EP3094842B1 - Procédé de commande d'un thermostat piloté - Google Patents

Procédé de commande d'un thermostat piloté Download PDF

Info

Publication number
EP3094842B1
EP3094842B1 EP14827828.6A EP14827828A EP3094842B1 EP 3094842 B1 EP3094842 B1 EP 3094842B1 EP 14827828 A EP14827828 A EP 14827828A EP 3094842 B1 EP3094842 B1 EP 3094842B1
Authority
EP
European Patent Office
Prior art keywords
thermostat
temperature
engine
module
controlled thermostat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14827828.6A
Other languages
German (de)
English (en)
Other versions
EP3094842A1 (fr
Inventor
Christophe Piard
Stephane Ruby
Christophe VIEL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of EP3094842A1 publication Critical patent/EP3094842A1/fr
Application granted granted Critical
Publication of EP3094842B1 publication Critical patent/EP3094842B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/14Indicating devices; Other safety devices
    • F01P11/16Indicating devices; Other safety devices concerning coolant temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/32Engine outcoming fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/60Operating parameters
    • F01P2025/62Load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/60Operating parameters
    • F01P2025/64Number of revolutions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/04Lubricant cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2070/00Details
    • F01P2070/04Details using electrical heating elements

Definitions

  • the present invention relates generally to the cooling of the drive motor in a motor vehicle.
  • It relates more particularly to a method for controlling a controlled thermostat of a cooling circuit of a heat engine driving a vehicle.
  • Motor vehicles are conventionally equipped with a system for cooling their drive engine (for example, an internal combustion engine).
  • a system for cooling their drive engine for example, an internal combustion engine.
  • Such a cooling system generally comprises at least one radiator having the function of cooling a liquid transported by pipes between the radiator and a cooling circuit internal to the engine.
  • radiator and pipes can also be connected to the external cooling circuit formed by the radiator and the pipes, such as, for example, an air heater, a turbocharger or a water-oil exchanger.
  • the cooling circuit may further include a thermostat controlled by a heating element, as described in DE10318355-A1 .
  • the present invention provides a method according to claim 1.
  • the figure 1 shows the main elements of a cooling system of an internal combustion engine 2 of a motor vehicle.
  • This engine is here a compression ignition engine (Diesel).
  • Diesel compression ignition engine
  • spark ignition engine gasoline
  • the cooling system comprises a radiator 6, mounted for example at the front of the motor vehicle in order to receive the air flow generated by the movement of the vehicle, and an air heater 8 which allows the heating of the vehicle interior.
  • the internal combustion engine 2 is traversed by a cooling liquid which ensures its operation at a set temperature. given as explained below.
  • the coolant (heated by the engine 2) is transported by pipes to the thermostat 4 on the one hand, to the radiator 6 and to the heater 8 on the other hand. After cooling in these elements, the cooling liquid is transported by pipes to the engine 2 for cooling thereof.
  • thermostat 4 The coolant is transported from engine 2 (outlet) to engine 2 (inlet) through thermostat 4 permanently so that thermostat 4 is always in contact with a flow of coolant regardless of the state. thermostat 4 (open or closed).
  • the cooling system may optionally further include a water-oil exchanger 12 which receives the cooling liquid from the engine 2 as input. After passing through the water-oil exchanger 12, the cooling liquid is reinjected into the circuit described below. above, for example at the thermostat 4.
  • a water-oil exchanger 12 which receives the cooling liquid from the engine 2 as input. After passing through the water-oil exchanger 12, the cooling liquid is reinjected into the circuit described below. above, for example at the thermostat 4.
  • the use of the water-oil exchanger does not fall within the scope of the present invention and will therefore not be described in detail here.
  • the coolant is however transported from the radiator 6 to the engine 1 through a thermostatic valve or thermostat 4 which regulates the quantity of cooled coolant (from the radiator 6) to be injected into the inlet of the engine 1 in order to obtain the desired temperature.
  • a thermostatic valve or thermostat 4 which regulates the quantity of cooled coolant (from the radiator 6) to be injected into the inlet of the engine 1 in order to obtain the desired temperature. engine operating mode, as explained below.
  • the coolant at the outlet of the engine 2 can be used to regulate the temperature within a turbocharger 14 supplied for this purpose with coolant by a bypass of the circuit linking the engine 2 and the air heater 8.
  • a temperature sensor 10 is also mounted in the coolant pipes located at the outlet of the engine 2 in order to measure the temperature Ts of the coolant at the outlet of the engine 2.
  • no means are provided for measuring the temperature of the cooling liquid at the inlet of the engine 2 (temperature T E ), or at the level of the thermostat 4 (temperature T 4 ).
  • T E temperature of the cooling liquid at the inlet of the engine 2
  • T 4 temperature T 4
  • the figures 2a and 2b represent the thermostat 4 in two distinct operating positions, respectively a first position in which the thermostat closes the pipe connecting the radiator 6 to the engine 2 and a second position in which the thermostat opens this pipe.
  • the thermostat 4 comprises a rod (or “pencil” ) 20 on which is slidably mounted an assembly formed of a brass body 22 and a valve (or flap) 26.
  • the space left free between the body 22 and the rod 20 is filled with a material sensitive to heat, here wax 24 sealed in this space delimited by body 22, valve 26 and rod 20.
  • the thermostat 4 is positioned in the pipe connecting the radiator 6 to the engine 2 so that its body 22 bathes in the coolant of temperature T 4 at this location, as indicated above; the body 22 is therefore located downstream of the valve 26 in this pipe.
  • Cooling liquid from the radiator 6 (cooled by the latter) is thus injected into the cooling circuit of the engine 2 and therefore participates in the cooling of the engine.
  • a return spring (not shown) is generally provided to facilitate the return of the valve 26 to its closed position when the temperature T 4 of the cooling liquid decreases and the wax cools and contracts.
  • the thermostat 4 also comprises an electrical resistance (not shown), installed for example inside the rod 20 and electrically connected to an electrode 28.
  • the application of a voltage V to the electrode 28 causes a current to flow through the resistor which releases heat by the Joule effect and therefore accelerates the rise in temperature of the wax 24.
  • the thermostat 4 will therefore open more. rapidly than in the absence of heating by the resistance, that is to say for a coolant temperature T 4 below the aforementioned threshold.
  • the thermostat 4 is a controlled thermostat.
  • a calorific power lower than the maximum calorific power can be obtained by applying the nominal voltage V 0 on a proportion only of the period of time considered (principle of the modulation by width of pulses or PWM of the English " Pulse Width Modulation” ): it is considered in the following that one applies in this case a useful voltage V lower than the nominal voltage V 0 .
  • the figure 3 shows an example of a control system for thermostat 4 in accordance with the teachings of the invention.
  • the control system of the figure 3 includes several modules, shown here in functional form. Several functional modules can however in practice be implemented by the same processing unit programmed to carry out the processing operations assigned respectively to these functional modules.
  • This processing unit is for example an engine control computer 30 (or ECU standing for “Engine Control Unit ”) fitted to the vehicle, or a processing unit dedicated to controlling the thermostat 4.
  • load information C (expressed in Nm) and engine speed information N (expressed in rpm), representative of the operation of engine 2, are available in the calculator 30.
  • This information C, N is transmitted on the one hand to a module 32 for determining a temperature setpoint T C and on the other hand to a module 36 for evaluating the temperature T 4 of the cooling liquid at the thermostat. 4.
  • the setpoint determination module 32 develops the temperature setpoint T C as a function of the engine speed N and of the load C on the basis of a map stored in the processing unit which implements the module 32.
  • the module 32 is designed to determine the temperature setpoint T C by reading a value associated with the engine speed N and load C values received from the computer 30 in a correspondence table (mapping) stored in the processing unit concerned .
  • the setpoint determination module 32 generates for example setpoints T C between 90 ° C and 110 ° C adapted to the different operating conditions of the engine 2 encountered (represented by the load C and the engine speed N).
  • the setpoint T C can take a discrete set of values, for example 90 ° C, 100 ° C or 110 ° C.
  • the temperature setpoint T C generated by the setpoint determination module 32 is transmitted to a regulation module 34, which also receives the temperature T s of the cooling liquid at the outlet of the engine measured by the temperature sensor 10.
  • the regulation module 34 determines the gross useful voltage V R to be applied to the electrode of the controlled thermostat 4 in order to make the temperature of the coolant converge towards the setpoint Tc.
  • the regulation law applied by the regulation module 34 to determine the gross useful voltage V R as a function of the measured temperature T s and of the setpoint temperature T C depends on the envisaged application.
  • the raw useful voltage V R generated by the regulation module 34 is transmitted to a correction module 40, the operation of which will be described below.
  • the module 36 for evaluating the temperature T 4 of the coolant at the level of the thermostat 4 receives as input the temperature T s measured by the measurement sensor 10 and an estimated value L of travel of the thermostat 4, as well as, as already indicated, the load C and engine speed N information representative of engine operation 2.
  • the estimated travel value L of the thermostat 4 is produced as explained in more detail below by a module 38 intended for this purpose.
  • the module 36 evaluates the temperature T 4 of the coolant at the level of the thermostat 4, for example according to the method described in detail below with reference to the figures 6 and 7 .
  • the module 36 could be replaced by a temperature sensor immersed in the cooling liquid at the level of the thermostat 4.
  • the already mentioned stroke evaluation module 38 receives as input the temperature T 4 of the cooling liquid at the thermostat (produced by the evaluation module 36 in the example described) and the useful voltage value actually applied to the thermostat. controlled 4 (corrected useful value Vc generated by the correction module 40 as explained below).
  • the module 38 evaluates the travel L of relative displacement of the rod 20 and of the body 22, which gives an estimate of the proportion of opening of the thermostat 4.
  • module 38 is for example carried out by implementing a digital model, as described below with reference to figures 4a, 4b and 5 .
  • this evaluation can be carried out by reading the travel L associated, in a prerecorded correspondence table, with the values of temperature T 4 and of useful applied voltage Vc received at the input.
  • the preset values were determined by means of preliminary tests or simulations, carried out beforehand, using the digital model described with reference to figures 4a, 4b and 5 .
  • the module 38 can thus supply a value L representative of the travel of the thermostat 4 to the correction module 40, which also receives as input the gross useful voltage V R calculated by the regulation module 34 as already indicated.
  • the correction module 40 corrects this value so that a minimum useful voltage is effectively applied to the electrode 28 of the controlled thermostat 4 so that the resistance delivers a non-zero calorific power, which makes it possible to preheat the wax 24 to a limit temperature for opening the thermostat 4.
  • any additional heating of the wax 24 in response to a command from the system control to open the thermostat) will immediately open the valve.
  • the correction module 40 also causes a limitation of the useful voltage Vc applied (and therefore of the calorific power delivered by the resistor by the Joule effect) so that the application of this voltage Vc does not cause heating greater than that resulting in total opening of thermostat 4 (i.e. a stroke L equal to the maximum stroke L max ). Additional heating is in fact unnecessary; it is furthermore detrimental to the weather reaction of the system when it is then desired to close the thermostat (since the additional heating of the wax 24 makes its cooling longer, then possibly its solidification).
  • the correction module 40 applies to the controlled thermostat 4 a useful voltage Vc which does not depend on the gross useful voltage V R received from the regulation module 34, but which is chosen to maintain the stroke L at its maximum value L max .
  • a slaving of the useful applied voltage Vc is used so that the evaluated stroke L is maintained between a predetermined value (here 0.95.L max ) and the maximum stroke L max . It is therefore in this case a closed loop control.
  • the processing unit which implements the correction module 40 stores for this purpose a correspondence table which indicates the maximum authorized useful voltage V max as a function of the travel L of the thermostat. These data are for example provided by the manufacturer of the thermostat.
  • the correction module 40 applies to the controlled thermostat 4 a useful voltage Vc equal to the gross useful voltage V R received at the input from the regulation module 34.
  • the figure 4a presents the model used in the example described here to simulate the thermal behavior of the different parts of the controlled thermostat 4 with a view to evaluating its stroke as explained below.
  • thermostat operation the characteristics of the different parts and interfaces are adapted so that equivalent results or curves, determined using the model, correspond to the test results or to the experimental curves. (Note that in this case it suffices to determine the products m 20 .C 20 , m 22 .C 22 , m 24 .C 24 and h 1 .S 1 , h 2 .S 2 , h 3 .S 3 , not each feature separately.)
  • the figure 5 represents an example of module 38 for evaluating the stroke of the controlled thermostat which uses the model which has just been described.
  • This module is for example implemented within a processing unit which notably memorizes the correspondence table linking the values of wax temperature T 24 and stroke L of the thermostat.
  • the module 38 receives as input the temperature T 4 of the coolant at the level of the thermostat 4 (evaluated by a dedicated module, such as the module 36 visible in figure 3 and described below with reference to figure 7 , or measured by a temperature sensor) and the useful voltage value Vc applied to thermostat 4.
  • the module 38 comprises a unit 102 for memorizing the instantaneous evaluation value of the temperature T 22 of the body 22, a unit 104 for memorizing the instantaneous evaluation value of the temperature T 24 of the wax 24 and a unit 106 for memorizing the instantaneous evaluation value of the temperature T 20 of the rod 20. As indicated above, at the start of the evaluation process, these units are initialized with the value T 4 of the temperature of the cooling liquid received in entrance.
  • Each iteration of the process begins with an estimate of the new temperature values T 20 and T 22 respectively of the rod 20 and of the body 22. This is done because these elements are close to the heat sources and their temperature. temperature is likely to change from the previous iteration.
  • the module 38 determines the change ⁇ T 20 of the temperature T 20 of the rod 20 during an iteration on the basis of the instantaneous values T 20 , T 24 of temperature and of the useful voltage Vc (received at the input ) as following.
  • a subtracter 148 receives the instantaneous value T 20 from the unit 106 and subtracts it from the instantaneous value T 24 received from the unit 104.
  • the value generated by the subtracter 148 is multiplied by h 1 .S 1 within a multiplier 150.
  • an adder 152 the value obtained at the output of multiplier 150 and the power P J generated by the resistor, determined as a function of the useful voltage Vc applied to the resistor by means of a conversion unit 108.
  • the output of adder 152 is multiplied by 1 / (m 20 .C 20 ) within a multiplier 154 in order to obtain the desired change ⁇ T 20 (in accordance with the formula given above).
  • the output of the multiplier 154 (change ⁇ T 20 ) is added to the instantaneous value T 20 by an adder 156, which makes it possible to obtain at the output of the adder 156 the new instantaneous evaluation value of the temperature T 20 of the rod 20, which will be used by unit 106 in the next iteration (after passing for this purpose through a retarder 116).
  • the module 38 determines the change ⁇ T 22 of the temperature T 22 of the body 22 during an iteration on the basis of the instantaneous temperature values T 4 (received at input), T 22 , T 24 as follows.
  • a subtracter 120 receives the instantaneous value T 22 from the unit 102 and subtracts it from the instantaneous value T 4 received as input; similarly, a subtracter 122 receives the instantaneous value T 22 from the unit 102 and subtracts it from the instantaneous value T 24 received from the unit 104.
  • the values generated by the subtractors 120, 122 are respectively multiplied by h 3 .S 3 within a multiplier 124 and by h 2 .S 2 within a multiplier 126, then summed by an adder 128.
  • the output of adder 128 is multiplied by 1 / (m 22 .C 22 ) at within a multiplier 130 in order to obtain the desired change ⁇ T 22 (in accordance with the formula given above).
  • the output of the multiplier 130 (change ⁇ T 22 ) is added to the instantaneous value T 22 by an adder 132, which makes it possible to obtain at the output of the adder 132 the new instantaneous evaluation value of the temperature T 22 of the body 22, which will be used by the unit 102 at the next iteration (after passing for this purpose through a retarder 112).
  • the module 38 determines the change ⁇ T 24 of the temperature T 24 of the wax 24 during an iteration (here lasting one second) on the basis of the instantaneous values T 20 , T 22 , T 24 of temperature as follows.
  • the temperatures T 20 and T 22 used are those which have just been calculated as described above.
  • a subtracter 134 receives the instantaneous value T 24 from the unit 104 and subtracts it from the instantaneous value T 22 (as it has just been calculated) received from the adder 132; similarly, a subtracter 136 receives the instantaneous value T 24 from the unit 104 and subtracts it from the instantaneous value T 20 (as it has just been calculated) received from the adder 156.
  • the values generated by the subtractors 134, 136 are respectively multiplied by h 2 .S 2 within a multiplier 138 and by h 1 .S 1 within a multiplier 140, then summed by an adder 142.
  • the output of adder 142 is multiplied by 1 / (m 24 .C 24 ) within a multiplier 144 in order to obtain the desired change ⁇ T 24 (in accordance with the formula given above).
  • the output of the multiplier 144 (change ⁇ T 24 ) is added to the instantaneous value T 24 by an adder 146, which makes it possible to obtain at the output of the adder 146 the new instantaneous evaluation value of the temperature T 24 of the wax 24, which will be used by unit 104 in the next iteration (after passing for this purpose through a retarder 114).
  • the new instantaneous evaluation value of the temperature T24 is also transmitted to the input of a unit 110 for converting the wax temperature value into the stroke value L of the thermostat, on the basis of the correspondence table mentioned above relating the wax temperature and thermostat stroke values.
  • the figure 6 shows the heat exchanges involved in the cooling system at the level of the controlled thermostat and the motor.
  • the flow of cooling liquid which enters the engine 2 and passes through it in order to ensure its cooling is the sum of the flow Qo at the outlet of the air heater (and possibly of the turbocharger) and of the flow Q (L) at the outlet of the thermostat, which depends on the stroke L of the thermostat.
  • the calorific power yielded by the engine depends on its operating point, defined by load C and speed N.
  • the figure 7 thus represents an example of a module for evaluating the temperature T 4 of the cooling liquid at the level of the controlled thermostat.
  • This evaluation module receives as input a piece of information L representative of the travel of the thermostat 4 (determined here by means of the evaluation module 38, an example of which has been described with reference to figures 4a, 4b and 5 ), information relating to the operating point of the engine, here load C and engine speed N (supplied for example by the engine management unit or ECU), and the temperature T s of the coolant at the outlet of the engine , here measured by the temperature sensor 10.
  • the processing unit that implements the module of figure 7 stores a map of the power P (C, N) transferred to the coolant by the engine as a function of load C and engine speed N.
  • This map is a table which indicates the power values P transferred to the coolant by the motor respectively associated with pairs of values C, N.
  • This processing unit also stores a plurality of values Q (L) of coolant flow through the thermostat associated respectively with the different possible values for the stroke L.
  • a submodule 70 determines at each instant, by reading from the memory of the processing unit, the rate Q (L) associated with the stroke value L received. as a starter and power P (C, N) associated with the load C and engine speed N values received as input.
  • the temperature information T E (t) determined by the submodule 70 is applied to a retarder 72, to a subtracter 73 (which also receives the output of the retarder 72) and to an adder 76.
  • the adder also receives the input. output of the subtractor 73 after multiplying in a multiplier 75 by a constant b.
  • T 4 T E t - at + b .
  • T E t - T E t - 1 T E t - 1 .
  • the arrangement of the elements 72, 73, 75, 76, 78 which has just been described thus forms a sub-module 71 which determines the estimated value of the temperature T 4 of the coolant at the level of the thermostat 4 on the basis of the estimated value of the temperature T E of the coolant entering the engine 2.
  • the constants a and b are determined by preliminary tests and can be stored in the processing unit which implements the module of the figure 7 .
  • the parameters a and b are variable as a function of the thermal power taken by the water heater.
  • the parameters a and b are determined for various heating powers of the vehicle interior.
  • the values a and b are then determined at each moment as a function of the heating power (as indicated by a dedicated information received for example from the cabin heating management module).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Temperature (AREA)

Description

    DOMAINE TECHNIQUE AUQUEL SE RAPPORTE L'INVENTION
  • La présente invention concerne de manière générale le refroidissement du moteur d'entraînement dans un véhicule automobile.
  • Elle concerne plus particulièrement un procédé de commande d'un thermostat piloté d'un circuit de refroidissement d'un moteur thermique d'entraînement d'un véhicule.
  • ARRIERE-PLAN TECHNOLOGIQUE
  • Les véhicules automobiles sont classiquement équipés d'un système de refroidissement de leur moteur d'entrainement (par exemple, un moteur à combustion interne).
  • Un tel système de refroidissement comprend en général au moins un radiateur ayant pour fonction de refroidir un liquide transporté par des conduites entre le radiateur et un circuit de refroidissement interne au moteur.
  • D'autres éléments peuvent en outre être reliés au circuit externe de refroidissement formé par le radiateur et les conduites, tels que par exemple un aérotherme, un turbocompresseur ou un échangeur eau-huile.
  • Le circuit de refroidissement peut en outre comprendre un thermostat piloté par un élément chauffant, comme cela est décrit dans DE10318355-A1 .
  • Afin de pouvoir commander le fonctionnement de l'ensemble de ces éléments dans des plages de paramètres prédéfinies, notamment en ce qui concerne la température du liquide de refroidissement, il est souhaitable de connaître cette température, dans l'idéal en différents points du système.
  • US2005/006487-A1 décrit un circuit de refroidissement comportant plusieurs capteurs de mesure de la température du liquide transporté.
  • L'utilisation d'une pluralité de capteurs entraîne toutefois un coût non-négligeable et on se limite ainsi fréquemment à un seul capteur de température, positionné par exemple en sortie du moteur, comme le décrit EP0731261 -A1 , ce qui est préjudiciable à une commande précise de l'ensemble du système.
  • OBJET DE L'INVENTION
  • Dans ce contexte, la présente invention propose un procédé selon la revendication 1.
  • DESCRIPTION DETAILLEE D'UN EXEMPLE DE REALISATION
  • La description qui va suivre en regard des dessins annexés, donnés à titre d'exemples non limitatifs, fera bien comprendre en quoi consiste l'invention et comment elle peut être réalisée.
  • Sur les dessins annexés :
    • la figure 1 représente schématiquement les éléments principaux d'un système de refroidissement d'un moteur à combustion interne ;
    • les figures 2a et 2b représente schématiquement un thermostat piloté utilisé dans le système de la figure 1 ;
    • la figure 3 représente un exemple d'un système de pilotage d'un tel thermostat ;
    • les figures 4a et 4b présentent des éléments d'un exemple de modèle utilisé pour évaluer la course du thermostat piloté ;
    • la figure 5 représente un exemple de module d'évaluation de la course du thermostat piloté ;
    • la figure 6 présente les échanges de chaleur impliqués dans le système de refroidissement au niveau du thermostat piloté et du moteur ;
    • la figure 7 représente un exemple de module d'évaluation de la température du liquide de refroidissement au niveau du thermostat piloté conforme aux enseignements de l'invention.
  • La figure 1 représente les éléments principaux d'un système de refroidissement d'un moteur à combustion interne 2 d'un véhicule automobile. Ce moteur est ici un moteur à allumage par compression (Diesel). En variante, il pourrait s'agir d'un moteur à allumage commandé (Essence).
  • On a représenté en pointillés sur la figure 1 des éléments qui sont présents conformément à certaines variantes de mise en œuvre de l'invention.
  • Le système de refroidissement comprend un radiateur 6, monté par exemple à l'avant du véhicule automobile afin de recevoir le flux d'air généré par le déplacement du véhicule, et un aérotherme 8 qui permet le chauffage de l'habitacle du véhicule.
  • Le moteur à combustion interne 2 est parcouru par un liquide de refroidissement qui assure son fonctionnement à une température de consigne donnée comme expliqué ci-après.
  • En sortie du moteur 2, le liquide de refroidissement (chauffé par le moteur 2) est transporté par des conduites jusqu'au thermostat 4 d'une part, jusqu'au radiateur 6 et jusqu'à l'aérotherme 8 d'autres parts. Après refroidissement dans ces éléments, le liquide de refroidissement est transporté par des conduites jusqu'au moteur 2 pour refroidissement de celui-ci.
  • Le liquide de refroidissement est transporté du moteur 2 (en sortie) au moteur 2 (en entrée) à travers le thermostat 4 de façon permanente de sorte que le thermostat 4 soit toujours en contact avec un flux de liquide de refroidissement quelque soit l'état du thermostat 4 (ouvert ou fermé).
  • Le système de refroidissement peut éventuellement comprendre en outre un échangeur eau-huile 12 qui reçoit en entrée le liquide de refroidissement issu du moteur 2. Après avoir traversé l'échangeur eau-huile 12, le liquide de refroidissement est réinjecté dans le circuit décrit ci-dessus, par exemple au niveau du thermostat 4. L'utilisation de l'échangeur eau-huile n'entre pas dans le cadre de la présente invention et ne sera donc pas décrit en détail ici.
  • Le liquide de refroidissement est toutefois transporté du radiateur 6 au moteur 1 à travers une vanne thermostatique ou thermostat 4 qui régule la quantité de liquide de refroidissement refroidi (issue du radiateur 6) à injecter en entrée du moteur 1 afin d'obtenir la température souhaitée de fonctionnement du moteur, comme expliqué ci-après.
  • De même, le liquide de refroidissement en sortie du moteur 2 peut être utilisé pour réguler la température au sein d'un turbocompresseur 14 alimenté pour ce faire en liquide de refroidissement par une dérivation du circuit liant le moteur 2 et l'aérotherme 8.
  • Un capteur de température 10 est par ailleurs monté dans les conduites de liquide de refroidissement situées en sortie du moteur 2 afin de mesurer la température Ts du liquide de refroidissement en sortie du moteur 2.
  • Dans le présent exemple de réalisation, on ne prévoit pas de moyen de mesure de la température du liquide de refroidissement en entrée du moteur 2 (température TE), ou au niveau du thermostat 4 (température T4). En variante, comme expliqué ci-après, on pourrait au contraire prévoir d'utiliser un capteur de température dans le circuit de refroidissement à proximité de l'entrée du moteur afin de mesure la température TE ou au niveau du thermostat 4 afin de mesurer la température T4.
  • Les figures 2a et 2b représentent le thermostat 4 dans deux positions distinctes de fonctionnement, respectivement une première position dans laquelle le thermostat ferme la conduite reliant le radiateur 6 au moteur 2 et une seconde position dans laquelle le thermostat ouvre cette conduite.
  • Le thermostat 4 comprend une tige (ou "crayon") 20 sur laquelle est monté coulissant un ensemble formé d'un corps 22 en laiton et d'une soupape (ou clapet) 26. L'espace laissé libre entre le corps 22 et la tige 20 est rempli d'un matériau sensible à la chaleur, ici de la cire 24 enfermée à étanchéité dans cet espace délimité par le corps 22, la soupape 26 et la tige 20.
  • Le thermostat 4 est positionné dans la conduite reliant le radiateur 6 au moteur 2 de sorte que son corps 22 baigne dans le liquide de refroidissement de température T4 à cet endroit, comme indiqué ci-dessus ; le corps 22 est donc situé à l'aval de la soupape 26 dans cette conduite.
  • Lorsque la température T4 du liquide de refroidissement au niveau du thermostat 4 est inférieure à un seuil prédéterminé (défini par la conception du thermostat), et notamment à froid (lorsque le moteur 2 est à l'arrêt), la cire 24 est solide et la soupape 26 occupe la position illustrée en figure 2a dans laquelle elle obstrue la conduite : le liquide de refroidissement issu du radiateur 6 n'est donc pas injecté dans le circuit de refroidissement du moteur 2 et ne participe donc pas à son refroidissement.
  • Lorsque la température T4 du liquide de refroidissement au niveau du thermostat 4 atteint, voire dépasse, le seuil précité, du fait notamment du chauffage du liquide de refroidissement par le moteur 2 et de l'absence de refroidissement par le liquide de refroidissement issu du radiateur 6, la cire 24 fond et se dilate, ce qui provoque l'augmentation du volume situé entre le corps 22 et la tige 20, de sorte que le corps 22 et la tige 20 sont contraints de s'éloigner, entraînant le déplacement de la soupape 26 et l'ouverture du thermostat 4.
  • Du liquide de refroidissement issu du radiateur 6 (refroidi par celui-ci) est ainsi injecté dans le circuit de refroidissement du moteur 2 et participe donc au refroidissement du moteur.
  • On obtient ainsi une régulation mécanique de la température du liquide de refroidissement.
  • Un ressort de rappel (non représenté) est en général prévu pour faciliter le retour de la soupape 26 vers sa position fermée lorsque la température T4 du liquide de refroidissement diminue et que la cire refroidit et se contracte.
  • Le thermostat 4 comprend également une résistance électrique (non représentée), installée par exemple à l'intérieur de la tige 20 et connectée électriquement à une électrode 28.
  • L'application d'une tension V à l'électrode 28 fait passer un courant dans la résistance qui libère de la chaleur par effet Joule et accélère donc la montée en température de la cire 24. Le thermostat 4 s'ouvrira de ce fait plus rapidement qu'en l'absence de chauffage par la résistance, c'est-à-dire pour une température T4 de liquide de refroidissement inférieure au seuil précité.
  • L'utilisation du chauffage de la cire 24 (ici au moyen de la résistance) permet ainsi d'abaisser artificiellement la température de régulation du liquide de refroidissement du moteur 2 : le thermostat 4 est un thermostat piloté.
  • L'application continue d'une tension nominale V0 (tension utile maximale) permet d'obtenir la génération par la résistance d'une puissance calorifique maximale (qui dépend de la conception du thermostat). Une puissance calorifique inférieure à la puissance calorifique maximale peut être obtenue en appliquant la tension nominale V0 sur une proportion seulement de la période de temps considérée (principe de la modulation par largeur d'impulsions ou PWM de l'anglais "Pulse Width Modulation") : on considère dans la suite que l'on applique dans ce cas une tension utile V inférieure à la tension nominale V0.
  • La figure 3 représente un exemple d'un système de pilotage du thermostat 4 conforme aux enseignements de l'invention.
  • Le système de pilotage de la figure 3 comprend plusieurs modules, représentés ici sous forme fonctionnelle. Plusieurs modules fonctionnels peuvent toutefois en pratique être mis en œuvre par une même unité de traitement programmée pour effectuer les traitements affectés respectivement à ces modules fonctionnels. Cette unité de traitement est par exemple un calculateur 30 de commande du moteur (ou ECU de l'anglais "Engine Control Unit") équipant le véhicule, ou une unité de traitement dédiée au pilotage du thermostat 4.
  • Quoiqu'il en soit de l'architecture physique du système de pilotage du thermostat, une information de charge C (exprimée en N.m) et une information de régime moteur N (exprimée en tr/min), représentatives du fonctionnement du moteur 2, sont disponibles au sein du calculateur 30.
  • Ces informations C, N sont transmises d'une part à un module 32 de détermination d'une consigne en température TC et d'autre part à un module 36 d'évaluation de la température T4 du liquide de refroidissement au niveau du thermostat 4.
  • Le module de détermination de consigne 32 élabore la consigne en température TC en fonction du régime moteur N et de la charge C sur la base d'une cartographie mémorisée dans l'unité de traitement qui met en œuvre le module 32. Autrement dit, le module 32 est conçu pour déterminer la consigne en température TC par lecture d'une valeur associée aux valeurs de régime moteur N et de charge C reçues du calculateur 30 dans une table de correspondance (cartographie) mémorisée dans l'unité de traitement concernée.
  • Le module de détermination de consigne 32 génère par exemple des consignes TC comprises entre 90 °C et 110 °C adaptées aux différentes conditions de fonctionnement du moteur 2 rencontrées (représentées par la charge C et le régime-moteur N). En pratique, la consigne TC peut prendre un ensemble discret de valeurs, par exemple 90 °C, 100 °C ou 110 °C.
  • La consigne en température TC générée par le module de détermination de consigne 32 est transmise à un module de régulation 34, qui reçoit également la température Ts du liquide de refroidissement en sortie du moteur mesurée par le capteur de température 10.
  • Sur la base de la température mesurée Ts et de la consigne en température Tc, le module de régulation 34 détermine la tension utile brute VR à appliquer à l'électrode du thermostat piloté 4 afin de faire converger la température du liquide de refroidissement vers la consigne Tc.
  • La loi de régulation appliquée par le module de régulation 34 pour déterminer la tension utile brute VR en fonction de la température mesurée Ts et de la température de consigne TC dépend de l'application envisagée.
  • Par exemple, on peut envisager ce qui suit dans le cas indiqué ci-dessus où la consigne TC peut prendre un ensemble discret de valeurs :
    • lorsque la consigne TC est égale à 110 °C (régulation haute température), la tension utile brute VR est égale à 0 V, c'est-à-dire que la résistance de chauffage de la cire n'est pas utilisée et que la régulation de la température du liquide de refroidissement est réalisée mécaniquement par le thermostat (dont la conception est ici prévue pour une régulation à 110 °C) ;
    • lorsque la consigne TC est strictement inférieure à 110 °C (régulation basse température), et donc égale à 90 °C ou à 100 °C dans le cas décrit ici, la tension utile brute VR est par exemple déterminée en fonction de l'erreur en température (Ts-Tc) selon un mécanisme de régulation PI (proportionnel-intégral).
  • La tension utile brute VR générée par le module de régulation 34 est transmise à un module de correction 40 dont le fonctionnement sera décrit plus loin.
  • Le module 36 d'évaluation de la température T4 du liquide de refroidissement au niveau du thermostat 4 reçoit en entrée la température Ts mesurée par le capteur de mesure 10 et une valeur estimée L de course du thermostat 4, ainsi que, comme déjà indiqué, les informations de charge C et de régime moteur N représentatives du fonctionnement du moteur 2.
  • La valeur estimée L de course du thermostat 4 est produite comme expliqué plus en détail ci-dessous par un module 38 destiné à cet effet.
  • Sur la base de ces informations reçues en entrée, le module 36 évalue la température T4 du liquide de refroidissement au niveau du thermostat 4, par exemple selon le procédé décrit en détail ci-dessous en référence aux figures 6 et 7.
  • Comme déjà indiqué, selon une variante envisageable, le module 36 pourrait être remplacé par un capteur de température immergé dans le liquide de refroidissement au niveau du thermostat 4.
  • Le module d'évaluation de course 38 déjà mentionné reçoit en entrée la température T4 du liquide de refroidissement au niveau du thermostat (produite par le module d'évaluation 36 dans l'exemple décrit) et la valeur de tension utile effectivement appliquée au thermostat piloté 4 (valeur utile corrigée Vc générée par le module de correction 40 comme expliqué ci-après).
  • Sur la base de ces informations reçues en entrée, le module 38 évalue la course L de déplacement relatif de la tige 20 et du corps 22, ce qui donne une estimation de la proportion d'ouverture du thermostat 4. L'évaluation effectuée par le module 38 est par exemple réalisée par la mise en œuvre d'un modèle numérique, comme décrit ci-dessous en référence aux figures 4a, 4b et 5. En variante, cette évaluation peut être réalisée par lecture de la course L associée, dans une table de correspondance préenregistrée, aux valeurs de température T4 et de tension utile appliquée Vc reçues en entrée. Les valeurs préenregistrées ont par exemple dans ce cas été déterminées à l'aide d'essais préalables ou de simulations, réalisées au préalable, à l'aide du modèle numérique décrit en référence aux figures 4a, 4b et 5.
  • Le module 38 peut ainsi fournir une valeur L représentative de la course du thermostat 4 au module de correction 40, qui reçoit également en entrée la tension utile brute VR calculée par le module de régulation 34 comme déjà indiqué.
  • Lorsque la tension utile brute VR calculée par le module de régulation 34 est faible, voire nulle, le module de correction 40 corrige cette valeur de sorte qu'une tension utile minimale soit effectivement appliquée à l'électrode 28 du thermostat piloté 4 afin que la résistance délivre une puissance calorifique non-nulle, ce qui permet d'effectuer une préchauffe de la cire 24 à une température limite d'ouverture du thermostat 4. Ainsi, tout chauffage supplémentaire de la cire 24 (en réponse à une commande du système de pilotage en vue d'ouvrir le thermostat) aura un effet immédiat d'ouverture de la vanne.
  • En pratique, grâce à la connaissance de la valeur estimée L de course du thermostat 4 (reçue du module 38), le module de correction 40 peut déterminer quelle proportion d'ouverture du thermostat 4 est produite par la valeur de tension utile effectivement appliquée. Si le module de correction 40 constate la fermeture du thermostat 4 (c'est-à-dire si L=0), il génère en sortie une valeur de tension utile corrigée Vc légèrement supérieure à celle précédemment appliquée, jusqu'à constater une légère ouverture du thermostat 4 (toujours à l'aide de la valeur estimée L de course).
  • Naturellement, ce mécanisme d'application d'une tension minimum de préchauffage n'est maintenu que tant que la tension utile brute VR générée par le module de régulation 34 est inférieure à cette tension minimum de préchauffage. En effet, dès lors que le module de régulation 34 commande une tension utile brute VR supérieure à la tension minimum de préchauffage, cette tension utile brute VR est appliquée telle quelle par le module de correction 30 à l'électrode 28 du thermostat piloté 4 (on a dans ce cas Vc = VR).
  • Le module de correction 40 provoque également une limitation de la tension utile appliquée Vc (et donc de la puissance calorifique délivrée par la résistance par effet Joule) de telle sorte que l'application de cette tension Vc ne provoque pas un chauffage supérieur à celui entraînant une ouverture totale du thermostat 4 (c'est-à-dire une course L égale à la course maximale Lmax). Un chauffage supplémentaire est en effet inutile ; il est en outre préjudiciable au temps de réaction du système lorsque l'on souhaite ensuite fermer le thermostat (puisque le chauffage supplémentaire de la cire 24 rend plus long son refroidissement, puis éventuellement sa solidification).
  • En pratique, lorsque la valeur L de la course du thermostat 4 reçue par le module de correction 40 atteint la course maximale Lmax, le module de correction 40 applique au thermostat piloté 4 une tension utile Vc qui ne dépend pas de la tension utile brute VR reçue du module de régulation 34, mais qui est choisie pour maintenir la course L à sa valeur maximale Lmax. On utilise par exemple pour ce faire un asservissement de la tension utile appliquée Vc de telle sorte que la course évaluée L se maintienne entre une valeur prédéterminée (ici 0,95.Lmax) et la course maximale Lmax. Il s'agit donc dans ce cas d'une commande en boucle fermée.
  • Naturellement, ce mécanisme de limitation de la tension appliquée (et donc de la puissance calorifique délivrée par la résistance) n'est maintenu que tant que la tension utile brute VR générée par le module de régulation 34 est supérieure à cette tension limitée. En effet, dès lors que le module de régulation 34 commande une tension utile brute VR inférieure à la tension limitée déterminée par l'asservissement décrit ci-dessus, cette tension utile brute VR est appliquée telle quelle par le module de correction 30 à l'électrode 28 du thermostat piloté 4 (on a dans ce cas VC = VR).
  • On peut prévoir également, en complément de la limitation ci-dessus, que le module de correction 40 provoque une limitation de la tension effectivement appliquée Vc en fonction de la course L reçue en entrée pour une plage de valeurs de cette course L.
  • En effet, pour certains types de thermostats pilotés, il est contre-indiqué de commander une puissance de chauffage importante dans certaines positions d'ouverture du thermostat car le chauffage risque alors d'endommager les joints qui assurent l'étanchéité entre la tige et l'ensemble corps-soupape.
  • L'unité de traitement qui met en œuvre le module de correction 40 mémorise pour ce faire une table de correspondance qui indique la tension utile maximum autorisée Vmax en fonction de la course L du thermostat. Ces données sont par exemple fournies par le fabriquant du thermostat.
  • Le module de correction 40 lit donc à chaque instant la tension utile maximum autorisée Vmax dans la table en fonction de la valeur L de course reçue du module d'évaluation 38 et détermine ainsi la tension utile corrigée à appliquer :
    • si VR est inférieur à Vmax, Vc = VR ;
    • si VR est supérieur (ou égal) à Vmax, VC = Vmax.
  • Pour la simplification de l'exposé, on ne tient pas compte dans le paragraphe qui précède la limitation additionnelle éventuelle de la tension utile appliquée en vue d'éviter un échauffement trop important de la cire, comme proposé ci-dessus.
  • On comprend qu'en dehors des situations décrites ci-dessus, le module de correction 40 applique au thermostat piloté 4 une tension utile Vc égale à la tension utile brute VR reçue en entrée en provenance du module de régulation 34.
  • On remarque qu'en pratique, l'application d'une tension utile donnée au thermostat 4 est réalisée en appliquant une tension nominale V0 pendant une proportion du temps total telle que l'on génère une puissance électrique égale à celle qu'on aurait obtenue par application continue de la tension utile recherchée (conformément au principe de module en largeur d'impulsion ou PWM de l'anglais "Pulse Width Modulation"), comme déjà expliqué plus haut.
  • La figure 4a présente le modèle utilisé dans l'exemple décrit ici pour simuler le comportement thermique des différentes parties du thermostat piloté 4 en vue d'évaluer sa course comme expliqué plus loin.
  • Dans ce modèle, chaque partie du thermostat piloté 4 est représenté par sa masse, sa capacité thermique massique et sa température (que l'on considère uniforme sur l'ensemble de la partie concernée) ; on définit ainsi :
    • la masse m22, la capacité thermique massique C22 et la température T22 du corps 22 ;
    • la masse m24, la capacité thermique massique C24 et la température T24 de la cire 24 ;
    • la masse m20, la capacité thermique massique C20 et la température T20 de la tige 20.
  • On considère par ailleurs que ces différents éléments, ainsi que le liquide de refroidissement, sont séparés par des interfaces caractérisées chacune par un coefficient de transfert thermique surfacique et une surface, ce qui permet de définir :
    • un coefficient de transfert h1 et une surface S1 pour l'interface entre la tige 20 et la cire 24 ;
    • un coefficient de transfert h2 et une surface S2 pour l'interface entre la cire 24 et le corps 22 ;
    • un coefficient de transfert h3 et une surface S3 pour l'interface entre le corps 22 et le liquide de refroidissement à la température T4.
  • Les échanges calorifiques sont donc modélisés comme suit :
    • la résistance chauffe la tige par effet Joule en lui apportant une puissance thermique PJ (directement liée à la tension utile Vc appliquée au thermostat piloté 4) ;
    • un échange de chaleur a lieu entre la tige 20 et la cire 24 de puissance E1 = h1.S1.(T20-T24) (comptée positivement pour un transfert de chaleur de la tige 20 vers la cire 24) ;
    • un échange de chaleur a lieu entre la cire 24 et le corps 22 de puissance E2 = h2.S2.(T24-T22) (comptée positivement pour un transfert de chaleur de la cire 24 vers le corps 22) ;
    • un échange de chaleur a lieu entre le corps 22 et le liquide de refroidissement de puissance E3 = h3.S3.(T22-T4) (comptée positivement pour un transfert de chaleur du corps 22 vers le liquide de refroidissement).
  • En faisant un bilan de chaleur pour chaque partie du thermostat, on obtient les équations suivantes qui lient les températures T20, T22, T24 des différentes parties et la variation ΔT20, ΔT22, ΔT24 de chacune de ces températures dans le temps (par seconde lorsque les puissances ci-dessus sont exprimées en W) : m 20 . C 20 . ΔT 20 = P J E 1 = P J + h 1 . S 1 . T 24 T 20
    Figure imgb0001
    m 24 . C 24 . ΔT 24 = E 1 E 2 = h 1 . S 1 . T 20 T 24 + h 2 . S 2 T 22 T 24
    Figure imgb0002
    m 22 . C 22 . ΔT 22 = E 2 E 3 = h 2 . S 2 . T 24 T 22 + h 3 . S 3 . T 4 T 22 .
    Figure imgb0003
  • Grâce à ces équations, et sur la base d'évaluations ou de mesures de la température T4 du liquide de refroidissement au niveau du thermostat 4 et de la tension utile Vc appliquée au thermostat 4 (qui donne directement la puissance PJ dissipée par la résistance placée dans le thermostat 4), il est possible de déterminer à chaque instant l'évolution des températures des différentes parties du thermostat. Pour l'initialisation du système, on peut considérer qu'au démarrage (la résistance étant inactive dans les instants précédents), la température est homogène dans le thermostat 4 et vaut la température du liquide de refroidissement : on choisit les valeurs initiales de T20, T22, T24 comme égales à celle T4 du liquide de refroidissement.
  • On connaît donc en particulier la température T24 de la cire 24 qui permet d'obtenir directement la valeur L de course du thermostat, par exemple au moyen d'une table de correspondance qui indique la relation entre ces deux grandeurs, comme illustré par exemple en figure 4b. Ces données (relation entre la température T24 de la cire et la course L du thermostat) sont par exemple déterminées par des essais préalables ; elles peuvent être fournies par le fabriquant du thermostat.
  • De même, lorsque les caractéristiques des différentes parties du thermostat (masse, capacité calorifique) et des interfaces (surface, coefficient de transfert) ne sont pas connues, il est possible de les déterminer par des essais préalables ou à l'aide de courbes expérimentales de fonctionnement du thermostat : on adapte les caractéristiques des différentes parties et des interfaces de sorte que des résultats ou des courbes équivalents, déterminés grâce au modèle, correspondent aux résultats d'essais ou aux courbes expérimentales. (On remarque qu'il suffit dans ce cas de déterminer les produits m20.C20, m22.C22, m24.C24 et h1.S1, h2.S2, h3.S3, et non chaque caractéristique séparément.)
  • La figure 5 représente un exemple de module 38 d'évaluation de la course du thermostat piloté qui utilise le modèle qui vient d'être décrit. Ce module est par exemple mis en œuvre au sein d'une unité de traitement qui mémorise notamment la table de correspondance reliant les valeurs de température de cire T24 et de course L du thermostat.
  • Le module 38 reçoit en entrée la température T4 du liquide de refroidissement au niveau du thermostat 4 (évaluée par un module dédié, telle que le module 36 visible en figure 3 et décrit ci-dessous en référence à la figure 7, ou mesurée par un capteur de température) et la valeur de tension utile Vc appliquée au thermostat 4.
  • Le module 38 comprend une unité 102 de mémorisation de la valeur instantanée d'évaluation de la température T22 du corps 22, une unité 104 de mémorisation de la valeur instantanée d'évaluation de la température T24 de la cire 24 et une unité 106 de mémorisation de la valeur instantanée d'évaluation de la température T20 de la tige 20. Comme indiqué ci-dessus, au début du processus d'évaluation, ces unités sont initialisées avec la valeur T4 de température du liquide de refroidissement reçue en entrée.
  • Chaque itération du processus débute par une estimation des nouvelles valeurs T20 et T22 de température respectivement de la tige 20 et du corps 22. On procède ainsi car ces éléments sont proches des sources de chaleur et leur température est susceptible d'évoluer depuis la précédente itération.
  • Pour ce faire, le module 38 détermine l'évolution ΔT20 de la température T20 de la tige 20 au cours d'une itération sur la base des valeurs instantanées T20, T24 de température et de tension utile Vc (reçue en entrée) comme suit.
  • Un soustracteur 148 reçoit la valeur instantanée T20 de l'unité 106 et la soustrait à la valeur instantanée T24 reçue de l'unité 104. La valeur générée par le soustracteur 148 est multipliée par h1.S1 au sein d'un multiplicateur 150. On somme ensuite, au moyen d'un additionneur 152, la valeur obtenue en sortie du multiplicateur 150 et la puissance PJ générée par la résistance, déterminée en fonction de la tension utile Vc appliquée à la résistance au moyen d'une unité de conversion 108.
  • La sortie de l'additionneur 152 est multipliée par 1/(m20.C20) au sein d'un multiplicateur 154 afin d'obtenir l'évolution ΔT20 recherchée (conformément à la formule donnée ci-dessus).
  • La sortie du multiplicateur 154 (évolution ΔT20) est ajoutée à la valeur instantanée T20 par un additionneur 156, ce qui permet d'obtenir en sortie de l'additionneur 156 la nouvelle valeur instantanée d'évaluation de la température T20 de la tige 20, qui sera utilisée par l'unité 106 à l'itération suivante (après passage dans ce but à travers un retardateur 116).
  • De même, le module 38 détermine l'évolution ΔT22 de la température T22 du corps 22 au cours d'une itération sur la base des valeurs instantanées T4 (reçue en entrée), T22, T24 de température comme suit.
  • Un soustracteur 120 reçoit la valeur instantanée T22 de l'unité 102 et la soustrait à la valeur instantanée T4 reçue en entrée ; de même, un soustracteur 122 reçoit la valeur instantanée T22 de l'unité 102 et la soustrait à la valeur instantanée T24 reçue de l'unité 104. Les valeurs générées par les soustracteurs 120, 122 sont respectivement multipliées par h3.S3 au sein d'un multiplicateur 124 et par h2.S2 au sein d'un multiplicateur 126, puis sommées par un additionneur 128. La sortie de l'additionneur 128 est multipliée par 1/(m22.C22) au sein d'un multiplicateur 130 afin d'obtenir l'évolution ΔT22 recherchée (conformément à la formule donnée ci-dessus).
  • La sortie du multiplicateur 130 (évolution ΔT22) est ajoutée à la valeur instantanée T22 par un additionneur 132, ce qui permet d'obtenir en sortie de l'additionneur 132 la nouvelle valeur instantanée d'évaluation de la température T22 du corps 22, qui sera utilisée par l'unité 102 à l'itération suivante (après passage dans ce but à travers un retardateur 112).
  • Le module 38 détermine l'évolution ΔT24 de la température T24 de la cire 24 au cours d'une itération (ici d'une durée d'une seconde) sur la base des valeurs instantanées T20, T22, T24 de température comme suit. Ici, les températures T20 et T22 utilisées sont celles qui viennent d'être calculées comme décrit ci-dessus.
  • Un soustracteur 134 reçoit la valeur instantanée T24 de l'unité 104 et la soustrait à la valeur instantanée T22 (telle qu'elle vient d'être calculée) reçue de l'additionneur 132 ; de même, un soustracteur 136 reçoit la valeur instantanée T24 de l'unité 104 et la soustrait à la valeur instantanée T20 (telle qu'elle vient d'être calculée) reçue de l'additionneur 156. Les valeurs générées par les soustracteurs 134, 136 sont respectivement multipliées par h2.S2 au sein d'un multiplicateur 138 et par h1.S1 au sein d'un multiplicateur 140, puis sommées par un additionneur 142. La sortie de l'additionneur 142 est multipliée par 1/(m24.C24) au sein d'un multiplicateur 144 afin d'obtenir l'évolution ΔT24 recherchée (conformément à la formule donnée ci-dessus).
  • La sortie du multiplicateur 144 (évolution ΔT24) est ajoutée à la valeur instantanée T24 par un additionneur 146, ce qui permet d'obtenir en sortie de l'additionneur 146 la nouvelle valeur instantanée d'évaluation de la température T24 de la cire 24, qui sera utilisée par l'unité 104 à l'itération suivante (après passage dans ce but à travers un retardateur 114).
  • La nouvelle valeur instantanée d'évaluation de la température T24 est également transmise en entrée d'une unité 110 de conversion de la valeur de température de cire en valeur de course L du thermostat, sur la base de la table de correspondance mentionnée plus haut reliant les valeurs de température de cire et de course du thermostat.
  • On obtient ainsi à chaque itération une estimation de la valeur de course L du thermostat 4.
  • La figure 6 montre les échanges de chaleur impliqués dans le système de refroidissement au niveau du thermostat piloté et du moteur.
  • Comme visible en figure 1, le débit de liquide de refroidissement qui entre dans le moteur 2 et le parcourt en vue d'assurer son refroidissement est la somme du débit Qo en sortie de l'aérotherme (et éventuellement du turbocompresseur) et du débit Q(L) en sortie du thermostat, lequel dépend de la course L du thermostat.
  • Le réchauffement de ce flux de liquide de refroidissement dans le moteur, du fait de la puissance calorifique P(C,N) cédée par le moteur, génère l'accroissement de la température du liquide de refroidissement de sa valeur TE en entrée à sa valeur Ts en sortie, ce qui est traduit par l'équation suivante :
    P(C,N) = k.[Q0+Q(L)].(TS-TE), où k est une constante caractéristique du liquide de refroidissement (k = ρ.CP où est p la masse volumique du liquide de refroidissement et CP sa capacité thermique massique, ou chaleur massique).
  • On remarque que, comme indiqué par son expression sous la forme P(C,N), la puissance calorifique cédée par le moteur dépend de son point de fonctionnement, défini par la charge C et le régime N.
  • On propose d'utiliser ces considérations pour évaluer la température du liquide de refroidissement TE en entrée du moteur, puis la température du liquide de refroidissement T4 au niveau du thermostat piloté 4 au moyen du module d'évaluation 36 déjà mentionné, par exemple comme décrit à présent.
  • La figure 7 représente ainsi un exemple de module d'évaluation de la température T4 du liquide de refroidissement au niveau du thermostat piloté.
  • Ce module d'évaluation reçoit en entrée une information L représentative de la course du thermostat 4 (déterminée ici au moyen du module d'évaluation 38, dont un exemple a été décrit en référence aux figures 4a, 4b et 5), des informations relatives au point de fonctionnement du moteur, ici la charge C et le régime moteur N (fournies par exemple par l'unité de gestion du moteur ou ECU), et la température Ts du liquide de refroidissement en sortie du moteur, ici mesurée par le capteur de température 10.
  • L'unité de traitement qui met en œuvre le module de la figure 7 mémorise une cartographie de la puissance P(C,N) cédée au liquide de refroidissement par le moteur en fonction de la charge C et du régime-moteur N. Cette cartographie est une table qui indique les valeurs de puissance P cédée au liquide de refroidissement par le moteur respectivement associées à des couples de valeurs C, N.
  • Cette unité de traitement mémorise également une pluralité de valeurs Q(L) de débit de liquide de refroidissement à travers le thermostat associées respectivement aux différentes valeurs possibles pour la course L.
  • Ainsi, sur la base des informations reçues comme indiqué ci-dessus, un sous-module 70 détermine à chaque instant, par lecture dans la mémoire de l'unité de traitement, le débit Q(L) associé à la valeur L de course reçue en entrée et la puissance P(C,N) associée aux valeurs de charge C et de régime moteur N reçues en entrée.
  • Le sous-module 70 évalue ainsi, à chaque instant t, la température TE(t) du liquide de refroidissement en entrée du moteur à l'aide du modèle décrit ci-dessus en référence à la figure 6 : TE(t) = Ts - P(C,N)/(k.[Q0+Q(L)]).
  • L'information de température TE(t) déterminée par le sous-module 70 est appliquée à un retardateur 72, à un soustracteur 73 (qui reçoit également la sortie du retardateur 72) et à un additionneur 76. L'additionneur reçoit également la sortie du soustracteur 73 après multiplication dans un multiplicateur 75 par une constante b.
  • La sortie de l'additionneur 76 est appliquée à un soustracteur 78 d'une constante a, qui génère ainsi en sortie une valeur estimée de la température T4 du liquide de refroidissement au niveau du thermostat 4 qui vaut à chaque instant : T 4 = T E t a + b . T E t T E t 1 .
    Figure imgb0004
  • L'agencement des éléments 72, 73, 75, 76, 78 qui vient d'être décrit forme ainsi un sous-module 71 qui détermine la valeur estimée de la température T4 du liquide de refroidissement au niveau du thermostat 4 sur la base de la valeur estimée de la température TE du liquide de refroidissement en entrée du moteur 2.
  • Dans ce sous-module 71, la correction apportée à la température TE(t) par les termes a et b.[TE(t) - TE(t-1)] permet de tenir compte du fait que le thermostat se situe légèrement en amont de l'entrée du moteur dans le circuit de liquide de refroidissement et du fait que la température en entrée du moteur résulte de la combinaison de liquide de refroidissement provenant du thermostat et de liquide de refroidissement provenant de l'aérotherme.
  • Les constantes a et b sont déterminées par des essais préalables et peuvent être mémorisées dans l'unité de traitement qui met en œuvre le module de la figure 7. Dans le mode de réalisation décrit ici, on a par exemple a = 4 et b = 15 (pour des températures exprimées en °C ou en K).
  • On peut prévoir selon une variante envisageable que les paramètres a et b soient variables en fonction de la puissance thermique prélevée par l'aérotherme à l'eau. Lors des essais préalables, on détermine dans ce cas les paramètres a et b pour diverses puissances de chauffage de l'habitacle du véhicule. Lors du fonctionnement, les valeurs a et b sont alors déterminées à chaque instant en fonction de la puissance du chauffage (telle qu'indiquée par une information dédiée reçue par exemple du module de gestion du chauffage de l'habitacle).
  • Dans la description ci-dessus, le calcul de l'évaluation de la température T4 du liquide de refroidissement au niveau du thermostat en fonction de l'évaluation de la température TE du liquide de refroidissement en entrée du moteur est présentée sous forme de modules fonctionnels effectuant les différentes opérations. En pratique, ces opérations peuvent être effectuées par l'exécution d'un programme par l'unité de traitement qui met en œuvre le module de la figure 7.

Claims (1)

  1. Procédé de commande d'un thermostat piloté (4) d'un circuit de refroidissement d'un moteur thermique (2) d'entraînement d'un véhicule, le procédé comportant les étapes suivantes :
    a) mesure de la température (Ts) du liquide de refroidissement circulant dans une première conduite du circuit de refroidissement en sortie du moteur thermique (2),
    b) acquisition d'au moins une information (C, N) représentative d'un paramètre de fonctionnement du moteur thermique (2),
    c) estimation de la course (L) du thermostat piloté (4) au moyen d'un modèle numérique modélisant l'échange de chaleur entre une résistance électrique du thermostat piloté et une tige (20) du thermostat piloté lors du chauffage du thermostat piloté par la résistance, l'échange de chaleur entre la tige (20) et la cire (24) du thermostat piloté, l'échange de chaleur entre la cire (24) et le corps (22) du thermostat piloté, l'échange de chaleur entre le corps (22) du thermostat piloté et le liquide de refroidissement et faisant un bilan de chaleur pour chaque partie du thermostat,
    d) estimation de la température (TE) du liquide de refroidissement circulant dans une seconde conduite du circuit de refroidissement en entrée du moteur thermique, en fonction de la température (Ts) mesurée à l'étape a), de l'information (C, N) acquise à l'étape b), et de la course (L) estimée à l'étape c), la seconde conduite étant reliée à un radiateur avec interposition du thermostat piloté, un aérotherme étant relié à la seconde coduite,
    e) estimation de la température (T4) du liquide de refroidissement au niveau du thermostat sur la base de la température (TE) estimée dans la seconde conduite, la température (T4) au niveau du thermostat étant obtenue sur la base de la température estimée (TE) dans la seconde conduite par correction au moyen d'au moins un coefficient déterminé en fonction d'une puissance de chauffage de l'aérotherme,
    f) génération d'une valeur de tension utile à appliquer au thermostat piloté (4) en fonction d'une consigne de température (Tc), de la température (Ts) mesurée à l'étape a) et de la course (L) estimée à l'étape c),
    g) application de la tension utile (Vc) au thermostat piloté (4).
EP14827828.6A 2014-01-15 2014-12-12 Procédé de commande d'un thermostat piloté Active EP3094842B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1450322A FR3016400B1 (fr) 2014-01-15 2014-01-15 Procede d'estimation d'une temperature de liquide de refroidissement et systeme de refroidissement d'un moteur d'entrainement de vehicule automobile
PCT/FR2014/053315 WO2015107278A1 (fr) 2014-01-15 2014-12-12 Procédé d'estimation d'une température de liquide de refroidissement et système de refroidissement d'un moteur d'entrainement de véhicule automobile

Publications (2)

Publication Number Publication Date
EP3094842A1 EP3094842A1 (fr) 2016-11-23
EP3094842B1 true EP3094842B1 (fr) 2021-02-03

Family

ID=50483129

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14827828.6A Active EP3094842B1 (fr) 2014-01-15 2014-12-12 Procédé de commande d'un thermostat piloté

Country Status (4)

Country Link
EP (1) EP3094842B1 (fr)
JP (1) JP6552508B2 (fr)
FR (1) FR3016400B1 (fr)
WO (1) WO2015107278A1 (fr)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10318355A1 (de) * 2003-04-23 2004-12-02 Adam Opel Ag Kühlsystem für einen Verbrennungsmotor und Steuerverfahren dafür

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19508102C1 (de) * 1995-03-08 1996-07-25 Volkswagen Ag Verfahren zur Regelung eines Kühlkreislaufes eines Verbrennungskraftmotors, insbesondere für Kraftfahrzeuge
US6279390B1 (en) * 1996-12-17 2001-08-28 Denso Corporation Thermostat malfunction detecting system for engine cooling system
JP2000220454A (ja) * 1999-01-27 2000-08-08 Unisia Jecs Corp エンジンの冷却ファン制御装置
FR2796987B1 (fr) * 1999-07-30 2002-09-20 Valeo Thermique Moteur Sa Dispositif de regulation du refroidissement d'un moteur thermique de vehicule automobile
JP3932277B2 (ja) * 2002-10-18 2007-06-20 日本サーモスタット株式会社 電子制御サーモスタットの制御方法
JP4821247B2 (ja) * 2005-10-06 2011-11-24 トヨタ自動車株式会社 内燃機関の冷却水制御装置
GB201209679D0 (en) * 2012-05-31 2012-07-18 Jaguar Cars Fluid flow control device and method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10318355A1 (de) * 2003-04-23 2004-12-02 Adam Opel Ag Kühlsystem für einen Verbrennungsmotor und Steuerverfahren dafür

Also Published As

Publication number Publication date
FR3016400B1 (fr) 2016-02-05
JP6552508B2 (ja) 2019-07-31
JP2017503112A (ja) 2017-01-26
FR3016400A1 (fr) 2015-07-17
WO2015107278A1 (fr) 2015-07-23
EP3094842A1 (fr) 2016-11-23

Similar Documents

Publication Publication Date Title
EP3094841B1 (fr) Dispositif à thermostat pour système de refroidissement de véhicule automobile, système de refroidissement équipé d'un tel dispositif à thermostat et procédé de commande d'un module de chauffage
EP1974134B1 (fr) Procede et dispositif de regulation de la temperature d'un moteur a combustion interne
EP2338712B1 (fr) Optimisation d'une capacité de chauffage globale d'un système de climatisation
FR2531489A1 (fr) Dispositif de refroidissement d'un moteur a combustion interne
FR2952133A1 (fr) Procede de regulation ou de commande de la temperature d'une bougie de prechauffage
FR2796987A1 (fr) Dispositif de regulation du refroidissement d'un moteur thermique de vehicule automobile
FR3016399A1 (fr) Procede d’estimation de la proportion d’ouverture d’une vanne equipant un thermostat et systeme de refroidissement d’un moteur d’entrainement d’un vehicule automobile comprenant un thermostat
EP3094842B1 (fr) Procédé de commande d'un thermostat piloté
JP4677973B2 (ja) エンジン冷却系の故障診断装置
FR3016397A1 (fr) Dispositif a thermostat pour systeme de refroidissement de vehicule automobile, systeme de refroidissement equipe d’un tel dispositif a thermostat et procede de commande d’un module de chauffage
EP3120012B1 (fr) Procédé de gestion du fonctionnement d'un demarreur d'un moteur thermique afin d'éviter une éventuelle surchauffe pendant le démarrage
FR3016398A1 (fr) Dispositif a thermostat pour systeme de refroidissement de vehicule automobile, systeme de refroidissement equipe d’un tel dispositif a thermostat et procede de commande d’un module de chauffage
EP2494161B1 (fr) Système et procédé de commande du circuit de refroidissement d'un moteur a combustion interne
FR2955356A1 (fr) Procede et dispositif de gestion d'un moteur thermique
FR3007595A1 (fr) Procede de gestion d'un consommateur electrique en fonction d'un modele de temperature
FR3055584A1 (fr) Procede d’estimation de la temperature ambiante d’un organe sous capot de vehicule automobile
EP3350430B1 (fr) Procede de determination d'une temperature de substitution du liquide de refroidissement d'un moteur thermique equipe d'un réchauffeur additionnel
JP4605020B2 (ja) 内燃機関のアイドル回転数制御装置
FR2910062A1 (fr) Procede et dispositif de controle en continu de la fiabilite mecanique d'un moteur a combustion interne en utilisation
FR3093253A1 (fr) Système de refroidissement d’une machine électrique
FR2989112A1 (fr) Estimation de l'etat thermique d'un moteur
FR3040739B1 (fr) Systeme de refroidissement pour un moteur a combustion interne, notamment de vehicule automobile
FR3011100A1 (fr) Procede de controle de fonctionnement d'un rechauffeur de liquide de refroidissement
EP3907394A1 (fr) Procédé de gestion thermique d'un véhicule hybride
FR2751573A1 (fr) Procede de fabrication d'objets par moulage a temperature controlee

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160707

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190131

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200730

RIN1 Information on inventor provided before grant (corrected)

Inventor name: RUBY, STEPHANE

Inventor name: VIEL, CHRISTOPHE

Inventor name: PIARD, CHRISTOPHE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1359745

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210215

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014074722

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210203

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1359745

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210504

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210604

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210503

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014074722

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20211104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211212

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211212

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211212

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20141212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230608

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231221

Year of fee payment: 10

Ref country code: DE

Payment date: 20231214

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602014074722

Country of ref document: DE

Owner name: NEW H POWERTRAIN HOLDING, S.L.U., ES

Free format text: FORMER OWNER: RENAULT S.A.S., BOULOGNE-BILLANCOURT, FR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203