1,5. Avantageusement, k est environ égal à 1,3.Advantageously, the thickness E c of the intermediate strip 103 before the flexible rolling step is in particular equal to the thickness e of the second zones 110 multiplied by a reduction coefficient k of between 1.05 and 1.5. Advantageously, k is approximately equal to 1.3.

Avantageusement, les épaisseurs e+s et e des premières et deuxièmes zones 107, 110 respectent l'équation : e + s = n + 1 . e

Figure imgb0038
où n est un coefficient constant compris entre 0,05 et 0,5.Advantageously, the thicknesses e + s and e of the first and second zones 107, 110 respect the equation: e + s = not + 1 . e
Figure imgb0038
where n is a constant coefficient between 0.05 and 0.5.

En d'autres termes, la première épaisseur e+s est égale à la deuxième épaisseur e multipliée par un coefficient de multiplication compris entre 1,05 et 1,5.In other words, the first thickness e + s is equal to the second thickness e multiplied by a multiplication coefficient of between 1.05 and 1.5.

Cette équation se réécrit de la manière suivante : s = n.e, c'est-à-dire que la surépaisseur s des premières zones 107 par rapport aux deuxièmes zones 110 est égale au coefficient n multiplié par l'épaisseur e des deuxièmes zones 110.This equation is rewritten as follows: s = ne, that is to say that the excess s of the first zones 107 with respect to the second zones 110 is equal to the coefficient n multiplied by the thickness e of the second zones 110.

L'épaisseur e des deuxièmes zones 110 est comprise entre 0,05 mm et 10 mm, plus particulièrement entre 0,15 mm et 10 mm, encore plus particulièrement entre 0,25 mm et 8,5 mm. Lorsque l'on réalise des feuillards, l'épaisseur e est inférieure ou égale à 2 mm, avantageusement comprise entre 0,25 mm et 2 mm. Lorsque l'on réalise des tôles, l'épaisseur e est strictement supérieure à 2 mm, en particulier comprise entre 2,1 mm et 10mm, plus particulièrement comprise entre 2,1 mm et 8,5 mm.The thickness e of the second zones 110 is between 0.05 mm and 10 mm, more particularly between 0.15 mm and 10 mm, even more particularly between 0.25 mm and 8.5 mm. When making strips, the thickness e is less than or equal to 2 mm, advantageously between 0.25 mm and 2 mm. When making sheets, the thickness e is strictly greater than 2 mm, in particular between 2.1 mm and 10 mm, more particularly between 2.1 mm and 8.5 mm.

On soumet ensuite la bande 104 d'épaisseur variable résultant de l'étape de laminage flexible à un recuit final de recristallisation.The band 104 of variable thickness resulting from the flexible rolling step is then subjected to a final recrystallization annealing.

Le recuit final de recristallisation est réalisé au défilé dans un four de recuit final. La température du four de recuit final est constante pendant le recuit final de recristallisation. La température de la bande 104 pendant le recuit final de recristallisation est comprise entre 850°C et 1200°C.The final recrystallization annealing is carried out in a final annealing furnace. The temperature of the final annealing furnace is constant during the final recrystallization annealing. The temperature of the web 104 during the final recrystallization anneal is between 850 ° C and 1200 ° C.

Le temps de séjour dans le four de recuit final est compris entre 20 secondes et 5 minutes, plus particulièrement entre 30 secondes et 3 minutes.The residence time in the final annealing furnace is between 20 seconds and 5 minutes, more particularly between 30 seconds and 3 minutes.

La vitesse de défilement de la bande 104 dans le four de recuit final est constante. Elle est par exemple comprise entre 2m/min et 20m/min pour un four de recuit final de longueur de chauffe égale à 10m.The running speed of the web 104 in the final annealing furnace is constant. It is for example between 2m / min and 20m / min for a final annealing furnace with a heating length equal to 10m.

Avantageusement, la température de la bande 104 pendant le recuit final est de 1025°C. Dans ce cas, le temps de séjour dans le four de recuit final est par exemple compris entre 30 secondes et 60 secondes pour une bande 104 d'épaisseur variable ayant des deuxièmes zones 110 d'épaisseur e inférieure ou égale à 2 mm. Le temps de séjour dans le four de recuit final est par exemple compris entre 3 minutes et 5 minutes pour une bande 104 d'épaisseur variable ayant des deuxièmes zones 110 d'épaisseur e strictement supérieure à 2 mm.Advantageously, the temperature of the band 104 during the final annealing is 1025 ° C. In this case, the residence time in the final annealing furnace is for example between 30 seconds and 60 seconds for a band 104 of variable thickness having second zones 110 of thickness e less than or equal to 2 mm. The residence time in the final annealing furnace is for example between 3 minutes and 5 minutes for a band 104 of variable thickness having second zones 110 of thickness e strictly greater than 2 mm.

Le temps de séjour dans le four de recuit final, ainsi que la température de recuit final sont choisies de manière à obtenir après le recuit de recristallisation final une bande 104 ayant des propriétés mécaniques et des tailles de grains quasiment homogènes entre les premières zones 107 et les deuxièmes zones 110. La suite de la description précise le sens de « quasiment homogène ».The residence time in the final annealing furnace, as well as the final annealing temperature, are chosen so as to obtain, after the final recrystallization annealing, a strip 104 having mechanical properties and grain sizes that are almost homogeneous between the first zones 107 and the second zones 110. The remainder of the description specifies the meaning of "almost homogeneous".

De préférence, le recuit final est réalisé sous atmosphère réductrice, c'est-à-dire par exemple sous hydrogène pur ou sous atmosphère H2-N2. La température de givre est de préférence inférieure à -40°C. Dans le cas d'une atmosphère H2-N2, la teneur en N2 peut être comprise entre 0% et 95%. L'atmosphère H2-N2 comprend par exemple approximativement 70% de H2 et 30% de N2.Preferably, the final annealing is carried out under a reducing atmosphere, that is to say for example under pure hydrogen or under H 2 -N 2 atmosphere. The frost temperature is preferably below -40 ° C. In the case of an H 2 -N 2 atmosphere, the N 2 content can be between 0% and 95%. The H 2 -N 2 atmosphere comprises, for example, approximately 70% of H 2 and 30% of N 2 .

Selon un mode de réalisation, la bande 104 d'épaisseur variable passe en continu du laminoir de laminage flexible au four de recuit final, c'est-à-dire sans bobinage intermédiaire de la bande d'épaisseur variable 104.According to one embodiment, the band 104 of variable thickness passes continuously from the flexible rolling mill to the final annealing furnace, that is to say without intermediate winding of the variable thickness band 104.

En variante, à l'issue de l'étape de laminage flexible, on bobine la bande d'épaisseur variable 104 pour la transporter jusqu'au four de recuit final, puis on la déroule et on la soumet au recuit final de recristallisation.Alternatively, at the end of the flexible rolling step, the variable-thickness strip 104 is rolled up for transport to the final annealing furnace, then rolled out and subjected to the final recrystallization anneal.

Selon cette variante, la bande 104 enroulée a par exemple une longueur comprise entre 100 m et 2500 m, notamment si l'épaisseur e des deuxièmes zones 110 de la bande 104 est approximativement de 0,7 mm.According to this variant, the wound strip 104 has for example a length of between 100 m and 2500 m, especially if the thickness e of the second zones 110 of the strip 104 is approximately 0.7 mm.

On obtient, à l'issue du recuit final de recristallisation, une bande 104 d'épaisseur variable selon sa longueur ayant les caractéristiques suivantes.At the end of the final recrystallization annealing, a strip 104 of variable thickness along its length having the following characteristics is obtained.

Elle comprend des premières zones 107 d'épaisseur e+s et des deuxièmes zones d'épaisseur e, éventuellement reliées entre elles par des zones de liaison 111 d'épaisseur variant entre e et e+s.It comprises first zones 107 of thickness e + s and second zones of thickness e, possibly interconnected by connecting zones 111 of thickness varying between e and e + s.

De préférence, la différence en valeur absolue entre la taille moyenne des grains des premières zones 107 et la taille moyenne des grains des deuxièmes zones 110 est inférieure ou égale à 0,5 indice selon la norme ASTM E1 12-10. La taille moyenne de grains en indice ASTM est déterminée en utilisant la méthode de comparaison à des images types décrite dans la norme ASTM E1 12-10. Conformément à cette méthode, pour déterminer la taille moyenne des grains d'un échantillon, on compare une image de la structure des grains sur écran obtenue au moyen d'un microscope optique à un grossissement donné de l'échantillon ayant subi une attaque colorante (« contrast etch » en anglais) avec des images types illustrant des grains maclés de différentes tailles ayant subi une attaque colorante (correspondant à la plaque III de la norme). L'indice de la taille moyenne des grains de l'échantillon est déterminé comme étant l'indice correspondant au grossissement utilisé porté sur l'image type ressemblant le plus à l'image vue sur l'écran du microscope.Preferably, the difference in absolute value between the average grain size of the first zones 107 and the average grain size of the second zones 110 is less than or equal to 0.5 index according to ASTM standard E1 12-10. The average grain size in ASTM index is determined using the standard image comparison method described in ASTM E1 12-10. According to this method, in order to determine the average grain size of a sample, an image of the screen grain structure obtained by means of an optical microscope at a given magnification of the sample having undergone a dye attack is compared ( Contrast etch in English) with typical images illustrating twinned grains of different sizes having undergone a coloring attack (corresponding to plate III of the standard). The average grain size index of the sample is determined as the index corresponding to the magnification used on the standard image most closely resembling the image seen on the microscope screen.

Si l'image vue sur l'écran du microscope est intermédiaire entre deux images types successives de tailles de grains, l'indice de la taille moyenne des grains de l'image vue au microscope est déterminé comme étant la moyenne arithmétique entre les indices correspondant au grossissement utilisé portés sur chacune des deux images types.If the image seen on the screen of the microscope is intermediate between two successive standard images of grain sizes, the index of the average grain size of the image seen under the microscope is determined as being the arithmetic mean between the corresponding indices. magnification used worn on each of the two typical images.

Plus particulièrement, l'indice G1ASTM de la taille moyenne des grains des premières zones 107 est au plus inférieur de 0,5 à l'indice G2ASTM de la taille moyenne des grains des deuxièmes zones 110.More particularly, the G1 ASTM index of the average grain size of the first zones 107 is at most 0.5 less than the G2 ASTM index of the average grain size of the second zones 110.

La bande 104 d'épaisseur variable peut présenter des propriétés mécaniques quasiment homogènes.The band 104 of variable thickness may have almost homogeneous mechanical properties.

En particulier :

  • la différence en valeur absolue entre la limite d'élasticité à 0,2% des premières zones 107 notée Rp1 et la limite d'élasticité à 0,2% des deuxièmes zones 110 notée Rp2 est inférieure ou égale à 6MPa, et
  • la différence en valeur absolue entre la charge à la rupture des premières zones 107 notée Rm1 et la charge à la rupture des deuxièmes zones 110 notée Rm2 est inférieure ou égale à 6MPa.
In particular :
  • the difference in absolute value between the elastic limit at 0.2% of the first zones 107 denoted Rp1 and the 0.2% elasticity limit of the second zones 110 denoted Rp2 is less than or equal to 6 MPa, and
  • the difference in absolute value between the breaking load of the first zones 107 denoted Rm1 and the breaking load of the second zones 110 denoted Rm2 is less than or equal to 6MPa.

Par limite d'élasticité à 0,2% on entend, de manière classique, la valeur de la contrainte à 0,2% de déformation plastique.By elastic limit at 0.2% is meant, in a conventional manner, the value of the stress at 0.2% of plastic deformation.

De manière classique, la charge à la rupture correspond à la contrainte maximale avant striction de l'échantillon test.Conventionally, the load at break corresponds to the maximum stress before necking of the test sample.

Dans l'exemple illustré, la bande 104 d'épaisseur variable présente un motif répété périodiquement sur toute la longueur de la bande 104. Ce motif comprend successivement une moitié de première zone 107 de longueur L 1 2 ,

Figure imgb0039
une zone de liaison 111 de longueur L3, une deuxième zone 110 de longueur L2, une zone de liaison 111 de longueur L3 et une moitié de première zone 107 de longueur L 1 2 .
Figure imgb0040
In the example illustrated, the band 104 of variable thickness has a repeating pattern periodically along the entire length of the strip 104. This pattern comprises successively a half of the first zone 107 of length The 1 2 ,
Figure imgb0039
a linking zone 111 of length L3, a second zone 110 of length L2, a connecting zone 111 of length L3 and a first zone half 107 of length The 1 2 .
Figure imgb0040

Avantageusement, la longueur L2 de la deuxième zone 110 est très nettement supérieure à la longueur L1 de la première zone 107. A titre d'exemple, la longueur L2 est comprise entre 20 et 100 fois la longueur L1.Advantageously, the length L2 of the second zone 110 is very clearly greater than the length L1 of the first zone 107. By way of example, the length L2 is between 20 and 100 times the length L1.

Chaque séquence formée d'une première zone 107 encadrée par deux zones de liaison 111 forme une zone de surépaisseur de la bande 104 d'épaisseur variable, c'est-à-dire une zone d'épaisseur supérieure à e. Ainsi, la bande 104 d'épaisseur variable comprend des deuxièmes zones 110 de longueur L2 d'épaisseur e, séparées entre elles par des zones de surépaisseur.Each sequence formed of a first zone 107 flanked by two connecting zones 111 forms a zone of excess thickness of the band 104 of variable thickness, that is to say a zone of thickness greater than e. Thus, the band 104 of variable thickness comprises second zones 110 of length L2 of thickness e, separated from each other by zones of extra thickness.

Après le recuit final de recristallisation, on découpe la bande 104 d'épaisseur variable dans les zones de surépaisseur, de préférence au milieu des zones de surépaisseur.After the final recrystallization annealing, the strip 104 of variable thickness is cut in the zones of excess thickness, preferably in the middle of the zones of extra thickness.

On obtient ainsi des flans 112 illustrés sur la figure 8 comprenant une deuxième zone de longueur L2 encadrée à chacune de ses extrémités longitudinales par une zone de liaison 111 de longueur L3 et par une moitié de première zone 107 de longueur L 1 2 .

Figure imgb0041
Thus blanks 112 illustrated on the figure 8 comprising a second zone of length L2 framed at each of its longitudinal ends by a connecting zone 111 of length L3 and by a half of first zone 107 of length The 1 2 .
Figure imgb0041

A l'issue de l'étape de découpe, les flans 112 sont planés selon un procédé de planage connu.At the end of the cutting step, the blanks 112 are planed according to a known planing method.

Les flans 112 sont ensuite enroulés en bobines à l'unité.The blanks 112 are then wound in coils to the unit.

Selon une variante du procédé de fabrication décrit ci-dessus, on réalise le planage de la bande 104 d'épaisseur variable après le recuit final de recristallisation et avant la découpe des flans 112.According to a variant of the manufacturing method described above, the strip 104 of variable thickness is planed after the final recrystallization annealing and before the blanks 112 are cut.

Selon cette variante, on découpe la bande 104 d'épaisseur variable planée dans les zones de surépaisseur pour former les flans 112. De préférence, on découpe la bande 104 au milieu des zones de surépaisseur.According to this variant, the web 104 of variable thickness, which is planar, is cut in the zones of excess thickness to form the blanks 112. Preferably, the strip 104 is cut in the middle of the excess thickness zones.

La découpe est par exemple réalisée sur la planeuse utilisée pour le planage de la bande 104. En variante, la bande planée 104 est enroulée en bobine, puis découpée sur une machine différente de la planeuse.The cutting is for example carried out on the leveling machine used for the flattening of the strip 104. As a variant, the flat strip 104 is wound into a coil and then cut on a machine different from the planer.

Les flans 112 sont ensuite enroulés en bobines à l'unité.The blanks 112 are then wound in coils to the unit.

On obtient au moyen du procédé de fabrication décrit ci-dessus des flans 112 formés d'une pièce comprenant une zone centrale 113 d'épaisseur e, encadrée par des extrémités 114 renforcées, i.e. d'épaisseur supérieure à l'épaisseur e de la zone centrale 113. Les extrémités 114 correspondent à des zones de surépaisseur de la bande 104 d'épaisseur variable et la zone centrale 113 correspond à une deuxième zone 110 de la bande 104 d'épaisseur variable à partir de laquelle le flan 112 a été découpé.By means of the manufacturing method described above, blanks 112 formed of a workpiece comprising a central zone 113 of thickness e, framed by reinforced ends 114, ie of thickness greater than the thickness e of the zone, are obtained by means of the manufacturing method described above. 113. The ends 114 correspond to zones of excess thickness of the band 104 of variable thickness and the central zone 113 corresponds to a second zone 110 of the band 104 of variable thickness from which the blank 112 has been cut.

Ces flans 112, qui présentent une épaisseur variable selon leur longueur tout en étant formés d'une pièce, ne présentent pas les faiblesses des assemblages soudés de l'état de la technique. En outre, leurs extrémités renforcées 114 permettent de les assembler par soudage à d'autres pièces en minimisant les faiblesses mécaniques dues à cet assemblage par soudage.These blanks 112, which have a variable thickness along their length while being formed in one piece, do not have the weaknesses of the welded joints of the state of the art. In addition, their reinforced ends 114 allow to assemble them by welding to other parts while minimizing the mechanical weaknesses due to this assembly by welding.

Selon des variantes, les flans 112 peuvent par exemple être obtenus par découpe de la bande 104 à d'autres endroits que dans deux zones de surépaisseurs successives. Par exemple, ils peuvent être obtenus par découpe alternativement dans une zone de surépaisseur et dans une deuxième zone 110. Dans ce cas, on obtient des flans 112 ayant une seule extrémité renforcée 114 d'épaisseur supérieure à e. Un tel flanc permet d'obtenir la virure 108 de la figure 11 According to variants, the blanks 112 may for example be obtained by cutting the strip 104 at other places than in two zones of successive overthicknesses. For example, they can be obtained by cutting alternately in a zone of extra thickness and in a second zone 110. In this case, blanks 112 having a single reinforced end 114 having a thickness greater than e are obtained. Such a flank makes it possible to obtain the strake 108 of the figure 11

Ils peuvent également être obtenus par découpe dans deux deuxièmes zones 110 successives.They can also be obtained by cutting in two second successive zones 110.

A titre d'exemple, et comme illustré sur la figure 9, on peut assembler un flan 112 avec une deuxième pièce 116 en soudant l'une des extrémités renforcées 114 du flan 112 à un bord de la deuxième pièce 16. L'épaisseur de la deuxième pièce 116 est de préférence supérieure à l'épaisseur de la zone centrale 113 du flan 112. La soudure réalisée est plus particulièrement une soudure à clin, encore appelée soudure à recouvrement.For example, and as illustrated on the figure 9 it is possible to assemble a blank 112 with a second piece 116 by welding one of the reinforced ends 114 of the blank 112 to an edge of the second piece 16. The thickness of the second piece 116 is preferably greater than the thickness of the blank. the central zone 113 of the blank 112. The weld performed is more particularly a weld clap, also called lap weld.

La pièce 116 peut être un flan 112 tel que décrit ci-dessus.The piece 116 may be a blank 112 as described above.

Ainsi, sur la figure 10, on a illustré deux flans 112 assemblés bout à bout par soudage. Ces deux flans 112 sont soudés entre eux par leurs extrémités renforcées 114. Les virures 108 et 208 de la figure 11 peuvent être raboutées de la même manière, comme on va le décrire plus bas.So, on the figure 10 two blanks 112 assembled end to end by welding are illustrated. These two blanks 112 are welded together by their reinforced ends 114. The strakes 108 and 208 of the figure 11 can be joined in the same way, as will be described below.

Dans les exemples illustrés sur les figures 9 et 10 :

  • la longueur de la zone centrale 113 est par exemple comprise entre 40 m et 60 m ; et
  • la longueur de chaque extrémité renforcée 114 est par exemple comprise entre 0,5 m et 2 m.
In the examples illustrated on the Figures 9 and 10 :
  • the length of the central zone 113 is for example between 40 m and 60 m; and
  • the length of each reinforced end 114 is for example between 0.5 m and 2 m.

La deuxième épaisseur e est notamment environ égale à 0,7 mm.The second thickness e is in particular approximately equal to 0.7 mm.

La première épaisseur e+s est environ égale à 0,9 mm.The first thickness e + s is approximately equal to 0.9 mm.

En variante, on forme une pièce non plane à partir du flan 112.Alternatively, a non-planar piece is formed from the blank 112.

Le procédé de fabrication d'une bande d'épaisseur variable selon sa longueur décrit ci-dessus est particulièrement avantageux. En effet, il permet d'obtenir une bande en alliage principalement à base de fer et de nickel ayant la composition chimique définie ci-dessus ayant des zones d'épaisseurs différentes mais des propriétés mécaniques quasi-homogènes. Ces propriétés sont obtenues grâce à l'utilisation d'un taux de déformation plastique après un éventuel recuit intermédiaire de recristallisation engendré par les étapes de laminage homogène et de laminage flexible dans les zones les plus épaisses supérieur ou égal à 30%.The method of manufacturing a strip of variable thickness along its length described above is particularly advantageous. Indeed, it makes it possible to obtain an alloy strip mainly based on iron and nickel having the chemical composition defined above having zones of different thicknesses but quasi-homogeneous mechanical properties. These properties are obtained through the use of a plastic deformation rate after a possible recrystallization intermediate annealing generated by the homogeneous rolling and flexible rolling steps in the thickest zones greater than or equal to 30%.

Les exemples expérimentaux suivants illustrent l'importance de la plage de taux de déformation plastique revendiquée pour ce type d'alliage.The following experimental examples illustrate the importance of the claimed plastic deformation rate range for this type of alloy.

Dans une première série d'expériences, on a fabriqué des feuillards d'épaisseur variable, c'est-à-dire des bandes 104 d'épaisseur variable dont l'épaisseur e des deuxièmes zones 10 est inférieure ou égale à 2 mm.In a first series of experiments, strips of variable thickness have been manufactured, that is to say strips 104 of variable thickness whose thickness e of the second zones 10 is less than or equal to 2 mm.

Le tableau 1 ci-après illustre des essais de fabrication de feuillards d'épaisseur variable sans recuit de recristallisation intermédiaire.Table 1 below illustrates the manufacturing trials of strips of variable thickness without intermediate recrystallization annealing.

Le tableau 2 ci-après contient des caractéristiques des feuillards obtenus par les essais du tableau 1.Table 2 below contains characteristics of the strips obtained by the tests in Table 1.

Le tableau 3 ci-après illustre des essais de fabrication de feuillards d'épaisseur variable avec un recuit intermédiaire de recristallisation à l'épaisseur Ei.Table 3 below illustrates the manufacturing trials of strips of variable thickness with an intermediate recrystallization annealing at the thickness E i .

Le tableau 4 ci-après contient des caractéristiques des feuillards obtenus par les essais du tableau 3.Table 4 below contains characteristics of the strips obtained by the tests in Table 3.

Dans une deuxième série d'expériences, on a fabriqué des tôles d'épaisseur variable, c'est-à-dire des bandes 104 d'épaisseur variable dont l'épaisseur e des deuxièmes zones 110 est strictement supérieure à 2 mm.In a second series of experiments, sheets of variable thickness have been manufactured, that is to say strips 104 of variable thickness whose thickness e of the second zones 110 is strictly greater than 2 mm.

Le tableau 5 illustre des essais de fabrication de tôles d'épaisseur variable avec ou sans recuit intermédiaire.Table 5 illustrates tests for manufacturing sheets of variable thickness with or without intermediate annealing.

Le tableau 6 ci-après contient des caractéristiques des tôles obtenues par les essais du tableau 5.Table 6 below contains characteristics of the sheets obtained by the tests in Table 5.

Dans tous les tableaux, on a souligné les essais conformes à un procédé de fabrication d'une bande d'épaisseur variable selon sa longueur, en alliage à base de fer, l'alliage à base de fer comprenant, en poids : 34,5 % Ni 53,5 %

Figure imgb0042
0,15 % Mn 1,5 %
Figure imgb0043
0 Si 0,35 % , de préférence 0,1 % Si 0,35 %
Figure imgb0044
0 C 0,07 %
Figure imgb0045
optionnellement : 0 Co 20 %
Figure imgb0046
0 Ti 0,5 %
Figure imgb0047
0,01 % Cr 0,5 %
Figure imgb0048
le reste étant du fer et des impuretés résultant nécessairement de l'élaboration,
le procédé comprenant successivement les étapes suivantes :

  • fourniture d'une bande initiale (101) d'épaisseur constante (Eo) obtenue par laminage à chaud ;
  • laminage homogène à froid de la bande initiale (101) selon sa longueur pour obtenir une bande intermédiaire (103) d'épaisseur constante (Ec) selon la direction de laminage ;
  • laminage flexible à froid de la bande intermédiaire (103) selon sa longueur pour obtenir une bande (104) d'épaisseur variable selon la direction de laminage, la bande (104) d'épaisseur variable ayant, selon sa longueur, des premières zones (107) ayant une première épaisseur (e+s) et des deuxièmes zones (110) ayant une deuxième épaisseur (e), inférieure à la première épaisseur (e+s),
  • recuit final de recristallisation au défilé de la bande (104) d'épaisseur variable dans un four de recuit final,
dans lequel le taux de déformation plastique engendré, après un éventuel recuit intermédiaire de recristallisation, par les étapes de laminage homogène à froid et de laminage flexible à froid dans les premières zones (107) de la bande (104) d'épaisseur variable est supérieur ou égal à 30%.In all the tables, it was pointed out the tests according to a method of manufacturing a strip of thickness varying according to its length, made of iron-based alloy, the iron-based alloy comprising, by weight: 34.5 % Or 53.5 %
Figure imgb0042
0.15 % mn 1.5 %
Figure imgb0043
0 Yes 0.35 % , preferably 0.1 % Yes 0.35 %
Figure imgb0044
0 VS 0.07 %
Figure imgb0045
optionally: 0 Co 20 %
Figure imgb0046
0 Ti 0.5 %
Figure imgb0047
0.01 % Cr 0.5 %
Figure imgb0048
the rest being iron and impurities necessarily resulting from the elaboration,
the process successively comprising the following steps:
  • providing an initial strip (101) of constant thickness (Eo) obtained by hot rolling;
  • homogeneously cold rolling the initial web (101) along its length to obtain an intermediate web (103) of constant thickness (E c ) according to the rolling direction;
  • cold rolling the intermediate strip (103) along its length to obtain a strip (104) of variable thickness in the rolling direction, the strip (104) of variable thickness having, along its length, first zones ( 107) having a first thickness (e + s) and second regions (110) having a second thickness (e), less than the first thickness (e + s),
  • final recrystallization annealing of the band (104) of variable thickness in a final annealing furnace,
in which the rate of plastic deformation generated, after any intermediate recrystallization annealing, by the homogeneous cold rolling and cold rolling steps in the first zones (107) of the variable thickness band (104) is greater than or equal to 30%.

On constate que lorsque le taux de déformation plastique τ1 après un éventuel recuit intermédiaire de recristallisation est supérieur ou égal à 30% (essais 1 à 7 du tableau 1, 1 à 3 du tableau 3 et 1 à 9 du tableau 5), la bande 104 d'épaisseur variable obtenue présente une différence de taille moyenne de grains entre la taille moyenne des grains des premières zones 107 (épaisseur e+s) et la taille des grains des deuxièmes zones 110 (épaisseur e) inférieure ou égale à 0,5 indice ASTM en valeur absolue. Cette faible différence de taille moyenne de grains entre les premières zones 107 et les deuxièmes zones 110 résulte en des propriétés mécaniques quasi-homogènes, à savoir une différence de limite d'élasticité à 0,2% ΔRp entre les premières zones 107 et les deuxièmes zones 110 inférieure ou égale à 6 MPa en valeur absolue, et une différence entre la charge à la rupture ΔRm des premières zones 107 et des deuxièmes zones 110 inférieure ou égale à 6 MPa en valeur absolue.It is found that when the rate of plastic deformation τ1 after any intermediate recrystallization annealing is greater than or equal to 30% (tests 1 to 7 of Table 1, 1 to 3 of Table 3 and 1 to 9 of Table 5), the strip 104 of variable thickness obtained has a difference in average grain size between the average grain size of the first zones 107 (thickness e + s) and the grain size of the second zones 110 (thickness e) less than or equal to 0.5 ASTM index in absolute value. This small difference in average grain size between the first zones 107 and the second zones 110 results in quasi-homogeneous mechanical properties, namely a difference of 0.2% elastic limit ΔRp between the first zones 107 and the second zones 110. zones 110 less than or equal to 6 MPa in absolute value, and a difference between the load at break ΔRm of the first zones 107 and the second zones 110 less than or equal to 6 MPa in absolute value.

Il est ainsi possible d'obtenir une bande 104 d'épaisseur variable ayant des propriétés mécaniques et des tailles de grains quasiment homogènes à l'issue d'un recuit de recristallisation très simple, puisque réalisé à température et vitesse de défilement constants.It is thus possible to obtain a band 104 of variable thickness having mechanical properties and substantially homogeneous grain sizes at the end of a very simple recrystallization annealing, since carried out at constant temperature and speed of scrolling.

La figure 11 est une vue schématique de dessus de la membrane étanche primaire d'une paroi d'une cuve étanche et isolante construite similairement à la cuve de la figure 1. Les extrémités de la paroi de cuve sont symbolisées par les ailettes de soudure 27 partiellement représentées.The figure 11 is a schematic view from above of the primary waterproof membrane of a wall of a sealed and insulating tank constructed similarly to the tank of the figure 1 . The ends of the tank wall are symbolized by the welding fins 27 partially shown.

Pour les besoins de l'illustration, les trois virures métalliques 8, 108 et 208 représentées sur la figure 11 sont fabriquées selon trois modes de réalisation différents. En pratique, une membrane étanche peut être construite avec des virures correspondant toutes au même mode de réalisation, ou bien en combinant des virures de plusieurs modes de réalisation selon tout ordre approprié. Les supports de soudure 9 sont également esquissés sur la figure 11, dans une représentation éclatée qui place les supports de soudure 9 à distance des virures 8, 108 et 208 pour faciliter la compréhension.For the purposes of illustration, the three metal strakes 8, 108 and 208 shown on the figure 11 are manufactured according to three different embodiments. In practice, a waterproof membrane can be constructed with strakes all corresponding to the same embodiment, or by combining strakes of several embodiments in any appropriate order. The welding supports 9 are also sketched on the figure 11 , in an exploded representation that places the welding supports 9 away from the strakes 8, 108 and 208 to facilitate understanding.

Les virures des trois modes de réalisation ont pour point commun de s'étendre longitudinalement d'une extrémité à l'autre de la paroi de cuve pour être soudées sur les deux ailettes de soudure 27 et de présenter deux bords latéraux relevés 13. Par exemple, la largeur de la portion centrale plane de la virure est comprise entre 40 et 60 cm et la hauteur du bord relevé 13 est comprise entre 2 et 6 cm.The strakes of the three embodiments have the common point of extending longitudinally from one end to the other of the tank wall to be welded to the two solder fins 27 and have two raised side edges 13. For example , the width of the flat central portion of the strake is between 40 and 60 cm and the height of the raised edge 13 is between 2 and 6 cm.

Les bords relevés 13 de la virure à épaisseur variable 8 peuvent être obtenus à partir du flanc plan 112 à l'aide d'une plieuse comportant trois galets de chaque côté du flanc 112. Les galets exercent une pression sur le flanc afin de déformer le flanc pour générer les bords relevés. Des vérins hydrauliques asservis permettent de modifier la position des galets et la pression exercée par ceux-ci en fonction de la variation de l'épaisseur du flanc.The raised edges 13 of the variable thickness strake 8 can be obtained from the flat side 112 by means of a folder comprising three rollers on each side of the sidewall 112. The rollers exert a pressure on the sidewall in order to deform the flank to generate the raised edges. Hydraulic jacks are used to change the position of the rollers and the pressure exerted by them depending on the variation of the thickness of the sidewall.

La virure 8 correspond au mode de réalisation décrit plus haut en référence aux figures 2 et3 : il s'agit d'une bande métallique s'étendant d'un seul tenant d'un bout à l'autre de la paroi de cuve et comportant les portions renforcées 114 aux deux extrémités de la bande et la portion centrale de plus faible épaisseur 113 entre celles-ci. Pour les besoins de la représentation, les limites entre la portion de plus faible épaisseur 113 et les portions renforcées plus épaisses 114 ont été tracées en trait interrompu fin, mais il est entendu que cette limite peut s'étendre sur une zone de transition relativement étendue.Strake 8 corresponds to the embodiment described above with reference to figures 2 and3: it is a metal strip extending in one piece from one end to the other of the tank wall and having the reinforced portions 114 at both ends of the strip and the central portion of more thin thickness 113 between them. For the purposes of the representation, the boundaries between the thinner portion 113 and the thicker reinforced portions 114 have been drawn in fine dashed lines, but it is understood that this limit may extend over a relatively large transition zone .

La virure 8 est posée d'un seul tenant dans la cuve. On découpe la portion inclinée 14 aux deux extrémités des deux bords relevés de la virure 8, avant de procéder aux soudures d'assemblage et d'étanchéité avec les anneaux de raccordement.The strake 8 is placed in one piece in the tank. Cutting the inclined portion 14 at both ends of the two raised edges of the strake 8, before proceeding to the assembly and sealing welds with the connecting rings.

La virure 108 ou 208 est en revanche constituée de plusieurs bandes longitudinales successives à bords relevées qui peuvent être posées l'une après l'autre, ce qui rend ces modes de réalisation particulièrement adaptés pour une paroi de cuve de très grande longueur, par exemple environ 30 à 50m par bande longitudinale, soit une longueur totale supérieure à 50m. Chaque bande successive est continue, c'est-à-dire qu'elle est obtenue à partir d'un seul flanc décrit ci-dessus, et non pas en soudant ensemble plusieurs flancs.The strake 108 or 208, on the other hand, consists of several successive longitudinal strips with raised edges which can be placed one after the other, which makes these embodiments particularly suitable for a very long vessel wall, for example approximately 30 to 50m per longitudinal band, ie a total length greater than 50m. Each successive band is continuous, that is to say that it is obtained from a single flank described above, and not by welding several flanks together.

Plus précisément, la virure 108 comporte deux bandes métalliques à bords relevées 13 qui sont assemblées bout à bout dans le prolongement l'une de l'autre au niveau d'une zone d'assemblage 40, par exemple par soudure. Chaque bande métallique est continue et présente une portion d'extrémité renforcée plus épaisse 114 adjacente à la zone d'assemblage 40 et présente une épaisseur uniforme plus faible sur tout le reste de sa longueur 113, jusqu'au bord de la paroi de cuve où elle est assemblée à l'ailette de soudure 27.More specifically, the strake 108 comprises two metal strips with raised edges 13 which are assembled end to end in the extension of one another at an assembly area 40, for example by welding. Each metal band is continuous and has a portion thicker reinforced end end 114 adjacent to the joining zone 40 and having a lower uniform thickness over the rest of its length 113, to the edge of the tank wall where it is joined to the welding fin 27.

La virure 208 est construite similairement à la virure 108, mais avec des bandes dont les deux extrémités 114 sont renforcées par une épaisseur plus importante. De ce fait, les extrémités renforcées plus épaisse 114 des bandes constituant la virure 208 sont présentes à la fois au niveau de la zone de raccordement 40 entre les bandes et au niveau des bords de la paroi de cuve où la virure 208 est assemblée aux ailettes de soudure 27. En variante, la virure 208 peut être construite avec un nombre plus élevé de bandes continues mises bout à bout de la même manière.The strake 208 is constructed similarly to the strake 108, but with strips whose two ends 114 are reinforced by a greater thickness. As a result, the thicker reinforced ends 114 of the strips constituting the strake 208 are present both at the connection zone 40 between the strips and at the edges of the tank wall where the strake 208 is joined to the fins. As a variant, the strake 208 may be constructed with a higher number of continuous strips laid end to end in the same manner.

Lorsqu'une paroi de cuve est recouverte d'une membrane étanche fabriquée avec les virures 108 ou 208, la zone d'assemblage 40 de chaque virure 108 ou 208 peut être placée au milieu de la paroi de cuve ou à d'autres emplacements. De préférence, ces emplacements sont décalés longitudinalement d'une virure à l'autre, pour ainsi éviter de former une ligne de soudure continue dans la direction transversale de la paroi.When a tank wall is covered with a waterproof membrane manufactured with the strakes 108 or 208, the assembly area 40 of each strake 108 or 208 may be placed in the middle of the tank wall or at other locations. Preferably, these locations are offset longitudinally from one strake to another, thereby to avoid forming a continuous weld line in the transverse direction of the wall.

Bien qu'on ait décrit des éléments calorifuges sous forme de caissons comportant de la perlite expansée, d'autres formes d'éléments calorifuges sont possibles. Notamment, les caissons peuvent être réalisés avec d'autres formes de matériaux isolants. Par exemple, les caissons peuvent comporter une couche de mousse isolante.Although there have been described insulating elements in the form of caissons with expanded perlite, other forms of heat insulating elements are possible. In particular, the boxes can be made with other forms of insulating materials. For example, the boxes may include a layer of insulating foam.

Les cuves décrites ci-dessus peuvent être utilisées dans différents types d'installations telles que des installations terrestres ou dans un ouvrage flottant comme un navire méthanier ou autre.The tanks described above can be used in various types of installations such as land installations or in a floating structure such as a LNG tank or other.

En référence à la figure 4, une vue écorchée d'un navire méthanier 70 montre une cuve étanche et isolée 71 de forme générale prismatique montée dans la double coque 72 du navire. La paroi de la cuve 71 comporte une barrière étanche primaire destinée à être en contact avec le GNL contenu dans la cuve, une barrière étanche secondaire agencée entre la barrière étanche primaire et la double coque du navire, et deux barrières thermiquement isolantes agencées respectivement entre la barrière étanche primaire et la barrière étanche secondaire, et entre la barrière étanche secondaire et la double coque 72.With reference to the figure 4 , a cutaway view of a LNG tanker 70 shows a sealed and insulated tank 71 of generally prismatic shape mounted in the double hull 72 of the ship. The wall of the tank 71 comprises a primary sealed barrier intended to be in contact with the LNG contained in the tank, a secondary sealed barrier arranged between the primary watertight barrier and the double hull of the ship, and two thermally insulating barriers respectively arranged between the primary watertight barrier and the secondary watertight barrier, and between the secondary watertight barrier and the double hull 72.

De manière connue en soi, des canalisations de chargement/déchargement disposées sur le pont supérieur du navire peuvent être raccordées, au moyen de connecteurs appropriés, à un terminal maritime ou portuaire pour transférer une cargaison de GNL depuis ou vers la cuve 71.In a manner known per se, loading / unloading lines arranged on the upper deck of the ship can be connected, by means of appropriate connectors, to a marine or port terminal to transfer a cargo of LNG from or to the tank 71.

La figure 4 représente un exemple de terminal maritime comportant un poste de chargement et de déchargement 75, une conduite sous-marine 76 et une installation à terre 77. Le poste de chargement et de déchargement 75 est une installation fixe off-shore comportant un bras mobile 74 et une tour 78 qui supporte le bras mobile 74. Le bras mobile 74 porte un faisceau de tuyaux flexibles isolés 79 pouvant se connecter aux canalisations de chargement/déchargement 73. Le bras mobile 74 orientable s'adapte à tous les gabarits de méthaniers. Une conduite de liaison non représentée s'étend à l'intérieur de la tour 78. Le poste de chargement et de déchargement 75 permet le chargement et le déchargement du méthanier 70 depuis ou vers l'installation à terre 77. Celle-ci comporte des cuves de stockage de gaz liquéfié 80 et des conduites de liaison 81 reliées par la conduite sous-marine 76 au poste de chargement ou de déchargement 75. La conduite sous-marine 76 permet le transfert du gaz liquéfié entre le poste de chargement ou de déchargement 75 et l'installation à terre 77 sur une grande distance, par exemple 5 km, ce qui permet de garder le navire méthanier 70 à grande distance de la côte pendant les opérations de chargement et de déchargement.The figure 4 represents an example of a marine terminal comprising a loading and unloading station 75, an underwater pipe 76 and an onshore installation 77. The loading and unloading station 75 is an off-shore fixed installation comprising a movable arm 74 and a tower 78 which supports the movable arm 74. The movable arm 74 carries a bundle of insulated flexible pipes 79 that can connect to the loading / unloading pipes 73. The movable arm 74 can be adapted to all gauges LNG carriers. A connection pipe (not shown) extends inside the tower 78. The loading and unloading station 75 enables the loading and unloading of the LNG tank 70 from or to the shore facility 77. liquefied gas storage tanks 80 and connecting lines 81 connected by the underwater line 76 to the loading or unloading station 75. The underwater line 76 allows the transfer of the liquefied gas between the loading or unloading station 75 and the onshore installation 77 over a large distance, for example 5 km, which makes it possible to keep the tanker vessel 70 at great distance from the coast during the loading and unloading operations.

Pour engendrer la pression nécessaire au transfert du gaz liquéfié, on met en oeuvre des pompes embarquées dans le navire 70 et/ou des pompes équipant l'installation à terre 77 et/ou des pompes équipant le poste de chargement et de déchargement 75.In order to generate the pressure necessary for the transfer of the liquefied gas, pumps on board the ship 70 and / or pumps equipping the shore installation 77 and / or pumps equipping the loading and unloading station 75 are used.

Bien que l'invention ait été décrite en liaison avec plusieurs modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention, telle que définie par les revendications. L'usage du verbe «comporter», «comprendre» ou «inclure» et de ses formes conjuguées n'exclut pas la présence d'autres éléments ou d'autres étapes que ceux énoncés dans une revendication. L'usage de l'article indéfini « un » ou «une» pour un élément ou une étape n'exclut pas, sauf mention contraire, la présence d'une pluralité de tels éléments ou étapes.Although the invention has been described in connection with several particular embodiments, it is obvious that it is not limited thereto and that it comprises all the technical equivalents of the means described and their combinations if they are within the scope of the invention as defined by the claims. The use of the verb "to include", "to understand" or "to include" and its conjugated forms does not exclude the presence of other elements or steps other than those set out in a claim. The use of the indefinite article "a" or "an" for an element or a step does not exclude, unless otherwise stated, the presence of a plurality of such elements or steps.

Dans les revendications, tout signe de référence entre parenthèses ne saurait être interprété comme une limitation de la revendication. Tableau 1 Essai Longueur d'onde (m) E0 (mm) k Ec (mm) e (mm) n=s/e e+s (mm) L1 (m) L2 (m) L3 (m) τ1 (%) τ2 (%) τ2-τ1 (%) Recuit final T°C ; durée 1 50 4,2 1,3 2,0 1,5 0,25 1,88 1,50 1,90 44,7 55 64 9 1025°C ; 60s 2 50 4,2 1,15 1,7 1,5 0,15 1,73 1,50 1,90 44,7 59 64 5 1025°C ; 60s 3 50 3,2 1,15 1,2 1,0 0,15 1,15 1,00 1,50 46,0 64 69 5 1025°C ; 60s 4 50 2,6 1,3 0,9 0,7 0,25 0,88 1,00 1,50 46,0 66 73 7 1025°C ; 40s 5 50 2,6 1,15 0,8 0,7 0,15 0,81 1,00 1,50 46,0 69 73 4 1025°C ; 40s 6 60 2,6 1,3 0,9 0,7 0,15 0,81 1,00 1,50 56,0 69 73 4 1025°C ; 40s 7 50 2,1 1,3 0,7 0,5 0,15 0,58 1,20 1,50 45,8 73 76 4 1025°C ; 30s 8 50 2,3 1,3 2,3 1,8 0,25 2,25 1,20 1,50 45,8 2 22 20 1025°C ; 60s 9 50 2,1 1,3 2,3 1,8 0,15 2,07 1,20 1,50 45,8 1 14 13 1025°C; 60s 10 60 2,1 1,3 2,3 1,8 0,15 2,07 1,20 1,50 55,8 1 14 13 1025°C; 60s Tableau 2 Essai Propriétés à l'épaisseur e+s Propriétés à l'épaisseur e Delta Rp (MPa) Delta Rm (MPa) DeltaGASTM G1ASTM Rp (MPa) Rm (MPa) G2ASTM Rp (MPa) Rm (MPa) 1 8 288 487 8,5 292 491 -4 -4 0,5 2 8,5 293 492 9 296 495 -3 -3 0,5 3 8,5 293 492 9 295 495 -2 -3 0,5 4 8,5 293 490 9 296 496 -3 -6 0,5 5 9 297 496 9 296 496 1 0 0 6 9 297 495 9 296 496 1 -1 0 7 9,5 300 501 9,5 300 501 0 0 0 8 7,5 284 482 8,5 292 490 -8 -8 1 9 7,5 286 481 8,5 293 491 -7 -10 1 10 7,5 285 483 9 296 496 -11 -13 1,5 Tableau 3 Essai Longueur d'onde (m) E0 (mm) k Ei (mm) Recuit à Ei T°C ; durée Ec (mm) e (mm) n=s/e e+s (mm) L1 (m) L2 (m) L3 (m) τ1 (%) τ2 (%) τ2-τ1 (%) Recuit final T°C ; durée 1 50 2,6 1,3 1,5 1025°C; 50s 0,8 0,6 0,25 0,75 1,20 1,50 45,8 50 60 10 1025°C ; 40s 2 50 2,6 1,3 1,5 1025°C ; 50s 0,8 0,6 0,15 0,69 1,20 1,50 45,8 54 60 6 1025°C ; 40s 3 60 26 1,3 15 1025°C ; 50s 0,7 0,5 0,15 0,58 1,20 1,50 55,8 62 67 5 1025°C ; 30s 4 50 4,2 1,30 2,00 1025°C ; 80s 1,95 1,5 0,25 1,88 1,50 1,90 44,7 6 25 19 1025°C ; 60s 5 50 4,2 1,15 2,00 1025°C ; 80s 1,73 1,5 0,15 1,73 1,50 1,90 44,7 14 25 11 1025°C ; 60s 6 50 3,2 1,30 1,30 1025°C ; 50s 1,30 1,0 0,25 1,25 1,50 1,90 44,7 4 23 19 1025°C ; 60s 7 50 3,2 1,15 1,50 1025°C ; 60s 1,15 1,0 0,15 1,15 1,00 1,50 46,0 23 33 10 1025°C ; 60s 8 50 2,6 1,30 0,90 1000°C ; 40s 0,91 0,7 0,25 0,88 1,00 1,50 46,0 3 22 19 1025°C ; 40s 9 60 2,6 1,15 1,00 1000°C ; 40s 0,81 0,7 0,15 0,81 1,00 1,50 56,0 20 30 11 1025°C ; 40s Tableau 4 Essai Propriétés à l'épaisseur e+s Propriétés à l'épaisseur e Delta Rp (MPa) Delta Rm (MPa) DeltaGASTM G1ASTM Rp (MPa) Rm (MPa) G2ASTM Rp (MPa) Rm (MPa) 1 8,5 292 491 8,5 293 491 -1 0 0 2 8,5 293 492 8,5 291 492 2 0 0 3 8,5 293 490 9 296 496 -3 -6 0,5 4 7 281 478 8 290 487 -9 -9 1 5 7 281 477 8 288 487 -7 -10 1 6 6,5 277 473 8 288 487 -11 -14 1,5 7 7 282 477 8 289 487 -7 -10 1 8 6,5 277 474 7,5 285 482 -8 -8 1 9 7 282 479 8 289 487 -7 -8 1 Tableau 5 Essai Longueur d'onde (m) E0 (mm) k Ei (mm) Recuit à Ei T°C ; durée Ec (mm) e (mm) n=s/e e+s (mm) L1 (m) L2 (m) L3 (m) τ1 (%) τ2 (%) τ2-τ1 (%) Recuit final T°C ; durée 1 12 16 1,30 Néant 10,7 8,2 0,25 10,25 1,00 1,50 8,0 36 49 13 1025°C ; 5min 2 6 16 1,15 Néant 9,4 8,2 0,15 9,43 0,50 0,75 4,0 41 49 8 1025°C ; 5min 3 12 8,2 1.30 Néant 5,5 4,2 0,25 5,25 0,50 0,75 10,0 36 49 13 1025°C ; 3min 4 12 8,2 1,15 Néant 4,8 4,2 0,15 4,83 1,50 2,25 6,0 41 49 8 1025°C ; 3min 5 6 8,2 1.30 Néant 4,2 3,2 0,25 4,00 0,80 1,20 2,8 51 61 10 1025°C ; 3min 6 9 8,2 1,15 Néant 3,7 3,2 0,15 3,68 1,00 1,50 5,0 55 61 6 1025°C ; 3min 7 12 16 1.30 8,2 1050°C ; 5 min 4,2 3,2 0,25 4,00 1,00 1,50 8,0 51 61 10 1025°C ; 3min 8 12 16 1,15 8,2 1050°C ; 5 min 4,8 4,2 0,15 4,83 0,50 0,75 10,0 41 49 8 1025°C ; 3min 9 6 16 1,15 8,2 1050°C ; 5 min 3,7 3,2 0.15 3,68 0,50 0,75 4,0 55 61 6 1025°C ; 3min Tableau 6 Essai Propriétés à l'épaisseur e+s Propriétés à l'épaisseur e Delta Rp (MPa) Delta Rm (MPa) DeltaGASTH G1ASTM Rp (MPa) Rm (MPa) G2ASTM Rp (MPa) Rm (MPa) 1 7 280 479 7,5 285 483 -5 -4 0,5 2 7 281 477 7,5 285 483 -4 -6 0,5 3 7,5 285 482 8 288 487 -3 -5 0,5 4 8 288 487 8 288 487 0 0 0 5 8,5 293 492 8,5 292 492 1 0 0 6 8,5 292 491 9 297 496 -5 -5 0,5 7 8,5 291 490 8,5 293 490 -2 0 0 8 8 289 487 8,5 292 491 -3 -4 0,5 9 8,5 292 491 8,5 292 490 0 1 0 In the claims, any reference sign in parentheses can not be interpreted as a limitation of the claim. <u> Table 1 </ u> Trial Wavelength (m) E 0 (mm) k E c (mm) e (mm) n = s / e e + s (mm) L1 (m) L2 (m) L3 (m) τ1 (%) τ2 (%) τ2-τ1 (%) Final annealing T ° C; duration 1 50 4.2 1.3 2.0 1.5 0.25 1.88 1.50 1.90 44.7 55 64 9 1025 ° C; 60s 2 50 4.2 1.15 1.7 1.5 0.15 1.73 1.50 1.90 44.7 59 64 5 1025 ° C; 60s 3 50 3.2 1.15 1.2 1.0 0.15 1.15 1.00 1.50 46.0 64 69 5 1025 ° C; 60s 4 50 2.6 1.3 0.9 0.7 0.25 0.88 1.00 1.50 46.0 66 73 7 1025 ° C; 40s 5 50 2, 6 1.15 0.8 0.7 0.15 0.81 1.00 1.50 46.0 69 73 4 1025 ° C; 40s 6 60 2.6 1.3 0.9 0.7 0.15 0.81 1.00 1.50 56.0 69 73 4 1025 ° C; 40s 7 50 2.1 1.3 0.7 0.5 0.15 0.58 1.20 1.50 45.8 73 76 4 1025 ° C; 30s 8 50 2.3 1.3 2.3 1.8 0.25 2.25 1.20 1.50 45.8 2 22 20 1025 ° C; 60s 9 50 2.1 1.3 2.3 1.8 0.15 2.07 1.20 1.50 45.8 1 14 13 1025 ° C; 60s 10 60 2.1 1.3 2.3 1.8 0.15 2.07 1.20 1.50 55.8 1 14 13 1025 ° C; 60s Trial Properties with thickness e + s Properties with thickness e Delta Rp (MPa) Delta Rm (MPa) DeltaG ASTM G1 ASTM Rp (MPa) Rm (MPa) G2 ASTM Rp (MPa) Rm (MPa) 1 8 288 487 8.5 292 491 -4 -4 0.5 2 8.5 293 492 9 296 495 -3 -3 0.5 3 8.5 293 492 9 295 495 -2 -3 0.5 4 8.5 293 490 9 296 496 -3 -6 0.5 5 9 297 496 9 296 496 1 0 0 6 9 297 495 9 296 496 1 -1 0 7 9.5 300 501 9.5 300 501 0 0 0 8 7.5 284 482 8.5 292 490 -8 -8 1 9 7.5 286 481 8.5 293 491 -7 -10 1 10 7.5 285 483 9 296 496 -11 -13 1.5 Trial Wavelength (m) E 0 (mm) k E i (mm) Annealed at E i T ° C; duration E c (mm) e (mm) n = s / e e + s (mm) L1 (m) L2 (m) L3 (m) τ1 (%) τ2 (%) τ2-τ1 (%) Final annealing T ° C; duration 1 50 2.6 1.3 1.5 1025 ° C; 50s 0.8 0.6 0.25 0.75 1.20 1.50 45.8 50 60 10 1025 ° C; 40s 2 50 2.6 1.3 1.5 1025 ° C; 50s 0.8 0.6 0.15 0.69 1.20 1.50 45.8 54 60 6 1025 ° C; 40s 3 60 26 1.3 15 1025 ° C ; 50s 0.7 0.5 0.15 0.58 1.20 1.50 55.8 62 67 5 1025 ° C; 30s 4 50 4.2 1.30 2.00 1025 ° C ; 80s 1.95 1.5 0.25 1.88 1.50 1.90 44.7 6 25 19 1025 ° C; 60s 5 50 4.2 1.15 2.00 1025 ° C; 80s 1.73 1.5 0.15 1.73 1.50 1.90 44.7 14 25 11 1025 ° C; 60s 6 50 3.2 1.30 1.30 1025 ° C ; 50s 1.30 1.0 0.25 1.25 1.50 1.90 44.7 4 23 19 1025 ° C; 60s 7 50 3.2 1.15 1.50 1025 ° C; 60s 1.15 1.0 0.15 1.15 1.00 1.50 46.0 23 33 10 1025 ° C; 60s 8 50 2.6 1.30 0.90 1000 ° C; 40s 0.91 0.7 0.25 0.88 1.00 1.50 46.0 3 22 19 1025 ° C; 40s 9 60 2.6 1.15 1.00 1000 ° C ; 40s 0.81 0.7 0.15 0.81 1.00 1.50 56.0 20 30 11 1025 ° C; 40s Trial Properties with thickness e + s Properties with thickness e Delta Rp (MPa) Delta Rm (MPa) DeltaG ASTM G1 ASTM Rp (MPa) Rm (MPa) G2 ASTM Rp (MPa) Rm (MPa) 1 8.5 292 491 8.5 293 491 -1 0 0 2 8.5 293 492 8.5 291 492 2 0 0 3 8.5 293 490 9 296 496 -3 -6 0.5 4 7 281 478 8 290 487 -9 -9 1 5 7 281 477 8 288 487 -7 -10 1 6 6.5 277 473 8 288 487 -11 -14 1.5 7 7 282 477 8 289 487 -7 -10 1 8 6.5 277 474 7.5 285 482 -8 -8 1 9 7 282 479 8 289 487 -7 -8 1 Trial Wavelength (m) E 0 (mm) k E i (mm) Annealed at E i T ° C; duration E c (mm) e (mm) n = s / e e + s (mm) L1 (m) L2 (m) L3 (m) τ1 (%) τ2 (%) τ2-τ1 (%) Final annealing T ° C; duration 1 12 16 1.30 nothingness 10.7 8.2 0.25 10.25 1.00 1.50 8.0 36 49 13 1025 ° C; 5 min 2 6 16 1.15 nothingness 9.4 8.2 0.15 9.43 0.50 0.75 4.0 41 49 8 1025 ° C; 5 min 3 12 8.2 1.30 nothingness 5.5 4.2 0.25 5.25 0.50 0.75 10.0 36 49 13 1025 ° C; 3min 4 12 8.2 1.15 nothingness 4.8 4.2 0.15 4.83 1.50 2.25 6.0 41 49 8 1025 ° C; 3min 5 6 8.2 1.30 nothingness 4.2 3.2 0.25 4.00 0.80 1.20 2,8 51 61 10 1025 ° C; 3min 6 9 8.2 1.15 nothingness 3.7 3.2 0.15 3.68 1.00 1.50 5.0 55 61 6 1025 ° C; 3min 7 12 16 1.30 8.2 1050 ° C; 5 min 4.2 3.2 0.25 4.00 1.00 1.50 8.0 51 61 10 1025 ° C; 3min 8 12 16 1.15 8.2 1050 ° C; 5 min 4.8 4.2 0.15 4.83 0.50 0.75 10.0 41 49 8 1025 ° C; 3min 9 6 16 1.15 8.2 1050 ° C; 5 min 3.7 3.2 0.15 3.68 0.50 0.75 4.0 55 61 6 1025 ° C; 3min Trial Properties with thickness e + s Properties with thickness e Delta Rp (MPa) Delta Rm (MPa) DeltaG ASTH G1 ASTM Rp (MPa) Rm (MPa) G2 ASTM Rp (MPa) Rm (MPa) 1 7 280 479 7.5 285 483 -5 -4 0.5 2 7 281 477 7.5 285 483 -4 -6 0.5 3 7.5 285 482 8 288 487 -3 -5 0.5 4 8 288 487 8 288 487 0 0 0 5 8.5 293 492 8.5 292 492 1 0 0 6 8.5 292 491 9 297 496 -5 -5 0.5 7 8.5 291 490 8.5 293 490 -2 0 0 8 8 289 487 8.5 292 491 -3 -4 0.5 9 8.5 292 491 8.5 292 490 0 1 0

Claims (19)

  1. A sealed and thermally insulating tank incorporated into a bearing structure, the bearing structure comprising a plurality of bearing walls (1, 2), the tank comprising
    a plurality of tank walls each fixed to a respective bearing wall (1, 2), a tank wall comprising:
    a thermal insulation barrier (3, 5) held on the bearing wall, the thermal insulation barrier having a planar support surface parallel to the respective bearing wall,
    a sealing barrier (4, 6) supported by the insulation barrier and comprising a repeating structure alternately made up of an elongate metal strake (8, 108, 208) and an elongate welding flange (9) connected to the support surface and projecting with respect to the latter, the welding flange (9) running parallel to the metal strake (8) over at least part of the length of the metal strake, the metal strake comprising in the widthwise direction a planar central portion placed on the support surface and lateral edges (13) that are turned up with respect to the support surface and arranged against the adjacent welding flanges and welded in a sealed manner to the welding flanges (9),
    in which the metal strake extends between two opposite edges of the tank wall and has two end portions which are each assembled in a sealed manner to a respective stopping structure (10, 27, 28) at said opposite edges of the tank wall,
    characterized in that the metal strake (8, 108, 208) is made up of at least one continuous metal strip having several longitudinal portions of different thicknesses, the longitudinal portions comprising an intermediate portion (113, 35) and at least one end portion (114, 33) of which the thickness is greater than the thickness of the intermediate portion of the strip, the thicker end portion (114, 33) forming an assembly zone for assembling the strip with the stopping structure (10) or with another continuous metal strip butt-joined to the first continuous metal strip to constitute the metal strake.
  2. The tank as claimed in claim 1, in which the metal strake (8) is made up of a single metal strip extending in one piece between the two opposite edges of the tank wall, and in which the two end portions (33) of the strip are thicker than the intermediate portion (35, 36) and are each assembled with the respective stopping structure (10, 27, 28) at the opposite edges of the tank wall.
  3. The tank as claimed in claim 1, in which the metal strake (108, 208) comprises a second continuous metal strip butt-joined to the first continuous metal strip in the continuation of the first continuous metal strip, in which each of the two continuous metal strips has, at the region (40) of connection of the two metal strips, an end portion (114) that is thicker than the intermediate portion (113) of the strip.
  4. The tank as claimed in claim 3, in which at least one of the two continuous metal strips has, at the opposite end to the region (40) of connection of the two metal strips, a second end portion (114) which is thicker than the intermediate portion (113) of the strip, the second end portion (114) being connected to the stopping structure (10, 27, 28) at an edge of the tank wall.
  5. The tank as claimed in claim 3 or 4, in which at least one of the two continuous metal strips has, at the opposite end to the region (40) of connection of the two metal strips, a second end portion (114) of the same thickness as the intermediate portion (113) of the strip, the second end portion (114) being connected to the stopping structure (10, 27, 28) at an edge of the tank wall.
  6. The tank as claimed in one of claims 1 to 5, in which each end portion of the metal strake (8, 108, 208) is welded in a sealed manner to the respective stopping structure (10).
  7. The tank as claimed in claim 6, in which the strake (8) is welded to the stopping structure by a cold metal transfer CMT method or by TIG welding using a filler metal or by cold welding.
  8. The tank as claimed in one of claims 1 to 7, in which the stopping structure (10) comprises a plate (27, 28) positioned over the insulating barrier and the end portion of the metal strake (8, 108, 208) comprises a first segment bearing against the plate of the stopping structure and a second segment bearing against the thermal insulating barrier, the first segment and the second segment being connected by a folded segment (34) forming a discontinuity in the thickness direction of the metal strake.
  9. The tank as claimed in one of claims 1 to 8, in which the welding flanges (9) are interrupted before the end of the metal strake (8, 108, 208), the turned-up edges of two adjacent metal strakes being welded to one another by an edge weld positioned along part of their length as far as the end of the metal strake.
  10. The tank as claimed in claim 9, in which the edge weld of the turned-up edges (13) is performed using a cold metal transfer process.
  11. The tank as claimed in one of claims 1 to 10, in which the thicker end portion (114, 33) of the metal strip has a thickness greater than or equal to 0.9 mm.
  12. The tank as claimed in one of claims 1 to 11, in which the intermediate portion (35) of the metal strip has a thickness less than 0.9 mm and preferably a thickness of 0.7 mm.
  13. The tank as claimed in one of claims 1 to 12, in which the stopping structure (10) is welded to a bearing wall.
  14. The tank as claimed in one of claims 1 to 13, in which said metal strake and the stopping structure are made of a nickel-steel alloy with a low coefficient of expansion.
  15. The tank as claimed in one of claims 1 to 14, in which the metal strip is made of an alloy based on iron and comprises by weight: 34.5 % Ni 53.5%
    Figure imgb0063
    0.15 % Mn 1.5 %
    Figure imgb0064
    0 Si 0.35%, preferably 0.1% Si 0.35 %
    Figure imgb0065
    0 C 0.07 %
    Figure imgb0066
    optionally: 0 Co 20%
    Figure imgb0067
    0 Ti 0.5%
    Figure imgb0068
    0.01 % Cr 0.5%
    Figure imgb0069
    the rest being iron and unavoidable impurities resulting from the production process.
  16. The tank as claimed in one of claims 1 to 15, in which the tank wall further comprises:
    a secondary thermal insulation barrier (3), the thermal insulation barrier having a planar support surface parallel to the respective bearing wall, and a secondary sealing barrier (4) supported by the secondary insulation barrier and bearing the primary insulation barrier (5),
    the secondary sealing barrier comprising a repeating structure alternately made up of an elongate metal strake (8, 108, 208) and an elongate welding flange (9) connected to the support surface and projecting with respect to the latter, the welding flange (9) running parallel to the metal strake (8) over at least part of the length of the metal strake, the metal strake comprising in the widthwise direction a planar central portion placed on the support surface and lateral edges (13) that are turned up with respect to the support surface and arranged against the adjacent welding flanges and welded in a sealed manner to the welding flanges (9), in which the metal strake extends between two opposite edges of the tank wall and has two end portions which are each assembled in a sealed manner to a respective stopping structure (10, 28) at said opposite edges of the tank wall,
    characterized in that the metal strake (8, 108, 208) is made up of at least one continuous metal strip having several longitudinal portions of different thicknesses, the longitudinal portions comprising an intermediate portion (113, 35) and at least one end portion (114, 33) of which the thickness is greater than the thickness of the intermediate portion of the strip, the thicker end portion (114, 33) forming an assembly zone for assembling the strip with the stopping structure (10) or with another continuous metal strip butt-joined to the first continuous metal strip to constitute the metal strake.
  17. A ship (70) for transporting a cold liquid product, the ship comprising a double hull (72) and a tank (71) as claimed in one of claims 1 to 16 placed inside the double hull.
  18. The use of a ship (70) as claimed in claim 17 for loading or unloading a cold liquid product, in which a cold liquid product is conveyed through insulated pipes (73, 79, 76, 81) from or to a floating or on-shore storage facility (77) to or from the tank of the ship (71).
  19. A transfer system for a cold liquid product, the system comprising a ship (70) as claimed in claim 17, insulated pipes (73, 79, 76, 81) arranged in such a way as to connect the tank (71) installed in the hull of the ship to a floating or on-shore storage facility (77) and a pump for driving a stream of cold liquid product through the insulated pipes from or to the floating or on-shore storage facility to or from the tank of the ship.
EP14831013.9A 2014-01-17 2014-12-23 Sealed and thermally insulating tank comprising metal strips Active EP3094915B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1450368A FR3016619B1 (en) 2014-01-17 2014-01-17 THERMALLY INSULATING, WATERPROOF TANK WITH METAL BANDS
PCT/FR2014/053530 WO2015107280A2 (en) 2014-01-17 2014-12-23 Sealed and thermally insulating tank comprising metal strips

Publications (2)

Publication Number Publication Date
EP3094915A2 EP3094915A2 (en) 2016-11-23
EP3094915B1 true EP3094915B1 (en) 2018-08-01

Family

ID=50489317

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14831013.9A Active EP3094915B1 (en) 2014-01-17 2014-12-23 Sealed and thermally insulating tank comprising metal strips

Country Status (12)

Country Link
EP (1) EP3094915B1 (en)
JP (1) JP6576353B2 (en)
KR (1) KR102259211B1 (en)
CN (1) CN106133429B (en)
AU (1) AU2014377926B2 (en)
ES (1) ES2692284T3 (en)
FR (1) FR3016619B1 (en)
MY (1) MY179399A (en)
PH (1) PH12016501401B1 (en)
RU (1) RU2666382C2 (en)
SG (1) SG11201605803YA (en)
WO (1) WO2015107280A2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019034665A (en) * 2017-08-18 2019-03-07 株式会社 商船三井 Ship for energy transport
FR3072758B1 (en) * 2017-10-20 2019-11-01 Gaztransport Et Technigaz SEALED AND THERMALLY INSULATING TANK WITH SEVERAL ZONES
FR3077116B1 (en) * 2018-01-23 2021-01-08 Gaztransport Et Technigaz WATERPROOF AND THERMALLY INSULATED TANK
FR3077115B1 (en) * 2018-01-23 2021-02-12 Gaztransport Et Technigaz WATERPROOF AND THERMALLY INSULATED TANK.
FR3085869B1 (en) * 2018-09-19 2020-09-11 Psa Automobiles Sa ASSEMBLY PROCESS OF TWO PARTIALLY OVERLAPPING SHEETS WITH TRIPLE WATERPROOFING
EP3686309A1 (en) * 2019-01-22 2020-07-29 Gaztransport et Technigaz System for storing and/or transporting a liquefied gas
FR3111176B1 (en) * 2020-06-09 2022-09-02 Gaztransport Et Technigaz Tank wall for watertight and thermally insulating tank
JP7157890B1 (en) * 2022-05-13 2022-10-20 川崎重工業株式会社 Construction method of multi-shell tank

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2398961A1 (en) * 1977-07-26 1979-02-23 Gaz Transport THERMALLY INSULATED TANK FOR THE GROUND STORAGE OF LOW TEMPERATURE LIQUID, IN PARTICULAR LIQUEFIED NATURAL GAS
FR2544441B1 (en) * 1983-04-13 1985-09-13 Daetwyler France SEALING PIECE FOR JOINING LINEAR SEALS
FR2549575B1 (en) 1983-07-18 1985-11-08 Gaz Transport WATERPROOF AND INSULATED VESSEL TANK, PARTICULARLY FOR THE TRANSPORT OF LIQUEFIED NATURAL GAS
US4603806A (en) * 1983-08-11 1986-08-05 Nippon Steel Corporation Method of manufacturing metal pipe with longitudinally differentiated wall thickness
US5887893A (en) * 1996-11-21 1999-03-30 Autoliv Asp, Inc. Necked airbag inflator
FR2780942B1 (en) * 1998-07-10 2000-09-08 Gaz Transport & Technigaz WATERPROOF AND THERMALLY INSULATING TANK WITH IMPROVED ANGLE STRUCTURE, INTEGRATED INTO A SHIP-CARRIED STRUCTURE
FR2798358B1 (en) * 1999-09-14 2001-11-02 Gaz Transport & Technigaz WATERPROOF AND THERMALLY INSULATING TANK INTEGRATED INTO A VESSEL CARRIER STRUCTURE WITH SIMPLIFIED ANGLE STRUCTURE
DE10041281C2 (en) * 2000-08-22 2002-07-11 Muhr & Bender Kg Device for forming blanks from flexibly rolled metal strip
WO2004080790A2 (en) * 2003-03-06 2004-09-23 Jens Korsgaard Discharge of liquified natural gas at offshore mooring facilities
US20090223974A1 (en) * 2004-07-06 2009-09-10 Tanno Maarten Felius Container for storing liquefied gas
FR2877637B1 (en) * 2004-11-10 2007-01-19 Gaz Transp Et Technigaz Soc Pa WATERPROOF AND THERMALLY INSULATED TUBE WITH JUXTAPOSES
RU2373119C1 (en) * 2008-05-28 2009-11-20 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Cryogenic liquid storing and supplying device
FR2968284B1 (en) * 2010-12-01 2013-12-20 Gaztransp Et Technigaz SEAL BARRIER FOR A TANK WALL
FR2973098B1 (en) * 2011-03-22 2014-05-02 Gaztransp Et Technigaz SEALED AND THERMALLY INSULATED TANK
FR2987100B1 (en) * 2012-02-20 2015-04-10 Gaztransp Et Technigaz CALORIFYING ELEMENTS FOR SEALED AND THERMALLY INSULATED TANKS
FR2991748B1 (en) * 2012-06-11 2015-02-20 Gaztransp Et Technigaz SEALED AND THERMALLY INSULATED TANK

Also Published As

Publication number Publication date
JP6576353B2 (en) 2019-09-18
KR102259211B1 (en) 2021-05-31
WO2015107280A3 (en) 2015-11-05
PH12016501401A1 (en) 2016-08-22
JP2017507085A (en) 2017-03-16
CN106133429A (en) 2016-11-16
AU2014377926B2 (en) 2019-02-07
FR3016619A1 (en) 2015-07-24
RU2016128520A (en) 2018-02-20
ES2692284T3 (en) 2018-12-03
FR3016619B1 (en) 2016-08-19
KR20160133423A (en) 2016-11-22
SG11201605803YA (en) 2016-08-30
MY179399A (en) 2020-11-05
AU2014377926A1 (en) 2016-08-11
RU2016128520A3 (en) 2018-07-02
CN106133429B (en) 2019-09-03
RU2666382C2 (en) 2018-09-07
EP3094915A2 (en) 2016-11-23
PH12016501401B1 (en) 2016-08-22
WO2015107280A2 (en) 2015-07-23

Similar Documents

Publication Publication Date Title
EP3094915B1 (en) Sealed and thermally insulating tank comprising metal strips
EP2646737B1 (en) Sealing barrier for a vessel wall
EP2906867B1 (en) Fluidtight and thermally insulated tank comprising a metal membrane that is corrugated in orthogonal folds
WO2019077253A1 (en) Sealed and thermally insulating tank with several areas
WO2015107393A1 (en) Method for manufacturing a strip having a variable thickness and associated strip
WO2014167227A1 (en) Sealed and insulating tank having a sealing barrier capable locally of sliding relative to the insulating barrier
EP2739896A2 (en) Insulating block for manufacturing a tank wall
WO2012123656A1 (en) Insulating block for producing a tight wall of a tank
FR3085199A1 (en) WATERPROOF AND THERMALLY INSULATING TANK WALL
FR3072760B1 (en) SEALED AND THERMALLY INSULATING TANK WITH SEVERAL ZONES
WO2020152207A1 (en) Storage and/or transport system for a liquefied gas
WO2019239071A1 (en) Sealed and thermally insulating vessel having continuous corrugations in the liquid dome
WO2019215404A1 (en) Tight tank wall comprising a sealing membrane
EP4013989A1 (en) Sealed and thermally insulating tank
WO2013182776A1 (en) Lagging element for a fluidtight and thermally insulated tank comprising a reinforced lid panel
WO2020239601A1 (en) Sealed membrane for storage tank
EP3645933B1 (en) Fluidtight membrane and method for assembling a fluidtight membrane
WO2019239053A1 (en) Fluid-tight vessel provided with an undulating joint element
WO2020058600A1 (en) Storage facility for liquefied gas
FR3109544A1 (en) Manufacturing process of a dome barrel of a sealed and thermally insulating tank
WO2020079347A1 (en) Method for welding a fluid-tight membrane of a tank
FR3111176A1 (en) Tank wall for sealed and thermally insulating tank

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160725

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180307

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GAZTRANSPORT ET TECHNIGAZ

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1024714

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014029694

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2692284

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20181203

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180801

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1024714

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181201

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181101

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181101

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181102

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014029694

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602014029694

Country of ref document: DE

26N No opposition filed

Effective date: 20190503

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181223

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181223

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20141223

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180801

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230612

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231220

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240108

Year of fee payment: 10